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ABSTRACT

In an era of big data and emergence of new technologies such as app-based ride services, there are
growing opportunities for better understanding human mobility patterns from newly available data
sources. Statistical models have been mainly utilized to uncover and rigorously calibrate the
influence of significant factors; and machine learning algorithms have been used to explore
complex patterns through improved computing efficiency for large datasets. Focusing on discrete
choice modeling applications, this research aims to introduce an open-source computational graph
(CG)-based modeling framework for integrating the strengths of econometric models and machine
learning algorithms. In particular, multinomial logit (MNL), nested logit (NL), and integrated
choice and latent variable (ICLV) models are selected to demonstrate the performance of the
proposed graph-oriented functional representation. Furthermore, the calculation of the gradient in
the log-likelihood function and associated Hessian matrix is systematically accomplished using
automatic differentiation (AD). Using the 2017 National Household Travel Survey data and an
open-source dataset, we compare estimation results from the proposed methods with those
obtained from two open-source packages, namely Biogeme and Apollo. The results indicate that
the CG-based choice modeling approach can produce consistent estimates of parameters and
accurate calculations for the gradients of the estimated parameters with substantial computational
efficiency.

Keywords: Computational graphs (CGs), automatic differentiation (AD), multinomial logit (MNL), nested
logit (NL), integrated choice and latent variable (ICLV), and gradient calculation.
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1. INTRODUCTION

The emergence of massive datasets and widespread internet accessibility across the world have
offered valuable opportunities for exploring interconnection between physical/cyber
infrastructures and human mobility patterns. This has fostered development of techniques to fuse
and analyze multiple data sources such as travel surveys, mobile phone data records, GPS, or
sensor data (Hashem et al., 2016; Chen et al., 2016; Wu et al., 2018; Chen and Kwan., 2020). With
growing interests to explore available data sources, many scholars have executed machine learning
methods to efficiently estimate complex hidden patterns in large-scale datasets. In the field of
transportation systems, data-driven approaches have been used to identify patterns of diverse
traffic flows as well as assist decision makers to predict future trends (Bhavsar et al., 2017; Chang
et al., 2019; Zhao et al., 2020). More recently, the research community has taken further steps to
develop interpretable machine learning techniques while significant progress has been made in
selecting significant variables that affect travel-related choices, enabling the explanation and
testing of predicted results (Ribeiro et al., 2016; Lipton, 2018; Molnar, 2020). These research
streams point to a potential paradigm shift in transportation demand modeling.

Transportation planners have also recognized that machine learning methods demonstrate high
predictive performance and computing efficiency for large-scale mobility datasets, but those data-
driven approaches still need to systematically meet standard requirements and expectations
associated with modeling travel data sets (e.g., travel surveys) in transportation planning. The
desirable statistics-oriented features include illustrating causal relationships, avoiding overfitted
results in relatively small data sets, as well as generating robust standard error estimates for
hypothesis testing. If a model estimates only the correlation in a given data set, as pointed out by
Mokhtarian (2018), the causation would be eliminated, impeding the ability to answer “why” and
“what might happen if” questions. Importantly, incorporating these factors enables researchers and
decision makers to deeply fathom the traveler’s behavioral patterns. In light of this, statistical
modeling approaches have generally been applied in explaining the cause-and-effect relationship
and analyzing travel survey data (Paredes et al., 2017; Brathwaite and Walker, 2018b).

In order to bridge the gap between both modeling approaches (i.e., statistical models and
machine learning algorithms), this research aims to present a computational framework that can
leverage capabilities of existing machine learning platforms to tackle classical estimation problems
for discrete choice models. Using a traditional household travel survey dataset and a synthetic
dataset available in the Apollo econometric modeling R package, we show how to construct a
flexible and efficient modeling framework that utilizes data-driven algorithms in estimating
econometric models. The suggested approach could be useful in tackling other estimation
problems, such as analyzing multi-dimensional samples from passively collected big data (spatio-
temporal dimensions) and enabling real-time updates (predictions) in transportation systems
(Nuzzolo and Comi, 2016).

The concept of computational graphs (CGs) is systematically introduced to establish an
extended statistical modeling platform capable of covering large-scale datasets and non-linear
architectures (e.g., deep neural networks (DNNs)). The computational graph (CG)-based choice
models can take full advantage of automatic differentiation (AD) techniques, which have been
widely used in machine learning fields (Abadi et al., 2016; Baydin et al., 2017; Paszke et al., 2017).
Three different discrete choice models in transportation planning, namely, multinomial logit
(MNL), nested logit (NL), and integrated choice and latent variable (ICLV) functions, are
reformulated as computational graphs to estimate parameters and associated statistical properties
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such as standard errors. These three model forms are chosen because of their widespread use in
the field of travel choice modeling. We also examine the flexibility of the modeling structure, and
its capability of handling non-concave likelihood functions and simulation-based evaluation of
multi-dimensional integrals in latent variable models. Open-source packages, Biogeme (Bierlaire,
2003) and Apollo (Hess and Palma, 2019) are used as test benchmarks, with the publicly accessible
National Household Travel Survey (NHTS) 2017 dataset and the synthetic dataset available in the
Apollo package serving as use cases.

The remainder of this paper is organized as follows. Section 2 presents the literature review
with a particular focus on the integration of statistical models and machine learning methods.
Section 3 describes the National Household Travel Survey (NHTS) 2017 and the synthetic
datasets. In section 4, the computational graph-based choice models are presented in detail with
an emphasis on meeting estimation expectations in planning applications. The estimation and
benchmarking results are discussed in section 5.

2. LITERATURE REVIEW

This section addresses three aspects: integration of discrete choice models and machine
learning methods, optimization algorithms, and techniques for computing gradients in objective
functions. Focusing on the concept of computational graph (CG) and its example, we also provide
a discussion of the motivations behind our proposed approach.

2.1. Integration of choice models and machine learning algorithms

Recently, research communities have studied hybrid modelling approaches to integrate
strengths of machine learning algorithms into discrete choice models (DCMs). For example,
Sifringer et al. (2018) proposed a hybrid modeling framework for combining neural networks and
multinomial logistic (MNL) models. Selecting the input features that are relatively uncorrelated
with choice alternatives, dense neural network (DNN) learned hidden patterns were derived and
the trained information was transmitted into the utility function defined in MNL. This
methodology interpreted the specified parameters and led to higher log-likelihood values and
improved predictive power. Han et al. (2020) further developed an extended framework to
integrate MNL and the constrained data-driven structure (multi-layer perceptron (MLP)).
Embedding MLP into the utility function of MNL, their approach demonstrated better predictive
performance while maintaining the interpretability and preventing the model from over-fitting.
More recently, Sifringer et al. (2020) showed the enhanced choice models by embedding neural
networks into the specified utility functions of the MNL and NL models. In a residual logit
(ResLogit) model proposed by Wong and Farooq (2019), recursive residual layers were
constructed in the utility function of the standard MNL model to capture unobserved heterogeneity.
Overall, these above-mentioned modeling efforts aim to resolve overfitting while preserving the
econometric interpretability.

Although significant progress has been made to integrate machine learning algorithms in
DCM, there are still many challenges to be addressed. First, the existing hybrid models (Sifringer
etal., 2018; Han et al., 2020; Sifringer et al., 2020) estimate parameters mainly based on the Adam
optimizer proposed by Kingma and Ba (2014) or stochastic gradient descent (SGD) (Bottou, 2010).
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In terms of optimizing objective functions, the first order-based estimators can be computationally
effective to analyze a large-scale dataset and calibrate numerous parameters. However, we have to
recognize that there are various model structures in which we are dealing with non-concave
functions (e.g., nested logit (NL) model (Williams, 1977)) or simulation-based models involving
computation of high-dimensional integrals such as the integrated choice and latent variable (ICLV)
model (Ben-Akiva et al., 2002) and the hybrid choice model with a nonlinear utility function (Kim
et al., 2016). Second, the first order-based estimation might not be able to provide desirable
statistical properties in computing the Hessian matrix. These challenges require a systematic and
careful analysis for an effective combination of machine learning techniques and optimization
algorithms in the context of statistically-oriented choice models for transportation applications.

