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ABSTRACT 1 
 2 
In an era of big data and emergence of new technologies such as app-based ride services, there are 3 
growing opportunities for better understanding human mobility patterns from newly available data 4 
sources. Statistical models have been mainly utilized to uncover and rigorously calibrate the 5 

influence of significant factors; and machine learning algorithms have been used to explore 6 
complex patterns through improved computing efficiency for large datasets. Focusing on discrete 7 
choice modeling applications, this research aims to introduce an open-source computational graph 8 
(CG)-based modeling framework for integrating the strengths of econometric models and machine 9 
learning algorithms. In particular, multinomial logit (MNL), nested logit (NL), and integrated 10 

choice and latent variable (ICLV) models are selected to demonstrate the performance of the 11 
proposed graph-oriented functional representation. Furthermore, the calculation of the gradient in 12 
the log-likelihood function and associated Hessian matrix is systematically accomplished using 13 

automatic differentiation (AD). Using the 2017 National Household Travel Survey data and an 14 
open-source dataset, we compare estimation results from the proposed methods with those 15 
obtained from two open-source packages, namely Biogeme and Apollo. The results indicate that 16 

the CG-based choice modeling approach can produce consistent estimates of parameters and 17 
accurate calculations for the gradients of the estimated parameters with substantial computational 18 
efficiency.  19 
 20 
Keywords: Computational graphs (CGs), automatic differentiation (AD), multinomial logit (MNL), nested 21 
logit (NL), integrated choice and latent variable (ICLV), and gradient calculation.    22 
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1. INTRODUCTION 1 
 2 

The emergence of massive datasets and widespread internet accessibility across the world have 3 
offered valuable opportunities for exploring interconnection between physical/cyber 4 
infrastructures and human mobility patterns. This has fostered development of techniques to fuse 5 
and analyze multiple data sources such as travel surveys, mobile phone data records, GPS, or 6 
sensor data (Hashem et al., 2016; Chen et al., 2016; Wu et al., 2018; Chen and Kwan., 2020). With 7 

growing interests to explore available data sources, many scholars have executed machine learning 8 
methods to efficiently estimate complex hidden patterns in large-scale datasets. In the field of 9 
transportation systems, data-driven approaches have been used to identify patterns of diverse 10 
traffic flows as well as assist decision makers to predict future trends (Bhavsar et al., 2017; Chang 11 
et al., 2019; Zhao et al., 2020). More recently, the research community has taken further steps to 12 

develop interpretable machine learning techniques while significant progress has been made in 13 

selecting significant variables that affect travel-related choices, enabling the explanation and 14 
testing of predicted results (Ribeiro et al., 2016; Lipton, 2018; Molnar, 2020). These research 15 

streams point to a potential paradigm shift in transportation demand modeling. 16 

Transportation planners have also recognized that machine learning methods demonstrate high 17 
predictive performance and computing efficiency for large-scale mobility datasets, but those data-18 
driven approaches still need to systematically meet standard requirements and expectations 19 

associated with modeling travel data sets (e.g., travel surveys) in transportation planning. The 20 
desirable statistics-oriented features include illustrating causal relationships, avoiding overfitted 21 

results in relatively small data sets, as well as generating robust standard error estimates for 22 
hypothesis testing. If a model estimates only the correlation in a given data set, as pointed out by 23 
Mokhtarian (2018), the causation would be eliminated, impeding the ability to answer “why” and 24 

“what might happen if” questions. Importantly, incorporating these factors enables researchers and 25 

decision makers to deeply fathom the traveler’s behavioral patterns. In light of this, statistical 26 
modeling approaches have generally been applied in explaining the cause-and-effect relationship 27 
and analyzing travel survey data (Paredes et al., 2017; Brathwaite and Walker, 2018b).  28 

In order to bridge the gap between both modeling approaches (i.e., statistical models and 29 
machine learning algorithms), this research aims to present a computational framework that can 30 

leverage capabilities of existing machine learning platforms to tackle classical estimation problems 31 
for discrete choice models. Using a traditional household travel survey dataset and a synthetic 32 
dataset available in the Apollo econometric modeling R package, we show how to construct a 33 

flexible and efficient modeling framework that utilizes data-driven algorithms in estimating 34 
econometric models.  The suggested approach could be useful in tackling other estimation 35 
problems, such as analyzing multi-dimensional samples from passively collected big data (spatio-36 

temporal dimensions) and enabling real-time updates (predictions) in transportation systems 37 
(Nuzzolo and Comi, 2016). 38 

The concept of computational graphs (CGs) is systematically introduced to establish an 39 
extended statistical modeling platform capable of covering large-scale datasets and non-linear 40 
architectures (e.g., deep neural networks (DNNs)).  The computational graph (CG)-based choice 41 
models can take full advantage of automatic differentiation (AD) techniques, which have been 42 
widely used in machine learning fields (Abadi et al., 2016; Baydin et al., 2017; Paszke et al., 2017). 43 

Three different discrete choice models in transportation planning, namely, multinomial logit 44 
(MNL), nested logit (NL), and integrated choice and latent variable (ICLV) functions, are 45 
reformulated as computational graphs to estimate parameters and associated statistical properties 46 
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such as standard errors. These three model forms are chosen because of their widespread use in 1 
the field of travel choice modeling. We also examine the flexibility of the modeling structure, and 2 

its capability of handling non-concave likelihood functions and simulation-based evaluation of 3 
multi-dimensional integrals in latent variable models. Open-source packages, Biogeme (Bierlaire, 4 
2003) and Apollo (Hess and Palma, 2019) are used as test benchmarks, with the publicly accessible 5 
National Household Travel Survey (NHTS) 2017 dataset and the synthetic dataset available in the 6 
Apollo package serving as use cases.   7 

The remainder of this paper is organized as follows. Section 2 presents the literature review 8 
with a particular focus on the integration of statistical models and machine learning methods. 9 
Section 3 describes the National Household Travel Survey (NHTS) 2017 and the synthetic 10 
datasets. In section 4, the computational graph-based choice models are presented in detail with 11 
an emphasis on meeting estimation expectations in planning applications. The estimation and 12 

benchmarking results are discussed in section 5. 13 
 14 

2. LITERATURE REVIEW 15 

 16 

This section addresses three aspects: integration of discrete choice models and machine 17 

learning methods, optimization algorithms, and techniques for computing gradients in objective 18 

functions.  Focusing on the concept of computational graph (CG) and its example, we also provide 19 

a discussion of the motivations behind our proposed approach. 20 

 21 

2.1. Integration of choice models and machine learning algorithms 22 

 23 

Recently, research communities have studied hybrid modelling approaches to integrate 24 

strengths of machine learning algorithms into discrete choice models (DCMs). For example, 25 

Sifringer et al. (2018) proposed a hybrid modeling framework for combining neural networks and 26 

multinomial logistic (MNL) models. Selecting the input features that are relatively uncorrelated 27 

with choice alternatives, dense neural network (DNN) learned hidden patterns were derived and 28 

the trained information was transmitted into the utility function defined in MNL. This 29 

methodology interpreted the specified parameters and led to higher log-likelihood values and 30 

improved predictive power. Han et al. (2020) further developed an extended framework to 31 

integrate MNL and the constrained data-driven structure (multi-layer perceptron (MLP)). 32 

Embedding MLP into the utility function of MNL, their approach demonstrated better predictive 33 

performance while maintaining the interpretability and preventing the model from over-fitting. 34 

More recently, Sifringer et al. (2020) showed the enhanced choice models by embedding neural 35 

networks into the specified utility functions of the MNL and NL models. In a residual logit 36 

(ResLogit) model proposed by Wong and Farooq (2019), recursive residual layers were 37 

constructed in the utility function of the standard MNL model to capture unobserved heterogeneity. 38 

Overall, these above-mentioned modeling efforts aim to resolve overfitting while preserving the 39 

econometric interpretability.  40 

Although significant progress has been made to integrate machine learning algorithms in 41 

DCM, there are still many challenges to be addressed. First, the existing hybrid models (Sifringer 42 

et al., 2018; Han et al., 2020; Sifringer et al., 2020) estimate parameters mainly based on the Adam 43 

optimizer proposed by Kingma and Ba (2014) or stochastic gradient descent (SGD) (Bottou, 2010). 44 
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In terms of optimizing objective functions, the first order-based estimators can be computationally 1 

effective to analyze a large-scale dataset and calibrate numerous parameters. However, we have to 2 

recognize that there are various model structures in which we are dealing with non-concave 3 

functions (e.g., nested logit (NL) model (Williams, 1977)) or simulation-based models involving 4 

computation of high-dimensional integrals such as the integrated choice and latent variable (ICLV) 5 

model (Ben-Akiva et al., 2002) and the hybrid choice model with a nonlinear utility function (Kim 6 

et al., 2016). Second, the first order-based estimation might not be able to provide desirable 7 

statistical properties in computing the Hessian matrix. These challenges require a systematic and 8 

careful analysis for an effective combination of machine learning techniques and optimization 9 

algorithms in the context of statistically-oriented choice models for transportation applications. 10 

  11 

2.2. Optimization algorithms for discrete choice models  12 

 13 

In the area of discrete choice modeling, maximum likelihood estimation (MLE) is one of the 14 

fundamentally important estimation methods. By computing the first order (gradient) and second 15 

order (curvature) derivatives of the likelihood function, MLE furnishes values of parameters by 16 

maximizing the likelihood function through the use of the Hessian matrix. The derivatives are 17 

computed by three approaches: manual/analytical, finite difference, and automatic differentiation 18 

(AD) (Bartholomew et al., 2000). Due to the difficulty of embedding/coding highly nonlinear 19 

forms in complicated functions, manual differentiation could be used for some very small cases. 20 

The numerical differentiation aims to approximate derivatives through the finite differencing, but 21 

the solution quality is greatly affected by the potential truncation and round-off errors associated 22 

with different finite difference formulas (Wright and Nocedal, 1999). On the other hand, the 23 

automatic differentiation (AD) technique utilizes the chain rule-based principle and intermediate 24 

variables to evaluate complex derivatives analytically (Wright and Nocedal, 1999; Griewank, and 25 

Walther, 2008). Specifically, in the new generation of low-level computational graph libraries such 26 

as Tensorflow and PyTorch, the computing architecture can enable modelers to represent the 27 

analytical optimization model through a graph of simple elementary operations (i.e., addition, 28 

subtraction, multiplication, and division) and elementary functions (e.g., natural logarithm), and 29 

further execute a sequential and complex structure of computations easily. In new domain-specific 30 

languages (DSLs) for convex optimization such as CVXPY, progress has been made recently to 31 

convert standard convex optimization to detailed CG representations with low-level solver 32 

interfaces (Agrawal et al. 2018).  It should be noted that AD might still encounter the difficulty of 33 

computing piecewise rational functions, especially when estimating gradients of non-smooth 34 

composite functions (Beck and Fischer, 1994; Nocedal and Wright, 2006).  35 

In the machine learning area, the sequential structure and computational graph approach have 36 

been widely applied for large-scale datasets with numerous parameters to be calibrated. These 37 

applications have demonstrated the capability of these approaches in computing gradients and 38 

