
23

Unrealizability Logic

JINWOO KIM∗, Seoul National University, Republic of Korea

LORIS D’ANTONI, University of Wisconsin-Madison, USA

THOMAS REPS, University of Wisconsin-Madison, USA

We consider the problem of establishing that a program-synthesis problem is unrealizable (i.e., has no solution

in a given search space of programs). Prior work on unrealizability has developed some automatic techniques

to establish that a problem is unrealizable; however, these techniques are all black-box, meaning that they

conceal the reasoning behind why a synthesis problem is unrealizable.

In this paper, we present a Hoare-style reasoning system, called unrealizability logic for establishing that a

program-synthesis problem is unrealizable. To the best of our knowledge, unrealizability logic is the �rst proof

system for overapproximating the execution of an in�nite set of imperative programs. The logic provides a

general, logical system for building checkable proofs about unrealizability. Similar to how Hoare logic distills

the fundamental concepts behind algorithms and tools to prove the correctness of programs, unrealizability

logic distills into a single logical system the fundamental concepts that were hidden within prior tools capable

of establishing that a program-synthesis problem is unrealizable.

CCS Concepts: • Theory of computation → Logic and veri�cation; Hoare logic; • Software and its

engineering→ Automatic programming.

Additional Key Words and Phrases: Unrealizability Logic, Unrealizability, Program Synthesis

ACM Reference Format:

Jinwoo Kim, Loris D’Antoni, and Thomas Reps. 2023. Unrealizability Logic. Proc. ACM Program. Lang. 7, POPL,

Article 23 (January 2023), 30 pages. https://doi.org/10.1145/3571216

1 INTRODUCTION

Program synthesis refers to the task of discovering a program, within a given search space, that
satis�es a behavioral speci�cation (e.g., a logical formula, or a set of input-output examples). While
there have been many advances in program synthesis, especially in domain-speci�c settings [Feser
et al. 2015; Gulwani 2011; Phothilimthana et al. 2019], program synthesis remains a challenging
task with many properties that are not yet well understood.
While tools are becoming better at synthesizing programs, one property that remains di�cult

to reason about is the unrealizability of a synthesis problem, i.e., the non-existence of a solution
that satis�es the behavioral speci�cation within the search space of possible programs. One of
the ultimate goals behind studying unrealizability is to prune the search space when synthesizing
programs, by showing that a certain subset of the search space does not contain the desired solution
(see §6 for a further discussion of this idea). Unrealizability also has many applications; for example,
one can show that a certain synthesized solution is optimal with respect to some metric by proving

∗Part of work done while a student at the University of Wisconsin-Madison.

Authors’ addresses: Jinwoo Kim, Seoul National University, Seoul, Republic of Korea, pl@cs.wisc.edu; Loris D’Antoni,

University of Wisconsin-Madison, Madison, USA, loris@cs.wisc.edu; Thomas Reps, University of Wisconsin-Madison,

Madison, USA, reps@cs.wisc.edu.

© 2023 Copyright held by the owner/author(s).

2475-1421/2023/1-ART23

https://doi.org/10.1145/3571216

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 23. Publication date: January 2023.

This work is licensed under a Creative Commons Attribution 4.0 International License.

23:2 Jinwoo Kim, Loris D’Antoni, and Thomas Reps

that a better solution to the synthesis problem does not exist—i.e., by proving that the synthesis
problem where the search space contains only programs of lower cost is unrealizable [Hu and
D’Antoni 2018]. Unrealizability is also used to prune program paths in symbolic-execution engines
for program repair [Mechtaev et al. 2018].

Example 1.1. Consider the synthesis problem syfirst where the goal is to synthesize a function
5 that takes as input a state (G,~), and returns a state where ~ = 10. Assume, however, that the
search space of possible programs in syfirst is de�ned using the following grammar �first:

Start → ~ := � � → G | � + 1

Clearly ~ := 10 ∉ !(Start); moreover, all programs in !(Start) are incorrect on at least one input.
For example, on the input G = 15 every program in the grammar sets ~ to a value greater than 15.
Consequently, syfirst is unrealizable.

While it is trivial for a human to establish that syfirst is indeed unrealizable, only a small number
of known techniques can prove this fact automatically [Hu et al. 2019, 2020; Kim et al. 2021].
However, a common drawback of these techniques is that they do not produce a proof artifact. In
particular, Kim et al. [2021] and Hu et al. [2019] rely on external constraint solvers and program
veri�ers to prove unrealizability. While a solver-based approach has worked well in practice,
without extensive knowledge of the internals of the external solvers, it is di�cult to understand
exactly why a synthesis problem is unrealizable.

This paper presents unrealizability logic, a proof system for reasoning about the unrealizability of
synthesis problems. In addition to the main goal of reasoning about unrealizability, unrealizability
logic is designed with the following goals in mind:
• to be a general logic, capable of dealing with various synthesis problems;
• to be amenable to machine reasoning, as to enable both automatic proof checking and to open
future opportunities for automation;

• to provide insight into why certain synthesis problems are unrealizable through the process of
completing a proof tree.

Via unrealizability logic, one is able to (i) reason about unrealizability in a principled, explicit
fashion, and (ii) produce concrete proofs about unrealizability.
In this paper, unrealizability logic is formulated for synthesis problems over a deterministic,

imperative programming language with statements involving Boolean and integer expressions.
There are several challenges to creating unrealizability logic, which are illustrated in §2. One such
challenge is already illustrated in Example 1.1: because of the recursive de�nition of nonterminal
�, the search space of programs !(�first) is an in�nite set. In unrealizability logic, one reasons
about in�nite sets of programs en masse—as opposed to reasoning about each program in the set
separately. Proofs in unrealizability logic must thus establish judgements of the following kind:

For a given a set of input-output examples, no matter which program is chosen (out of a possibly
in�nite set of programs), there is at least one input-output example that is handled incorrectly.

The proof system for unrealizability logic has sound underpinnings, and provides a way to build
proofs of unrealizability similar to the way Hoare logic [Hoare 1969] provides a way to build proofs
that a given program cannot reach a set of bad states.

Contributions. In summary, this paper makes the following contributions:
• Unrealizability logic, the �rst logical proof system for overapproximating the execution of an
in�nite set of imperative programs (§3).

• A proof of soundness and relative completeness for unrealizability logic (§4).

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 23. Publication date: January 2023.

Unrealizability Logic 23:3

• Examples that illustrate the proving power of unrealizability logic: in particular, unrealizability
logic can be used to prove unrealizability for problems out of reach for previous methods; e.g.,
those for which the proof requires reasoning about an in�nite number of examples (§5).

§6 discusses related work. §7 concludes. Proofs for theorems in the paper may be found in the full
version of this paper, available on arXiv [Kim et al. 2022].

2 MOTIVATING EXAMPLES

In this section, we give several key examples that describe how proof trees in unrealizability logic
work, and also illustrate two key challenges behind unrealizability logic (§2.1, §2.2). Unrealizability
logic shares much of the intuition behind Hoare logic and its extension toward recursive programs.
However, as we will illustrate in §2.3, these concepts alone are insu�cient to model unrealizability,
which motivated us to develop the new concepts that we introduce in this paper.

Hoare logic is based on triples that overapproximate the set of states that can be reached by a
program s; i.e., the Hoare triple

{%} s {&}

asserts that & is an overapproximation of all states that may be reached by executing s, starting
from a state in % . The intuition in Hoare logic is that one will often attempt to prove a triple like
{%} s {¬- } for a set of bad states - , which ensures that execution of s cannot reach - .
Unrealizability logic operates on the same overapproximation principle, but di�ers in two main

ways from standard Hoare logic. The di�erences are motivated by how synthesis problems are
typically de�ned, using two components: (i) a search space ((i.e., a set of programs), and (ii) a
(possibly in�nite) set of related input-output pairs {(81, >1), (82, >2), · · ·}.

To reason about sets of programs, in unrealizability logic, the central element (i.e., the program
s) is changed to a set of programs (. The unrealizability-logic triple

{|% |} ({|& |}

thus asserts that& is an overapproximation of all states that are reachable by executing any possible
combination of a pre-state ? ∈ % and a program s ∈ (. More formally, the following theorem holds
for any unrealizability triple {|% |} ({|& |}:

Theorem 2.1. The unrealizability triple {|% |} ({|& |} for a precondition % , postcondition & , and set

of programs (, holds i� for each program s ∈ (, the Hoare triple {%} s {&} holds.

The second di�erence concerns input-output pairs: in unrealizability logic, we wish to place the
input states in the precondition, and overapproximate the set of states reachable from the input
states (through a set of programs) as the postcondition. Unfortunately, the input-output pairs of
a synthesis problem cannot be tracked using standard pre- and postconditions; nor can they be
tracked using auxiliary variables, because of a complication arising from the fact that unrealizability
logic must reason about a set of programs (see §2.2).
To keep the input-output relations in check, the predicates of unrealizability logic talk instead

about (potentially in�nite) vector-states, which are sets of states in which each individual state is
associated with a unique index. Variable G of the state with index 8 is referred to as G8 .

Example 2.2 (Vector-States). Assumewe are given a set of input-output state pairs {(G = 81, G = >1),
(G = 82, G = >2), · · · , (G = 8=, G = >=)}. Then the input vector-state � is denoted by (G1 = 81) ∧ (G2 =

82) ∧ · · · ∧ (G= = 8=). The output vector-state$ is denoted by (G1 = >1) ∧ (G2 = >2) ∧ · · · ∧ (G= = >=).
Once � and $ have been constructed this way, the proof steps of an unrealizability-logic proof
would relate G8 in the precondition to G8 in the postcondition; one has e�ectively expressed the
relation given by the input-output pairs by renaming each input-output pair to be unique.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 23. Publication date: January 2023.

23:4 Jinwoo Kim, Loris D’Antoni, and Thomas Reps

Precondition:

multiple possible

inputs

︷ ︸︸ ︷
{�
�
�
�

G1 = 81 ∧ G2 = 82∧

G3 = 83 ∧ · · ·

�
�
�
�

}

︸ ︷︷ ︸

Vector-state (�)

Body:

Set of programs

︷ ︸︸ ︷

!

(

Start → · · ·

� → · · ·

)

︸ ︷︷ ︸

Grammar

Postcondition:

at least one

incorrect output

︷ ︸︸ ︷
{�
�
�
�

G1 ≠ >1 ∨ G2 ≠ >2∨

G3 ≠ >3 ∨ · · ·

�
�
�
�

}

︸ ︷︷ ︸

Negated vector-state (¬$)

Fig. 1. An unrealizability triple with a negated post-vector-state asserts that a synthesis problem is unrealizable.

Observe how the vectorized version of ¬$ asserts that there is at least one output example that does not

satisfy the desired input-output relation.

Keeping these two di�erences in mind, let us turn to proving unrealizability. Recall that a
synthesis problem is given as a search space (and a set of input-output pairs Ex = {(81, >1), · · ·}. To
prove unrealizability, one must prove that for every program s ∈ (, there is at least one input-output
pair (8: , >:) ∈ Ex such that s does not map 8: to >: . Note that ¬$ denotes the set of all output
vector-states for which at least one input-output pair does not hold. Then, because of Theorem 2.1,
proving {� } s {¬$} for all s ∈ (is equivalent to proving the unrealizability triple

{|� |} ({|¬$ |}.

The goal of unrealizability logic is to prove such triples in a principled logical system, without
having to descend to the level of individual programs or input-output pairs.
Fig. 1 summarizes what we have discussed so far. In general, in unrealizability logic the input

vector-state need not be �nite, and the spec need not be functional as well—for example, a synthesis
problem that should assign some value E > G to G , for all possible G , can be proved unrealizable via
the triple {|∀8 .G8 = 8 |} !(�) {|∃8 .G8 ≤ 8 |}.

2.1 Challenge 1: Infinite Sets of Programs

Compared to ordinary Hoare logic, the �rst challenge is that unrealizability logic needs to reason
about in�nite sets of programs. Fortunately, the set of programs in a program-synthesis problem
is typically formulated as a regular tree grammar (RTG), which de�nes the set of programs in an
inductive manner. Unrealizability logic uses the structure of the RTG to develop proof trees that
mimic structural induction.

As illustrated earlier, the unrealizability triple {|% |} ({|& |} captures information about the set of
programs (. If (is speci�ed in a recursive manner via an RTG, a triple {|% |} ({|& |} can also be used
as an induction hypothesis in a proof tree for unrealizability logic, as we show in Example 2.3.

Example 2.3. Consider a simple synthesis problem B~e with the following grammar:

Start → (2 | (3 (2 → (2; (2 | G := G + 2 (3 → (3; (3 | G := G + 3

That is, B~e consists of programs that either (i) repeatedly add 2 to G , or (ii) repeatedly add 3 to G .
Now suppose that the input speci�cation to B~e was given as G ≡6 0 (we use G ≡? A as shorthand

for G ≡ A (mod ?); i.e., that G is equivalent to A modulo ?) and the output speci�cation given as
G ≡6 1; that is, the goal is to reach a number of the form 6: ′ + 1 when starting from a number
6: . This problem is unrealizable, because one can only reach 6: ′, 6: ′ + 2, 6: ′ + 3, or 6: ′ + 4 by
repeatedly adding 2 or 3 (but not both) to a multiple of 6. We formalize this reasoning as a proof
tree in unrealizability logic.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 23. Publication date: January 2023.