2.2. Optimization algorithms for discrete choice models

In the area of discrete choice modeling, maximum likelihood estimation (MLE) is one of the
fundamentally important estimation methods. By computing the first order (gradient) and second
order (curvature) derivatives of the likelihood function, MLE furnishes values of parameters by
maximizing the likelihood function through the use of the Hessian matrix. The derivatives are
computed by three approaches: manual/analytical, finite difference, and automatic differentiation
(AD) (Bartholomew et al., 2000). Due to the difficulty of embedding/coding highly nonlinear
forms in complicated functions, manual differentiation could be used for some very small cases.
The numerical differentiation aims to approximate derivatives through the finite differencing, but
the solution quality is greatly affected by the potential truncation and round-off errors associated
with different finite difference formulas (Wright and Nocedal, 1999). On the other hand, the
automatic differentiation (AD) technique utilizes the chain rule-based principle and intermediate
variables to evaluate complex derivatives analytically (Wright and Nocedal, 1999; Griewank, and
Walther, 2008). Specifically, in the new generation of low-level computational graph libraries such
as Tensorflow and PyTorch, the computing architecture can enable modelers to represent the
analytical optimization model through a graph of simple elementary operations (i.e., addition,
subtraction, multiplication, and division) and elementary functions (e.g., natural logarithm), and
further execute a sequential and complex structure of computations easily. In new domain-specific
languages (DSLs) for convex optimization such as CVXPY, progress has been made recently to
convert standard convex optimization to detailed CG representations with low-level solver
interfaces (Agrawal et al. 2018). It should be noted that AD might still encounter the difficulty of
computing piecewise rational functions, especially when estimating gradients of non-smooth
composite functions (Beck and Fischer, 1994; Nocedal and Wright, 2006).

In the machine learning area, the sequential structure and computational graph approach have
been widely applied for large-scale datasets with numerous parameters to be calibrated. These
applications have demonstrated the capability of these approaches in computing gradients and
Hessians of non-linear optimization formulations efficiently and precisely (Baydin et al., 2017).
From a specific system identification perspective, the AD technique has been utilized in the fields
of machine learning and econometric modeling to estimate parameters, thanks to its computational
efficiency and flexibility of designing diverse composite functions (Sifringer et al., 2018; Wong
and Farooq, 2019; Sun et al., 2019; van Kesteren and Oberski, 2019; Han et al., 2020).
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Furthermore, in the case of discrete choice modeling (DCM), by carefully selecting the underlying
computing algorithms, AD holds the promise for more precise computation of derivatives of the
log likelihood with respect to specified parameters through chain rules and back propagation. That
is, simply using the popular first order methods (e.g., SGD or Adam) is often inadequate in
estimating complicated modeling structures (e.g., NL or ICLV). Thus, our research combines the
AD technique with quasi-second order methods, e.g., Broyden-Fletcher-Goldfarb-Shanno
(BFGS), to calibrate non-concave composite functions and deliver consistent statistical estimates
through Hessians.

2.3. Computational graph (CG)

Understanding computational graph (CG) approach is important for designing flexible
modeling structures that integrate choice models and machine learning seamlessly. Using the
binary logit model in Eq. (1) as an example, Wu et al., (2018) and Sun et al. (2019) took a few
initial steps to illustrate how CG can decompose complex composite functions as follows.

Py=1= )

1+eV

Eq. (1) indicates the probability of choosing a binary alternative, and the term V is a specified
utility function (e.g., V = fo + B1X1 + Boxy + -+ + X, Where B, is the unknown parameter
associated with the attribute x,,). Using the concept of computational graph (CG), this logistic
function is now expressed as a directed graph which consists of nodes (elementary operations) and

edges (directions):
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(a) Feedforward (b) Backpropagation

Fig. 1. Computational graph (CG) of the binary logit model
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Fig. 1 clearly illustrates the logistic formulation written in Eq. (1) as a sequentially nested
structure made up of nodes and edges. In particular, Fig. 1(a) is the process of computing the
probability of a given binary alternative, and Fig. 1(b) represents the procedure of estimating
parameters. For example, the parameter 3, is obtained by the defined nodes and links shown in
Fig. 1:

0P 9P ONg ON, N3 ON,  x, . x
T A te )2

e’ 2

8B, ON; N, oN; oN, 9B, (Ns)? -

Eq. (2) presents the analytic derivative with respect to the parameter and the description of the
chain rule-based computation. Furthermore, applying the gradients in the BFGS optimizer, this
computed differentiation offers more precise Hessians. In this context, it is helpful to compare the
computed values in Eq. (2) with analytical sensitivities detailed in Koppelman and Bhat (2006)
and Train (2009).

To calibrate a broader set of DCMs in transportation planning with rigorously defined standard
error estimates, we will tackle three econometric models (i.e., multinomial logit, nested logit , and
integrated choice and latent variable) to demonstrate the capability of the enhanced choice
modelling framework along three directions: the numerical efficiency of processing a high-
dimension survey sample, greater flexibility in employing different composite functions (e.g., deep
learning architectures), and realization of desirable statistical properties. A widely used machine
learning platform, TensorFlow (Abadi et al., 2016), is selected to implement the proposed CG-
based discrete choice models, and the source code can be downloaded at Kim et al. (2021). There
are other computational graph-oriented programming platforms such as Theano (Bastien et al.,
2012) or Pytorch (Paszke et al., 2017). In addition, to systematically verify the estimated
parameters and statistical properties, two leading open-source packages for estimating DCMs,
namely Biogeme (Bierlaire, 2003) and Apollo (Hess and Palma, 2019), are used to serve as
benchmarks.

It should be noted that the concept of computational graph has been adapted in the pioneering
open-source DCM estimation package, Biogeme, in 2000, through the use of chain rule
differentiation and analytical gradients. In our proposed domain-specific languages (DSLs) for
maximum likelihood estimation of various DCMs, we do not need to build the low-level
computational graph manually through a general-purpose language (GPL); instead, we translate
the corresponding DCM optimization to forms compatible to the interfaces of recent CG libraries
(e.g., TensorFlow). By doing so, our approach can further fully utilize the backpropagation
mechanism provided by differentiable optimization layers/pipelines. The DSLs for MLE-DCM
helps modelers greatly reduce the computational redundancy by decomposing the computing units
in a layered structure and enabling the use of dynamic programming for iteratively finding a
solution. The development of domain-specific languages requires a deep understanding of the
problem structure and domain knowledge, and we will further highlight the potential for
integrating different transportation modeling elements of more complex estimation and planning
problems in the conclusion of this paper.

3. DATA PREPARATION
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Two datasets are utilized in this research: the 2017 National Household Travel Survey (NHTS)
dataset for estimating MNL and NL models, and a synthetic dataset provided by Hess and Palma
(2019) to estimate the extended integrated choice and latent variable or ICLV model.

3.1. National Household Travel Survey (NHTS) dataset

The dataset used for the case study is derived from the National Household Travel Survey
(NHTS 2017) conducted by the US Department of Transportation. This data set provides
information about travel behavior, particularly associated with trip purposes and modes. In the
current study, this large-scale dataset with 923,572 trips is explored. To alleviate unobserved taste
heterogeneity, we restrict the scope of the trip purpose and time-dimension by selecting
commuting trips (home to work trips) departing between 6 and 9 AM.

After filtering the dataset based on criteria and eliminating obviously erroneous observations
or those with large amounts of missing data, the final subsample size used for the model estimation
is 40,177 observations. Table 1 depicts the travelers’ socio-economic and demographic
information, as well as travel time and distance variables that are subsequently used as explanatory
variables in the specification of the utility function. The five alternatives, namely drive alone (DA),
shared ride (SR), transit (TR), bike, and walk, are considered as the choice elements in the
proposed MNL and NL choice models. In terms of person characteristics, 84.3 percent of the
commuting trips are accounted for by those age 30-74 years. The gender ratio of this subsample is
nearly 51 percent male and 49 percent female. In terms of educational attainment, travelers who
earned the bachelor’s degree and graduate degree account for 29.8 percent and 26.1 percent of the
commute tours, respectively. Among household attributes, individuals within the household
income categories ($50,000-$124,999 and $125,000 or above) account for 76.7 percent of the
commute tours. Two-person households and individuals living with five persons or more account
for the highest and lowest proportion of commute tours, respectively. Nearly 79 percent of
commuters travel from an urban area. According to travel characteristics, the average commute
distance is 12.9 miles with a standard deviation of 15.8 miles, and the average time taken is 27.3
minutes with a standard deviation of 27.9 minutes. The distribution of commute mode choices is
79.3 percent of commute trips by drive alone (DA), 13.8 percent by shared ride, 3.8 percent by
transit, and 3.1 percent by bike and walk. This mode choice distribution follows a similar pattern
in a prior study by Paleti et al. (2013).