Hessians of non-linear optimization formulations efficiently and precisely (Baydin et al., 2017). 39 

From a specific system identification perspective, the AD technique has been utilized in the fields 40 

of machine learning and econometric modeling to estimate parameters, thanks to its computational 41 

efficiency and flexibility of designing diverse composite functions (Sifringer et al., 2018; Wong 42 

and Farooq, 2019; Sun et al., 2019; van Kesteren and Oberski, 2019; Han et al., 2020). 43 



Taehooie Kim, Xuesong Zhou, and Ram M. Pendyala    

6 

Furthermore, in the case of discrete choice modeling (DCM), by carefully selecting the underlying 1 

computing algorithms, AD holds the promise for more precise computation of derivatives of the 2 

log likelihood with respect to specified parameters through chain rules and back propagation. That 3 

is, simply using the popular first order methods (e.g., SGD or Adam) is often inadequate in 4 

estimating complicated modeling structures (e.g., NL or ICLV). Thus, our research combines the 5 

AD technique with quasi-second order methods, e.g., Broyden-Fletcher-Goldfarb-Shanno 6 

(BFGS), to calibrate non-concave composite functions and deliver consistent statistical estimates 7 

through Hessians.  8 

 9 

2.3. Computational graph (CG) 10 

  11 

Understanding computational graph (CG) approach is important for designing flexible 12 

modeling structures that integrate choice models and machine learning seamlessly. Using the 13 

binary logit model in Eq. (1) as an example, Wu et al., (2018) and Sun et al. (2019) took a few 14 

initial steps to illustrate how CG can decompose complex composite functions as follows. 15 

 16 
 

P (𝑦 = 1) =
1

1 + 𝑒−𝑉
 (1) 

 17 

Eq. (1) indicates the probability of choosing a binary alternative, and the term 𝑉 is a specified 18 

utility function (e.g., V = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + ⋯+ 𝛽𝑛𝑥𝑛  where 𝛽𝑛  is the unknown parameter 19 

associated with the attribute 𝑥𝑛). Using the concept of computational graph (CG), this logistic 20 

function is now expressed as a directed graph which consists of nodes (elementary operations) and 21 

edges (directions): 22 

 23 

 24 
Fig. 1. Computational graph (CG) of the binary logit model 25 



Taehooie Kim, Xuesong Zhou, and Ram M. Pendyala    

7 

Fig. 1 clearly illustrates the logistic formulation written in Eq. (1) as a sequentially nested 1 

structure made up of nodes and edges. In particular, Fig. 1(a) is the process of computing the 2 

probability of a given binary alternative, and Fig. 1(b) represents the procedure of estimating 3 

parameters. For example, the parameter 𝛽1 is obtained by the defined nodes and links shown in 4 

Fig. 1: 5 

 6 
 𝜕P

𝜕𝛽1

=
𝜕P

𝜕𝑁5

∙
𝜕𝑁5

𝜕𝑁4

∙
𝜕𝑁4

𝜕𝑁3

∙
𝜕𝑁3

𝜕𝑁1

∙
𝜕𝑁1

𝜕𝛽1

=
𝑥1

(𝑁5)
2
∙ e−𝑁3 =

𝑥1

(1 + 𝑒−𝑉)2
∙ e−𝑉 (2) 

 7 

Eq. (2) presents the analytic derivative with respect to the parameter and the description of the 8 

chain rule-based computation. Furthermore, applying the gradients in the BFGS optimizer, this 9 

computed differentiation offers more precise Hessians.  In this context, it is helpful to compare the 10 

computed values in Eq. (2) with analytical sensitivities detailed in Koppelman and Bhat (2006) 11 

and Train (2009). 12 

To calibrate a broader set of DCMs in transportation planning with rigorously defined standard 13 

error estimates, we will tackle three econometric models (i.e., multinomial logit,  nested logit , and 14 

integrated choice and latent variable) to demonstrate the capability of the enhanced choice 15 

modelling framework along three directions: the numerical efficiency of processing a high-16 

dimension survey sample, greater flexibility in employing different composite functions (e.g., deep 17 

learning architectures), and realization of desirable statistical properties. A widely used machine 18 

learning platform, TensorFlow (Abadi et al., 2016), is selected to implement the proposed CG-19 

based discrete choice models, and the source code can be downloaded at Kim et al. (2021). There 20 

are other computational graph-oriented programming platforms such as Theano (Bastien et al., 21 

2012) or Pytorch (Paszke et al., 2017). In addition, to systematically verify the estimated 22 

parameters and statistical properties, two leading open-source packages for estimating DCMs, 23 

namely Biogeme (Bierlaire, 2003) and Apollo (Hess and Palma, 2019), are used to serve as 24 

benchmarks.  25 

It should be noted that the concept of computational graph has been adapted in the pioneering 26 

open-source DCM estimation package, Biogeme, in 2000, through the use of chain rule 27 

differentiation and analytical gradients.  In our proposed domain-specific languages (DSLs) for 28 

maximum likelihood estimation of various DCMs, we do not need to build the low-level 29 

computational graph manually through a general-purpose language (GPL); instead, we translate 30 

the corresponding DCM optimization to forms compatible to the interfaces of recent CG libraries 31 

(e.g., TensorFlow). By doing so, our approach can further fully utilize the backpropagation 32 

mechanism provided by differentiable optimization layers/pipelines. The DSLs for MLE-DCM 33 

helps modelers greatly reduce the computational redundancy by decomposing the computing units 34 

in a layered structure and enabling the use of dynamic programming for iteratively finding a 35 

solution. The development of domain-specific languages requires a deep understanding of the 36 

problem structure and domain knowledge, and we will further highlight the potential for 37 

integrating different transportation modeling elements of more complex estimation and planning 38 

problems in the conclusion of this paper.   39 

 40 

3. DATA PREPARATION 41 

https://en.wikipedia.org/wiki/General-purpose_language
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Two datasets are utilized in this research: the 2017 National Household Travel Survey (NHTS) 1 

dataset for estimating MNL and NL models, and a synthetic dataset provided by Hess and Palma 2 

(2019) to estimate the extended integrated choice and latent variable or ICLV model. 3 

 4 

3.1. National Household Travel Survey (NHTS) dataset 5 

 6 

The dataset used for the case study is derived from the National Household Travel Survey 7 

(NHTS 2017) conducted by the US Department of Transportation. This data set provides 8 

information about travel behavior, particularly associated with trip purposes and modes. In the 9 

current study, this large-scale dataset with 923,572 trips is explored.  To alleviate unobserved taste 10 

heterogeneity, we restrict the scope of the trip purpose and time-dimension by selecting 11 

commuting trips (home to work trips) departing between 6 and 9 AM.  12 

After filtering the dataset based on criteria and eliminating obviously erroneous observations 13 

or those with large amounts of missing data, the final subsample size used for the model estimation 14 

is 40,177 observations. Table 1 depicts the travelers’ socio-economic and demographic 15 

information, as well as travel time and distance variables that are subsequently used as explanatory 16 

variables in the specification of the utility function. The five alternatives, namely drive alone (DA), 17 

shared ride (SR), transit (TR), bike, and walk, are considered as the choice elements in the 18 

proposed MNL and NL choice models. In terms of person characteristics, 84.3 percent of the 19 

commuting trips are accounted for by those age 30-74 years. The gender ratio of this subsample is 20 

nearly 51 percent male and 49 percent female. In terms of educational attainment, travelers who 21 

earned the bachelor’s degree and graduate degree account for 29.8 percent and 26.1 percent of the 22 

commute tours, respectively. Among household attributes, individuals within the household 23 

income categories ($50,000-$124,999 and $125,000 or above) account for 76.7 percent of the 24 

commute tours. Two-person households and individuals living with five persons or more account 25 

for the highest and lowest proportion of commute tours, respectively. Nearly 79 percent of 26 

commuters travel from an urban area. According to travel characteristics, the average commute 27 

distance is 12.9 miles with a standard deviation of 15.8 miles, and the average time taken is 27.3 28 

minutes with a standard deviation of 27.9 minutes. The distribution of commute mode choices is 29 

79.3 percent of commute trips by drive alone (DA), 13.8 percent by shared ride, 3.8 percent by 30 

transit, and 3.1 percent by bike and walk. This mode choice distribution follows a similar pattern 31 

in a prior study by Paleti et al. (2013). 32 

 33 

Table 1. Description of the subsample (N=40,177)  34 
Person characteristics Frequency  Percentage (%) 

Age    

    Less than 18 years 111 0.3 

    18-24 years 2,259 5.6 

    25-29 years 3,549 8.8 

    30-44 years 11,502 28.6 

    45-59 years 15,094 37.6 

    60-74 years  7,270 18.1 

    75 years or above   392 1.0 

Gender     

    Male 20,387 50.7 

    Female 19,790 49.3 
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Education attainment     

    Less than bachelor’s degree 17,723 44.1 

    Bachelor’s degree 11,976 29.8 

    Graduate degree 10,478 26.1 

Household characteristics Frequency Percentage (%) 

Household income     

    Under $25,000 2,812 7.0 

    $25,000 - $49,999 6,560 16.3 

    $50,000 - $124,999 10,491 26.1 

    $125,000 or above 20,314 50.6 

Household size     

    1 (I am the only person) 6,284 15.6 

    2 people 17,468 43.5 

    3 people 7,270 18.1 

    4 people  6,032 15.0 

    5 people or more 3,123 7.8 

Travel characteristics Continuous (average) 

Trip distance in miles & Trip duration in minutes 12.88 miles & 27.33 minutes 

Endogenous variable Frequency Percentage (%) 

Trip mode   

    Drive alone (DA) 31,872 79.3 

    Shared ride (SR) 5,530 13.8 

    Transit (TR)  1,543 3.8 

    Bicycle  386 1.0 

    Walk  846 2.1 

 1 

3.2. Synthetic dataset 2 

 3 

The lack of attitudinal questions in the NHTS dataset renders it unsuitable for constructing 4 

ICLV components, i.e., structural models with latent variables and measurement equations. As a 5 

result, we utilized an alternative synthetic dataset that accompanies the Apollo package to estimate 6 

the ICLV model (instead of using the NHTS dataset). This dataset documents drug choices for 7 

1,000 individuals; four alternative choices, three socio-demographic characteristics, and four 8 

attitudinal questions are presented. The explanatory variables to construct the structural equation 9 

of a latent variable were binary in nature: regular drug users, university degree attainment, and age 10 