Unrealizability Logic 23:5

· · ·

Γ(2 ⊢ {|G ≡2 0 |} G + 2

{�
�
�
�

∃4′C . (G ≡2 0)
∧4C = G + 2

�
�
�
�

}

Γ(2 ⊢ {|G ≡2 0 |} G := G + 2

{�
�
�
�
�

∃G′, 4′C .(G
′ ≡2 0∧

4C = G′ + 2)∧
G = 4C

�
�
�
�
�

}
Assign

Γ(2 ⊢ {|G ≡2 0 |} G := G + 2 {|G ≡2 0 |} 1
Weaken

Γ(2 ⊢ {|G ≡2 0 |} (2 {|G ≡2 0 |}
ApplyHP

Γ(2 ⊢ {|G ≡2 0 |} (2 {|G ≡2 0 |}
ApplyHP

Γ(2 ⊢ {|G ≡2 0 |} (2; (2 {|G ≡2 0 |} 2

Seq

⊢ {|G ≡2 0 |} (2 {|G ≡2 0 |}
HP

Fig. 2. Simplified proof tree that proves the sub-goal {|G ≡2 0|}(2 {|G ≡2 0|} in unrealizability logic. Γ(2 denotes

the context {{|G ≡2 0|} (2 {|G ≡2 0|}}. Labels 1 and 2 are names for the triples they are associated with.

Starting the Proof Tree. To prove the synthesis problem B~e unrealizable, one wishes to prove
the following triple, where the output is negated from the speci�cation:

{|G ≡6 0|} Start {|G .6 1|}

From this point on, a nonterminal as the center element of an unrealizability triple refers to the
language of that nonterminal; e.g., {|G ≡6 0|} Start {|G .6 1|} refers to {|G ≡6 0|} !(Start) {|G .6 1|}.
Note that the postcondition G .6 1 is bigger than our previously discussed reachable states of

6: ′, 6: ′ + 2, 6: ′ + 3, and 6: ′ + 4. Hence, the target triple can be proved by proving the following
triple and then weakening it (Weaken in Fig. 7):

{|G ≡6 0|} Start {|G ≡6 0 ∨ G ≡6 2 ∨ G ≡6 3 ∨ G ≡6 4|}

To prove this triple in unrealizability logic, we must �rst introduce the concept of a context Γ,
which is a set of triples that stores all the induction hypotheses that have been introduced up to
some point in a proof tree. Consequently, the judgements of the proof tree have the form:

Γ ⊢ {|P|} ({|Q|}

The idea is that instead of reasoning about the provability of triples directly, we wish to reason
about the provability of a triple assuming that every hypothesis inside Γ is true.
In our case, we wish to prove that {|G ≡6 0|} Start {|G ≡6 0 ∨ G ≡6 2 ∨ G ≡6 3 ∨ G ≡6 4|} without

assuming anything (i.e., starting from the empty context). This triple can be established by proving
that the following judgement holds (where the blank LHS denotes an empty context):

⊢ {|G ≡6 0|} Start {|G ≡6 0 ∨ G ≡6 2 ∨ G ≡6 3 ∨ G ≡6 4|}

The key point in taking the next step is to notice that the language of the nonterminal Start,
!(Start), is the union of !((2) and !((3). Because unrealizability logic deals with sets of programs,
it is equipped with rules for merging triples over di�erent sets of programs. In particular, we can
apply the grammar-disjunction rule of unrealizability logic (GrmDisj in Fig. 7), which states that
if two program sets satisfy the same pre- and postcondition pair, their union also satis�es the
aforementioned pair. In this case, GrmDisj is applied on our target triple as follows:

⊢ {|G ≡6 0|} (2 {|G ≡6 0 ∨ G ≡6 2 ∨ G ≡6 3 ∨ G ≡6 4|}

⊢ {|G ≡6 0|} (3 {|G ≡6 0 ∨ G ≡6 2 ∨ G ≡6 3 ∨ G ≡6 4|}

⊢ {|G ≡6 0|} Start {|G ≡6 0 ∨ G ≡6 2 ∨ G ≡6 3 ∨ G ≡6 4|}
GrmDisj

We are now faced with having to prove triples over the nonterminals (2 and (3. Because (2 and (3
are de�ned recursively, taking a naive consideration of the productions from (2 and (3 will result
in an in�nite proof tree. To avoid this problem, one must introduce the triples one wishes to prove
as hypotheses in the context, and validate them in a procedure similar to structural induction.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 23. Publication date: January 2023.

23:6 Jinwoo Kim, Loris D’Antoni, and Thomas Reps

IntroducingHypotheses. To see how hypotheses are introduced, consider the nonterminal (2. The
idea is that one wishes to introduce the target triple {|G ≡6 0|}(2 {|G ≡6 0∨G ≡6 2∨G ≡6 3∨G ≡6 4|}

as an induction hypothesis about nonterminal (2, and prove that this triple holds in a way similar to
structural induction. Introducing a new hypothesis can be done using the HP rule in Fig. 7, which
splits the proof according to nonterminal # ’s productions: in this case, nonterminal (2 is split into
G := G + 2 and (2; (2 (the �rst application of HP in Fig. 2).

As the hypothesis for (2, we introduce the triple {|G ≡2 0|} (2 {|G ≡2 0|}: observe that this triple
may be used to prove the target triple {|G ≡6 0|} (2 {|G ≡6 0 ∨ G ≡6 2 ∨ G ≡6 3 ∨ G ≡6 4|} via an
application ofWeaken (in fact, {|G ≡6 0|} (2 {|G ≡6 0 ∨ G ≡6 2 ∨ G ≡6 3 ∨ G ≡6 4|} will not work as a
hypothesis directly for (2, as we will explain later in this section).

We will use Γ(2 to denote the singleton context {{|G ≡2 0|} (2 {|G ≡2 0|}}. Fig. 2 depicts the proof
tree for ⊢ {|G ≡2 0|} (2 {|G ≡2 0|}, where the application of HP at the root of the proof tree introduces
the Γ(2 context in the two premises.

Proving Hypotheses. If one were proving a property about (2 using standard structural induction,
one would proceed to show that the property holds on the two sub-cases, G := G + 2 and (2; (2—i.e.,
the two productions from (2—while assuming that the property holds as a hypothesis. The same
approach is used here: we assume {|G ≡2 0|} (2 {|G ≡2 0|} as a hypothesis (in context Γ(2), and
attempt to prove that G ≡2 0 is a valid pre- and postcondition for both G := G + 2 and (2; (2.

First, consider proof goal 1 for G := G + 2. The set of programs generated by the right-hand
side of this production is completely independent of how (2 is de�ned; thus, for the purpose of
performing structural induction on (2, it is a base case. Here, we invoke the basic rule for assignment

to prove 1 . Auxiliary variable 4C stores the result of the expression G + 2, which is then assigned
to G through the Assign rule (in which the postcondition of the conclusion mimics that of the
forwards-based assignment rule in Hoare logic). The resulting postcondition can then be weakened
to obtain G ≡2 0, which completes the proof that {|G ≡2 0|} G := G + 2 {|G ≡2 0|}.

Next, consider proof goal 2 for (2; (2. Here, nonterminal (2 appears directly, and provides us
with a chance to apply the induction hypothesis via the rule ApplyHP in Fig. 7. In Figure 2, the

derivation for 2 is the sub-proof tree on the right. Notice how (2; (2 is �rst decomposed using
the Seq rule for sequential composition (identical to that in Hoare logic), which requires us to prove

two instances of the proof goal 2 ; in turn, these two instances are proved by directly applying
the induction hypothesis through ApplyHP.

Returning to nonterminal Start, the second premise {|G ≡6 0|} (3 {|G ≡6 0∨G ≡6 2∨G ≡6 3∨G ≡6

4|} can be similarly proved by introducing the triple {|G ≡3 0|} (3 {|G ≡3 0|} as a hypothesis for
nonterminal (3, and weakening it to get the target triple about (3. This step concludes our proof.

One take-away from Example 2.3 is the importance of choosing an appropriate induction hypoth-
esis. For instance, attempting to use the proof goal {|G ≡6 0|} (2 {|G ≡6 0∨ G ≡6 2∨ G ≡6 3∨ G ≡6 4|}

directly as a hypothesis for (2 would make the proof fail on the production (2; (2. This example
indicates that, similar to how identifying appropriate invariants for loops is a key component of
writing Hoare logic proofs, identifying appropriate hypotheses for nonterminals is an essential
part in completing a proof in unrealizability logic.

2.2 Challenge 2: Tracking (Infinite) Input-Output Relations

The second challenge in unrealizability logic is that the speci�cation of a synthesis problem is
typically given as a set of input-output pairs: a speci�c input value is associatedwith a speci�c output
value. (Even if the speci�cation is given as a universally quanti�ed formula, one can understand
such a formula as an in�nite set of input-output pairs.) The standard way to address this problem
in Hoare logic is to introduce auxiliary variables that freeze the values of program variables in the

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 23. Publication date: January 2023.

Unrealizability Logic 23:7

precondition, and to allow the postcondition to refer to these auxiliary variables. However, this
approach alone is unsuitable for unrealizability logic, as illustrated by the following example.

Example 2.4. Consider the identity assignment G := G . The Hoare triple for this program is
typically given as {G = G0DG } G := G {G = G0DG }; that is, starting from G = G0DG , where G0DG is an
auxiliary variable, one ends up in G = G0DG . Strictly speaking, the auxiliary variable G0DG is quanti�ed
outside the Hoare triple:∀G0DG .{G = G0DG }G := G {G = G0DG }; this position for the quanti�er indicates
that the triple should hold for every value of G0DG .
Now suppose that we are given a synthesis problem B~id, where the goal is to synthesize a

program equivalent to G := G , using the grammar �id below:

Start → G := � � → 0 | � + 1 | � − 1

For every integer 8 , the set !(�) contains a constant expression that evaluates to 8 , and thus
!(Start) consists of exactly the set of all constant assignments. However, synthesizing a statement
that is computationally equivalent to G := G is impossible because the set only contains constant
assignments—i.e., B~id is unrealizable.
Suppose that one tries to specify B~id using an auxiliary variable, so that the goal is to prove

{|G = G0DG |}Start {|G ≠ G0DG |}. Unfortunately, this triple is invalid in unrealizability logic, in the sense
that starting from the precondition G = G0DG , one can actually reach a state where still, G = G0DG !
To understand this seemingly counterintuitive fact, we will attempt to prove the triple

{|G = G0DG |} Start {|∃:.G = : |} (where : indicates that G may have any value in the post-state).
To do so, let us �rst characterize the behavior of all programs in the language of �. In doing so,
one will generate the following hypothesis (where, again, 4C is an auxiliary variable for storing the
value obtained from executing �):

{|G = G0DG |} � {|G = G0DG ∧ ∃:.4C = : |}.

The best one can say about terms in � is that there exists an integer : whose value is 4C . Applying
Assign andWeaken to the triple, one can derive the following (precise) triple:

{|G = G0DG |} Start {|∃:.G = : |}.

Like in Hoare logic, the quanti�cation for G0DG is outside the unrealizability triple, which yields:

∀G0DG .{|G = G0DG |} Start {|∃:.G = : |}.

This triple says that for every value of G0DG , there is some : (and a corresponding program) that
works; thus, this triple actually asserts that the problem is realizable (which is clearly not true)!

The problem is that, while for every individual value of G0DG there does indeed exist a suitable :
(corresponding to a speci�c expression C: ∈ !(�) that always evaluates to :), any such value of :
(and expression C:) fails to work for other values of G0DG—i.e., the use of a single auxiliary variable
fails to capture the fact that the multiple input-output pairs must all be satis�ed simultaneously. In
terms of synthesis, for each input, some program in the search space will work: but this does not
guarantee the existence of a program that works for all inputs (such a program does not exist).

The issue illustrated in Example 2.4—where one must ensure that each input must map to some
speci�c output, but all via the same program—has appeared in other work on unrealizability. For
example, Nay [Hu et al. 2020] uses semi-linear sets over LIA to capture this relation (albeit for a
speci�c class of synthesis problems), while Nope [Hu et al. 2019] constructs a program that executes
each example in lockstep.

In this paper, we show that these relations can be elegantly expressed as unrealizability triples by
(i) merely renaming the set of variables to which each example refers to be unique; (ii) conjoining all
the renamed states into a single, big state, and (iii) modifying the semantics of programs to execute

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 23. Publication date: January 2023.

23:8 Jinwoo Kim, Loris D’Antoni, and Thomas Reps

over the renamed variables. As discussed in Example 2.2, we refer to the renamed, conjoined big
states as vector-states because the renaming and conjoining process can be intuitively understood
as vectorizing the input states, and then executing the program on the single vector. As shown
in Example 2.4, and as we will later show in §5, having a simple logical representation allows us
to extend the vector-states toward in�nite examples, which allows us to prove unrealizability for
problems beyond the reach of previous work [Hu et al. 2019, 2020; Kim et al. 2021].

Example 2.5 (Two Input-Output Pairs). Consider again the synthesis problem B~id and grammar
�id from Example 2.4. Suppose that the speci�cation for B~id is given as a set of two input-output
pairs: {[G = 1 ↦→ G = 1], [G = 2 ↦→ G = 2]}. Then the input and output speci�cations can both be
expressed as the vector-state {G1 = 1 ∧ G2 = 2}, where G1 corresponds to the �rst example and G2
corresponds to the second example. The following triple is valid in unrealizability logic, i.e., the
two examples su�ce to demonstrate that B~id is unrealizable:

{|G1 = 1 ∧ G2 = 2|} !(Start) {|G1 ≠ 1 ∨ G2 ≠ 2|}.