Table 1. Description of the subsample (N=40,177)

Person characteristics Frequency Percentage (%)
Age
Less than 18 years 111 0.3
18-24 years 2,259 5.6
25-29 years 3,549 8.8
30-44 years 11,502 28.6
45-59 years 15,094 37.6
60-74 years 7,270 18.1
75 years or above 392 1.0
Gender
Male 20,387 50.7
Female 19,790 49.3
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Education attainment

Less than bachelor’s degree 17,723 44.1
Bachelor’s degree 11,976 29.8
Graduate degree 10,478 26.1
Household characteristics Frequency Percentage (%)
Household income
Under $25,000 2,812 7.0
$25,000 - $49,999 6,560 16.3
$50,000 - $124,999 10,491 26.1
$125,000 or above 20,314 50.6
Household size
1 (I am the only person) 6,284 15.6
2 people 17,468 43.5
3 people 7,270 18.1
4 people 6,032 15.0
5 people or more 3,123 7.8

Travel characteristics

Continuous (average)

Trip distance in miles & Trip duration in minutes

12.88 miles & 27.33 minutes

Endogenous variable Frequency Percentage (%)
Trip mode
Drive alone (DA) 31,872 79.3
Shared ride (SR) 5,530 13.8
Transit (TR) 1,543 3.8
Bicycle 386 1.0
Walk 846 2.1

3.2. Synthetic dataset

The lack of attitudinal questions in the NHTS dataset renders it unsuitable for constructing
ICLV components, i.e., structural models with latent variables and measurement equations. As a
result, we utilized an alternative synthetic dataset that accompanies the Apollo package to estimate
the ICLV model (instead of using the NHTS dataset). This dataset documents drug choices for
1,000 individuals; four alternative choices, three socio-demographic characteristics, and four
attitudinal questions are presented. The explanatory variables to construct the structural equation
of a latent variable were binary in nature: regular drug users, university degree attainment, and age
50 years and above. In addition, the attitudinal questions to define the measurement equations
followed a Likert scale from 1 (strongly disagree) to 5 (strongly agree). Four attitudinal questions
are selected as measurement equation indicators. The detailed description of the drug choice data
is well documented in Hess and Palma (2019).

4. MODELING FRAMEWORK AND METHODOLOGY

This section presents the mathematical formulations of MNL, NL, and ICLV models, the
computational graph-based modeling frameworks, as well as the stepwise procedure of estimating
the proposed graph-oriented functions. Using the travel survey dataset, we develop the systematic
utility function and the probability of choice alternatives, namely drive alone (DA), shared ride
(SR), transit (TR), bike, and walk, to estimate MNL and NL models. On the other hand, the ICLV
components (i.e., the structural equation of the latent variable, measurement indicators, utility
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functions, as well as the probability of a drug choice between four alternatives) are constructed
using the synthetic dataset.

4.1. Mathematical formulations of the MNL and NL models

With the fundamental assumptions that error components in the utility function are
independently and identically distributed according to a Gumbel distribution, the functional
formulation of the multinomial logit (MNL) model can be defined clearly. The probability that a
decision maker n chooses an alternative mode i among a set of J alternatives (i.e., DA, SR, TR,
bike, and walk) is as follows (McFadden, 1974):

Vn,i

P,;, =
n,i Z V.
Jje€J e

3)
where V,,; denotes the systematic utility of the alternative mode i € J selected by the decision
maker n, and the structural utility function includes alternative specific constants and observed
attributes with their parameters (i.e., V;,; = ASC; , + Yk=1 BriXkin)- The index J is the set of the
specified alternative choices. K represents the number of attributes used as choice predictors.

By reformulating the MNL structure to relax the independence of irrelevant alternatives (I1A)
property of MNL, the nested logit (NL) can be specified (Williams 1977; McFadden 1978). In
particular, two layered structures are considered in this study. The upper level of NL includes drive
alone (DA), shared ride (SR), transit (TR), and the non-motorized group, and the two alternatives
(i.e., bike and walk) included in the non-motorized group are located in the lower level.

The functional formula of the choice probability is expressed by the product of the conditional
probability and the marginal probability. For instance, the probability that a decision maker n
selects an alternative i in the nest m is formulated as:

eVni/tm e (Vnm+AmTnm)

Ini — I'n,i| X In - X
, AJm Jm Vai/A M VnitdiTn i
Ele] e n,l/ m zj 18( njr4j n,])

4
In Eq. (4) the first component is the conditional probability that the decision maker n chooses
either a bike or walk mode given that the non-motorized group J,, is selected, and the second
component is the marginal probability of choosing between drive alone, shared ride, transit, and
the nested group. 4,, is the logsum parameter bounded by zero to one, an indicator of the
correlation between bike and walk; the parameter is explained well in Koppelman and Bhat (2006).
The inclusive value I, ;,, (or often called log-sum term) is defined by I3, ,,, = log[ZlE Im eVni/ Am]
where this term is associated with the nested group. Readers interested in the derivation of the
mathematical formulations can find details in Koppelman and Bhat (2006) and Train (2009).

4.2. Mathematical formulations of the ICLV model

ICLV incorporates a latent variable model into a multinomial discrete choice model. To enable
this integrated model, four components are generally required to be specified; a latent variable,

10
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measurement indicators, utility functions, and choice probabilities (Ben-Akiva et al., 2002). First,
the latent variable formulated as a function of observable explanatory variables with a stochastic
component is given by:

Xn =VZn + 1 Q)

Eq. (5) indicates the structural equation for the latent variable X™ influenced by explanatory
variables z,, including three socio-demographic characteristics (in this study) with parameters y.
The stochastic term 7, follows a standard normal distribution 1n,~N(0,1). Second, the
probability distribution function of the continuous measurement indicators is expressed as follows:

_(In,k—l_k—Zer*L)z
e 20 (6)

fun|2n, Xn; €, 0) =

1
Vana}
where the continuous measurement indicators are defined by I, , = (X5, + v,,. I, represents an
indicator associated with an attitude k € K and the continuous measurement model. [, is the
average of the indicator k. Subtracting it from I, , we avoid estimating the mean of the normal
density. {j is the attitudinal coefficient for the latent variable X;, and v, is the stochastic
component characterized by a standard normal distribution v,,~N (0, 1). Third, the systematic
utility function is specified by Vy,; = Y3_1 BsiXsni + AX;, , where Bg; and A are coefficients of
choice predictors and the latent variable, respectively. V, ; represents the utility function of the
alternative drug i selected by the decision maker n. Lastly, the probability that a decision maker n
chooses a drug i among a set of four products is defined by the multinomial logit formulation.

Using the defined components above, we can obtain the joint choice probability as follows (Ben-
Akiva et al., 2002; Vij and Walker, 2016):

- 2
_Unk=Tk=SiXn) Vi

K
1 7
= [[ e 7 xgr X b0 )
‘ J2ma? Yjee’m e

Nn k=1

In Eq. (7), the first component is the likelihood of the continuous measurement indicators, the
second term is the multinomial logit model, and the third term is derived from the structural
equation of the latent variable. Since Eq. (7) has no closed-form solution, this joint choice
probability function is conventionally approximated using a Monte Carlo simulation-based
approach:

_(In,k-l_k-é'kal,t)z

T K MK KRSkt Vait
et [ Y g
T 210 Yjey e’ mit ®)

Drawing the standard normal distribution function 7, iteratively, we can simulate the
multidimensional integrals, thus deriving Eq. (8); T is the total number of draws. The detailed

11
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description of simulation-based approaches can be found in Train (2009). With the above-derived
functions, we now present the procedure of constructing computational graph-based models.

4.3. Illustration of the computational graph-based modeling approach

This subsection presents the CG-based modeling structures for MNL, NL, and ICLV. We
present an illustrative example to demonstrate the sequential process of formulating the probability
functions associated with mode choices and drug choices in the two datasets respectively. In this
description, the probability of choosing the walk mode is exemplified using MNL and NL, and the
probability of selecting a drug between four alternatives is illustrated for the ICLV.

4.3.1. CG-based multinomial logit model

Eq. (3) is decomposed and plotted into the directed graph, which includes elementary
operations and elementary functions. As shown in Fig. 2, there are 15 input nodes and 16
intermediate nodes to link between input nodes and the output node; input nodes are comprised of
the alternative specific constants (ASC) for each alternative and unknown parameters 8 associated
with the attributes x, and the intermediate nodes (N; where i = 1,2, ... ,16) play a role of
decomposing functions. The output node is the probability of selecting the walk mode P, 4.
Based on the nodes interconnected by directed edges, we can produce the sequentially nested
structure for the probability function so that Eq. (3) can be mapped as follows:

Ni5/Nye

eM10/(Nyy + Ny + Nyz + Nig + Nis)

e(N5+ASCwalk)/(eN6 + eN7 4 eNe 4 eNo 4 er) )
e(ﬁwalkxwa1k+ASCwazk)/(e(N1+ASCDA) 4 e(N2+ASCsp) 4 o(N3+ASCrR) 1 o(N4+ASChike) | e(N5+ASCwalk))

l:'walk

where the nodes from N, to N5 are used to connect input nodes and the output node, and the index
i represents the labels of choice alternatives (DA, SR, TR, Bike, and Walk). It should be noted that
in order to simplify the illustration, nodes associated with the availability of the given alternatives
are excluded in this graph.