50 years and above. In addition, the attitudinal questions to define the measurement equations 11 

followed a Likert scale from 1 (strongly disagree) to 5 (strongly agree). Four attitudinal questions 12 

are selected as measurement equation indicators. The detailed description of the drug choice data 13 

is well documented in Hess and Palma (2019).   14 

 15 

4. MODELING FRAMEWORK AND METHODOLOGY 16 

 17 

This section presents the mathematical formulations of MNL, NL, and ICLV models, the 18 

computational graph-based modeling frameworks, as well as the stepwise procedure of estimating 19 

the proposed graph-oriented functions. Using the travel survey dataset, we develop the systematic 20 

utility function and the probability of choice alternatives, namely drive alone (DA), shared ride 21 

(SR), transit (TR), bike, and walk, to estimate MNL and NL models. On the other hand, the ICLV 22 

components (i.e., the structural equation of the latent variable, measurement indicators, utility 23 
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functions, as well as the probability of a drug choice between four alternatives) are constructed 1 

using the synthetic dataset.  2 

 3 

4.1. Mathematical formulations of the MNL and NL models 4 

 5 

With the fundamental assumptions that error components in the utility function are 6 

independently and identically distributed according to a Gumbel distribution, the functional 7 

formulation of the multinomial logit (MNL) model can be defined clearly. The probability that a 8 

decision maker 𝑛 chooses an alternative mode 𝑖 among a set of 𝐽 alternatives (i.e., DA, SR, TR, 9 

bike, and walk) is as follows (McFadden, 1974): 10 

 11 
 

𝐏𝑛,𝑖 =
𝑒𝑉𝑛,𝑖

∑ 𝑒𝑉𝑛,𝑗
𝑗𝜖𝐽

 (3) 

 12 

where 𝑉𝑛,𝑖  denotes the systematic utility of the alternative mode 𝑖 𝜖 𝐽 selected by the decision 13 

maker 𝑛, and the structural utility function includes alternative specific constants and observed 14 

attributes with their parameters (i.e., 𝑉𝑛,𝑖 = 𝐴𝑆𝐶𝑖,𝑛 + ∑ 𝛽𝑘,𝑖𝑥𝑘,𝑖,𝑛
𝐾
𝑘=1 ). The index 𝐽 is the set of the 15 

specified alternative choices. 𝐾 represents the number of attributes used as choice predictors.  16 

By reformulating the MNL structure to relax the independence of irrelevant alternatives (IIA) 17 

property of MNL, the nested logit (NL) can be specified (Williams 1977; McFadden 1978). In 18 

particular, two layered structures are considered in this study. The upper level of NL includes drive 19 

alone (DA), shared ride (SR), transit (TR), and the non-motorized group, and the two alternatives 20 

(i.e., bike and walk) included in the non-motorized group are located in the lower level.  21 

The functional formula of the choice probability is expressed by the product of the conditional 22 

probability and the marginal probability. For instance, the probability that a decision maker 𝑛 23 

selects an alternative 𝑖 in the nest 𝑚 is formulated as: 24 

 25 
 

𝐏𝑛,𝑖 = 𝐏𝑛,𝑖|𝐽𝑚 × 𝐏𝑛,𝐽𝑚 =
𝑒𝑉𝑛,𝑖/𝜆𝑚

∑ 𝑒𝑉𝑛,𝑙/𝜆𝑚
𝑙∈𝐽𝑚

×
𝑒(𝑉𝑛,𝑚+𝜆𝑚Γ𝑛,𝑚)

∑ 𝑒(𝑉𝑛,𝑗+𝜆𝑗Γ𝑛,𝑗)𝑀
𝑗=1

 (4) 

  26 

In Eq. (4) the first component is the conditional probability that the decision maker 𝑛 chooses 27 

either a bike or walk mode given that the non-motorized group 𝐽𝑚 is selected, and the second 28 

component is the marginal probability of choosing between drive alone, shared ride, transit, and 29 

the nested group. 𝜆𝑚  is the logsum parameter bounded by zero to one, an indicator of the 30 

correlation between bike and walk; the parameter is explained well in Koppelman and Bhat (2006). 31 

The inclusive value Γ𝑛,𝑚 (or often called log-sum term) is defined by Γ𝑛,𝑚 = log[∑ 𝑒𝑉𝑛,𝑙/𝜆𝑚
𝑙∈𝐽𝑚 ] 32 

where this term is associated with the nested group. Readers interested in the derivation of the 33 

mathematical formulations can find details in Koppelman and Bhat (2006) and Train (2009).  34 

 35 

4.2. Mathematical formulations of the ICLV model 36 

 37 

ICLV incorporates a latent variable model into a multinomial discrete choice model. To enable 38 

this integrated model, four components are generally required to be specified; a latent variable, 39 
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measurement indicators, utility functions, and choice probabilities (Ben-Akiva et al., 2002). First, 1 

the latent variable formulated as a function of observable explanatory variables with a stochastic 2 

component is given by: 3 

 4 
 𝑋𝑛

∗ = 𝛾𝑧𝑛 + 𝜂𝑛 (5) 

  5 

 Eq. (5) indicates the structural equation for the latent variable 𝑋∗ influenced by explanatory 6 

variables 𝑧𝑛 including three socio-demographic characteristics (in this study) with parameters 𝛾. 7 

The stochastic term 𝜂𝑛  follows a standard normal distribution  𝜂𝑛~𝑁(0, 1) . Second, the 8 

probability distribution function of the continuous measurement indicators is expressed as follows: 9 

 10 
 

𝑓𝑛(𝐼𝑛|𝑧𝑛 , 𝑋𝑛
∗; 𝜻, 𝝈) =

1

√2𝜋𝜎𝑘
2
𝑒

−
(𝐼𝑛,𝑘−𝐼𝑘̅−𝜁𝑘𝑋𝑛

∗)
2

2𝜎𝑘
2

 (6) 

 11 

where the continuous measurement indicators are defined by 𝐼𝑛,𝑘 = 𝜁𝑘𝑋𝑛
∗ + 𝑣𝑛. 𝐼𝑛,𝑘 represents an 12 

indicator associated with an attitude 𝑘 ∈ 𝐾  and the continuous measurement model. 𝐼𝑘̅  is the 13 

average of the indicator 𝑘. Subtracting it from 𝐼𝑛,𝑘, we avoid estimating the mean of the normal 14 

density. 𝜁𝑘  is the attitudinal coefficient for the latent variable 𝑋𝑛
∗ , and 𝑣𝑛  is the stochastic 15 

component characterized by a standard normal distribution 𝑣𝑛~𝑁(0, 1). Third, the systematic 16 

utility function is specified by 𝑉𝑛,𝑖 = ∑ 𝛽𝑠,𝑖𝑥𝑠,𝑛,𝑖
𝑆
𝑠=1 + 𝜆𝑋𝑛

∗  , where 𝛽𝑠,𝑖 and 𝜆 are coefficients of 17 

choice predictors and the latent variable, respectively.  𝑉𝑛,𝑖 represents the utility function of the 18 

alternative drug 𝑖 selected by the decision maker 𝑛. Lastly, the probability that a decision maker 𝑛 19 

chooses a drug 𝑖 among a set of four products is defined by the multinomial logit formulation. 20 

Using the defined components above, we can obtain the joint choice probability as follows (Ben-21 

Akiva et al., 2002; Vij and Walker, 2016): 22 

 23 
 

𝐏𝑖 = ∫∏
1

√2𝜋𝜎𝑘
2
𝑒

−
(𝐼𝑛,𝑘−𝐼𝑘̅−𝜁𝑘𝑋𝑛

∗)
2

2𝜎𝑘
2

×
𝑒𝑉𝑛,𝑖

∑ 𝑒𝑉𝑛,𝑗
𝑗𝜖𝐽

× 𝜙(𝜂𝑛)𝑑𝜂𝑛

𝐾

𝑘=1𝜂𝑛

 (7) 

 24 

In Eq. (7), the first component is the likelihood of the continuous measurement indicators, the 25 

second term is the multinomial logit model, and the third term is derived from the structural 26 

equation of the latent variable. Since Eq. (7) has no closed-form solution, this joint choice 27 

probability function is conventionally approximated using a Monte Carlo simulation-based 28 

approach:  29 

  30 
 

𝐏𝑖 ≅
1

𝑇
∑∏

1

√2𝜋𝜎𝑘
2
𝑒

−
(𝐼𝑛,𝑘−𝐼𝑘̅−𝜁𝑘𝑋𝑛,𝑡

∗ )
2

2𝜎𝑘
2

×
𝑒𝑉𝑛,𝑖,𝑡

∑ 𝑒𝑉𝑛,𝑗,𝑡
𝑗𝜖𝐽

𝐾

𝑘=1

𝑇

𝑡=1

  (8) 

 31 

Drawing the standard normal distribution function 𝜂𝑛  iteratively, we can simulate the 32 

multidimensional integrals, thus deriving Eq. (8); 𝑇 is the total number of draws. The detailed 33 
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description of simulation-based approaches can be found in Train (2009). With the above-derived 1 

functions, we now present the procedure of constructing computational graph-based models.   2 

 3 

4.3. Illustration of the computational graph-based modeling approach 4 

 5 

This subsection presents the CG-based modeling structures for MNL, NL, and ICLV. We 6 

present an illustrative example to demonstrate the sequential process of formulating the probability 7 

functions associated with mode choices and drug choices in the two datasets respectively. In this 8 

description, the probability of choosing the walk mode is exemplified using MNL and NL, and the 9 

probability of selecting a drug between four alternatives is illustrated for the ICLV.   10 

 11 

4.3.1. CG-based multinomial logit model 12 

 13 

Eq. (3) is decomposed and plotted into the directed graph, which includes elementary 14 

operations and elementary functions. As shown in Fig. 2, there are 15 input nodes and 16 15 

intermediate nodes to link between input nodes and the output node; input nodes are comprised of 16 

the alternative specific constants (ASC) for each alternative and unknown parameters 𝛽 associated 17 

with the attributes 𝑥 , and the intermediate nodes ( 𝑁𝑖  where 𝑖 = 1, 2, … , 16) play a role of 18 

decomposing functions. The output node is the probability of selecting the walk mode 𝐏𝑤𝑎𝑙𝑘 . 19 

Based on the nodes interconnected by directed edges, we can produce the sequentially nested 20 

structure for the probability function so that Eq. (3) can be mapped as follows: 21 

 22 
               𝐏𝑤𝑎𝑙𝑘 = 𝑁15 𝑁16⁄  

(9) 
 = e𝑁10 (𝑁11 + 𝑁12 + 𝑁13 + 𝑁14 + 𝑁15)⁄  

 = 𝑒(𝑁5+𝐴𝑆𝐶𝑤𝑎𝑙𝑘)/(𝑒𝑁6 + 𝑒𝑁7 + 𝑒𝑁8 + 𝑒𝑁9 + 𝑒𝑁10) 