In turn, this triple may be derived from the triple:

{|G1 = 1 ∧ G2 = 2|} !(Start) {|∃:.G1 = : ∧ G2 = : |},

which states that there must exist a : for which both G1 and G2 are equivalent to : in the post-state
(i.e., that !(Start) is a constant program). This condition implies that G1 and G2 are identical, and
thus implies that G1 ≠ 1 ∨ G2 ≠ 2.

Example 2.5 illustrates how unrealizability can be proved using two examples; in §5, we present
problems for which proving unrealizability requires in�nitely many examples.
The fact that the input-output examples can be packed into a single vector-state is important:

because the starting precondition contains only a single vector-state, all examples inside the single
vector-state are guaranteed to be executed on the same program in the grammar. Likewise, because
all the output examples are packed into a single vector-state, the negation of this vector-state is
guaranteed to contain all vector-states that are wrong on at least one input example.

2.3 Why Not Recursive Hoare Logic?

At this point, readers familiar with Hoare logic extended toward recursive procedures [Apt 1981;
Nipkow 2002] may notice that the proof structure described in §2.1 is similar to proofs in recursive
Hoare logic. In fact, the similarity between program-synthesis problems and nondeterministic,
recursive procedures has already been exploited in Nope [Hu et al. 2019], which constructs a
recursive program from a synthesis problem, then relies on an external veri�er to check whether
the problem is unrealizable.

Then what is the problemwith applying recursive Hoare logic to programs translated in this way?
The answer is that some features of synthesis problems are di�cult to model as a nondeterministic
recursive program—e.g., loops and in�nite examples (both of which Nope cannot support).
With while loops, the problem is that a nondeterministic modelling as described in [Hu et al.

2019] must have a way of recording the unbounded choices that were selected when synthesizing
the while-loop body, due to the fact that a loop body must stay �xed throughout multiple iterations.

Example 2.6 (Multiple Loop Bodies). Consider a variant of B~e from Example 2.3, where the
grammar has been modi�ed to contain while loops instead of sequential composition:

Start → while � do (� → G < 100 (→ G := G + 2 | G := G + 3

B~e still consists of programs that repeatedly add either 2 or 3 to G . However, the repeated addition
is performed within a loop (until G ≥ 100). The search space consists of exactly two programs: one

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 23. Publication date: January 2023.

Unrealizability Logic 23:9

in which the loop body is G := G + 2, and one in which the loop body is G := G + 3. Starting from
G ≡6 0, G ≡2 0 is an invariant of the �rst program, and G ≡3 0 is an invariant of the second program.

1 int x, e_t, b_t; // Vars store results of execution

2 void Start() { While(); }

3 void B() { b_t = x < 100; }

4 void S() {

5 int select = nondet(); // Nondeterminsitic choice

6 if (select = 1) x = x + 2; else x = x + 3;

7 }

8 void While() {

9 B();

10 if (b_t) S(); While(); else skip;

11 }

Fig. 3. Encoding of B~e as a nondeterministic program.

Nope [Hu et al. 2019] constructs a nondeter-
ministic, recursive program from a synthesis
problem, where each nonterminal is translated
into a procedure. The basic idea is that execut-
ing the translated procedure returns the result
of executing that nonterminal—where the non-
deterministic choices of an RTG are mimicked
by nondeterminsitic choices in the procedure.

A naive translation of B~e into a nondetermin-
sitic program following this idea would result in
a program like the one in Figure 3. The problem with Figure 3 is that there is no machinery present
to ensure that the same loop body is repeated for each iteration—thus, an analysis of Figure 3 would
report that states in which, e.g., G ≡6 1 holds are possible! To address this issue, Figure 3 would
require some data structure capable of recording the nondet() choices in S() directly embedded
in the program. While a single Int may su�ce for Figure 3, as the loop body is decided via a single
nondeterministic choice, other synthesis problems in general would require data structures such
as lists, as constructing their loop bodies may require the application of multiple productions. In
particular, such a list must be of unbounded size, because, in general, a term within an RTG may be
of unbounded size.
In unrealizability logic, one does not need such complex machinery—instead, one can perform

simple invariant-based reasoning. Because unrealizability logic is tailored for synthesis problems,
one can �rst split the search space through GrmDisj, as illustrated in Example 2.3, to consider the
two loops “while � do G := G + 2” and “while � do G := G + 3” separately. At this point, it becomes
clear that {|G ≡2 0|}G := G + 2{|G ≡2 0|} and {|G ≡3 0|}G := G + 3{|G ≡3 0|} are invariants for each of the
loops. An additional application ofWeaken yields the desired triple {|G ≡6 0|}Start {|G ≡2 0∨G ≡3 0|}.
(While it is possible to reason about both loops via a single invariant, as suggested in §3.3, such an
invariant is likely to be too complex; see §3.3 and Lemma 4.3 for details.)
The second problem with trying to apply recursive Hoare logic has to do with dealing with

in�nitely many examples, or more generally, with vector-states themselves: vector-states provide
unrealizability logic a way to ensure that multiple examples are executed along the same program.
Nope [Hu et al. 2019] creates copies of sets of variables for each di�erent example when translating
the synthesis problem into a program. However, creating copies of variables for each example
requires an in�nite number of variables in the program to support in�nite examples.1 Programming
languages, much less program veri�ers, typically do not support—or struggle to support—programs
with in�nite variables, which is why previous attempts such as Nope fail to support cases with
in�nite examples.
It is true that, if one is willing to develop a logic supporting all necessary features: recursion,

nondeterminism, both local and global variables, in�nite data structures, and in�nite vector-states,
then it would be possible to prove unrealizability via an extended Hoare logic. However, to the best
of our knowledge, there is no comprehensive study of a system containing all of these features
at once, whereas this paper proves soundness, relative completeness, and some other decidability
results related to unrealizability and unrealizability logic.

1Unlike the case with while loops, where an unbounded list su�ces (e.g., an OCaml list), in�nite examples require the use of

a truly in�nite number of variables.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 23. Publication date: January 2023.

23:10 Jinwoo Kim, Loris D’Antoni, and Thomas Reps

Stmt (::= G := � | (; (| if � then (else (| while � do (

IntExpr � ::= 0 | 1 | G | � + � | � − � | � · � | �/� | if � then � else �

BoolExpr � ::= t | f | ¬� | � ∧ � | � < � | � == �

Fig. 4. The base grammar �8<? , which defines a universe of terms that we are interested in for this paper.

Moreover, such a logical system would be more complex than required to reason about
unrealizability—for example, a record-and-replay encoding of while loops as suggested in Ex-
ample 2.6 completely hides the fact that one is processing a while-loop production, and thus
prevents simple invariant-based reasoning about loops. Such drawbacks are in direct con�ict with
the goal of unrealizability logic, which—as stated in §1—is to provide a simple logical system
that distills the essence of proving unrealizability. True to this goal, the While rule for loops in
unrealizability logic does allow one to perform invariant-based reasoning for loops, and provides
similar direct reasoning principles for other constructs as well.

3 UNREALIZABILITY LOGIC

In this section, we formally de�ne unrealizability logic and some necessary preliminaries.

3.1 Preliminary Definitions

In this paper, we consider synthesis problems where the search space is a subset of all terms
producible by the imperative grammar �8<? (Figure 4)—that is, deterministic, expression-based or
imperative synthesis problems de�ned over integer arithmetic expressions. We assume a function
J·K that de�nes the standard semantics of every term C ∈ !(�). We leave supporting synthesis
problems involving more complex operations, e.g., recursive data structures, to future work; this
paper lays the foundations for making such extensions possible.

De�nition 3.1 (Regular Tree Grammar). A (typed) regular tree grammar (RTG) is a tuple � =

(N ,A, (, 0, X), where N is a �nite set of nonterminals; A is a ranked alphabet; (∈ N is an initial
nonterminal; 0 is a type assignment that gives types for members of A ∪N ; and X is a �nite set of
productions of the form #0 → U (8) (#1, ..., #8), where for 0 ≤ 9 ≤ 8 , each # 9 ∈ N is a nonterminal
such that if 0U (8) = (g0, g1, ..., g8) then 0# 9

= g 9 .

In our setting, the alphabet consists of constructors for each of the constructs of�8<? (although

for simplicity we write, e.g., G := 0, rather than :=(2) (G (0) , 0(0))). �8<? contains three types of non-
terminals: statement nonterminals, expression nonterminals, and Boolean-expression nonterminals.
We assume grammars use productions that di�er from the ones in �8<? only due to the non-

terminal names. We say that a production #0 ::= U (8) (#1, . . . , #8) is valid with respect to �8<? i�
replacing each nonterminal # 9 with the nonterminal of the same type in the set {(, �, �} yields a
production in �8<? , e.g., production (1 ::= (2; (3 is valid with respect to �8<? .

2

De�nition 3.2 (Synthesis Problem). A synthesis problem is a 4-tuple sy = ⟨�, 5 , � ,k ⟩, where
• � is a regular-tree grammar consisting of productions that are valid with respect to �8<? ,
• 5 is the name of the function to synthesize,
• � is the set of allowed input states of 5 (i.e., the domain of 5),
• k is a Boolean formula that describes a behavioral speci�cation that 5 must satisfy.
The goal of a synthesis problem is to �nd 5 ∗ ∈ !(�) such that ∀A ∈ � . k (J5 ∗K(A), A). If such an
5 ∗ ∈ !(�) exists, synthesis problem B~ is realizable; otherwise, B~ is unrealizable.

2In this paper, we sometimes write a production in which some terminals are in-lined in place of nonterminals—e.g., we

write (::= G := G in place of the two productions (::= G := �G , �G ::= G .

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 23. Publication date: January 2023.

Unrealizability Logic 23:11

In this paper, 5 may be thought as of a state transformer that has type of State → State.
A key point from De�nition 3.2 is that the search space is de�ned as an RTG. As noted in §2.1,

this property is used by unrealizability logic to build proof trees that mimic structural induction.
Also, note that the speci�cationk is given as a Boolean formula, i.e., a logical speci�cation. So far in
the paper, we have only considered synthesis problems where the speci�cation is given as a set of
input-output examples, which are subsumed by logical speci�cations. However, unrealizability logic
is also capable of dealing with logical speci�cations directly, because the pre- and postcondition of
an unrealizability triple are logical predicates.

3.2 Basic Definitions for Unrealizability Logic

We now introduce some concepts that are speci�c to unrealizability logic.
In this paper, we will use (and have used) the following notation for di�erent kinds of states:

• Lowercase letters (e.g., ?, @, A) for ordinary states,
• Uppercase letters (e.g., %,&) for sets of ordinary states (and also predicates over states),
• Lowercase Greek letters (e.g., f, c) for vector-states (as shown in §2, de�ned in De�nition 3.4),
• Calligrahic uppercase letters (e.g., P,Q) for sets of (and predicates describing) vector-states.
Sometimes, uppercase letters are used also to denote nonterminals, i.e., sets of programs, and
lowercase letters used to denote single programs. It should be clear from context, in these cases,
what the upper- and lowercase letters denote.

In unrealizability logic, the semantics of expressions are extended such that an expression does
not evaluate to a value E , but evaluates to a state that stores the value E inside a (reserved) auxiliary
variable 4C (or 1C , for Boolean expressions). This non-standard approach is taken because, as we
will see in §3.3, simply generating values will lose some information that is required to precisely
compute the set of states that a nonterminal can generate.

De�nition 3.3 (Semantics of Expressions). Let J·Kext be a semantics for expressions that evaluates an
expression to a state instead of a value. Intuitively, we will store the value resulting from computing
an expression to a reserved variable 4C in the state.
Given a ‘standard’ semantics J·K that evaluates expressions to values and an arbitrary state A ,

let J4Kext (A) = A [4C ↦→ J4K(A)] if 4 is an atomic expression (0, 1, or G). (If 4 is an atomic Boolean
expression, the assignment is to 1C instead.)

If 4 is a=-ary operation, with 4 = 41+42 as an example, let J41 + 42Kext (A) = A [4C ↦→ J41Kext(A) [4C]+
J42Kext (A) [4C]]; that is, J·Kext is de�ned recursively such that the extended semantics of operators
such as +, i.e., J+Kext, are state transformers as well. These semantics work by referencing the value
of 4C stored in the state that each sub-expression 41 and 42 evaluates to (likewise, if 4 is a =-ary
Boolean operation, the �nal assignment is to 1C instead; Boolean sub-expressions will also reference
1C instead of 4C).

We de�ne the extended semantics recursively, instead of simply stating that J4Kext (A) = A [4C ↦→

J4K(A)], because we wish the rules of unrealizability logic to be recursive, and thus need to de�ne
operations such as addition on states. In the rest of this paper, we will take J·Kext from De�nition 3.3
to be the standard semantics given to a term, and thus drop the subscript ext.

In this paper, we consider a state to be a �nite mapping from variables to values, which can also
be understood as a �nite set of ⟨variable, value⟩ pairs (where the variables are unique).
As we showed in §2, unrealizability logic relies on vector-states and a semantics modi�ed to

run on vector-states to capture input-output relations. Vector-states may simply be understood as
ordinary states de�ned over an extended set of variables; we formalize this notion below.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 23. Publication date: January 2023.

23:12 Jinwoo Kim, Loris D’Antoni, and Thomas Reps

De�nition 3.4 (Vector-State). Let A1, A2, · · · be a �nite or countably in�nite collection of states
indexed by the natural numbers, that are de�ned over the same set of variables + . Then the vector-
state f is a state de�ned over the set of variables

⋃

8∈� {E8 | E ∈ + }, such that for all E ∈ + and
8 ∈ � , we have that f (E8) = A8 (E).