= N, + ASCyix. N10 = N5 + ASCpank
e = BwatkXwatk

N4 BoixeXpike

5 5 > a

Flg 2. Illustratlon of CG-based multlnomlal logit model

12
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4.3.2 CG-based nested logit model

A two-level nested structure is described in this subsection. Based on Eq. (4), the probability
of selecting the walk mode is plotted in Fig. 3. In contrast to the MNL model, this nested model is
formulated using the conditional probability and marginal probability to account for the correlation
between bike and walk. Fig. 3 denotes 21 input nodes including the nodes used in the MNL
computational graph, the log-sum parameter 4,,, as well as the log-sum function [},,,. In addition,
27 intermediate nodes are embedded to express the decomposed components of NL. With the
specified nodes and the directed edges, the product of the conditional probability and the marginal
probability can be computed to derive the probability of selecting the walk mode Py, ;. as follows:

Pyaik = Pwalk|non—autopnon—auto = NNy (10)

The conditional probability Py,qixjnon—auto 18 €qual to Nye, and the term N,; indicates the
marginal probability of falling into the non-auto group. To be specific, the sequential steps of
mapping the conditional probability Py, qixjnon—auto are detailed below:

Nao/Na,

e"1s /(Nyg + Nap)

eNo/Am [ (eN1s + eNis) (11)
eNa+ASCuaii)/Am / (eNo/Am 4 Nio/Am)

e BwalkXwat)/Am / (@ PbikeXbike/Am 4 gPBwalkXwalie/Am)

Pwalklnon—auto

Eq. (11) illustrates a stepwise procedure for deriving the conditional probability. The detailed
description of the CG nodes and links can be found in Fig. 3. Similarly, the marginal probability
P, on—auto »Which is mapped by the forward propagation of the CG framework, can be written in
the following stepwise manner:

Pron—auto = Npy/Nos

AmNa3/(Npy + Naa)

Amlog (N23)/ (N1 + N1z + Nig + A Nap3)

= Aplog (Nyg + Nyo)/(eN11 + eNiz + eNis + 1, N,3)

: (12)

= Aplog(eNe/Am + eNlO/’lm)/(eNﬁ/’lm + eN7/Am 4 eNo/Am 4 2, log(eNo/Am + eNlO/’lm))
/’[mlog(e(ﬁbikexbike)/lm + e(ﬁwulkxwazk)//lm)

(eNe/Am + eN7/Am + eNe/Am + A, log(eNo/Am + eNio/Am))

Eq. (12) is the marginal probability of falling into the non-auto nest. The expression
log(e(ﬁbikexbike)/ Am 4 o (Bwatk*walk)/ lm) corresponds to the log-sum function [},,,. By computing
the product of Eq. (11) and (12), we can now derive the probability function Eq. (10) through the
graph-oriented function. Please note that the utility function V;,,;, shown in Eq. (4) is assumed as
Zero.

13
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é

_— Puaie = NagNa7 T —
N7 = N24."N25 - /@Nzﬁ = Nao/Na

s
Nzy = Nig + Ny7 +N1!ﬁ V@’ N N N @
25 = Npy 24

S
Nzg = log(Na;) yd
N24 - j"J[VZE
" - Ny = Nyg + Naow

. /
Nyg = eV Ny, = eMiz g =el Nyg = eV N2u elis
11 = Ne/Am 12 = N7 /Ay 13 = Ng/An 14 = No/Ap, Nis = Nig/Am

Nll']
()\r =N; + ASCpy @ =N, + ASCsp @ s = Ny + ASCrg .\5 =N, + ASCpipe Nio = Ns + ASCoarx
QNL BoaXpa @Nz BsrXsr Ns BraXrr ’M Boike

Xpike 7 = BwaikXwalk

e O o

Fig. 3. Illustration of CG-based two-level nested logit model

_Q
9

4.3.3 CG-based integrated choice and latent variable (ICLV) model

In this subsection, the ICLV function comprising of one latent variable, the stochastic term,
continuous measurement indicators, as well as the multinomial logit structure is decomposed and
plotted in a series of nodes (elementary operations) and edges (directions). According to Fig. 4, 17
input nodes and 22 intermediate nodes are used. Ng, Nq4, N»,, and N,3 are used to denote the
ICLV components, in order to develop the output node P,; which is the joint choice probability
of choosing a drug between four alternatives. With the CG-based structure, the exemplified choice
probability can be written in the stepwise manner:

Py = Ny X Ny3
(N21/N1g) X (Nyg/N14)
= e Mo/gV2m x e /(Nyg + Nyg + Nip + Ni3)

(13)
1 _(I-QNg)? e(N1+/1N5)

e 202 X
oV2m (eN1+ANg) 4 g(N2+ANe) 4 N3 4 @Na)

Eq. (13) denotes the joint choice probability of falling into drug alternative 1. The first
component corresponds to the measurement indicators, while N is the structural equation of the
latent variable. The second term is the discrete choice formulation. In order to simplify the
illustration shown in Fig. 4, we only show the first iteration of the simulated choice model and
exclude nodes associated with the availability of the given alternatives.

With the underlying knowledge of building the forward propagation of the CG-based choice
models, the following subsection discusses the automatic differentiation (AD) algorithm to

14
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estimate the proposed CG-based choice models in a backpropagation approach. We describe the
backpropagation step by step using the plotted figures.

Joint Choice Probability

Measurement Indicator _,,.r-"""-!- _-7-7-"""- . Choice Probability
e _— 1= N2a Nog T g —

T NVoai= Mao/Naa

Nu = Nu] + Ny + Nip + Nyg

N,
° Nu el Nz = e @N’“=e""4

Ny =N, + N;_~ - !\.'q =N, +N;
p ) .N = BarXa =PazXaz = fas¥as ’f‘h = Pas¥Xas
i j : j Lmﬂ“m”b[:p j .@ @ .@ . . . @

Fig. 4. lllustration of CG-based integrated choice and latent variable (ICLV) model

4.4. Parameter estimation: automatic differentiation (AD) with BFGS

In the CG-based architecture, the unknown parameters specified in Eq. (3), (4), and (8) can be
estimated by minimizing the negative log-likelihood function, and the corresponding objective
function leads to a particular type of the categorical cross-entropy function proposed by Shannon
(1948).

Hy (P, yy,) = _Z In,i ln(Pn,i(ﬁ)) (14)

iej

where y,, ; is the discrete variable that denotes a choice i € ] selected by a decision maker n. Eq.
(14) is commonly expressed as LL(f), log-likelihood, in the discrete choice field. Using the
second-order Taylor’s approximation of log-likelihood function LL(f}+1) in a neighborhood of
LL(By), we can find the optimal value of parameters [, to maximize LL(fSj41) (Train, 2009).

OLL(Bis)  ILL(BY) _
Brs - 0B, + Bx(Bes1—Bt) =0 (15)

The partial derivative of LL(f}) with respect to 5, and the numerically approximated Hessian
matrix B, are determining the best value of ;.. More specifically, when solving Eq. (15), Br+1
can be expressed as f, + (—By) " 1(LL(By)/3Px). In order to compute the first-order gradients
of the objective function with respect to each parameter, we utilize the automatic differentiation
(AD) algorithm. By utilizing the derived gradients in the BFGS optimizer, we can calculate the
Hessian matrix which is used to evaluate statistical properties of estimated parameters. A detailed

15
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description of computing the numerical Hessian matrix is explained in Nocedal and Wright (2006).
As illustrated in the study, the first-order gradient information is valuable for assisting the chain
rule-based algorithmic differentiation procedure in deriving the gradients in each choice model.

Consider the estimation of the parameter f3,,,;x shown in the equations. The numerical
derivative of the parameter in MNL can be derived by the chain rule.

aLL(ﬁwalk) _ 6LL(ﬁwalk) apwalk 6N16 aNIS 6N1o aNS
9Bwaik N OPyaix  ONyg ONy5ON1g ONs dByaik
1 (Nig—Nis)
— _e 10x
Pwalk (N16)2 watk (l 6)
1 (eNs + &7 + eNs + eMo) ~
= e X yalk

Pyaix (eNe + eN7 4 elNs 4 eNo 4 eN10)2

Eq. (16) further details the sequential procedure of computing the partial derivative of Py,
defined in Eq. (9) with respect to the parameter f,,4;x. The description of the intermediate nodes
(N; where i = 6, 7, 8,9, 10) is illustrated in Fig. 2. The rest of the parameters defined in the CG-
based MNL model can be calculated similarly. Now, utilizing the computational graph for the NL
model, we introduce the stepwise procedure for computing the partial derivative of the log-
likelihood of P,,4;, With respect to the parameter B4, in Eq. (17).