 = 𝑒(𝛽𝑤𝑎𝑙𝑘𝑥𝑤𝑎𝑙𝑘+𝐴𝑆𝐶𝑤𝑎𝑙𝑘) (𝑒(𝑁1+𝐴𝑆𝐶𝐷𝐴) + 𝑒(𝑁2+𝐴𝑆𝐶𝑆𝑅) + 𝑒(𝑁3+𝐴𝑆𝐶𝑇𝑅) + 𝑒(𝑁4+𝐴𝑆𝐶𝑏𝑖𝑘𝑒) + 𝑒(𝑁5+𝐴𝑆𝐶𝑤𝑎𝑙𝑘))⁄  

 23 

where the nodes from 𝑁16 to 𝑁5 are used to connect input nodes and the output node, and the index 24 

𝑖 represents the labels of choice alternatives (DA, SR, TR, Bike, and Walk). It should be noted that 25 

in order to simplify the illustration, nodes associated with the availability of the given alternatives 26 

are excluded in this graph.  27 

 28 
Fig. 2. Illustration of CG-based multinomial logit model 29 
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 1 

4.3.2 CG-based nested logit model 2 

 3 

A two-level nested structure is described in this subsection. Based on Eq. (4), the probability 4 

of selecting the walk mode is plotted in Fig. 3. In contrast to the MNL model, this nested model is 5 

formulated using the conditional probability and marginal probability to account for the correlation 6 

between bike and walk. Fig. 3 denotes 21 input nodes including the nodes used in the MNL 7 

computational graph, the log-sum parameter 𝜆𝑚, as well as the log-sum function Γ𝑛𝑚. In addition, 8 

27 intermediate nodes are embedded to express the decomposed components of NL. With the 9 

specified nodes and the directed edges, the product of the conditional probability and the marginal 10 

probability can be computed to derive the probability of selecting the walk mode 𝐏𝑤𝑎𝑙𝑘 as follows:  11 

 12 

 𝐏𝑤𝑎𝑙𝑘 = 𝐏𝑤𝑎𝑙𝑘|𝑛𝑜𝑛−𝑎𝑢𝑡𝑜𝐏𝑛𝑜𝑛−𝑎𝑢𝑡𝑜 = 𝑁26𝑁27 (10) 
 13 

The conditional probability 𝐏𝑤𝑎𝑙𝑘|𝑛𝑜𝑛−𝑎𝑢𝑡𝑜  is equal to 𝑁26 , and the term 𝑁27  indicates the 14 

marginal probability of falling into the non-auto group. To be specific, the sequential steps of 15 

mapping the conditional probability 𝐏𝑤𝑎𝑙𝑘|𝑛𝑜𝑛−𝑎𝑢𝑡𝑜 are detailed below: 16 

 17 
𝐏𝑤𝑎𝑙𝑘|𝑛𝑜𝑛−𝑎𝑢𝑡𝑜 = 𝑁20 𝑁22⁄  

(11) 

 = 𝑒𝑁15 (𝑁19 + 𝑁20⁄ ) 

 = 𝑒𝑁9 𝜆𝑚⁄ (𝑒𝑁14 + 𝑒𝑁15)⁄  

 = 𝑒(𝑁4+𝐴𝑆𝐶𝑤𝑎𝑙𝑘) 𝜆𝑚⁄ (𝑒𝑁9 𝜆𝑚⁄ + 𝑒𝑁10 𝜆𝑚⁄ )⁄  

 = 𝑒(𝛽𝑤𝑎𝑙𝑘𝑥𝑤𝑎𝑙𝑘) 𝜆𝑚⁄ (𝑒𝛽𝑏𝑖𝑘𝑒𝑥𝑏𝑖𝑘𝑒 𝜆𝑚⁄ + 𝑒𝛽𝑤𝑎𝑙𝑘𝑥𝑤𝑎𝑙𝑘 𝜆𝑚⁄ )⁄  

 18 

Eq. (11) illustrates a stepwise procedure for deriving the conditional probability. The detailed 19 

description of the CG nodes and links can be found in Fig. 3. Similarly, the marginal probability 20 

𝐏𝑛𝑜𝑛−𝑎𝑢𝑡𝑜 ,which is mapped by the forward propagation of the CG framework, can be written in 21 

the following stepwise manner:  22 

 23 
 𝐏𝑛𝑜𝑛−𝑎𝑢𝑡𝑜 = 𝑁24 𝑁25⁄  

(12) 

  = 𝜆𝑚𝑁23 (𝑁21 + 𝑁24)⁄  

  = 𝜆𝑚log (𝑁22) (𝑁16 + 𝑁17 + 𝑁18 + 𝜆𝑚𝑁23)⁄  

  = 𝜆𝑚log (𝑁19 + 𝑁20) (𝑒𝑁11 + 𝑒𝑁12 + 𝑒𝑁13 + 𝜆𝑚𝑁23)⁄  

   ⋮ 

  = 𝜆𝑚log(𝑒𝑁9/𝜆𝑚 + 𝑒𝑁10/𝜆𝑚) (𝑒𝑁6/𝜆𝑚 + 𝑒𝑁7/𝜆𝑚 + 𝑒𝑁8/𝜆𝑚 + 𝜆𝑚log(𝑒𝑁9/𝜆𝑚 + 𝑒𝑁10/𝜆𝑚))⁄  

 

 
 = 

𝜆𝑚log(𝑒(𝛽𝑏𝑖𝑘𝑒𝑥𝑏𝑖𝑘𝑒)/𝜆𝑚 + 𝑒(𝛽𝑤𝑎𝑙𝑘𝑥𝑤𝑎𝑙𝑘)/𝜆𝑚)

(𝑒𝑁6/𝜆𝑚 + 𝑒𝑁7/𝜆𝑚 + 𝑒𝑁8/𝜆𝑚 + 𝜆𝑚𝑙𝑜𝑔(𝑒𝑁9/𝜆𝑚 + 𝑒𝑁10/𝜆𝑚))
 

 24 

Eq. (12) is the marginal probability of falling into the non-auto nest. The expression 25 

log(𝑒(𝛽𝑏𝑖𝑘𝑒𝑥𝑏𝑖𝑘𝑒)/𝜆𝑚 + 𝑒(𝛽𝑤𝑎𝑙𝑘𝑥𝑤𝑎𝑙𝑘)/𝜆𝑚) corresponds to the log-sum function Γ𝑛𝑚. By computing 26 

the product of Eq. (11) and (12), we can now derive the probability function Eq. (10) through the 27 

graph-oriented function. Please note that the utility function 𝑉𝑛𝑚 shown in Eq. (4) is assumed as 28 

zero. 29 
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  1 
Fig. 3. Illustration of CG-based two-level nested logit model 2 

 3 

4.3.3 CG-based integrated choice and latent variable (ICLV) model 4 

 5 

In this subsection, the ICLV function comprising of one latent variable, the stochastic term, 6 

continuous measurement indicators, as well as the multinomial logit structure is decomposed and 7 

plotted in a series of nodes (elementary operations) and edges (directions). According to Fig. 4, 17 8 

input nodes and 22 intermediate nodes are used. 𝑁6, 𝑁14, 𝑁22, and 𝑁23 are used to denote the 9 

ICLV components, in order to develop the output node 𝐏𝐴1 which is the joint choice probability 10 

of choosing a drug between four alternatives. With the CG-based structure, the exemplified choice 11 

probability can be written in the stepwise manner: 12 

 13 
 𝐏𝐴1 = 𝑁22 × 𝑁23 

(13) 

  = (𝑁21/𝑁18) × (𝑁10/𝑁14) 

  = 𝑒−𝑁20/𝜎√2𝜋 × 𝑒𝑁8/(𝑁10 + 𝑁11 + 𝑁12 + 𝑁13) 

   ⋮ 

  = 
1

𝜎√2𝜋
𝑒

−
(𝐼−𝜁𝑁6)

2

2𝜎2 ×
𝑒(𝑁1+𝜆𝑁6)

(𝑒(𝑁1+𝜆𝑁6) + 𝑒(𝑁2+𝜆𝑁6) + 𝑒𝑁3 + 𝑒𝑁4)
 

 14 

Eq. (13) denotes the joint choice probability of falling into drug alternative 1. The first 15 

component corresponds to the measurement indicators, while 𝑁6 is the structural equation of the 16 

latent variable. The second term is the discrete choice formulation. In order to simplify the 17 

illustration shown in Fig. 4, we only show the first iteration of the simulated choice model and 18 

exclude nodes associated with the availability of the given alternatives. 19 

With the underlying knowledge of building the forward propagation of the CG-based choice 20 

models, the following subsection discusses the automatic differentiation (AD) algorithm to 21 
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estimate the proposed CG-based choice models in a backpropagation approach. We describe the 1 

backpropagation step by step using the plotted figures.   2 

 3 

 4 
Fig. 4. Illustration of CG-based integrated choice and latent variable (ICLV) model 5 

4.4. Parameter estimation: automatic differentiation (AD) with BFGS 6 

 7 

In the CG-based architecture, the unknown parameters specified in Eq. (3), (4), and (8) can be 8 

estimated by minimizing the negative log-likelihood function, and the corresponding objective 9 

function leads to a particular type of the categorical cross-entropy function proposed by Shannon 10 

(1948). 11 

 12 

 𝐻𝑛(𝐏𝑛, 𝒚𝑛) =  −∑𝑦𝑛,𝑖 ln(P𝑛,𝑖(𝛽))

𝑖∈𝐽

 (14) 

 13 

where y𝑛,𝑖 is the discrete variable that denotes a choice 𝑖 ∈ 𝐽 selected by a decision maker 𝑛. Eq. 14 

(14) is commonly expressed as 𝐿𝐿(𝛽), log-likelihood, in the discrete choice field. Using the 15 

second-order Taylor’s approximation of log-likelihood function 𝐿𝐿(𝛽𝑘+1) in a neighborhood of 16 

𝐿𝐿(𝛽𝑘), we can find the optimal value of parameters 𝛽𝑘+1 to maximize 𝐿𝐿(𝛽𝑘+1) (Train, 2009). 17 

 18 

 𝜕𝐿𝐿(𝛽𝑘+1)

𝜕𝛽𝑘+1
=

𝜕𝐿𝐿(𝛽𝑘)

𝜕𝛽𝑘
+ 𝐵𝑘(𝛽𝑡+1 − 𝛽𝑡) = 0 (15) 