Intuitively, given a �nite collection of states A1, · · · , A= , the vector-state f =

⟨A1 [E1/E], · · · , A= [E=/E]⟩ is simply a ‘vectorization’ of the renamed individual states. Executing a
program C on this vector-state produces a vector-state equivalent to the vector obtained by running
each individual state through C separately: that is, JCK(f) = ⟨JCK(A1) [E1/E], · · · , JCK(A=) [E=/E]⟩. This
intuition carries over to when the given collection of states is in�nite, in which case the resulting
vector-state will simply be of in�nite length. Def. 3.5 formalizes this intuition, and extends the
program semantics to a semantics that works on possibly in�nite vector-states, and also to a
semantics of a set of programs on a set of possibly in�nite vector-states.

De�nition 3.5 (Vector-State Semantics). Let f = ⟨A1 [E1/E], A2 [E2/E], · · ·⟩ be a vector-state indexed
by the natural numbers, where A1, A2, · · · are de�ned over variables E ∈ + .

Then the semantics of a term C on f is de�ned as JCK(f) =
⋃

8∈#,E∈+ {E8 | f (E8) = JCK(A8) (E)}. The
semantics of C on a set of vector-states P is de�ned as JCK(P) =

⋃

f ∈P{JCK(f)}. The semantics of a
set of programs) on a set of vector-states P is de�ned as J) K(P) =

⋃

C ∈) JCK(P).

The semantics of a set of programs on a set of input states can be understood as producing the
set of all states that may arise from taking any combination of a program C ∈) and a (vector-) state
f ∈ P. This semantics allows us to de�ne the validity of unrealizability triples: a triple {|P|}) {|Q|}

is valid i� Q overapproximates the states that may result from any combination of f ∈ P and C ∈) .

De�nition 3.6 (Validity). Given a precondition over vector-states P, and a postcondition over
vector-states Q, an unrealizability triple {|P|}) {|Q|} is valid for a set of programs) , denoted by
|= {|P|}) {|Q|}, i� J) K(P) ⊆ Q.

As previously stated as Theorem 2.1, |= {|P|}) {|Q|} i� for all C ∈) , {P} s {Q} is a valid Hoare
triple. Connecting all the de�nitions, we state that:

A synthesis problem sy = ⟨�, 5 , � ,k ⟩ is unrealizable if |= {|� (A) |} # {|¬k (5 (A), A) |} is a valid
unrealizability triple. Here, # is the initial nonterminal of � , and � and k are predicates that
describe the vectorized input and output conditions of the synthesis problem.

3.3 The Rules of Unrealizability Logic

In this section, we present the inference rules of unrealizability logic.

The Assertion Language. One issue to discuss before presenting the rules is the choice of assertion
language—that is, the language used for the pre- and postconditions of unrealizability triples.
Unrealizability logic is parametric in the choice of assertion language, as long as the assertion
language is as least as expressive as �rst-order Peano arithmetic (FO-PA). This requirement is
due to the fact that the addtional predicates that unrealizability logic adds to the given pre- and
postconditions when constructing a proof tree require FO-PA—an assertion language less expressive
than FO-PA will fail to encode these additional predicates.
This characteristic makes FO-PA a natural choice for the assertion language in unrealizability-

logic proofs, especially as it is well-studied and provides opportunities for automation. However,
some synthesis problems will require a stronger assertion language than FO-PA for a proof of
unrealizability to be completed in unrealizability logic. For example, proofs that require an in�nite
number of examples will require a logic capable of supporting an in�nite number of variables (such
an example is given in §5.1). One example of such a logic is FO-PA extended with in�nite arrays.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 23. Publication date: January 2023.

Unrealizability Logic 23:13

Γ ⊢ {|P |} 0 {|∃e′t .P[e′t/et] ∧ et = 0 |}
Zero

Γ ⊢ {|P |} 1 {|∃e′t .P[e′t/et] ∧ et = 1 |}
One

Γ ⊢ {|P |} t {|∃b′t .P[b′t/bt] ∧ bt = t |}
True

Γ ⊢ {|P |} f {|∃b′t .P[b′t/bt] ∧ bt = f |}
False

Γ ⊢ {|P |} G {|∃e′t .P[e′t/et] ∧ et = x |}
Var

Γ ⊢ {|P |} � {|Q |}

Γ ⊢ {|P |} !� {|∃b′t .Q[b′t/bt] ∧ bt = ¬b′t |}
Not

Γ ⊢ {|P ∧ (v1 = v) |} �1 {|Q1 |}

Γ ⊢ {|P ∧ (v2 = v) |} �2 {|Q2 |}

v1, v2, v
′
1, v

′
2 fresh renames of v

v refers to full set of vars in P

Γ ⊢ {|P |} (�1 ⊕ �2) {|∃e
′
t, v1, v2, v

′
1, v

′
2 .(P ∧ Q1 [v

′
1/v] ∧ Q2 [v

′
2/v] ∧ (v = v1 = v2)) [e

′
t/et] ∧ et = e′t1

⊕ e′t2
|}

Bin

Γ ⊢ {|P ∧ (v1 = v) |} �1 {|Q1 |}

Γ ⊢ {|P ∧ (v2 = v) |} �2 {|Q2 |}

v1, v2, v
′
1, v

′
2 fresh renames of v

v refers to full set of vars in P

Γ ⊢ {|P |} (�1 ⊙ �2) {|∃b
′
t, v1, v2, v

′
1, v

′
2 .(P ∧ Q1 [v

′
1/v] ∧ Q2 [v

′
2/v] ∧ (v = v1 = v2)) [b

′
t/bt] ∧ bt = e′t1

⊙ e′t2
|}

Comp

Γ ⊢ {|P ∧ (v1 = v) |} �1 {|Q1 |}

Γ ⊢ {|P ∧ (v2 = v) |} �2 {|Q2 |}

v1, v2, v
′
1, v

′
2 fresh renames of v

v refers to full set of vars in P

Γ ⊢ {|P |} (�1 ∧ �2) {|∃b
′
t, v1, v2, v

′
1, v

′
2 .(P ∧ Q1 [v

′
1/v] ∧ Q2 [v

′
2/v] ∧ (v = v1 = v2)) [b

′
t/bt] ∧ bt = b′t1

∧ b′t2
|}

And

Fig. 5. Inference rules for expressions in unrealizability logic. Bin represents rules for binary expressions,

where the operator ⊕ is one of + (Plus), − (Minus), · (Mult), or / (Div). Comp represents rules for binary

comparators, where the operator ⊙ is one of < (LT) or == (Eq).

Example 3.7 (FO-PA with In�nite Arrays). Consider the assertion language of FO-PA, extended
with axioms from the �rst-order theory of arrays [McCarthy 1993]. Variables may be arrays ranging
over an in�nite range of indices (indexed by the natural numbers), and x[8] indicates reading the
array x at index 8 .
Then one can encode vector-states of in�nite length by introducing an array for each variable:

the array x encodes an in�nite-length vector-variable ⟨G1, G2, · · ·⟩, where x[8] corresponds to the
variable G8 . For example, ∀8 .x[8] = 8 encodes the condition that G8 = 8 , i.e., that the value of G in the
8-th example is 8 (we will use the two notations G8 and x[8] interchangably in the rest of this paper).

As stated above, unrealizability logic is parametric in the choice of assertion language; if one
wishes to write proofs that necessitate the use of predicates that cannot be expressed in FO-PA, it is
entirely possible for one to use an assertion language capable of expressing the required predicates.
The examples used in this paper rely on two assertion languages: standard FO-PA for proofs that
do not require in�nite examples, and FO-PA extended with in�nite arrays for cases that do require
an in�nite number of examples to prove unrealizability (Example 5.1).
The goal of unrealizability logic is to prove unrealizability for synthesis problems de�ned over

an RTG. Therefore, the rules that we state in Figures 5, 6, and 7 are for sets of programs de�ned as
!(#) for some RTG nonterminal # , or as the language of the right-hand side of an RTG production.

3.3.1 Rules for Expressions. Recall that in De�nition 3.3 we de�ned the semantics of expressions
to update the value of a reserved auxiliary variable 4C instead of generating a value. The rules for
expressions re�ect this fact: in every expression rule, the postcondition of the conclusion takes the
form ∃e′t .P[e′t/et] ∧ et = e, where P is some predicate and e is a vector that encodes the values
that may be generated by an expression in the set of expressions considered. Observe that the form
of this predicate mimics the postcondition in the forwards-assignment rule of Hoare logic [Floyd
1993] applied to et = e (e.g., et = 0 in the case of Zero): the assignment is to a vector-variable
because we are working with vector-states (as opposed to single states, as in De�nition 3.3).

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 23. Publication date: January 2023.

23:14 Jinwoo Kim, Loris D’Antoni, and Thomas Reps

The intuition that et contains the value generated by the expression nonterminals can be formal-
ized into an invariant about expression nonterminals:

Lemma 3.8. Given an expression nonterminal �, if an unrealizability triple Γ ⊢ {|P|} � {|Q|} is

derivable using the rules of unrealizability logic under some context Γ, then for every e ∈ !(�) and for

every f ∈ P, the formula Q[JeK(f)/et] is true assuming all triples in Γ are true (where in this case,

JeK(f) refers to the standard semantics that evaluates e to a value).

Lemma 3.8 shows that, Q at the very least contains states where et = JeK(f): the variable et
overapproximates the set of values obtainable by executing an expression e ∈ !(�). A similar
lemma also holds for Boolean-expression nonterminals, where the variable et is replaced with bt.
Lemma 3.8 is important, because it allows the postcondition of the conclusion to refer to the

values computed by expression nonterminals through use of the variable et (or bt). In particular,
we assume that et and bt are reserved for the purposes of storing these values. (More precisely, we
assume that et and bt are included in the set of program variables vars(#), and thus rules such as
Sub1 cannot substitute these variables.)
Figure 5 presents the rules for each expression-based operator in unrealizability logic. Having

articulated the key intuition behind the rules, let us now look at each rule in detail.

0-ary operators (0, 1, G, t, f). Rules for 0-ary operators do not rely on the result of another set of
programs, and can be computed directly by assigning the correct values (0, 1, G, etc.) to the auxiliary
(vector-)variable et. The symbol x in the rule Var refers to the vector of values generated by taking
G from each sub-state of f = ⟨A1, A2, · · ·⟩; i.e., ⟨A1 (G1), A2 (G2), · · · ⟩.

Unary Operators (!�). �8<? only contains a single instance of a unary operator, Not (!), which takes
the value produced by a nonterminal � and negates it. The rule Not mirrors this behavior: it �rst
requires that the behavior of the nonterminal � is captured by the premise {|P|} � {|Q|}.
Following Lemma 3.8, the result of executing � is stored in the vector-variable bt; that is, by

referring to the vector-variable bt in Q, one can refer to the (set of possible) values created by �. The
conclusion of the rule negates the value in bt and re-assigns it to bt (captured in the postcondition
predicate ∃b′t .Q[b′t/bt] ∧ bt = ¬b′t).

Binary Operators (�1 + �2, �1 − �2, �1 · �2, �1/�2, �1 ∧ �2, �1 < �2, �1 == �2). Binary operators
operate in a similar manner to unary operators in that they rely on the premise triples to refer to the
values generated by the sub-nonterminals �1 and �2. However, they also pose a unique challenge
in that one needs to be careful in how these values are composed, as (partially) described in §2.
Take Plus as an example. A naive version of Plus might be written as following:

{|P|} �1 {|Q1 |} {|P|} �2 {|Q2 |}

{|P|} �1 + �2 {|Q1 + Q2 |}
Plus-bad

The problem arises in resolving the set corresponding to Q1 + Q2: the simplest way is to generate
pairs by taking the Cartesian product of the two sets, then add the values in each pair to produce a
set of values. However, this approach is imprecise, because it also generates pairs generated by
di�erent vector-states in the precondition.

Example 3.9 (Plus-bad). Consider an application of the Plus rule where �1 ::= G , �2 ::= ~, and the
input precondition is P = {⟨(1, 3), (2, 4)⟩, ⟨(3, 1), (4, 2)⟩}; i.e., there are two possible two-example
vector-states: (x[1], y[1]) = (1, 3) ∧ (x[2], y[2]) = (2, 4) and (x[1], y[1]) = (3, 1) ∧ (x[2], y[2]) =

(4, 2), where v[8] denotes the 8-th entry of v. (We omit 4C in input states; its value is irrelevant.)
Because the only term in �1 + �2 is G + ~, the postcondition should only contain states in which

4C = ⟨4, 6⟩. However, because there are two possible input states in P, the predicate Q1 contains
two states—one in which 4C = ⟨1, 2⟩ and another in which 4C = ⟨3, 4⟩. Likewise, the predicate Q2

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 23. Publication date: January 2023.

Unrealizability Logic 23:15

contains two states, one in which 4C is ⟨3, 4⟩ and one in which it is ⟨1, 2⟩. If one takes the Cartesian
product of the states in Q1 and Q2, then the predicate Q ends up having 3 possible values of 4C : ⟨4, 6⟩,
⟨2, 4⟩, or ⟨6, 8⟩. The problem is that the two possible input states ⟨(1, 3), (2, 4)⟩ and ⟨(3, 1), (4, 2)⟩

are mixed by taking the Cartesian product: for example, G = ⟨1, 2⟩ from the �rst input vector-state
and ~ = ⟨1, 2⟩ from the second input vector-state are added, these come from di�erent input states!