6LL(ﬁwalk) — aLL(ﬁwalk) al:)walk aNZ6 aNZO ale aNlo aNS
9Bwalk OPyaix  ONpg 9Nz ON;5 ON1g ONs dByaik
= —_— 15 —
Pwalk NZZ Am Kwalk
(17)
1 AmNzg eNlS
= —x
Pyaik (N16 + Ni7 + Nyg + ANoz) Ay, V4
1 log(eN1 + eN1s)

Pyair (N1 + eNiz 4+ eN1s + 2, log(eMN+ 4 eNis)) e Xk

In the nesting structure, we can observe the log-sum parameter 4,, and inclusive value term as
log(eN1+ + eN15), and the probability of P,q is as shown in Eq. (10). In a similar manner, the
stepwise procedure of estimating the partial derivative of the log-likelihood of P44, Eq. (13), with
respect to the parameter 84, in the ICLV model can be expressed as:

aLL(ﬂAl) 6LL(PA1) 6PA1 6N23 6N14 6N10 aNg aNl
aBAl aPAI aNZ3 6N14 aNlO aNS aNl aﬁAl

1 N.
= 5—Np <_¢2) eMoxay

Pas (N14)

| oo (18)
= —N22<— N N 5 = 2>9NsxA1

Py (eNs + eNo 4 eNs 4 ela)

1 1 _(I=QNg)? elNs
= ——Fe 202 — eNngl
Pa10V2r (eNs + eNo + eNs 4 gNa)2

With the computed gradients of the log-likelihood function, the TensorFlow-based program
starts from the initial settings of parameters and convergence criteria. Then these numerical tensors
are transmitted into the optimizer of BFGS relying on an approximated Hessian matrix, with the
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goal of minimizing the negative log-likelihood function defined by the CG-based structure. Based
on the iterative algorithm of the optimizer, the inverse of the Hessian matrix A~ is derived such
that we can obtain the parameter variance-covariance matrix as follows:

a*(B1) a(B)a(B2) U(ﬁl)a(ﬁn)]
SE(ﬁ) (ﬁ (H 0(52)0(51 : a2(B;) U(,Bz);r(ﬁn) (19)

o(ﬁn)a(ﬁl) o(B)oB) - o?B) |

where 62 (ﬁ) is the variance-covariance matrix of the parameters, ! is the approximated
inverse of the Hessian matrix, and N is the total number of observations. The diagonal elements
of a2 (ﬁ) is the variances of parameters. Then, assuming the null hypothesis of ,=0, t-statistics
of each parameter can be obtained.

tn = ﬁn - ﬁo
Pn ™ SE(By)

(20)

Eq. (20) denotes t-statistics of a parameter 8, and n € N, the total number of estimated
parameters. Detailed information on computing the robust t-ratio can be found in the
documentation of Biogeme by Bierlaire (2016).

Please note that, while finite differences (numerical differentiation) estimate the gradient (the
first-order derivative) using the difference between a certain point and the point added by a small
value, the chain rule-based differentiation (AD) produces the exact derivative values. That is, the
computational graph-based structures can avoid truncation and round-off errors due to numerical
differentiation and accordingly improve the computational efficiency (Chapra and Canale, 2010).
Table 2 presents the different characteristics of three estimation models.

Table 2. Attributes of two leading estimation packages and CG-based models

CG-based Models | Biogeme | Apollo
Objective function Log-likelihood (InP,;(B))
Starting values of the _ . . _
parameters (MNL and NL) Bi = 0wherei =0,1,2,...,n; Ay, = 0.95

Starting values of the

parameters (ICLV) Bi =0wherei =0,1,2,...,n; A4ic;y = 1;0;,and §; = 1 where i = 1,2,3,4

. o Numerical derivative
Automatic differentiation . .
. . . Chain rule of using advanced
Method of computing through integration of . L . .
. L . . differentiation with extrapolation methods
gradient derivative domain-specific language . . .
analytical gradient such as Richardson
and low-level CG layers .
extrapolation
Optimization method BFGS BFGS BFGS
Programming language Python, C++ library Python, C++ library R

In general, CG and both open-source packages use the log-likelihood function as the objective
function, start from the same initial values for estimation, and implement the BFGS optimizer with
an approximate second-order gradient. CG and Biogeme are coded based on the Python language
with underlying C++ libraries, and Apollo (0.2.4 version) is written in the R language

17
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(computational environment: Windows Intel(R) Core (TM) 17-9750H CPU @2.60GHz, 6 Core(s),
32 GB RAM, and 500 GB SSD).

5. MODEL ESTIMATION RESULTS

This section provides the estimation results of MNL, NL, and ICLV models, and our focus is
on the investigation of the accuracy and performance of computed gradients through various
methods. The computational efficiency and numerical accuracy of the CG-based models are
systematically compared to two established DCM estimation packages for MNL and NL models.
Using the estimation results of ICLV, we demonstrate the ability of the proposed graph-oriented
function to construct a simulation-based choice model and compare performance to the Apollo
package. This research does not focus on the behavioral interpretation of the parameters (especially
because NHTS data does not furnish level of service attributes critical to mode choice model
specification, and the synthetic dataset is used solely for validating the CG-based models).

5.1. Estimation of MNL and NL with constants only

In Table 3, Part I shows the estimation results of MNL including alternative specific constants
(ASCs) and their statistical properties. It is found that the graph-oriented approach shows identical
estimation results when compared to Biogeme and Apollo; as noted earlier, both packages also
implement the BFGS algorithm to derive the coefficients.

Part II of Table 3 compares numerical differences between the CG-based NL model and the
benchmark packages. The calibrated coefficients (constants) from CG are consistent with the
values estimated by the two packages, but the standard errors of the Walk constant and the logsum
parameter A show some numerical inconsistency.

Table 3. Model estimation results for MNL and NL

. DSL- based CG Biogeme Apollo
Part1: MNL Coef. Std.err _ t-ratio Coef. Std.err _ t-ratio Coef. Std.err _ t-ratio
Driving Alone (DA, base) 0 NA NA 0 NA NA 0 NA NA
Shared Ride (SR) -1.36 0.016 -84.402 -1.36 0.016 -84.402 -1.36 0.016 -84.940
Transit (TR) -2.93 0.044 -66.547 -2.93 0.044 -66.547 -2.93 0.044 -66.510
Bike -3.40 0.068 -50.066 -3.40 0.068 -50.066 -3.40 0.068 -50.080
Walk -3.28 0.051 -63.870 -3.28 0.051 -63.870 -3.28 0.051 -63.780
LL (initial) // LL (final) -27031.930 // -16192.126 -27031.930 // -16192.126 -27031.940 // -16192.130
AIC // BIC 32392.252 // 32426.656 32392.252 // 32426.656 32392.260 // 32426.670
. DSL-based CG Biogeme Apollo
PartIl: NL Coef. Std.err _ t-ratio Coef. Std.err _ t-ratio Coef. Std.err _ t-ratio
Driving Alone (DA, base) 0 NA NA 0 NA NA 0 NA NA
Shared Ride (SR) -1.36 0.016 -84.364 -1.36 0.016 -84.963 -1.36 0.016 -84.960
Transit (TR) -2.92 0.044 -66.056 -2.92 0.044 -66.581 -2.92 0.044 -66.580
Bike -3.10 0.072 -43.085 -3.10 0.073 -42.253 -3.10 0.073 -42.250
Walk -3.12 0.059 -52.523 -3.12 0.062 -50.677 -3.12 0.062 -50.680
Logsum (R) 0.46 0.117 3917 2.21% 0.622 3.556 0.45 0.127 3.560

LL (initial) /| LL (final)

-27031.94 // -16183.793

-27031.94 // -16183.78

-27031.94 // -16183.78

AIC // BIC

32377.586 // 32420.592

32377.56 // 32420.57

32377.56 // 32420.57

*Note: The calculated A in Biogeme is expressed as the inverse of 4 (i.e., 1/2.21 = 0.45)
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In order to check the source of this inconsistency, we investigate how the packages (Biogeme
and Apollo) approximate the Hessian matrix of the log-likelihood function with respect to each
parameter. Biogeme aims to approximate the elements of the Hessian matrix based on chain rule
differentiation (CRD) and calculate the standard errors of the coefficients.

Unlike the estimation results through CRD, the proposed modeling approach in this paper uses
automatic differentiation (AD) to obtain the first order gradient of the log-likelihood function. Both
approaches are based on the chain rule-based differentiation, but AD can implement intermediate
variables in computing gradients, which enables the proposed model to find the analytic gradients
efficiently.

Table 4 compares the numeric gradients extracted from two approaches (Biogeme and CG-
based). In Table 4-Part I, we notice the gradients computed through both CRD and AD are
approaching zero so that the approximated standard errors were closely identical to each other.
However, as the gradient approximated by CRD in Part II (nested logit) is not sufficiently close to
zero, the approximated Hessian matrix might yield different standard errors compared to the AD-
based result. As shown in Eq. (15), the magnitude of the first-order gradients is a critical indicator
for convergence, which is required to assure maximization of the log-likelihood functions (Train
2009). Please note that the approximation issue of CRD has been investigated and discussed by
Brathwaite (2017) and Brathwaite and Walker, (2018a). According to Table 4-Part I, the absolute
averages of gradients of CRD and AD are 1.32E-05 and 1.78E-09, respectively. Table 4-Part II
shows the absolute average of the gradients of CRD is 1.16E-04 while the corresponding value for
AD shows 2.83E-07. The gradients produced from both methods are significantly small, and the
differences depend on the selection of stopping criteria. In other words, if we use the same stopping
criteria for the estimation of gradients in both methods, the discrepancy shown in Table 4 would
be vanished.