 19 

The partial derivative of 𝐿𝐿(𝛽𝑘) with respect to 𝛽𝑘 and the numerically approximated Hessian 20 

matrix 𝐵𝑘 are determining the best value of 𝛽𝑘+1. More specifically, when solving Eq. (15), 𝛽𝑘+1 21 

can be expressed as 𝛽𝑘 + (−𝐵𝑘)
−1(𝜕𝐿𝐿(𝛽𝑘)/𝜕𝛽𝑘). In order to compute the first-order gradients 22 

of the objective function with respect to each parameter, we utilize the automatic differentiation 23 

(AD) algorithm.  By utilizing the derived gradients in the BFGS optimizer, we can calculate the 24 

Hessian matrix which is used to evaluate statistical properties of estimated parameters. A detailed 25 
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description of computing the numerical Hessian matrix is explained in Nocedal and Wright (2006). 1 

As illustrated in the study, the first-order gradient information is valuable for assisting the chain 2 

rule-based algorithmic differentiation procedure in deriving the gradients in each choice model.  3 

Consider the estimation of the parameter 𝛽𝑤𝑎𝑙𝑘  shown in the equations. The numerical 4 

derivative of the parameter in MNL can be derived by the chain rule. 5 

 6 

 𝜕𝐿𝐿(𝛽𝑤𝑎𝑙𝑘)

𝜕𝛽𝑤𝑎𝑙𝑘
 = 

𝜕𝐿𝐿(𝛽𝑤𝑎𝑙𝑘)

𝜕P𝑤𝑎𝑙𝑘

𝜕P𝑤𝑎𝑙𝑘

𝜕𝑁16

𝜕𝑁16

𝜕𝑁15

𝜕𝑁15

𝜕𝑁10

𝜕𝑁10

𝜕𝑁5

𝜕𝑁5

𝜕𝛽𝑤𝑎𝑙𝑘
 

(16) 
  

= 
1

P𝑤𝑎𝑙𝑘

(𝑁16 − 𝑁15)

(𝑁16)
2  

𝑒𝑁10𝒙𝑤𝑎𝑙𝑘 

  
= 

1

P𝑤𝑎𝑙𝑘

(𝑒𝑁6 + 𝑒𝑁7 + 𝑒𝑁8 + 𝑒𝑁9)

(𝑒𝑁6 + 𝑒𝑁7 + 𝑒𝑁8 + 𝑒𝑁9 + 𝑒𝑁10)2  
𝑒𝑁10𝒙𝑤𝑎𝑙𝑘 

 7 

Eq. (16) further details the sequential procedure of computing the partial derivative of 𝐏𝑤𝑎𝑙𝑘 8 

defined in Eq. (9) with respect to the parameter 𝛽𝑤𝑎𝑙𝑘. The description of the intermediate nodes 9 

(𝑁𝑖 where i = 6, 7, 8, 9, 10) is illustrated in Fig. 2. The rest of the parameters defined in the CG-10 

based MNL model can be calculated similarly. Now, utilizing the computational graph for the NL 11 

model, we introduce the stepwise procedure for computing the partial derivative of the log-12 

likelihood of 𝐏𝑤𝑎𝑙𝑘 with respect to the parameter 𝛽𝑤𝑎𝑙𝑘 in Eq. (17). 13 

 14 

 𝜕𝐿𝐿(𝛽𝑤𝑎𝑙𝑘)

𝜕𝛽𝑤𝑎𝑙𝑘
 = 

𝜕𝐿𝐿(𝛽𝑤𝑎𝑙𝑘)

𝜕P𝑤𝑎𝑙𝑘

𝜕P𝑤𝑎𝑙𝑘

𝜕𝑁26

𝜕𝑁26

𝜕𝑁20

𝜕𝑁20

𝜕𝑁15

𝜕𝑁15

𝜕𝑁10

𝜕𝑁10

𝜕𝑁5

𝜕𝑁5

𝜕𝛽𝑤𝑎𝑙𝑘
 

(17) 

 
 = 

1

P𝑤𝑎𝑙𝑘

𝑁27

𝑁22
𝑒𝑁15

1

𝜆𝑚
𝒙𝑤𝑎𝑙𝑘 

 
 = 

1

P𝑤𝑎𝑙𝑘

𝜆𝑚𝑁23

(𝑁16 + 𝑁17 + 𝑁18 + 𝜆𝑚𝑁23)

𝑒𝑁15

𝜆𝑚
𝒙𝑤𝑎𝑙𝑘 

  = 
1

P𝑤𝑎𝑙𝑘

log(𝑒𝑁14 + 𝑒𝑁15)

(𝑒𝑁11 + 𝑒𝑁12 + 𝑒𝑁13 + 𝜆𝑚 log(𝑒𝑁14 + 𝑒𝑁15))
𝑒𝑁15𝒙𝑤𝑎𝑙𝑘 

 15 

In the nesting structure, we can observe the log-sum parameter 𝜆𝑚 and inclusive value term as 16 

log(𝑒𝑁14 + 𝑒𝑁15), and the probability of P𝑤𝑎𝑙𝑘 is as shown in Eq. (10). In a similar manner, the 17 

stepwise procedure of estimating the partial derivative of the log-likelihood of P𝐴1, Eq. (13), with 18 

respect to the parameter 𝛽𝐴1 in the ICLV model can be expressed as: 19 

 20 

 𝜕𝐿𝐿(𝛽𝐴1)

𝜕𝛽𝐴1
 = 

𝜕𝐿𝐿(P𝐴1)

𝜕P𝐴1

𝜕P𝐴1

𝜕𝑁23

𝜕𝑁23

𝜕𝑁14

𝜕𝑁14

𝜕𝑁10

𝜕𝑁10

𝜕𝑁8

𝜕𝑁8

𝜕𝑁1

𝜕𝑁1

𝜕𝛽𝐴1
 

(18) 

 
 = 

1

P𝐴1
𝑁22 (−

𝑁10

(𝑁14)
2) 𝑒𝑁8𝒙𝐴1 

 
 = 

1

P𝐴1
𝑁22 (−

𝑒𝑁8

(𝑒𝑁8 + 𝑒𝑁9 + 𝑒𝑁3 + 𝑒𝑁4)2)𝑒𝑁8𝒙𝐴1 

  = 
1

P𝐴1

1

𝜎√2𝜋
𝑒

−
(𝐼−𝜁𝑁6)

2

2𝜎2 (−
𝑒𝑁8

(𝑒𝑁8 + 𝑒𝑁9 + 𝑒𝑁3 + 𝑒𝑁4)2) 𝑒𝑁8𝒙𝐴1 

 21 

With the computed gradients of the log-likelihood function, the TensorFlow-based program 22 

starts from the initial settings of parameters and convergence criteria. Then these numerical tensors 23 

are transmitted into the optimizer of BFGS relying on an approximated Hessian matrix, with the 24 
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goal of minimizing the negative log-likelihood function defined by the CG-based structure. Based 1 

on the iterative algorithm of the optimizer, the inverse of the Hessian matrix 𝐻̂−1 is derived such 2 

that we can obtain the parameter variance-covariance matrix as follows: 3 

 4 
 

SE(𝜷̂) = √
𝛔2(𝜷̂)

𝑁
= √

(𝑯̂−1)

𝑁
=

[
 
 
 

𝜎2(𝛽1) 𝜎(𝛽1)𝜎(𝛽2)

𝜎(𝛽2)𝜎(𝛽1) 𝜎2(𝛽2)
⋯

𝜎(𝛽1)𝜎(𝛽𝑛)

𝜎(𝛽2)𝜎(𝛽𝑛)

⋮ ⋱ ⋮
𝜎(𝛽𝑛)𝜎(𝛽1) 𝜎(𝛽𝑛)𝜎(𝛽2) ⋯ 𝜎2(𝛽𝑛) ]

 
 
 

𝑛×𝑛

 (19) 

 5 

where 𝛔2(𝜷̂)  is the variance-covariance matrix of the parameters, 𝐻̂−1  is the approximated 6 

inverse of the Hessian matrix, and 𝑁 is the total number of observations. The diagonal elements 7 

of 𝝈2(𝜷̂) is the variances of parameters. Then, assuming the null hypothesis of 𝛽𝑜=0, t-statistics 8 

of each parameter can be obtained. 9 

 10 

 
𝑡𝛽̂𝑛

=
𝛽̂𝑛 − 𝛽𝑜

SE(𝛽̂𝑛)
 (20) 

 11 

Eq. (20) denotes t-statistics of a parameter 𝛽̂𝑛  and 𝑛 ∈ 𝑁 , the total number of estimated 12 

parameters. Detailed information on computing the robust t-ratio can be found in the 13 

documentation of Biogeme by Bierlaire (2016).  14 

Please note that, while finite differences (numerical differentiation) estimate the gradient (the 15 

first-order derivative) using the difference between a certain point and the point added by a small 16 

value, the chain rule-based differentiation (AD) produces the exact derivative values. That is, the 17 

computational graph-based structures can avoid truncation and round-off errors due to numerical 18 

differentiation and accordingly improve the computational efficiency (Chapra and Canale, 2010). 19 

Table 2 presents the different characteristics of three estimation models.  20 

 21 

Table 2. Attributes of two leading estimation packages and CG-based models 22 

 CG-based Models Biogeme Apollo 

Objective function Log-likelihood (ln𝑃𝑛𝑖(𝜷)) 

Starting values of the 

parameters (MNL and NL) 
𝛽𝑖 = 0 where 𝑖 = 0, 1, 2, … , 𝑛; 𝜆𝑁𝐿 = 0.95 

Starting values of the 

parameters (ICLV) 
𝛽𝑖 = 0 where 𝑖 = 0, 1, 2, … , 𝑛; 𝜆𝐼𝐶𝐿𝑉 = 1; 𝜎𝑖  and 𝜁𝑖 = 1 where  𝑖 = 1, 2, 3, 4  

Method of computing 

gradient derivative 

Automatic differentiation 

through integration of 

domain-specific language 

and low-level CG layers 

Chain rule of 

differentiation with 

analytical gradient 

Numerical derivative 

using advanced 

extrapolation methods 

such as Richardson 

extrapolation 

Optimization method BFGS BFGS BFGS 

Programming language Python, C++ library  Python, C++ library R 

 23 

In general, CG and both open-source packages use the log-likelihood function as the objective 24 

function, start from the same initial values for estimation, and implement the BFGS optimizer with 25 

an approximate second-order gradient. CG and Biogeme are coded based on the Python language 26 

with underlying C++ libraries, and Apollo (0.2.4 version) is written in the R language 27 
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(computational environment: Windows Intel(R) Core (TM) i7-9750H CPU @2.60GHz, 6 Core(s), 1 

32 GB RAM, and 500 GB SSD). 2 

 3 

5. MODEL ESTIMATION RESULTS 4 

 5 

This section provides the estimation results of MNL, NL, and ICLV models, and our focus is 6 

on the investigation of the accuracy and performance of computed gradients through various 7 

methods. The computational efficiency and numerical accuracy of the CG-based models are 8 

systematically compared to two established DCM estimation packages for MNL and NL models. 9 