To remedy this problem, in the Plus rule in unrealizability logic, each original state in the
precondition is appended with a copy of itself, where we refer to the copied part as the ‘ghost
(vector)-state’, and the original part as the original (vector)-state. This idea is captured in the
preconditions of the premises, e.g., P ∧ (v1 = v); by taking a set of fresh variables v1 and setting
v1 = v, one has essentially extended each state in P with a copy of each variable.

Example 3.10 (Extended States). Consider the precondition P = {⟨(1, 3), (2, 4)⟩, ⟨(3, 1), (4, 2)⟩},
the same set of vector-states used in Example 3.9. Observe thatP∧(v1 = v) is the set of vector-states
(x[1], y[1], x1 [1], y1 [1], x[2], y[2], x1 [2], y1 [2]) = {⟨(1, 3, 1, 3, 2, 4, 2, 4)⟩, ⟨(3, 1, 3, 1, 4, 2, 4, 2)⟩};
note that states such as ⟨(1, 3, 3, 1, 2, 4, 4, 2)⟩ are not included in P ∧ (v1 = v) because they vi-
olate the conjunct “(v1 = v).”

Because the variables of the ghost state have been renamed, execution through a program in �

will leave these variables unchanged according to the semantics of �. Thus, one can say that a state
in, e.g., Q1 is an extended state—where the ‘original’ part of the state has executed through �, and
the ‘ghost’ part is left unchanged. By this device, one can check via the ghost parts whether two
extended states from Q1 and Q2 should be added. Because the ghost-state portion of each extended
state remains unchanged, one can deduce that two extended states must be added if and only if the
ghost-state portions of the states are identical.

In the Plus rule, the postcondition of the conclusion illustrates the idea of matching vector-states
on ghost-state portions. In particular, the constraint v1 = v2 �lters out those pairs of extended
states in which the ghost-state portions are di�erent! The vocabulary shifts Q1 [v

′
1/v] and Q2 [v

′
2/v]

move the ‘original’ program variables in Q1 and Q2 to v′1 and v′2, respectively. The values of the
original variables are unneeded, except for the value of et inside these states (available as e

′
t1
and

e′t2 , respectively, after the vocabulary shifts.) The conjunction with P ∧ (v = v1 = v2) restores
the values of the original program variables. The value of et is established by the conjunction
with et = e′t1 + e′t2 . Finally, all of the additionally introduced variables are quanti�ed out, leaving

(vector-)states over the original variables, plus et.

Example 3.11 (Correcting Plus with Extended States). Consider again the grammar from Exam-
ple 3.9. In this example, we will remove the second example from Examples 3.10 and 3.9 for
simplicity: that is, the input precondition P consists of the length-1 vector-states {⟨(1, 3)⟩, ⟨(3, 1)⟩}.
As illustrated in Example 3.10, the extended precondition for �1 is a set of vector-states of the

form (G,~, G1, ~1), namely, {⟨(1, 3, 1, 3)⟩, ⟨(3, 1, 3, 1)⟩}; Similarly, the extended precondition for �2 is
a set of vector-states of the form (G,~, G2, ~2), namely, {⟨(1, 3, 1, 3)⟩, ⟨(3, 1, 3, 1)⟩}.
Because �1 ::= G , the predicate Q1—the result of executing �1—has vector-states of the form

(G,~, G1, ~1, 4C), and equals {⟨(1, 3, 1, 3, 1)⟩, ⟨(3, 1, 3, 1, 3)⟩}.3 Similarly, because �2 ::= ~, the pred-
icate Q2—the result of executing �2—has vector-states of the form (G,~, G2, ~2, 4C) and equals
{⟨(1, 3, 1, 3, 3)⟩, ⟨(3, 1, 3, 1, 1)⟩}.
The predicate Q1 [v/v

′
1] creates a set of vector-states of the form (G ′

1
, ~ ′

1
, G1, ~1, 4

′
C1
), i.e.,

{⟨(1, 3, 1, 3, 1)⟩, ⟨(3, 1, 3, 1, 3)⟩} (original program variables v are shifted to v′1). Similarly,
the predicate Q2 [v

′
2/v] creates a set of vector-states of the form (G ′

2
, ~ ′

2
, G2, ~2, 4

′
C2
), i.e.,

{⟨(1, 3, 1, 3, 3)⟩, ⟨(3, 1, 3, 1, 1)⟩}.

3As in Example 3.9, 4C1 is omitted in input vector-states because its value is irrelevant in the example.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 23. Publication date: January 2023.

23:16 Jinwoo Kim, Loris D’Antoni, and Thomas Reps

Γ ⊢ {|P|} � {|Q|}

Γ ⊢ {|P|} G := � {|∃x′.Q[x′/x] ∧ x = et |}
Assign

Γ ⊢ {|P|} (1 {|Q|} Γ ⊢ {|Q|} (2 {|R|}

Γ ⊢ {|P|} (1; (2 {|R|}
Seq

Γ ⊢ {|P|} � {|P� |}

Γ ⊢ {|P� ∧ (v1 = v) |} (1 {|Q1 |}

Γ ⊢ {|P� ∧ (v2 = v) |} (2 {|Q2 |}

v1, v2, v
′
1, v

′
2 fresh renames of v

v refers to full set of vars in P

Γ ⊢ {|P|} if � then (1 else (2

{�
�
�
�
∃v1, v2, v

′
1, v

′
2 .

Q1 [v
′
1 [8]/v[8] where bt1 [8] = false]∧

Q2 [v
′
2 [8]/v[8] where bt2 [8] = true]

∧ (v1 = v2)

�
�
�
�

} ITE

Γ ⊢ {|I|} � {|I� |}

Γ ⊢ {|I� ∧ bloop = bt |} ({|I ′
�
|}

bloop, v1, v2 fresh

∃v1, et, bt .I
′
�
[v1 [8]/v[8] where bloop [8] = false] =⇒

∃v2, et, bt .I� [v2 [8]/v[8] where bloop [8] = false]

Γ ⊢ {|I|} while � do ({|I� ∧ bt = f |}
While

Fig. 6. Inference rules for statements in unrealizability logic.

These are conjoined with P ∧ (v = v1 = v2), leaving et unconstrained (as et was already uncon-
strained in P), and produces a set of vector-states of the form (G,~, G ′

1
, ~ ′

1
, G1, ~1, 4

′
C1
, G ′

2
, ~ ′

2
, G2, ~2, 4

′
C2
),

i.e., {⟨(1, 3, 1, 3, 1, 3, 1, 1, 3, 1, 3, 3)⟩, ⟨(3, 1, 3, 1, 3, 1, 3, 3, 1, 3, 1, 1)⟩}. Original program variables are col-
ored green, introduced ghost variables are colored cyan, and the results of executing �1 and �2 (4

′
C1

and 4C2 ’, respectively) are colored red.
Once the set of states is conjoined with et = e′t1 + e′t2 , and the auxiliary variables are quanti�ed

out, we obtain exactly the set of states that �1 + �2 can produce: (G,~, 4C) = {⟨(1, 3, 4)⟩, ⟨(3, 1, 4)⟩}.

At this point, it becomes possible to answer the question: why do we not simply produce sets
of values as the postcondition for expression nonterminals, and instead introduce states with an
auxiliary variable et? The reason is that, as illustrated in Example 3.9, a scheme that merely returns a
set of values is unable to track the originating state, as done in the Plus rule (and other instantiations
of the Bin rule of Figure 5), and hence imprecise. Extending the semantics of expressions to return
the extended state allows us to keep track of this information by extending the input and output
states with ghost variables as illustrated in Example 3.11, and leads to a precise rule—which is why
we opt to update the (vector-)variable et in our rules.

3.3.2 Rules for Statements. Unrealizability logic considers four kinds of statements: assignment,
sequential composition, branches, and loops, as shown in Figure 6.
Assign and Seq can be explained using the same principles that we used to explain rules for

expressions. In Assign, the result of the nonterminal � is stored in the variable et of Q; this value
gets referenced and assigned to x. Seq is the same as in Hoare logic, where the sequentiality of the
statements are captured by sharing the pre/postcondition Q.

If-Then-Else. Branches pose a similar challenge to operators such as Plus: one requires a mechanism
for composing the states generated by two di�erent nonterminals while ensuring that they come
from the same ‘origin’ state. Similarly to what we did for Plus, the solution is to extend the input
states with a ghost state: observe that the premise triples are of the same form P� ∧ (v1 = v), where
P� is identical to P except that bt now stores the result of the branch condition.
The additional complication in the ITE rule is that in a given vector-state, certain examples must

pass through the true branch, while others must pass through the false branch. In the ITE rule,
we achieve this synchronization by �rst passing an input state through both the true and false

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 23. Publication date: January 2023.

Unrealizability Logic 23:17

branches (separately)—this step is captured by the two premises about (1 and (2, which simply
push the ghost-state extended preconditions through the respective branches to obtain Q1 and Q2.
When merging the states from Q1 and Q2, we project out the examples that took the wrong

branch—e.g., in Q1, the postcondition of the true branch, the examples that should go through the
false branch are projected out.

This projecting out is captured by the conditional substitution [v′1 [8]/v[8] where bt1 [8] = false],
which substitutes a variable E [8] with a fresh variable E1 [8]

′ only if bt1 [8] = false—that is, if the
branch condition evaluated to false for that example. (We reference bt1 , the ghost-version of bt,
because the value of bt may change through the execution of (1.)
The quanti�er-free segment of the postcondition Q1 [v

′
i [8]/v[8] where bt1 [8] = false] ∧

Q2 [v
′
i [8]/v[8] where bt2 [8] = true] ∧ (v1 = v2) is thus an extended state with �ve ‘copies’ of

state, of which only one is retained: the examples that took the correct branches (named via v,
and the ones that will be retained), the examples that took the incorrect branches (named via v′1
and v′2), and the two ghost states (named via v1 and v2). Quantifying out the auxiliary variables
v′1, v

′
2, v1, and v2 leaves just the examples that took the correct branches.

Example 3.12 (If-then-Else with Extended States). Consider the set of states P given by (G1, G2) =
{⟨(−1, 1)⟩, ⟨(2,−2)⟩}; that is, P denotes a set of two-example con�gurations, which could be
speci�ed by the formula (G1 = −1∧G2 = 1)∨(G1 = 2∧G2 = −2). Consider the If-Then-Else statement
if G > 0 then G := G else G := 0 − G (we use a single program as it is su�cient to illustrate the ITE
rule); this program sets G to its absolute value. Observe that after executing G > 0 (corresponding to
�), P� becomes the set of states (G1, G2, 1C1 , 1C2) = {⟨(−1, 1, false, true)⟩, ⟨(2,−2, true, false)⟩}. After
conjoining the ghost state and running through (1, we get the following set (the ghost state is
marked in cyan):

(G1, G2, 1C1 , 1C2 , G11 , G21 , 1C11 , 1C21)= {⟨(−1, 1, false, true,−1, 1, false, true)⟩, ⟨(2,−2, true, false, 2,−2, true, false)⟩}

Applying the conditional substitution to this set yields the following set of states, where non-
substituted variables are green, variables substituted with v′1 are red, and the ghost state is cyan:

{⟨(−1, 1, false, true,−1, 1, false, true)⟩, ⟨(2,−2, true, false, 2,−2, true, false)⟩}

Similarly, executing (2 and applying substitution yields the following set:

{⟨(1,−1, false, true,−1, 1, false, true)⟩, ⟨(−2, 2, true, false, 2,−2, true, false)⟩}

Again, note that the substitution happens for variables highlighted in red, while the green variables
are the original program variables. Taking the conjunction and quantifying out all unnecessary
variables leaves only the variables highlighted in green, which yields:

(G1, G2, 1C1 , 1C2) = {⟨(1, 1, false, true⟩, ⟨(2, 2, true, false)⟩},

Which is exactly the set of states that are computed by the given If-Then-Else statement.

In general, conditionally substituting a variable x[8] with x′[8], if a condition b[8] is false may
be performed by replacing all occurences of v[8] in a formula with if b[8] then x[8] else x′[8]: this
expression is equivalent to x′[8] when the branch condition b[8] is false, and equivalent to x[8]

when the expression is true. Note that this substitution is possible even if the predicate is used to
encode in�nite vector-states, as long as the predicate itself is �nite.

Example 3.13 (Conditional Substitution Over In�nite Vector-States). Consider the in�nite vector-
state ∀8 .x[8] = −1 ∧ y[8] = 8 . Although this vector-state is in�nite, one can conditionally
substitute x with a new vector-variable x′ for entries where b[8] is false with the expression
∀8 .(if b[8] then x[8] else x′[8]) = −1 ∧ y[8] = 8 . Observe that x[8] is now unconstrained for entries
where b[8] = false, whereas x′[8] is unconstrained instead for entries where b[8] = true.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 23. Publication date: January 2023.

23:18 Jinwoo Kim, Loris D’Antoni, and Thomas Reps

Loops. The basic intuition behind the While rule is identical to that in Hoare logic—it requires the
existence of an invariant I. The di�erence with Hoare logic is that, in our work, I must work as
an invariant for all possible completions of the loop body (.
Because the invariant I spans multiple examples, the way the invariant is checked is also

di�erent from in Hoare logic. First, we take a similar approach as in ITE, and push examples
through the loop body (, regardless of the loop guard (in the premise {|I� ∧ bloop = bt |} ({|I ′

� |}).
Then, the implication checks whether I ′

� =⇒ I� only on the examples where the loop guard is

true: this is again achieved through conditional substitution, which substitutes variables for which
bloop [i] = false, and quanti�es out the substituted variables again (as well as the auxiliary variables

et and bt, which may change).4 For examples that are substituted out, I� is an invariant because
these examples are left unchanged—thus, one only needs to check the invariant condition for
examples that pass the loop guard and execute the body, which the implication premise captures.