Table 4. Estimated Gradients computed by chain rule differentiation and analytical gradient (CRD+AG) and
automatic differentiation (AD) through DSL

Part I: Gradients of Chain rule differentiation and analytical gradient Automatic Differentiation (AD)
MNL CRD+AG through DSL

Driving Alone (DA; 0 0
base)
Shared Ride (SR) -9.85144E-05 1.86265E-08
Transit (TR) 9.86795E-05 -1.19908E-08
Bike -3.09112E-05 4.65661E-10
Walk -2.21991E-05 0

Part II: Gradients of CRD+AG AD + DSL

NL

Driving Alone (DA; 0 0
base)
Shared Ride (SR) 1.15E-03 1.86265E-09
Transit (TR) 5.97E-04 4.08152E-07
Bike -2.57E-05 9.76317E-07
Walk -1.31E-03 -1.57219E-07
Logsum (1) 1.71E-04 1.86265E-07

5.2. Estimation of MNL and NL with constants and explanatory variables
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This subsection presents estimation results for a fully specified model including explanatory
variables. Specifically, five categorical variables and one continuous variable were included. The
utility function of each mode is influenced by the same explanatory variables; age groups, gender,
education attainment, household income and size, as well as travel time. There are 33 estimated
parameters, and the detailed description of each parameter is provided in Table 5 and Table 6.
Based on the log-likelihood values obtained, all methods showed similarity in terms of the
estimated coefficients. On the other hand, due to the fact that the two packages used different
methods to derive the gradients (numerical differentiation and chain-rule differentiation,
respectively) of the parameters while the CG-based structure utilized the analytical approach (i.e.,
AD), we see differences in the numeric gradients. These differences likely explain the discrepancy
in standard errors and t-ratio statistics.

The gradients computed by CRD and AD are presented in Table 7. As expected, the gradients
computed by the algorithmic differentiation are significantly closer to zero compared to the
counterpart by the chain rule-based approach with different stopping criteria. In terms of the final
absolute average of gradients in MNL and NL, CRD provides values of 8.72E-05 in MNL and
1.86E-04 in NL. On the other hand, the estimated gradients using AD are 9.31E-07 in MNL and
1.07E-08 in NL.
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1 Table 5. Model estimation results for Multinomial Logit (MNL) with explanatory variables

. . . DSLCG -based MNL Biogeme Apollo

Part III: MNL with explanatory variables Coef.  Std.err t-ratio | Coef. Std.err t-ratio | Coef. Std.err t-ratio

Drive Alone (DA; base) 0.00 NA NA 0.00 NA NA 0.00 NA NA
Shared Ride (SR) -1.25 0.07  -17.69 | -1.25 0.07 -17.41 | -1.25 0.07 -17.38
Transit (TR) -9.55 0.33  -29.02 | -9.55 033  -29.12 | -9.55 033  -29.07
Bike -3.66 030  -12.15 | -3.67  0.31 -11.88 | -3.67 0.31 -11.86
Walk -0.54  0.16 -3.36 | -0.53 0.18 -3.05 | -0.53 0.18 -3.05
Gender (Male=1, Female=0) -0.10  0.03 -3.21 | -0.10  0.03 -3.18 | -0.10  0.03 -3.17

Aged 30-44 years (Yes=1, No=0) 0.12 0.04 2.85 0.12 0.04 2.80 0.12 0.04 2.79

Aged 45-59 years (Yes=1, No=0) -0.06  0.04 -1.48 | -0.06  0.04 -1.47 | -0.06  0.04 -1.47

SR Education attainment: Graduate degree (Yes=1, No=0) -0.18 0.04 -4.88 | -0.18 0.04 -4.81 | -0.18 0.04 -4.82
Household income: $125,000 or more (Yes=1, No=0) -0.06 0.03 -1.83 | -0.06 0.03 -1.82 | -0.06 0.03 -1.82

Household size: Three-person or more (Yes=1, No=0) 0.11 0.03 3.38 0.11 0.03 3.32 0.11 0.03 3.32

Natural logarithm of travel time (in minutes) -0.02 0.05 -0.43 | -0.02 0.05 -0.43 | -0.02 0.05 -0.43

Gender (Male=1, Female=0) -0.15 0.04 -3.35 | -0.15 0.10 -1.49 | -0.15 0.10 -1.48

Aged 30-44 years (Yes=1, No=0) 0.17 0.08 2.17 0.16 0.13 1.30 0.16 0.13 1.31

Aged 45-59 years (Yes=1, No=0) -0.20  0.08 -2.66 | -0.21 0.13 -1.63 | -0.21 0.13 -1.63

TR Education attainment: Graduate degree (Yes=1, No=0) 0.45 0.08 5.54 0.45 0.10 4.32 0.45 0.10 4.32
Household income: $125,000 or more (Yes=1, No=0) -0.17 0.09 -1.90 | -0.17 0.10 -1.67 | -0.17 0.10 -1.67
Household size: Three-person or more (Yes=1, No=0) -0.04 0.06 -0.59 | -0.04 0.11 -0.34 | -0.04 0.11 -0.34

Natural logarithm of travel time (in minutes) 4.33 0.19 22.99 | 4.33 0.19 2244 | 4.33 0.19 2247

Gender (Male=1, Female=0) 0.62 0.11 5.39 0.61 0.15 3.97 0.61 0.15 3.96

Aged 30-44 years (Yes=1, No=0) 0.13 0.07 1.83 0.13 0.17 0.74 0.13 0.17 0.74

Aged 45-59 years (Yes=1, No=0) -0.36 0.07 -533 | -0.36  0.18 -2.00 | -0.36  0.18 -2.01

Bike | Education attainment: Graduate degree (Yes=1, No=0) 0.55 0.08 6.87 0.55 0.14 3.93 0.55 0.14 3.93

Household income: $125,000 or more (Yes=1, No=0) 0.06 0.08 0.80 0.06 0.14 0.41 0.06 0.14 0.41
Household size: Three-person or more (Yes=1, No=0) -0.16 0.04 -4.04 | -0.16 0.15 -1.08 | -0.16 0.15 -1.08

Natural logarithm of travel time (in minutes) -0.25 0.17 -1.46 | -0.24 0.20 -1.16 | -0.24 0.20 -1.16

Gender (Male=1, Female=0) -0.17 0.06 -3.02 | -0.17 0.11 -1.60 | -0.17 0.11 -1.61

Aged 30-44 years (Yes=1, No=0) -0.07  0.07 -1.01 | -0.07 0.14 -0.55 | -0.07 0.13 -0.55

Aged 45-59 years (Yes=1, No=0) -0.46  0.08 -5.45 | -0.45 0.13 -3.44 | -0.45 0.13 -3.45

Walk | Education attainment: Graduate degree (Yes=1, No=0) 0.27 0.07 3.88 0.26 0.11 2.32 0.26 0.11 2.32
Household income: $125,000 or more (Yes=1, No=0) -0.21 0.05 -4.10 | -0.22  0.11 -2.00 | -0.22 0.11 -2.00
Household size: Three-person or more (Yes=1, No=0) -0.19 0.04 -4.28 | -0.20 0.12 -1.59 | -0.20 0.12 -1.59
Natural logarithm of travel time (in minutes) -2.20 0.12  -18.78 | -2.20 0.14  -16.18 | -2.20 0.14  -16.12

LL (initial) // LL (final)

-27031.94 // -15553.39

-27031.94 // -15553.39

-27031.94 // -15553.39

AIC // BIC

31170.78 // 31446.02

31170.78 // 31446.02

31170.78 // 31446.02
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1 Table 6. Model estimation results for Nested Logit (NL) with explanatory variables

. . . DSLCG-based NL Biogeme Apollo

Part IV: NL with explanatory variables Coef. Std.err t-ratio | Coef. Std.err tratio | Coef. Std.err tratio

Drive Alone (DA; base) 0.00 NA NA 0.00 NA NA 0.00 NA NA
Shared Ride (SR) -1.25  0.07  -17.61 | -1.25 0.07 -1743 | -1.25 0.07 -1743
Transit (TR) 949 033  -29.06 | -9.49 033 2897 | -949 033 -2897
Bike =270 0.37 -7.32 | -2.69 0.37 =726 | -2.69  0.37 -7.26
Walk -0.70  0.18 -3.97 | -0.70  0.18 -3.96 | -0.70  0.18 -3.96
Logsum (X) 0.56 0.11 5.00 | 1.80*  0.37 4.84 0.56 0.12 4.84
Gender (Male=1, Female=0) -0.10  0.03 -3.22 | -0.10  0.03 -3.18 | -0.10  0.03 -3.18