Using the estimation results of ICLV, we demonstrate the ability of the proposed graph-oriented 10 

function to construct a simulation-based choice model and compare performance to the Apollo 11 

package. This research does not focus on the behavioral interpretation of the parameters (especially 12 

because NHTS data does not furnish level of service attributes critical to mode choice model 13 

specification, and the synthetic dataset is used solely for validating the CG-based models).  14 

 15 

5.1. Estimation of MNL and NL with constants only 16 

 17 

In Table 3, Part I shows the estimation results of MNL including alternative specific constants 18 

(ASCs) and their statistical properties. It is found that the graph-oriented approach shows identical 19 

estimation results when compared to Biogeme and Apollo; as noted earlier, both packages also 20 

implement the BFGS algorithm to derive the coefficients. 21 

Part II of Table 3 compares numerical differences between the CG-based NL model and the 22 

benchmark packages. The calibrated coefficients (constants) from CG are consistent with the 23 

values estimated by the two packages, but the standard errors of the Walk constant and the logsum 24 

parameter 𝝀 show some numerical inconsistency.  25 

 26 

Table 3. Model estimation results for MNL and NL 27 

Part I: MNL 
DSL- based CG Biogeme Apollo 

Coef. Std.err t-ratio Coef. Std.err t-ratio Coef. Std.err t-ratio 

Driving Alone (DA; base) 0 NA NA 0 NA NA 0 NA NA 

Shared Ride (SR) -1.36 0.016 -84.402 -1.36 0.016 -84.402 -1.36 0.016 -84.940 

Transit (TR) -2.93 0.044 -66.547 -2.93 0.044 -66.547 -2.93 0.044 -66.510 

Bike -3.40 0.068 -50.066 -3.40 0.068 -50.066 -3.40 0.068 -50.080 

Walk -3.28 0.051 -63.870 -3.28 0.051 -63.870 -3.28 0.051 -63.780 

LL (initial) // LL (final) -27031.930 // -16192.126 -27031.930 // -16192.126 -27031.940 // -16192.130 

AIC // BIC 32392.252 // 32426.656 32392.252 // 32426.656 32392.260 // 32426.670 

Part II: NL 
DSL-based CG Biogeme Apollo 

Coef. Std.err t-ratio Coef. Std.err t-ratio Coef. Std.err t-ratio 

Driving Alone (DA; base) 0 NA NA 0 NA NA 0 NA NA 

Shared Ride (SR) -1.36 0.016 -84.364 -1.36 0.016 -84.963 -1.36 0.016 -84.960 

Transit (TR) -2.92 0.044 -66.056 -2.92 0.044 -66.581 -2.92 0.044 -66.580 

Bike -3.10 0.072 -43.085 -3.10 0.073 -42.253 -3.10 0.073 -42.250 

Walk -3.12 0.059 -52.523 -3.12 0.062 -50.677 -3.12 0.062 -50.680 

Logsum (𝝀) 0.46 0.117 3.917 2.21* 0.622 3.556 0.45 0.127 3.560 

LL (initial) // LL (final) -27031.94 // -16183.793 -27031.94 // -16183.78 -27031.94 // -16183.78 

AIC // BIC 32377.586 // 32420.592 32377.56 // 32420.57 32377.56 // 32420.57 

*Note: The calculated 𝝀 in Biogeme is expressed as the inverse of 𝝀 (i.e., 1 2.21⁄ ≅ 0.45) 28 

 29 
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In order to check the source of this inconsistency, we investigate how the packages (Biogeme 1 

and Apollo) approximate the Hessian matrix of the log-likelihood function with respect to each 2 

parameter. Biogeme aims to approximate the elements of the Hessian matrix based on chain rule 3 

differentiation (CRD) and calculate the standard errors of the coefficients.  4 

Unlike the estimation results through CRD, the proposed modeling approach in this paper uses 5 

automatic differentiation (AD) to obtain the first order gradient of the log-likelihood function. Both 6 

approaches are based on the chain rule-based differentiation, but AD can implement intermediate 7 

variables in computing gradients, which enables the proposed model to find the analytic gradients 8 

efficiently. 9 

Table 4 compares the numeric gradients extracted from two approaches (Biogeme and CG-10 

based). In Table 4-Part I, we notice the gradients computed through both CRD and AD are 11 

approaching zero so that the approximated standard errors were closely identical to each other. 12 

However, as the gradient approximated by CRD in Part II (nested logit) is not sufficiently close to 13 

zero, the approximated Hessian matrix might yield different standard errors compared to the AD-14 

based result. As shown in Eq. (15), the magnitude of the first-order gradients is a critical indicator 15 

for convergence, which is required to assure maximization of the log-likelihood functions (Train 16 

2009). Please note that the approximation issue of CRD has been investigated and discussed by 17 

Brathwaite (2017) and Brathwaite and Walker, (2018a). According to Table 4-Part I, the absolute 18 

averages of gradients of CRD and AD are 1.32E-05 and 1.78E-09, respectively. Table 4-Part II 19 

shows the absolute average of the gradients of CRD is 1.16E-04 while the corresponding value for 20 

AD shows 2.83E-07. The gradients produced from both methods are significantly small, and the 21 

differences depend on the selection of stopping criteria. In other words, if we use the same stopping 22 

criteria for the estimation of gradients in both methods, the discrepancy shown in Table 4 would 23 

be vanished.   24 

 25 
Table 4. Estimated Gradients computed by chain rule differentiation and analytical gradient (CRD+AG) and 26 
automatic differentiation (AD) through DSL 27 

Part I:  Gradients of 

MNL 
Chain rule differentiation and analytical gradient 

CRD+AG 

Automatic Differentiation (AD) 

through DSL 

Driving Alone (DA; 

base) 

0 0 

Shared Ride (SR)  -9.85144E-05 1.86265E-08 

Transit (TR) 9.86795E-05 -1.19908E-08 

Bike  -3.09112E-05 4.65661E-10 

Walk  -2.21991E-05 0 

Part II: Gradients of 

NL 
CRD+AG AD + DSL 

Driving Alone (DA; 

base) 

0 0 

Shared Ride (SR) 1.15E-03 1.86265E-09 

Transit (TR) 5.97E-04 4.08152E-07 

Bike  -2.57E-05 9.76317E-07 

Walk  -1.31E-03 -1.57219E-07 

Logsum (𝝀) 1.71E-04 1.86265E-07 

 28 

5.2. Estimation of MNL and NL with constants and explanatory variables 29 

 30 
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This subsection presents estimation results for a fully specified model including explanatory 1 

variables. Specifically, five categorical variables and one continuous variable were included. The 2 

utility function of each mode is influenced by the same explanatory variables; age groups, gender, 3 

education attainment, household income and size, as well as travel time. There are 33 estimated 4 

parameters, and the detailed description of each parameter is provided in Table 5 and Table 6. 5 

Based on the log-likelihood values obtained, all methods showed similarity in terms of the 6 

estimated coefficients. On the other hand, due to the fact that the two packages used different 7 

methods to derive the gradients (numerical differentiation and chain-rule differentiation, 8 

respectively) of the parameters while the CG-based structure utilized the analytical approach (i.e., 9 

AD), we see differences in the numeric gradients. These differences likely explain the discrepancy 10 

in standard errors and t-ratio statistics.  11 

The gradients computed by CRD and AD are presented in Table 7. As expected, the gradients 12 

computed by the algorithmic differentiation are significantly closer to zero compared to the 13 

counterpart by the chain rule-based approach with different stopping criteria. In terms of the final 14 

absolute average of gradients in MNL and NL, CRD provides values of 8.72E-05 in MNL and 15 

1.86E-04 in NL. On the other hand, the estimated gradients using AD are 9.31E-07 in MNL and 16 

1.07E-08 in NL. 17 
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Table 5. Model estimation results for Multinomial Logit (MNL) with explanatory variables 1 

Part III: MNL with explanatory variables 
DSLCG -based MNL Biogeme Apollo 

Coef. Std.err t-ratio Coef. Std.err t-ratio Coef. Std.err t-ratio 

Drive Alone (DA; base) 0.00 NA NA 0.00 NA NA 0.00 NA NA 

Shared Ride (SR) -1.25 0.07 -17.69 -1.25 0.07 -17.41 -1.25 0.07 -17.38 

Transit (TR) -9.55 0.33 -29.02 -9.55 0.33 -29.12 -9.55 0.33 -29.07 

Bike -3.66 0.30 -12.15 -3.67 0.31 -11.88 -3.67 0.31 -11.86 

Walk -0.54 0.16 -3.36 -0.53 0.18 -3.05 -0.53 0.18 -3.05 

SR 

Gender (Male=1, Female=0) -0.10 0.03 -3.21 -0.10 0.03 -3.18 -0.10 0.03 -3.17 

Aged 30-44 years (Yes=1, No=0) 0.12 0.04 2.85 0.12 0.04 2.80 0.12 0.04 2.79 

Aged 45-59 years (Yes=1, No=0) -0.06 0.04 -1.48 -0.06 0.04 -1.47 -0.06 0.04 -1.47 

Education attainment: Graduate degree (Yes=1, No=0) -0.18 0.04 -4.88 -0.18 0.04 -4.81 -0.18 0.04 -4.82 

Household income: $125,000 or more (Yes=1, No=0) -0.06 0.03 -1.83 -0.06 0.03 -1.82 -0.06 0.03 -1.82 

Household size: Three-person or more (Yes=1, No=0) 0.11 0.03 3.38 0.11 0.03 3.32 0.11 0.03 3.32 

Natural logarithm of travel time (in minutes) -0.02 0.05 -0.43 -0.02 0.05 -0.43 -0.02 0.05 -0.43 

TR 

Gender (Male=1, Female=0) -0.15 0.04 -3.35 -0.15 0.10 -1.49 -0.15 0.10 -1.48 

Aged 30-44 years (Yes=1, No=0) 0.17 0.08 2.17 0.16 0.13 1.30 0.16 0.13 1.31 

Aged 45-59 years (Yes=1, No=0) -0.20 0.08 -2.66 -0.21 0.13 -1.63 -0.21 0.13 -1.63 

Education attainment: Graduate degree (Yes=1, No=0) 0.45 0.08 5.54 0.45 0.10 4.32 0.45 0.10 4.32 

Household income: $125,000 or more (Yes=1, No=0) -0.17 0.09 -1.90 -0.17 0.10 -1.67 -0.17 0.10 -1.67 

Household size: Three-person or more (Yes=1, No=0) -0.04 0.06 -0.59 -0.04 0.11 -0.34 -0.04 0.11 -0.34 