Finally, the condition bt = f in the postcondition captures vector-states where the loop guard of
all examples (stored in bt of I�) evaluate to false: i.e., vector-states for which the loop terminates
on all individual examples within the vector-state. In other words, this postcondition checks for
partial correctness, and does not provide any guarantees about traces that contain an example that
fail to terminate.

The reader may �nd it surprising that a single invariant capturing the behavior of all possible loop
bodies su�ces for relative completeness. A single invariant does su�ce for relative completeness
because one can actually write an invariant that talks about the choice of loop body itself. However,
to pull o� this trick, one needs a highly complex encoding whose details are beyond the scope
of this paper (see §4.1 for details). In practice, the use of this complex encoding will often result
in an invariant too complex for a proof to be completed. Thus, when writing actual proofs in
unrealizability logic, it is often bene�cial to split the loop bodies into smaller sets, and reason about
them separately (as we have done in Example 2.6 of §2) through the use of the structural rules.

3.3.3 Structural Rules. Finally, unrealizability logic has a set of structural rules that operate on
conditions, hypotheses, and sets of programs. We list them in Figure 7.

Weaken, Conj. These rules operate like their counterpart in Hoare logic. Weaken can shrink the
precondition or enlarge the postcondition following the principle that the postcondition overap-
proximates the set of all states that the precondition can generate. Weaken can also shrink the set
of considered programs. Conj takes the conjunction of the two postconditions.

GrmDisj. GrmDisj allows us to split sets of programs: if two sets of programs, #1 and #2, satisfy the
same pre- and postcondition, then their union also satis�es those same pre- and postcondition. This
rule is not required for the completeness of the logic. However, it helps greatly in simplifying actual
unrealizability proofs: a clever division of the search space often results in simpler predicates.

Inv, SubOne, SubTwo. Inv, Sub1, and Sub2 are rules that are necessary for our completeness proof.
Inv states that if a precondition does not share any free variables with any program in the set #
(i.e., E0AB (P) ∩ E0AB (#) = ∅), then it is an invariant—clearly this holds, because any program #

will be unable to access or modify the variables used in P. Sub1 performs U-renaming of variables
inside the pre-and postconditions; the side conditions state that one can only rename variables that
are not ‘captured’ by the set of programs # . Sub2 states that variables from the postcondition that
do not appear in the set of programs # or the postcondition may be renamed to any new name.
Intuitively, this is because a variable that only occurs in the precondition will remain untouched
during program execution; see the proof of Sub2 in the full version of the paper for details.

4The additional assignment bloop = bt before executing the loop body, as well as referencing bloop in the postcondition, is

again due to the fact that bt may change during the execution of (.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 23. Publication date: January 2023.

Unrealizability Logic 23:19

Γ ⊢ {|P|} # {|Q|} P ′
=⇒ P Q =⇒ Q ′ #1 ⊆ #

Γ ⊢ {|P ′ |} #1 {|Q
′ |}

Weaken
Γ ⊢ {|P|} # {|Q1 |} Γ ⊢ {|P|} # {|Q2 |}

Γ ⊢ {|P|} # {|Q1 ∧ Q2 |}
Conj

Γ ⊢ {|P|} #1 {|Q|} Γ ⊢ {|P|} #2 {|Q|}

Γ ⊢ {|P|} (#1 ∪ #2) {|Q|}
GrmDisj

E0AB (P) ∩ E0AB (#) = ∅

Γ ⊢ {|P|} # {|P|}
Inv

Γ ⊢ {|P|} # {|Q|} y ∩ E0AB (#) = ∅ z ∩ E0AB (#) = ∅ (y, z) are not et or bt

Γ ⊢ {|P[y/z] |} # {|Q[y/z] |}
Sub1

Γ ⊢ {|P|} # {|Q|} z ∩ (E0AB (#) ∪ E0AB (Q)) = ∅

Γ ⊢ {|P[y/z] |} # {|Q|}
Sub2

Γ, {|P|}# {|Q|} ⊢ {|P|}RHS1{|Q|}

· · ·

Γ, {|P|}# {|Q|} ⊢ {|P|}RHS={|Q|}

→ RHS1 | · · · | RHS=
is exhaustive

Γ ⊢ {|P|} # {|Q|}
HP

Γ, {|P|} # {|Q|} ⊢ {|P|} # {|Q|}
ApplyHP

Fig. 7. Structural rules in unrealizability logic. vars(#) refers to the entire set of variables that may appear in

a program C# ∈ # , with the addition of the reserved auxiliary variables et and bt.

HP, ApplyHP. HP and ApplyHP allow us to perform structural induction in the proof tree. HP
introduces a new hypothesis into the context Γ, while ApplyHP allows us to apply an induction
hypothesis. (These rules were explained in §2.1).

De�nition 3.14 (Derivability). Given a precondition over vector-states P, a postcondition over
vector-states Q, a set of programs (, and a set of hypotheses Γ, we say that a triple {|P|} ({|Q|} is
derivable assuming Γ, denoted by Γ ⊢ {|P|}({|Q|}, if there exists a proof tree deriving Γ ⊢ {|P|}({|Q|}

using the rules of unrealizability logic in Figures 5, 6, and 7.
We say that a triple {|P|} ({|Q|} is derivable, if it can be derived with an empty set of hypotheses.

4 SOUNDNESS, COMPLETENESS, AND OTHER THEORETICAL RESULTS

Unrealizability logic is a sound logic in the sense that any derivable triple {|P|} # {|Q|} is also valid.

Theorem 4.1 (Soundness). Given a nonterminal # in a grammar � , the following property holds:

⊢ {|P|} # {|Q|} =⇒ |= {|P|} # {|Q|}

Soundness can be proved via structural induction, which shows that the conclusion triple of
each rule is sound given that the premises are sound (see the Appendix in the full version of this
paper [Kim et al. 2022] for the full proof). While reasoning about some cases is complex due to the
vectorized semantics, the overall structure of the proof is a simple structural-induction argument.

Surprisingly, unrealizability logic is also relatively complete, in the sense that all valid triples
{|P|} # {|Q|} are derivable, assuming that there is an oracle capable of verifying all true sentences
in the assertion language.

Theorem 4.2 (Relative Completeness). Let P and Q be predicates in an assertion language !.

Assuming the existence of an oracle capable of verifying all true sentences in !, the following property

holds for each nonterminal # in a grammar � :

|= {|P|} # {|Q|} =⇒ ⊢ {|P|} # {|Q|}

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 23. Publication date: January 2023.

23:20 Jinwoo Kim, Loris D’Antoni, and Thomas Reps

Completeness follows from two lemmas that we state later (Lemmata 4.4 and 4.5), which state
that (i) a strongest triple that precisely describes the behavior of a nonterminal is derivable, and
(ii) that any sound triple about a nonterminal can be derived from the strongest triple.

In the rest of this section, we give a sketch of the proof of completeness, and discuss some other
theoretical results. We will present proof sketches for the theorems listed in this section, for the
full proofs, we again refer the reader to the full version of the paper [Kim et al. 2022].

4.1 A Sketch of the Proof of Completeness

Completeness of unrealizability logic is a two-step process: �rst we wish to prove that the non-
structural rules (expression and statement rules) of unrealizability logic are complete, in the sense
that, given a set of programs generated by a production >? (#1, · · · , #:), if all sound premise triples
about #1, · · · , #: are derivable, then all sound triples about >? (#1, · · · , #:) are also derivable.

Lemma 4.3 (Completeness of Expression and Statement Rules). Let � be a regular tree

grammar and # be a set of programs generated by either a nonterminal or the RHS of a production.

Then, the expression and statement rules of unrealizability logic preserve completeness, in the sense

that, if all sound required premise triples are derivable, then all sound triples about # are derivable in

unrealizability logic.

When creating a proof tree in unrealizability logic, one will encounter triples where the center

element is the right-hand side of a production (e.g., 1 of Figure 2). Consequently, Lemma 4.3 is
stated for both nonterminals and right-hand sides of productions. Lemma 4.3 can be proved by
showing that the postcondition of the conclusion of each rule precisely captures the semantics of
the corresponding operator.

One thing to note about the proof of Lemma 4.3 is that it relies on the existence of a predicate that
expresses exactly the weakest precondition of a set of while loops for an arbitrary postcondition, a
requirement called the expressibility of the weakest precondition. Given that the postcondition is
encodable in FO-PA (e.g., the postcondition does not contain in�nite vector-states), such a weakest
precondition can also be constructed in FO-PA similar to how the invariant for while loops in
standard Hoare logic is constructed [Winskel 1993], by encoding the term to be synthesized using
a pair of integers via the Godel V-function [Davis et al. 1990], and de�ning a function to interpret
the semantics of these integers. In other words, the weakest precondition itself does not necessitate
extra expressiveness in the assertion language. The actual encoding of the weakest precondition is
highly complex, as stated in §3.3; in this paper, we take what is known as the extensional approach
and assume that the weakest precondition can be expressed within the assertion language of choice.
While Lemma 4.3 would be su�cient as a proof of completeness in normal Hoare logic, it is

insu�cient for unrealizability logic because we are working over an RTG; without the use of the
HP rule, the proof tree will become in�nite. The next step in showing completeness remedies this
fact by proving that through use of the HP rule, we can prove the strongest triple for a nonterminal
within a �nite number of steps.

Lemma 4.4 (Derivability of the Strongest Triple). Let # be a nonterminal from a RTG� and

z be a set of auxiliary symbolic variables. Let Q0 ≡ J# K(x = z); that is, Q0 is a formula that precisely

captures the behavior of the set of programs !(#) on the symbolic vector-state G1 = I1 ∧ · · · G= = I= .
5

We refer to {|x = z|} # {|Q0 |} as the strongest triple for # . Then ⊢ {|x = z|} # {|Q0 |} is derivable.

The proof of Lemma 4.4 performs induction over the number of hypotheses in the context: the
proof relies on the fact that one only needs to insert the strongest triple for each nonterminal into

5We assume that state is de�ned over a single variable G ; it is trivial to extend this to multiple-variable states.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 23. Publication date: January 2023.

Unrealizability Logic 23:21

the context (because the strongest triple can derive any other triple), thus the HP rule need only
be applied at most |� | times (the number of nonterminals inside�). When all |� | hypotheses are
established, one relies on Lemma 4.3 to show that the strongest hypothesis can actually be derived.

The proof of Lemma 4.4, as well as the �nal step in arguing completeness, requires a lemma that
shows one can derive any triple from the strongest triple.

Lemma 4.5 (Derivability of General Triples). Let � be a grammar and # be any nonterminal

in � . Given the strongest triple �# for the nonterminal # (as de�ned in Lemma 4.4), if Γ ⊢ �# , then

Γ |= {|P|} # {|Q|} =⇒ Γ ⊢ {|P|} # {|Q|}.

Lemma 4.5 can be proved using the substitution rules Sub1 and Sub2. Relative completeness
(Theorem 4.2) then follows from Lemma 4.4 and Lemma 4.5.

4.2 Undecidability of Unrealizability and Decidable Fragments

Although we have proved relative completeness, proving unrealizability is an undecidable problem,
even when limited to synthesis problems without loops.

Theorem 4.6 (Undecidability of Unrealizability). Let B~u be a synthesis problem with a

grammar�u that does not contain productions of the form (::= while � do (1. Checking whether B~u
is unrealizable is an undecidable problem.

The proof of Theorem 4.6 relies on translating an arbitrary program for a two-counter machine
into a program-synthesis problem that is realizable i� the original program halts. This translation
is performed by taking each instruction of the original program and translating it into a production
that performs the same computation. The goal of the resultant synthesis problem is to set a special
variable ℎ to 1: by translating only the �nal Halt instruction into a production that sets ℎ to 1, the
translated synthesis problem is realizable i� the original program halts. As the halting problem for
two-counter machines is undecidable, it follows that unrealizability is undecidable as well.

Theorem 4.6 shows that proving unrealizability of synthesis problems is undecidable, even when
while loops are out of the question. On the other hand, when one is limited to synthesis over
�nite domains, proving unrealizability becomes decidable—even when the synthesis problem may
contain an unbound number of loops.

Theorem 4.7 (Decidability of Unrealizability over Finite Domains). Determining whether

a synthesis problem B~fin is unrealizable, where the grammar �fin is valid with respect to �8<?E , is

decidable if the semantics of programs in �fin is de�ned over a �nite domain.

The proof of Theorem 4.7 relies on the fact that if the domain is �nite, one can perform grammar-
�ow analysis [Möncke and Wilhelm 1991] to obtain the greatest-�xed point of values that a
nonterminal may generate. In this paper, because both expressions and statements are of type
State → State, the values that nonterminals generate are pairs of states, representing input-output
relations; this computation is guaranteed to terminate because the domain is �nite.

Furthermore, if B~fin is unrealizable, then there exists a proof of this fact in unrealizability logic.

5 THE POWER OF UNREALIZABILITY LOGIC

In this section, we give some example proofs that highlight the capabilities of unrealizability logic.

5.1 Dealing with an Infinite Number of Examples

As stated in §2 and §3, one of the major features of unrealizabilty logic is that it is capable of dealing
with synthesis problems which require an in�nite number of examples to prove unrealizability. We
illustrate one such example in this section.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 23. Publication date: January 2023.