Aged 30-44 years (Yes=1, No=0) 0.12 0.04 2.80 0.12 0.04 2.78 0.12 0.04 2.78

Aged 45-59 years (Yes=1, No=0) -0.06  0.04 -1.47 | -0.06  0.04 -1.46 | -0.06  0.04 -1.46

SR Education attainment: Graduate degree (Yes=1, No=0) -0.18 0.04 -493 | -0.18 0.04 -4.85 | -0.18 0.04 -4.85
Household income: $125,000 or more (Yes=1, No=0) -0.06 0.03 -1.83 | -0.06 0.03 -1.82 | -0.06 0.03 -1.82

Household size: Three-person or more (Yes=1, No=0) 0.11 0.03 3.37 0.11 0.03 3.33 0.11 0.03 3.33

Natural logarithm of travel time (in minutes) -0.02 0.05 -0.40 | -0.02 0.05 -0.39 | -0.02 0.05 -0.39

Gender (Male=1, Female=0) -0.15  0.05 -3.23 | -0.15 0.10 -1.52 | -0.15 0.10 -1.52

Aged 30-44 years (Yes=1, No=0) 0.16 0.08 2.11 0.16 0.13 1.30 0.16 0.13 1.30

Aged 45-59 years (Yes=1, No=0) -0.21 0.09 -2.45 | -0.21 0.13 -1.64 | -0.21 0.13 -1.64

TR Education attainment: Graduate degree (Yes=1, No=0) 0.44 0.05 8.34 0.44 0.10 4.30 0.44 0.10 4.30
Household income: $125,000 or more (Yes=1, No=0) -0.18 0.08 222 | -0.17 0.10 -1.71 | -0.17 0.10 -1.71

Household size: Three-person or more (Yes=1, No=0) -0.04 0.04 -0.96 | -0.04 0.11 -0.38 | -0.04 0.11 -0.38

Natural logarithm of travel time (in minutes) 4.30 0.18 23.46 | 4.30 0.19 22.38 | 4.30 0.19 22.38

Gender (Male=1, Female=0) 0.46 0.09 4.90 0.46 0.13 3.52 0.46 0.13 3.52

Aged 30-44 years (Yes=1, No=0) 0.06 0.10 0.63 0.06 0.14 0.41 0.06 0.14 0.42

Aged 45-59 years (Yes=1, No=0) -0.40  0.12 -3.46 | -0.40  0.15 -2.73 | -040  0.15 -2.73

Bike | Education attainment: Graduate degree (Yes=1, No=0) 0.45 0.08 5.61 0.45 0.12 3.79 0.45 0.12 3.79

a. Household income: $125,000 or more (Yes=1, No=0) 0.00 0.08 0.04 0.00 0.12 0.03 0.00 0.12 0.03
g Household size: Three-person or more (Yes=1, No=0) -0.10  0.07 -1.53 | -0.10 0.13 -0.80 | -0.10  0.13 -0.80
&) Natural logarithm of travel time (in minutes) -0.68 0.22 -3.12 | -0.68 0.22 -3.11 | -0.68 0.22 -3.11
§ Gender (Male=1, Female=0) -0.09  0.07 -1.31 | -0.09 0.10 -091 | -0.09 0.10 -0.91
] Aged 30-44 years (Yes=1, No=0) -0.01 0.11 -0.07 | -0.01 0.12 -0.07 | -0.01 0.12 -0.07
“ Aged 45-59 years (Yes=1, No=0) -0.41 0.11 -3.77 | -041 0.12 -3.39 | -0.41 0.12 -3.39
Walk Education attainment: Graduate degree (Yes=1, No=0) 0.34 0.07 4.78 0.34 0.10 3.25 0.34 0.10 3.25
Household income: $125,000 or more (Yes=1, No=0) -0.18 0.08 -2.27 | -0.18 0.10 -1.78 | -0.18 0.10 -1.78

Household size: Three-person or more (Yes=1, No=0) -0.21 0.06 -3.28 | -0.21 0.11 -1.88 | -0.21 0.11 -1.88
Natural logarithm of travel time (in minutes) -2.02 0.13 -15.04 | -2.02 0.14  -14.23 | -2.02 0.14  -14.23

LL (initial) // LL (final) -26962.012 // -15547.65 | -27107.14 // -15547.65 -26962.02 // -15547.65

AIC // BIC 31161.29 //31445.13 31161.29 //31445.13 31161.29 //31445.13

2 *Note: The calculated logsum coefficient in Biogeme is expressed as the inverse of 4 (i.e., 1/1.7968 = 0.56)
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Table 7. Gradients estimated by chain rule differentiation (CRD) and automatic differentiation (AD) throu

h DSL- based CG

Part III: Gradients of MINL

Part IV: Gradients of NL

Estimated Gradients Chain Rule Differentiation AD+DSL CG Chain Rule Differentiation AD+DSL CG
Drive Alone (DA; base) 0 0 0 0
Shared Ride (SR) -4.54E-04 -3.04E-06 -4.25E-04 3.09E-07
Transit (TR) -3.47E-03 -2.75E-06 -2.15E-03 8.67E-08
Bike 1.43E-03 4.66E-07 -1.76E-03 1.12E-07
Walk -8.73E-04 -6.45E-06 -4.12E-04 1.81E-07
Logsum () NA NA 1.30E-03 4.11E-07
Shared Ride (SR)
Gender 5.35E-04 2.84E-07 3.96E-04 1.70E-07
Aged 30-44 years 2.35E-03 1.05E-06 8.39E-04 3.11E-08
Aged 45-59 years 2.48E-03 8.15E-07 4.98E-04 -7.12E-08
Education attainment: Graduate degree 8.36E-04 3.72E-07 9.26E-04 8.35E-08
Household income: $125,000 or more 5.04E-04 2.11E-07 6.06E-04 -6.84E-08
Household size: Three-person or more -6.85E-04 1.18E-06 3.47E-04 -8.13E-08
Natural logarithm of travel time -2.93E-03 2.55E-06 1.30E-03 -2.36E-07
Transit (TR)
Gender -9.98E-04 2.25E-06 5.82E-04 1.29E-06
Aged 30-44 years -5.99E-04 8.00E-06 1.39E-03 5.01E-07
Aged 45-59 years 4.21E-04 6.02E-06 -5.89E-04 -1.55E-07
Education attainment: Graduate degree -3.65E-04 1.22E-06 5.96E-04 -8.60E-07
Household income: $125,000 or more -9.01E-04 9.93E-06 -5.88E-04 -6.74E-07
Household size: Three-person or more -3.44E-04 9.02E-07 9.93E-04 -1.31E-06
Natural logarithm of travel time -2.27E-03 -6.47E-06 -3.75E-04 2.17E-07
Bike
Gender 8.69E-04 4.04E-06 -7.97E-04 5.82E-07
Aged 30-44 years 1.04E-03 9.75E-08 -3.04E-05 1.63E-06
Aged 45-59 years -6.08E-04 6.12E-07 -2.67E-03 8.69E-07
Education attainment: Graduate degree 2.07E-04 -3.88E-06 3.00E-03 7.30E-08
Household income: $125,000 or more -9.84E-04 5.42E-06 -1.25E-03 1.53E-07
Household size: Three-person or more 1.35E-04 5.99E-06 5.50E-04 -2.74E-06
Natural logarithm of travel time -1.66E-03 -8.02E-06 -1.16E-04 -1.55E-07
Walk
Gender 1.05E-03 -1.27E-06 5.64E-04 -2.08E-07
Aged 30-44 years -1.21E-04 6.23E-06 -7.54E-04 7.29E-07
Aged 45-59 years 9.36E-04 -1.25E-05 2.96E-03 5.58E-07
Education attainment: Graduate degree 1.57E-03 4.72E-06 -1.02E-03 -2.80E-07
Household income: $125,000 or more 1.14E-03 1.30E-06 7.14E-04 5.81E-07
Household size: Three-person or more 1.05E-03 8.26E-06 2.43E-04 -1.15E-06
Natural logarithm of travel time -2.08E-03 2.29E-06 1.26E-03 -2.24E-07
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5.3. Computational efficiency: MNL and NL

We now compare the computational efficiency across all methods. As seen in Fig. 5, the CG-
based models show the best computational performance, and a slight increase in running time is
observed in both Fig. 5 (a) and (b) when more parameters are added. Biogeme, which is written in
Python, also provides excellent computational performance to compute a few parameters.
However, for a larger number of parameters to be calibrated, the Biogeme package could yield a
nonlinear increase in running time, particularly when models involve non-concave functions (two
or multiple nested structures). The Apollo package coded in the R language demands significantly
more computing resources. For instance, when estimating a large set of parameters (i.e., 89
parameters), the average running time of CG-based MNL and NL is 10.6 seconds. On the other
hand, the average computing times for Biogeme and Apollo are 12 minutes and 35 minutes,
respectively. In Fig.5 (b), it can be seen that the nested logit models estimated by Biogeme and
Apollo packages require substantially more computational time when the set of variables becomes
large.