Natural logarithm of travel time (in minutes) 4.33 0.19 22.99 4.33 0.19 22.44 4.33 0.19 22.47 

Bike 

Gender (Male=1, Female=0) 0.62 0.11 5.39 0.61 0.15 3.97 0.61 0.15 3.96 

Aged 30-44 years (Yes=1, No=0) 0.13 0.07 1.83 0.13 0.17 0.74 0.13 0.17 0.74 

Aged 45-59 years (Yes=1, No=0) -0.36 0.07 -5.33 -0.36 0.18 -2.00 -0.36 0.18 -2.01 

Education attainment: Graduate degree (Yes=1, No=0) 0.55 0.08 6.87 0.55 0.14 3.93 0.55 0.14 3.93 

Household income: $125,000 or more (Yes=1, No=0) 0.06 0.08 0.80 0.06 0.14 0.41 0.06 0.14 0.41 

Household size: Three-person or more (Yes=1, No=0) -0.16 0.04 -4.04 -0.16 0.15 -1.08 -0.16 0.15 -1.08 

Natural logarithm of travel time (in minutes) -0.25 0.17 -1.46 -0.24 0.20 -1.16 -0.24 0.20 -1.16 

Walk 

Gender (Male=1, Female=0) -0.17 0.06 -3.02 -0.17 0.11 -1.60 -0.17 0.11 -1.61 

Aged 30-44 years (Yes=1, No=0) -0.07 0.07 -1.01 -0.07 0.14 -0.55 -0.07 0.13 -0.55 

Aged 45-59 years (Yes=1, No=0) -0.46 0.08 -5.45 -0.45 0.13 -3.44 -0.45 0.13 -3.45 

Education attainment: Graduate degree (Yes=1, No=0) 0.27 0.07 3.88 0.26 0.11 2.32 0.26 0.11 2.32 

Household income: $125,000 or more (Yes=1, No=0) -0.21 0.05 -4.10 -0.22 0.11 -2.00 -0.22 0.11 -2.00 

Household size: Three-person or more (Yes=1, No=0) -0.19 0.04 -4.28 -0.20 0.12 -1.59 -0.20 0.12 -1.59 

Natural logarithm of travel time (in minutes) -2.20 0.12 -18.78 -2.20 0.14 -16.18 -2.20 0.14 -16.12 

LL (initial) // LL (final) -27031.94 // -15553.39 -27031.94 // -15553.39 -27031.94 // -15553.39 

AIC // BIC 31170.78 // 31446.02 31170.78 // 31446.02 31170.78 // 31446.02 

 2 

 3 
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Table 6. Model estimation results for Nested Logit (NL) with explanatory variables 1 

Part IV: NL with explanatory variables 
DSLCG-based NL Biogeme Apollo 

Coef. Std.err t-ratio Coef. Std.err t-ratio Coef. Std.err t-ratio 

Drive Alone (DA; base) 0.00 NA NA 0.00 NA NA 0.00 NA NA 

Shared Ride (SR) -1.25 0.07 -17.61 -1.25 0.07 -17.43 -1.25 0.07 -17.43 

Transit (TR) -9.49 0.33 -29.06 -9.49 0.33 -28.97 -9.49 0.33 -28.97 

Bike -2.70 0.37 -7.32 -2.69 0.37 -7.26 -2.69 0.37 -7.26 

Walk -0.70 0.18 -3.97 -0.70 0.18 -3.96 -0.70 0.18 -3.96 

Logsum (𝛌) 0.56 0.11 5.00 1.80* 0.37 4.84 0.56 0.12 4.84 

SR 

Gender (Male=1, Female=0) -0.10 0.03 -3.22 -0.10 0.03 -3.18 -0.10 0.03 -3.18 

Aged 30-44 years (Yes=1, No=0) 0.12 0.04 2.80 0.12 0.04 2.78 0.12 0.04 2.78 

Aged 45-59 years (Yes=1, No=0) -0.06 0.04 -1.47 -0.06 0.04 -1.46 -0.06 0.04 -1.46 

Education attainment: Graduate degree (Yes=1, No=0) -0.18 0.04 -4.93 -0.18 0.04 -4.85 -0.18 0.04 -4.85 

Household income: $125,000 or more (Yes=1, No=0) -0.06 0.03 -1.83 -0.06 0.03 -1.82 -0.06 0.03 -1.82 

Household size: Three-person or more (Yes=1, No=0) 0.11 0.03 3.37 0.11 0.03 3.33 0.11 0.03 3.33 

Natural logarithm of travel time (in minutes) -0.02 0.05 -0.40 -0.02 0.05 -0.39 -0.02 0.05 -0.39 

TR 

Gender (Male=1, Female=0) -0.15 0.05 -3.23 -0.15 0.10 -1.52 -0.15 0.10 -1.52 

Aged 30-44 years (Yes=1, No=0) 0.16 0.08 2.11 0.16 0.13 1.30 0.16 0.13 1.30 

Aged 45-59 years (Yes=1, No=0) -0.21 0.09 -2.45 -0.21 0.13 -1.64 -0.21 0.13 -1.64 

Education attainment: Graduate degree (Yes=1, No=0) 0.44 0.05 8.34 0.44 0.10 4.30 0.44 0.10 4.30 

Household income: $125,000 or more (Yes=1, No=0) -0.18 0.08 -2.22 -0.17 0.10 -1.71 -0.17 0.10 -1.71 

Household size: Three-person or more (Yes=1, No=0) -0.04 0.04 -0.96 -0.04 0.11 -0.38 -0.04 0.11 -0.38 

Natural logarithm of travel time (in minutes) 4.30 0.18 23.46 4.30 0.19 22.38 4.30 0.19 22.38 

N
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te
d
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u
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 Bike 

Gender (Male=1, Female=0) 0.46 0.09 4.90 0.46 0.13 3.52 0.46 0.13 3.52 

Aged 30-44 years (Yes=1, No=0) 0.06 0.10 0.63 0.06 0.14 0.41 0.06 0.14 0.42 

Aged 45-59 years (Yes=1, No=0) -0.40 0.12 -3.46 -0.40 0.15 -2.73 -0.40 0.15 -2.73 

Education attainment: Graduate degree (Yes=1, No=0) 0.45 0.08 5.61 0.45 0.12 3.79 0.45 0.12 3.79 

Household income: $125,000 or more (Yes=1, No=0) 0.00 0.08 0.04 0.00 0.12 0.03 0.00 0.12 0.03 

Household size: Three-person or more (Yes=1, No=0) -0.10 0.07 -1.53 -0.10 0.13 -0.80 -0.10 0.13 -0.80 

Natural logarithm of travel time (in minutes) -0.68 0.22 -3.12 -0.68 0.22 -3.11 -0.68 0.22 -3.11 

 

Walk 

Gender (Male=1, Female=0) -0.09 0.07 -1.31 -0.09 0.10 -0.91 -0.09 0.10 -0.91 

Aged 30-44 years (Yes=1, No=0) -0.01 0.11 -0.07 -0.01 0.12 -0.07 -0.01 0.12 -0.07 

Aged 45-59 years (Yes=1, No=0) -0.41 0.11 -3.77 -0.41 0.12 -3.39 -0.41 0.12 -3.39 

Education attainment: Graduate degree (Yes=1, No=0) 0.34 0.07 4.78 0.34 0.10 3.25 0.34 0.10 3.25 

Household income: $125,000 or more (Yes=1, No=0) -0.18 0.08 -2.27 -0.18 0.10 -1.78 -0.18 0.10 -1.78 

Household size: Three-person or more (Yes=1, No=0) -0.21 0.06 -3.28 -0.21 0.11 -1.88 -0.21 0.11 -1.88 

Natural logarithm of travel time (in minutes) -2.02 0.13 -15.04 -2.02 0.14 -14.23 -2.02 0.14 -14.23 

LL (initial) // LL (final) -26962.012 // -15547.65 -27107.14 // -15547.65 -26962.02 // -15547.65 

AIC // BIC 31161.29 // 31445.13  31161.29 // 31445.13  31161.29 // 31445.13  

*Note: The calculated logsum coefficient in Biogeme is expressed as the inverse of 𝝀 (i.e., 1 1.7968⁄ ≅ 0.56) 2 
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Table 7. Gradients estimated by chain rule differentiation (CRD) and automatic differentiation (AD) through DSL- based CG 1 

Estimated Gradients 
Part III: Gradients of MNL Part IV: Gradients of NL 

Chain Rule Differentiation AD+DSL CG Chain Rule Differentiation AD+DSL CG 

Drive Alone (DA; base) 0 0 0 0 

Shared Ride (SR) -4.54E-04 -3.04E-06 -4.25E-04 3.09E-07 

Transit (TR) -3.47E-03 -2.75E-06 -2.15E-03 8.67E-08 

Bike 1.43E-03 4.66E-07 -1.76E-03 1.12E-07 

Walk -8.73E-04 -6.45E-06 -4.12E-04 1.81E-07 

Logsum (𝛌) NA NA 1.30E-03 4.11E-07 

Shared Ride (SR)     

Gender  5.35E-04 2.84E-07 3.96E-04 1.70E-07 

Aged 30-44 years  2.35E-03 1.05E-06 8.39E-04 3.11E-08 

Aged 45-59 years  2.48E-03 8.15E-07 4.98E-04 -7.12E-08 

Education attainment: Graduate degree  8.36E-04 3.72E-07 9.26E-04 8.35E-08 

Household income: $125,000 or more  5.04E-04 2.11E-07 6.06E-04 -6.84E-08 

Household size: Three-person or more  -6.85E-04 1.18E-06 3.47E-04 -8.13E-08 

Natural logarithm of travel time  -2.93E-03 2.55E-06 1.30E-03 -2.36E-07 

Transit (TR)     