23:22 Jinwoo Kim, Loris D’Antoni, and Thomas Reps

Example 5.1 (Proof with In�nitely Many Examples). Consider a synthesis problem syid_ite, with
the grammar Gid_ite given below:

Start → if � then � else Start | �

� → ~ == #

→ 0 | # + 1

� → G := #

syid_ite aims to synthesize a function 5 which takes as input a state (G,~), and return a state
where G is equivalent to ~.

syid_ite is unrealizable, and one needs an in�nite number of examples to prove this fact. This
is because a speci�cation over = examples for syid_ite will be realizable by a term that contains
= If-then-Elses. However, a term of �nite size in Gid_ite can only assign to G a �nite number of
constants; thus it is impossible to have a function in Gid_ite that sets G to~ in the general case. syid_ite
is, in fact, an imperative variant of an example often used to show that there are synthesis problems
that cannot be proven unrealizable using only a �nite number of examples [Hu et al. 2019]; previous
approaches [Hu et al. 2019, 2020; Kim et al. 2021] thus cannot prove syid_ite unrealizable. We show
that a proof tree for syid_ite can be constructed in unrealizability logic, using FO-PA extended with
in�nite arrays as the assertion language.
Consider a set of inputs (G,~) given by the predicate ∀8 ∈ N.G8 = −1 ∧ ~8 = 8 . That is, the input

is an in�nite set of examples where ~ spans over the positive integers, and G is assigned the �xed
value −1 (this implies G8 ≠ ~8 for every 8 ∈ N). The output speci�cation for this input is given as
∀8 .G8 = 8 ∧~8 = 8; the in�nite vector-state where G8 = ~8 = 8 for the 8-th example. This in�nite set of
examples does not encompass the entire input state; however, it is su�cient to prove unrealizability.

To prove unrealizability, �rst negate the postcondition to obtain the triple that we wish to prove:

{|∀8 .G8 = −1 ∧ ~8 = 8 |} Start {|∃8 .G8 ≠ 8 ∨ ~8 ≠ 8 |}

Instead of proving this triple directly, we will prove the following triple (from which we can obtain
the target triple viaWeaken):

{�
�
�
�
∀8 .~8 = 8 ∧

only a �nite no. of 8
such that G8 = ~8

�
�
�
�

}

Start

{�
�
�
�
∀8 .~8 = 8 ∧

only a �nite no. of 8
such that G8 = ~8

�
�
�
�

}

Let I denote the condition ‘∀8 .~8 = 8∧only a �nite no. of 8 such that G8 = ~8 ’. To see the implication,
observe that: (i) ∀8 .G8 = −1 ∧ ~8 = 8 =⇒ I as there are 0 (a �nite number) 8s for which G8 = ~8 ;
(ii) I =⇒ ∃8 .G8 ≠ 8 ∨ ~8 ≠ 8 , because if G8 = ~8 for only a �nite number of 8 , then there must exist
some 8 for which G8 ≠ 8 .
We will prove that {|I|} Start {|I|} holds by introducing this triple as a hypothesis for Start via

the HP rule. Let ΓI denote the context containing only the triple {|I|} Start {|I|}.

ΓI ⊢ {|I|} � {|I|} ΓI ⊢ {|I|} if � then � else Start {|I|}

⊢ {|I|} Start {|I|}
HP

Consider �rst the base case {|I|} � {|I|}, where � is the simple assignment G := # . The hypothesis
in this case can be proved simply via Assign and Weaken:

· · ·

ΓI ⊢ {|I|} # {|∃e′t .I[e′t/et] ∧ ∃:.: ≥ 0 ∧ et = : |}
HP

ΓI ⊢ {|I|} # {|I ∧ ∃:.: ≥ 0 ∧ et = : |}
Weaken

ΓI ⊢ {|I|} � {|∃x′.I[x′/x] ∧ ∃:.: ≥ 0 ∧ et = : ∧ x = et |}
Assign

ΓI ⊢ {|I|} � {|∃x′.I[x′/x] ∧ ∃:.: ≥ 0 ∧ ∀8 .G8 = : |}
Weaken

ΓI ⊢ {|I|} � {|I|}
Weaken

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 23. Publication date: January 2023.

Unrealizability Logic 23:23

The ellipsis over the top-level HP rule indicates that we can prove that # results in a value above 0
via the HP rule, through the induction hypothesis {|I|} # {|∃e′t .I[e′t/et] ∧ ∃:.: ≥ 0 ∧ et = : |} (the
exact reasoning is omitted). The �nal application of Weaken works as, if all G8 = : for some : ≥ 0,
then there is at most one (a �nite number) 8 for which G8 = ~8 .
The inductive case requires an application of the ITE rule. We �rst write:

ΓI ⊢ {|I|} � {|I|} ΓI ⊢ {|I ∧ v1 = v|} � {|I|} ΓI ⊢ {|I ∧ v2 = v|} Start {|I|}

ΓI ⊢ {|I|} if � then � else Start

{�
�
�
�
∃v1, v2, v

′
1, v

′
2 .
I[v′1 [8]/v[8] where bt1 [8] = false]∧

I[v′2 [8]/v[8] where bt2 [8] = true]
∧ (v1 = v2)

�
�
�
�

} ITE

ΓI ⊢ {|I|} if � then � else Start {|I|}
Weaken

Observe that the �rst premise {|I|} � {|I|} seems to do nothing. This is the result of weakening
the postcondition generated by �, and e�ectively ‘forgetting’ the value of the branch condition
as done in the following proof tree, where the postcondition of the premise represents the exact
postcondition one would have obtained through a precise reasoning of Eq:

· · ·

ΓI ⊢ {|I|} �

{�
�
�
�
∃b′t, v1, v2, v

′
1, v

′
2 .I ∧

I[v′1/v] ∧ e′t1
= y ∧

I[v′2/v] ∧ ∃:.e′t2
= :

∧
(v = v1 = v2) ∧

bt = (e′t1
== e′t2

)

�
�
�
�

} Eq

ΓI ⊢ {|I|} � {|I|}
Weaken

We take such an approach to take advantage of the fact that the branch condition is actually
irrelevant to the proof of unrealizability; this example shows that sometimes triples inside the proof
tree need not be precise to prove unrealizability (which can, as shown, greatly simplify predicates).

The second premise is an instance of �; one can prove this premise by using the same proof tree
as we used to prove ΓI ⊢ {|I|} � {|I|} in the base case, and apply an additional Weaken to it.

· · ·
ΓI ⊢ {|I|} � {|I|}

ΓI ⊢ {|I ∧ v1 = v|} � {|I|}
Weaken

Finally, the third premise can be derived with a simple combination of ApplyHP and Weaken,
where ApplyHP applies the induction hypothesis that {|I|} Start {|I|}.

ΓI ⊢ {|I|} Start {|I|}
ApplyHP

ΓI ⊢ {|I ∧ v2 = v|} Start {|I|}
Weaken

Returning to the application of ITE, observe that I lacks any occurence of v1 and v2. This is
again because our triples for � and Start in the premises were not exact; I is an overapproximation

of the set of states that may occur when, e.g., executing Start over the input precondition I∧v2 = v.
Although the derived postcondition is thus also not exact, it is still a sound overapproximation that
is precise enough for the proof. To see this, observe that mixing examples from two states where
‘∀8 .~8 = 8 ∧ only a �nite no. of 8 such that G8 = ~8 ’ holds (the postcondition of the conclusion of ITE)
still results in a state where ‘∀8 .~8 = 8 ∧ only a �nite no. of 8 such that G8 = ~8 ’ holds. Thus the �nal
application of Weaken that derives {|I|} if � then � else Start {|I|} is a valid application.
By proving that Γ ⊢ {|I|} � {|I|} and Γ ⊢ {|I|} if � then � else Start {|I|}, we have proven the

induction hypothesis; thus {|I|} Start {|I|} holds, which can further be weakened down into the
target triple {|∀8 .G8 = −1 ∧ ~8 = 8 |} Start {|∃8 .G8 ≠ 8 ∨ ~8 ≠ 8 |}. Hence syid_ite is unrealizable, and we
have proved this fact quite simply via some imprecise reasoning.

In Example 5.1, we used predicates such as∀8 .G8 = 8∧~8 = 8 , or ‘only a �nite no. of 8 such that G8 =
~8 ’; whether or not such predicates are supported is dictated by the choice of the assertion language.
As mentioned in §3, the choice of assertion language is parametric in unrealizability logic, as long
as it contains the operators used in the rules.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 23. Publication date: January 2023.

23:24 Jinwoo Kim, Loris D’Antoni, and Thomas Reps

5.2 Loops and Expressing Proof Strategies from Other Frameworks

In this section, we give an example of how loops are dealt with in unrealizability logic, and also
show that the reasoning behind other frameworks for proving unrealizability (e.g., Nay [Hu et al.
2020] or MESSY [Kim et al. 2021]) can be captured as a proof strategy for completing a unrealizability
logic proof tree.

Example 5.2 (Proof with Loops). Consider a synthesis problem sysum where the goal is to synthesize
a function 5 that takes as input a state (G,~), and assigns to ~ the sum of all integers between 1

and G . Let as assume that sysum is given the following grammar Gsum:

Start → while � do (

� → � < �

(→ G := � | ~ := � | (; (

� → G | ~ | � + � | � − �

Then, the problem sysum is unrealizable because if G and ~ are both even, then � can only produce
even values (note that � does not contain productions such as � + 1). This fact con�icts with cases
where, e.g., G = 2, in which case ~ must be assigned 3. sysum is introduced as an unrealizable
problem in Kim et al. [2021], where the solver MESSY exploits this fact to prove that sysum is indeed
unrealizable when given the single input example (G,~) = (2, 0). We show that this argument can
be mimicked directly as a proof tree for unrealizability logic.
Let I denote the condition G ≡2 0 ∧ ~ ≡2 0, i.e., that G and ~ are both even (because we use a

single example, we temporarily drop the vector notation). We wish to use I as an invariant for the
loop while � do (. Begin with an application of While for Start, where, similar to Example 5.1, the
loop condition is irrelevant to the proof and thus can be skipped:

⊢ {|I|} � {|I|} ⊢ {|I|} ({|I|}

⊢ {|I|} while � do ({|I ∧ bt = false|}
While

The �rst premise can be proved viaWeaken, as we did in Example 5.1. The implication condition
of theWhile rule has been omitted, as in this case I ′

� ≡ I� ≡ I and thus the implication is trivial.
We wish to prove that ⊢ {|I|} ({|I|}; let us introduce {|I|} ({|I|} as a hypothesis. We denote the

context containing only this triple as Γ(. We then have the proof obligation:

Γ(⊢ {|I|} G := � {|I|} Γ(⊢ {|I|} ~ := � {|I|} Γ(⊢ {|I|} (; ({|I|}

⊢ {|I|} ({|I|}
HP

The �rst two premises can be proved by introducing a hypothesis {|G ≡2 0 ∧ ~ ≡2 0|} � {|4C ≡2 0|}.
The third premise can be proved via two applications of ApplyHP. This completes that {|I|} ({|I|},
and therefore that {|I|} while � do ({|I ∧ bt = false|}.
Finally, we apply Weaken to {|I|} while � do ({|I ∧ bt = false|} to obtain the triple

{|G = 2 ∧ ~ = 0|} Start {|~ ≠ 3|}. We have thus proved that sysum is unrealizable, mainly by using an
invariant that is valid across the entire set of possible loop bodies.

In §2, speci�cally Example 2.3, we highlighted the importance of �nding good hypotheses and
invariants for completing a proof in unrealizability logic. In Example 5.2 above, knowing the
invariant G ≡2 0 ∧ ~ ≡2 0 resulted in a very simple proof tree. The algorithms implemented by
external solvers (such as Spacer [Komuravelli et al. 2016] for MESSY, or the semilinear-set approach
from Nay [Hu et al. 2020]) may be thought of as proof strategies for �nding these hypotheses
or invariants: they remain parametric of the logic itself, while providing critical information to
complete the proof trees. Although not the focus of this paper, we hope that this view will allow
future work in automating unrealizability logic to draw from a signi�cant body of work in grammar-
�ow analysis [Möncke and Wilhelm 1991] and other program/constraint-solving techniques.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 23. Publication date: January 2023.

Unrealizability Logic 23:25

5.3 Working with Symbolic Examples and Auxiliary Variables

In §2.2, we saw that auxiliary variables are insu�cient to model unrealizability. However, auxiliary
variables can still be used to set the input examples of an unrealizability triple to be symbolic. A
triple derived in unrealizability logic using symbolic examples indicates that the said triple must
hold for any instantiation of the symbolic examples. In unrealizability logic, this can be used to
avoid having to search for hard-to-�nd examples, instead completing a symbolic proof tree and
checking at the end whether there are examples that can be used to show unrealizability.