600 o min 10 4500
min sec

—e—(CG-based 4000 ——(G-based 1 hour 04 min
500 —» Biogeme —o— Biogeme
- 7 min 11 sec 3500 =
Apollo ’

] Apollo
400 7

3000

2500
2 300 /
2000

200 / 1500

17 min 26 sec
1000 .

Computing time (seconds)
Computing time (seconds)

100 : .
e 500 -

0 3 =g~ . . e 0
4 8 20 40 52 88 5 9 21 53 89
Number of estimated parameters Number of estimated parameters

(a) Multinomial logit (MNL) (b) Nested logit (NL)

Fig. 5. Comparison of computation time between CG-based models, Biogeme, and Apollo
5.4. ICLV model estimation and computational efficiency

In this subsection, experimental results for the ICLV model are presented. The graph-oriented
model and Apollo use the Monte Carlo simulation-based approach to numerically compute the
ICLV function. By generating random numbers from a normal distribution, we can run the
program 500 times. The specified utility function is defined by two explanatory variables and one
latent variable constructed by the structural equation where it is defined by three socio-
demographic characteristics. As we assume the indicators as continuous variables, components
required in the normal distribution function are estimated. Table 8 demonstrates the ability of the
CG-based approach to construct the simulation-based choice model, yielding simulated
coefficients. Because the estimation involves the random sampling procedure and different
methods to derive coefficients’ gradients, we observe slightly different results between the CG-
based ICLV, Biogeme, and Apollo. For instance, the initial log-likelihood of CG-based ICLV
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displays -8405.706 while Biogeme and Apollo show values of

respectively.

Table 8. Model estimation results for ICLV: Monte Carlo experiment

-8404.603 and -8404.237,

DSLCG-based ICLV Biogeme Apollo
ICLV Coef.  Std.err tratio | Coef  Std.err ratz:io Coef.  Std.err t-ratio

Parameters in the utility specification

Drug: side-effect -0.002 | 0.0002 | -11.03 | -0.002 | 0.0002 | -11.1 | -0.002 | 0.0002 | -11.05

Drug: price -0.173 | 0.032 -545 | -0.173 | 0.032 | -5.42 | -0.173 | 0.032 -5.42

Alatent 0.567 | 0.089 6.33 0.565 0.089 | 6.37 | 0.569 | 0.089 6.39
Parameters in the structural equation

Regular user (Yes=1, No=0) -0.677 | 0.072 -9.47 | -0.678 | 0.087 | -7.78 | -0.677 | 0.087 -7.81

Education attainment: Bachelor’s 1 553 | 054 | 4707 | -0249 | 0079 | 3.15 | 0248 | 0.079 | -3.14
degree (Yes=1, No=0)

Aged 50 or above (Yes=1, No=0) 0.675 0.076 8.92 0.677 | 0.085 8.01 0.674 | 0.084 7.99
Parameters in measurement indicators

{Quality 0.562 | 0.044 12.7 | 0.557 0.045 12.3 0.564 | 0.046 12.4

Cingredients -0.565 | 0.043 2133 | -0.564 | 0.046 | -12.2 | -0.564 | 0.046 | -12.16

{patent 0.613 0.047 13.1 0.608 | 0.047 13 0.609 | 0.047 12.89

{bominance -0.400 | 0.036 | -11.21 | -0.40 0.041 | -9.78 | -0.401 | 0.041 -9.78

OQuality 1.053 0.032 33.13 1.05 0.03 34.6 1.051 0.031 34.29

Oingredients 1.08 0.030 37.4 1.08 0.031 34.8 1.079 0.031 34.89

Opatent 1.091 0.033 32.74 1.09 0.033 33.6 1.093 0.033 | 33.51

ODominance 1.047 | 0.025 | 41.57 1.05 0.027 | 39.5 1.047 | 0.027 | 39.48
LL (initial) /| LL (final) -8405.706 // -7552.271 -8404.603 // -7553.033 -8404.237 // -7552.271
AIC // BIC 15132.434 //15201.143 15134.07 // 15202.77 15132.54 // 15201.25

In Fig. 6, the CG-based ICLV shows the best computational performance in running Monte
Carlo simulation for estimating ICLV, when compared to Biogeme and Apollo. The above limited
experiments show that, when the number of simulation runs increases, the two-open source
packages take more computational time than the CG-based approach using DSL.
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Fig. 6. Comparison of simulation running time for ICLV Estimation between DSLCG-model, Biogeme, and Apollo
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6. CONCLUSIONS

As the influx of real-time streaming data and new mobility technologies appears in the field of
transportation, transportation planning communities are very interested in systematically
integrating data-driven models and econometric models. In this paper, to bridge the gap between
both methods, the functional formulation of discrete choice models is examined in a computational
graph framework, which is less known in the areas of discrete choice modeling and transportation
planning, but has been widely used as underlying building blocks for deep learning packages. We
hope to clearly show an implementable path to empower DCM estimation with the automatic
differentiation algorithm embedded in CG, through three key findings below.

(a) A computational graph-based framework offers a highly flexible modeling method for
applying the emerging techniques of deep learning in econometric methods, especially for
a wide class of discrete choice models. Furthermore, CG can cover a wide range of
elementary operations in its graph-oriented model representation such that researchers can
easily integrate standard econometric models with machine learning algorithms that deal
effectively with large amounts of time series data.

(b) In particular, for MNL and NL models, we demonstrate that CG-based learning process
produces consistent estimation results compared to two leading packages, namely Biogeme
and Apollo. In terms of estimating t-statistics, the chain rule of AD provides a robust
analytical derivation, leading to converging computed gradients toward the optimality
conditions. Compared to the other approximated gradient methods, the proposed approach
generates high-quality estimators through a more precise Hessian matrix. Furthermore, by
demonstrating the capability in the context of the ICLV modeling structure, we also show
CG can be used as an effective framework in implementing extended choice models.

(c) For emerging transportation planning applications with high-dimensional survey samples
and real-time big data streams, the proposed methodology holds the promise of achieving
computational efficiency in handling large-scale datasets and producing rapid model
updates in a cloud computing environment.

The computational graph-based architectures demonstrate the flexibility of decomposing
diverse composite functions and redesigning the functions with a new functional form. In the
application areas of transportation planning, researchers and planners can further use this method
to improve the accuracy and time of computing/estimating systematic utility functions. As a
representative example, one can better calculate the logsum term, which is widely used in practice
to calculate a broad set of accessibility-oriented planning applications (Miller, 2018). One can
further extend conventional modeling structures such as joint-choice models for modeling
travelers’ multi-dimensional choice decision-making process.

On the one hand, by building choice models through computational graph-based domain-
specific languages, modelers can integrate such models easily with external deep learning
architectures, leading to enhanced representation of travelers’ complex activity patterns. In Fig. 7,
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we provide the conceptual framework to illustrate the integration workflow of choice models and
deep learning techniques.

Enhanced Activity Graph Estimation/Prediction

/\

Cloud Computing Environment Joint Optimization Function

A A

CG-based Choice Models Deep Learning Architectures

NL '\

Modeling Language Consistency
(Computational Graphs)

ICLV o

Traffic Volume, Traffic Images,

Household Survey Data
Cell Phone Data

Fig. 7. Illustration of developing a consistent modeling structure between choice models and deep learning (Using
examples from CNN in Alom et al., (2019) and LSTM in Kim et al., (2020))

With modeling structures capable of handling different data sources, computational graph-
based modeling tools facilitate the estimation of more complex model structures, possibly
improving interpretability and predictability. More precisely, the efficiency of the CG-based
structures can help to rapidly estimate models that can be applied to synthetic population datasets,
which are generated by microsamples and census-based marginal distributions (Ye et al., 2009;
Sun et al., 2018). Additionally, since the graph-based structure can facilitate tensor decomposition
(TD) efficiently, planners are able to utilize the synthesized data and different large datasets (e.g.,
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mobility trajectories or smart-card records), for a better understanding of travelling patterns (Sun
and Axhausen, 2016).

To further illustrate our overarching modeling approach, we use the conceptual framework in
in Fig. 7 to highlight the needed consistency of modeling language to build behavioral models and
machine learning architectures. We hope this CG-oriented perspective could allow us to
seamlessly integrate traditional econometric traveler behavior models with new and emerging
data-driven approaches. Overall, the proposed graph-based modeling framework not only offers
the flexibility of expanding conventional modeling approaches but also enables planners and
policy makers to estimate the system-wide utility more precisely for different projects and demand
management alternatives, potentially leading to better decisions for improved transportation
systems.
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