Gender -9.98E-04 2.25E-06 5.82E-04 1.29E-06 

Aged 30-44 years -5.99E-04 8.00E-06 1.39E-03 5.01E-07 

Aged 45-59 years  4.21E-04 6.02E-06 -5.89E-04 -1.55E-07 

Education attainment: Graduate degree -3.65E-04 1.22E-06 5.96E-04 -8.60E-07 

Household income: $125,000 or more -9.01E-04 9.93E-06 -5.88E-04 -6.74E-07 

Household size: Three-person or more  -3.44E-04 9.02E-07 9.93E-04 -1.31E-06 

Natural logarithm of travel time -2.27E-03 -6.47E-06 -3.75E-04 2.17E-07 

Bike     

Gender  8.69E-04 4.04E-06 -7.97E-04 5.82E-07 

Aged 30-44 years 1.04E-03 9.75E-08 -3.04E-05 1.63E-06 

Aged 45-59 years  -6.08E-04 6.12E-07 -2.67E-03 8.69E-07 

Education attainment: Graduate degree 2.07E-04 -3.88E-06 3.00E-03 7.30E-08 

Household income: $125,000 or more -9.84E-04 5.42E-06 -1.25E-03 1.53E-07 

Household size: Three-person or more 1.35E-04 5.99E-06 5.50E-04 -2.74E-06 

Natural logarithm of travel time  -1.66E-03 -8.02E-06 -1.16E-04 -1.55E-07 

Walk     

Gender 1.05E-03 -1.27E-06 5.64E-04 -2.08E-07 

Aged 30-44 years  -1.21E-04 6.23E-06 -7.54E-04 7.29E-07 

Aged 45-59 years  9.36E-04 -1.25E-05 2.96E-03 5.58E-07 

Education attainment: Graduate degree 1.57E-03 4.72E-06 -1.02E-03 -2.80E-07 

Household income: $125,000 or more 1.14E-03 1.30E-06 7.14E-04 5.81E-07 

Household size: Three-person or more 1.05E-03 8.26E-06 2.43E-04 -1.15E-06 

Natural logarithm of travel time  -2.08E-03 2.29E-06 1.26E-03 -2.24E-07 

2 
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5.3. Computational efficiency: MNL and NL  1 

 2 

We now compare the computational efficiency across all methods. As seen in Fig. 5, the CG-3 

based models show the best computational performance, and a slight increase in running time is 4 

observed in both Fig. 5 (a) and (b) when more parameters are added. Biogeme, which is written in 5 

Python, also provides excellent computational performance to compute a few parameters. 6 

However, for a larger number of parameters to be calibrated, the Biogeme package could yield a 7 

nonlinear increase in running time, particularly when models involve non-concave functions (two 8 

or multiple nested structures). The Apollo package coded in the R language demands significantly 9 

more computing resources. For instance, when estimating a large set of parameters (i.e., 89 10 

parameters), the average running time of CG-based MNL and NL is 10.6 seconds. On the other 11 

hand, the average computing times for Biogeme and Apollo are 12 minutes and 35 minutes, 12 

respectively. In Fig.5 (b), it can be seen that the nested logit models estimated by Biogeme and 13 

Apollo packages require substantially more computational time when the set of variables becomes 14 

large.  15 

 16 

 17 
Fig. 5. Comparison of computation time between CG-based models, Biogeme, and Apollo 18 

 19 

5.4. ICLV model estimation and computational efficiency 20 

 21 

In this subsection, experimental results for the ICLV model are presented. The graph-oriented 22 

model and Apollo use the Monte Carlo simulation-based approach to numerically compute the 23 

ICLV function. By generating random numbers from a normal distribution, we can run the 24 

program 500 times. The specified utility function is defined by two explanatory variables and one 25 

latent variable constructed by the structural equation where it is defined by three socio-26 

demographic characteristics. As we assume the indicators as continuous variables, components 27 

required in the normal distribution function are estimated. Table 8 demonstrates the ability of the 28 

CG-based approach to construct the simulation-based choice model, yielding simulated 29 

coefficients. Because the estimation involves the random sampling procedure and different 30 

methods to derive coefficients’ gradients, we observe slightly different results between the CG-31 

based ICLV, Biogeme, and Apollo. For instance, the initial log-likelihood of CG-based ICLV 32 
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displays -8405.706 while Biogeme and Apollo show values of -8404.603 and -8404.237, 1 

respectively. 2 

 3 
Table 8. Model estimation results for ICLV: Monte Carlo experiment 4 

ICLV 

DSLCG-based ICLV Biogeme Apollo 

Coef. Std.err t-ratio Coef. Std.err 
t-

ratio 
Coef. Std.err t-ratio 

Parameters in the utility specification 

Drug: side-effect -0.002 0.0002 -11.03 -0.002 0.0002 -11.1 -0.002 0.0002 -11.05 

Drug: price -0.173 0.032 -5.45 -0.173 0.032 -5.42 -0.173 0.032 -5.42 

𝜆𝑙𝑎𝑡𝑒𝑛𝑡  0.567 0.089 6.33 0.565 0.089 6.37 0.569 0.089 6.39 

Parameters in the structural equation 

Regular user (Yes=1, No=0) -0.677 0.072 -9.47 -0.678 0.087 -7.78 -0.677 0.087 -7.81 

Education attainment: Bachelor’s 

degree (Yes=1, No=0) 
-0.253 0.054 -4.707 -0.249 0.079 -3.15 -0.248 0.079 -3.14 

Aged 50 or above (Yes=1, No=0) 0.675 0.076 8.92 0.677 0.085 8.01 0.674 0.084 7.99 

Parameters in measurement indicators 

𝜁Quality  0.562 0.044 12.7 0.557 0.045 12.3 0.564 0.046 12.4 

𝜁Ingredients  -0.565 0.043 -13.3 -0.564 0.046 -12.2 -0.564 0.046 -12.16 

𝜁Patent  0.613 0.047 13.1 0.608 0.047 13 0.609 0.047 12.89 

𝜁Dominance  -0.400 0.036 -11.21 -0.40 0.041 -9.78 -0.401 0.041 -9.78 

𝜎𝑄𝑢𝑎𝑙𝑖𝑡𝑦 1.053 0.032 33.13 1.05 0.03 34.6 1.051 0.031 34.29 

𝜎𝐼𝑛𝑔𝑟𝑒𝑑𝑖𝑒𝑛𝑡𝑠 1.08 0.030 37.4 1.08 0.031 34.8 1.079 0.031 34.89 

𝜎𝑃𝑎𝑡𝑒𝑛𝑡 1.091 0.033 32.74 1.09 0.033 33.6 1.093 0.033 33.51 

𝜎𝐷𝑜𝑚𝑖𝑛𝑎𝑛𝑐𝑒  1.047 0.025 41.57 1.05 0.027 39.5 1.047 0.027 39.48 

LL (initial) // LL (final) -8405.706 // -7552.271 -8404.603 // -7553.033 -8404.237 // -7552.271 

AIC // BIC 15132.434 // 15201.143 15134.07 // 15202.77 15132.54 // 15201.25 

 5 

In Fig. 6, the CG-based ICLV shows the best computational performance in running Monte 6 

Carlo simulation for estimating ICLV, when compared to Biogeme and Apollo.  The above limited 7 

experiments show that, when the number of simulation runs increases, the two-open source 8 

packages take more computational time than the CG-based approach using DSL. 9 

 10 

 11 
Fig. 6. Comparison of simulation running time for ICLV Estimation between DSLCG-model, Biogeme, and Apollo   12 
 13 

 14 
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6. CONCLUSIONS 1 

 2 

As the influx of real-time streaming data and new mobility technologies appears in the field of 3 

transportation, transportation planning communities are very interested in systematically 4 

integrating data-driven models and econometric models. In this paper, to bridge the gap between 5 

both methods, the functional formulation of discrete choice models is examined in a computational 6 

graph framework, which is less known in the areas of discrete choice modeling and transportation 7 

planning, but has been widely used as underlying building blocks for deep learning packages. We 8 

hope to clearly show an implementable path to empower DCM estimation with the automatic 9 

differentiation algorithm embedded in CG, through three key findings below. 10 

 11 

(a) A computational graph-based framework offers a highly flexible modeling method for 12 

applying the emerging techniques of deep learning in econometric methods, especially for 13 

a wide class of discrete choice models. Furthermore, CG can cover a wide range of 14 

elementary operations in its graph-oriented model representation such that researchers can 15 

easily integrate standard econometric models with machine learning algorithms that deal 16 

effectively with large amounts of time series data.    17 

 18 

(b) In particular, for MNL and NL models, we demonstrate that CG-based learning process 19 

produces consistent estimation results compared to two leading packages, namely Biogeme 20 

and Apollo. In terms of estimating t-statistics, the chain rule of AD provides a robust 21 

analytical derivation, leading to converging computed gradients toward the optimality 22 

conditions. Compared to the other approximated gradient methods, the proposed approach 23 

generates high-quality estimators through a more precise Hessian matrix. Furthermore, by 24 

demonstrating the capability in the context of the ICLV modeling structure, we also show 25 

CG can be used as an effective framework in implementing extended choice models. 26 

 27 

(c) For emerging transportation planning applications with high-dimensional survey samples 28 

and real-time big data streams, the proposed methodology holds the promise of achieving 29 

computational efficiency in handling large-scale datasets and producing rapid model 30 

updates in a cloud computing environment.  31 

 32 

The computational graph-based architectures demonstrate the flexibility of decomposing 33 

diverse composite functions and redesigning the functions with a new functional form. In the 34 

application areas of transportation planning, researchers and planners can further use this method 35 

to improve the accuracy and time of computing/estimating systematic utility functions. As a 36 

representative example, one can better calculate the logsum term, which is widely used in practice 37 

to calculate a broad set of accessibility-oriented planning applications (Miller, 2018). One can 38 

further extend conventional modeling structures such as joint-choice models for modeling 39 

travelers’ multi-dimensional choice decision-making process.  40 

On the one hand, by building choice models through computational graph-based domain-41 

specific languages, modelers can integrate such models easily with external deep learning 42 

architectures, leading to enhanced representation of travelers’ complex activity patterns. In Fig. 7, 43 
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we provide the conceptual framework to illustrate the integration workflow of choice models and 1 

deep learning techniques.  2 

 3 

 4 
Fig. 7. Illustration of developing a consistent modeling structure between choice models and deep learning (Using 5 

examples from CNN in Alom et al., (2019) and LSTM in Kim et al., (2020)) 6 
 7 

With modeling structures capable of handling different data sources, computational graph-8 

based modeling tools facilitate the estimation of more complex model structures, possibly 9 

improving interpretability and predictability. More precisely, the efficiency of the CG-based 10 

structures can help to rapidly estimate models that can be applied to synthetic population datasets, 11 

which are generated by microsamples and census-based marginal distributions (Ye et al., 2009; 12 

Sun et al., 2018). Additionally, since the graph-based structure can facilitate tensor decomposition 13 

(TD) efficiently, planners are able to utilize the synthesized data and different large datasets (e.g., 14 
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mobility trajectories or smart-card records), for a better understanding of travelling patterns (Sun 1 

and Axhausen, 2016).  2 

To further illustrate our overarching modeling approach, we use the conceptual framework in 3 

in Fig. 7 to highlight the needed consistency of modeling language to build behavioral models and 4 

machine learning architectures. We hope this CG-oriented perspective could allow us to 5 

seamlessly integrate traditional econometric traveler behavior models with new and emerging 6 

data-driven approaches. Overall, the proposed graph-based modeling framework not only offers 7 

the flexibility of expanding conventional modeling approaches but also enables planners and 8 

policy makers to estimate the system-wide utility more precisely for different projects and demand 9 

management alternatives, potentially leading to better decisions for improved transportation 10 

systems.  11 

 12 
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