Example 5.3 (Proof with Symbolic Variables). Recall the synthesis problem syid_ite from Exam-
ple 5.1, where the goal is to synthesize a function that assigns to G the (initial) value of ~. We will
consider a variant of syid_ite, named syid_const, where the goal is the same but the supplied grammar
Gid_const is di�erent:

Start → if � then � else Start | �

� → ~ == �

� → 0 | � + 1

→ 1 | 2 | · · · | 999

� → G := #

In Gid_const, the nonterminal # may generate only a �xed set of integers from 1 to 999 (as opposed
to �inf , which could generate any positive integer). syid_const is unrealizable, and this time only
requires one example to prove so: for example, (G,~) = (−1, 1000). However, this speci�c example
may be di�cult to �nd, because it uses large constants. We show that one can avoid having to
explicitly �nd this example by completing a proof tree in unrealizability logic using a single symbolic

example—which may then be instantiated (perhaps using a constraint solver)—to �nd a concrete
example for which syid_const is unrealizable.
Our goal this time is to prove the following triple (we again drop the vector-subscripts here as

we only have one example):

{|G = −1 ∧ ~ = ~aux |} Start {|G < 1000 ∧ ~ = ~aux |}

This triple states that: starting from a single example (G,~) = (−1, ~aux), we will only be able to
reach states in which G < 1000. Note that the given single example is made symbolic through the
use of the auxiliary variable ~aux . This time, we will use the following hypothesis for Start:

{|G < 1000 ∧ ~ = ~aux |} Start {|G < 1000 ∧ ~ = ~aux |}

Denote the triple above as I. In a similar process to the one used in Example 5.1, one can see that
the hypothesis holds for the base case (assignment) (we omit the application of the HP rule):

· · ·
ΓI ⊢ {|I|} # {|∃4 ′C .I[4 ′C/4C] ∧ ∃:.0 < : < 1000 ∧ 4C = : |}

HP

ΓI ⊢ {|I|} # {|I ∧ ∃:.: < 1000 ∧ 4C = : |}
Weaken

ΓI ⊢ {|I|} � {|∃G ′.I[G ′/G] ∧ ∃:.: < 1000 ∧ 4C = : ∧ G = 4C |}
Assign

ΓI ⊢ {|I|} � {|∃G ′.I[G ′/G] ∧ G < 1000|}
Weaken

ΓI ⊢ {|I|} � {|I|}
Weaken

And also for the inductive case, If-Then-Else (where we omit the reasoning for the premises):

ΓI ⊢ {|I|} � {|I|} ΓI ⊢ {|I ∧ E1 = E |} � {|I|} ΓI ⊢ {|I ∧ E2 = E |} Start {|I|}

ΓI ⊢ {|I|} if � then � else Start

{�
�
�
�
∃E1, E2, E

′
1
, E ′

2
.
I[E ′

1
[8]/E [8] where 1C1 [8] = false]∧

I[E ′
2
[8]/E [8] where 1C2 [8] = true]

∧ (E1 = E2)

�
�
�
�

} ITE

ΓI ⊢ {|I|} if � then � else Start {|I|}
Weaken

Thus {|G < 1000 ∧ ~ = ~aux |} Start {|G < 1000 ∧ ~ = ~aux |} is a valid triple.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 23. Publication date: January 2023.

23:26 Jinwoo Kim, Loris D’Antoni, and Thomas Reps

At this point, observe that G < 1000 ∧ ~ = ~aux does not immediately imply the negation of the
speci�cation, i.e., G ≠ ~aux ∨ ~ ≠ ~aux . However, when setting ~aux = 1000, it does become clear
that G < 1000 ∧ ~ = ~aux =⇒ G ≠ 1000 ∨ ~ ≠ 1000.
To understand this more formally, recall that as shown in Example 2.4, the quanti�cation for

auxiliary variables happens outside the triple:

∀~aux .{|G < 1000 ∧ ~ = ~aux |} Start {|G < 1000 ∧ ~ = ~aux |}

This, in turn, means that the triple holds for all con�gurations of ~aux , each of which constitutes

a di�erent example. For synthesis, the program must work for all examples: thus it is su�cient
that there exists an example for which the synthesis problem is unrealizable, i.e., the derived
postcondition implies the negation of the speci�cation. Thus to check unrealizability in this scenario
where we have used an auxiliary variable, we can check whether the following formula is valid:

∃~aux .(G < 1000 ∧ ~ = ~aux =⇒ G ≠ 1000 ∨ ~ ≠ 1000)

And this formula is certainly valid, as witnessed by ~aux = 1000. Thus syid_const is unrealizable.

In general, when using a speci�cation with symbolic examples denoted using the variables vaux ,
one can check whether ∃vaux . Q =⇒ ¬O is a valid formula, where Q is the derived postcondition
and O denotes the desired postcondition of the synthesis problem. As shown in Example 5.3, the
existential quanti�er over vaux asks whether there exists a concrete instantiation of the symbolic
examples such that Q =⇒ ¬O. Although this approach will not be able to prove unrealizability if
the supplied number of symbolic examples is less than the number of examples required to show
unrealizability (as in Example 2.4), it will succeed in proving unrealizability if the supplied number
of examples is su�cient. This can be very useful if the examples required to prove unrealizability
are di�cult to �nd, as in Example 5.3.

Note that it is still sound if one decides to drop the existential quanti�er and simply ask whether
Q =⇒ ¬O; adding the existential simply makes the �nal query more precise.

6 RELATED AND FUTURE WORK

Unrealizability. There has been limited work that focuses on proving the unrealizability of synthesis
problems.Nay [Hu et al. 2020] andNope [Hu et al. 2019] can prove unrealizability for syntax-guided
synthesis (SyGuS) problems where the input grammar only contains expressions. Both Nay and
Nope reduce an unrealizability problem to a program-veri�cation problem, and present techniques
for solving the reduced problem. Kamp and Philippsen [2021] use some of the ideas presented in
Nope to design specialized unrealizability-checking algorithms for problems involving bit-vector
arithmetic. When a grammar is not given as part of the input, CVC4 [Reynolds et al. 2015] is also
capable of detecting unrealizability. These works only focus on expression-synthesis problems.
MESSY [Kim et al. 2021] proposes a general algorithm for proving whether a given SemGuS problem
is unrealizable. SemGuS is a general framework for specifying synthesis problems, which also
allows one to de�ne synthesis problems involving imperative constructs.MESSY is currently the
only tool that can prove unrealizability for problems involving imperative programs. Farzan et al.
[2022] have a technique for proving unrealizability, which they use as part of a synthesis technique;
however, their technique is limited to a very speci�c class of functional programs and speci�cations.

While previous approaches all provide ways to solve variants of unrealizability problems, these
approaches are embedded within a speci�c system that employs a �xed solver or algorithm. With
the exception of Nay and its use of grammar-�ow analysis, these tools do not produce a proof
artifact that can be separately veri�ed. For example, inMESSY, one is at the mercy of an external
constraint solver, which makes it di�cult for researchers to develop new solvers tailored towards

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 23. Publication date: January 2023.

Unrealizability Logic 23:27

unrealizability, or even understand why certain problems can be proved unrealizable while others
cannot. In contrast, unrealizability logic provides a general, logical system for (both human and
machine-based) reasoning about unrealizability. While Nay can produce proof artifacts, it is limited
to SyGuS problems over expressions; similar to what we showed in Example 5.2, the GFA algorithm
of Nay may be understood as a proof strategy to discover hypotheses over nonterminals (where in
this case, the assertion language is over semilinear sets).

Hyperproperties. The way we synchronize between multiple examples in unrealizability logic,
using vector-states, is similar to the concept of hyperproperties, which are, in essence, sets of
properties [Clarkson and Schneider 2010]. Hyperproperties are used to model, for example, :-safety
properties, which are properties that should hold over : separate runs of a program [Sousa and
Dillig 2016] (for example, transitivity is a 3-safety property).
There is a subtle but fundamental di�erence between properties in unrealizability logic and

standard hyperproperties: properties in unrealizability logic are ‘properties over vector-states’; that
is, ‘properties over (sets of states)’, whereas standard hyperproperties are ‘sets of (properties over
states)’. The di�erence between the two is highlighted when considering nondeterminism: when
verifying :-safety properties for a nondeterministic program, one will want to let di�erent states
execute on di�erent paths. In contrast, unrealizability logic introduces vector-states to synchronize
the paths—corresponding to one speci�c program within the set (—that each constituent state in a
vector-state follows. For example, given a grammar � → G := G + 1 | G := G + 2, the unrealizability
triple {|G1 = 0 ∧ G2 = 10|} � {|(G1 = 1 ∧ G2 = 11) ∨ (G1 = 2 ∧ G2 = 12) |} is derivable. However, a
standard hyperproperty approach would likely wish to treat the above triple as invalid (taking a
nondeterministic-program interpretation of the di�erent productions of �).

Hoare Logic for Recursive Procedures. The rules of unrealizability logic have much in common with
the rules of Hoare logic extended towards recursive procedures. However, as discussed in §2.3, one
requires many features to fully support the range of features in a synthesis problem; for example,
nondeterminism, mutual recursion, both local and global variables, and in�nite data structures.
Combinations of some of these features have been studied previously, such as local variables and
mutual recursion [Oheimb 1999], or nondeterminism and recursion [Nipkow 2002]. There is a vast
amount of work on variants of Hoare logic; Apt and Olderog [2019] provides a survey of how the
original Hoare logic [Hoare 1969] has evolved throughout the years.

Despite this body of work, we are unaware of a study of a system that contains all of the features
listed above, and proves soundness, completeness, and decidability results as we have. Also as
discussed in §2.3, even though one does have an extended Hoare logic, such a logic would hide
the fact that we are dealing with synthesis problems and trying to prove unrealizability—whereas
unrealizability logic takes advantage of this fact through rules like GrmDisj.

Supporting Nondeterministic Statements. As previously discussed in this section and §2.3, there
is a similarity between program-synthesis problems and nondeterministic, recursive procedures
that has been exploited in previous approaches to proving unrealizability [Hu et al. 2019]. A
natural question that this similarity leads to is: can nondeterministic statements be supported in
unrealizability logic as well?
In general, nondeterminism in program synthesis varies according to whether one takes an

angelic interpretation, where the speci�cation is considered met if there exists a nondeterministic
execution of the synthesized program that satis�es the speci�cation, or a demonic interpretation,
where all executions of the synthesized program must meet the speci�cation.

Supporting nondeterministic statements in unrealizability logic is simpler for angelic nondeter-
minism, in which case one can merely add a rule that generates the set of all possible vector-states
generated by the nondeterministic statement. For example, given a statement G := nondet(+), which

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 23. Publication date: January 2023.

23:28 Jinwoo Kim, Loris D’Antoni, and Thomas Reps

nondeterministically assigns a value from the set + to G , a (simpli�ed) rule for nondeterminism
might be (where |x| denotes the length of the vector-state x):

Γ ⊢ {|P|} G := nondet(+) {|∃x′.P[x′/x] ∧ x ∈ + |x | |}
Nondet

The postcondition of the Nondet rule is an overapproximation of all states that may be generated
by nondet. Thus, using Nondet in a proof tree in tandem with other unrealizability-logic rules will
also derive an overapproximation of the set of reachable states; by showing that this set does not
intersect with the desired speci�cation, one can guarantee that the synthesis problem is unrealizable
under the angelic interpretation.
However, Nondet is incomplete when used to prove unrealizability under a demonic interpre-

tation: the demonic interpretation only requires that there exists a nondeterministic choice that
fails to meet the speci�cation, but a proof generated using Nondet will report unrealizability only
when all possible nondeterministic choices fail to meet the speci�cation. To prove unrealizability
in the demonic sense, one would require a mechanism for reasoning about the set of produced
vector-states simultaneously—for example, another level of vectors.

Unrealizability and Program Synthesis. As brie�y discussed in §1, one of the ultimate goals of
studying unrealizability is to prune the search space of a synthesis problem, by showing that certain
subsets of the search space do not contain a desired solution. Although this work is the �rst to distill
the fundamental concepts behind unrealizability into a logical system, there exist synthesizers that
have already utilized the concept of pruning unrealizable parts of the search space to some extent:
for example, Neo [Feng et al. 2018] discovers unrealizable subsets of the search space by analyzing
con�icts, and avoids traversing these subsets during the search procedure.
We hope that the logical characterization of unrealizability provided in this paper will lay the

foundation for future attempts to utilize unrealizability towards synthesizing programs.

7 CONCLUSION

We presented unrealizability logic, the �rst proof system for overapproximating the execution of an
in�nite set of programs. Unrealizability logic is both sound and relatively complete; it is also the
�rst approach that allows one to prove unrealizability for synthesis problems that require in�nitely
many inputs to be proved unrealizable. We believe unrealizability logic will prove to be essential in
further developments having to do with unrealizability.

A natural question that follows from this paper is the design of a realizability logic: “Can a similar
logic be constructed for program synthesis, i.e., for proving realizability?” Because program synthe-
sis requires a guarantee that a certain (vector-)state is reachable, one must devise suitable principles
of underapproximation (like those discussed in reverse-Hoare (aka incorrectness) logic [de Vries
and Koutavas 2011; O’Hearn 2019]) instead of overapproximation as used in this paper. We believe
the results presented in this paper will also be useful in designing a realizability logic.

ACKNOWLEDGMENTS

Supported, in part, by a gift from Rajiv and Ritu Batra; by ONR under grant N00014-17-1-2889;
by NSF under grants CCF-{1750965, 1763871, 1918211, 2023222, 2211968, 2212558}; by a Facebook
Research Faculty Fellowship, by aMicrosoft Research Faculty Fellowship, and a grant from the Korea
Foundation of Advanced Studies. Any opinions, �ndings, and conclusions or recommendations
expressed in this publication are those of the authors, and do not necessarily re�ect the views of
the sponsoring entities.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 23. Publication date: January 2023.

Unrealizability Logic 23:29

REFERENCES

Krzysztof R Apt. 1981. Ten years of Hoare’s logic: A survey—Part I. ACM Transactions on Programming Languages and

Systems (TOPLAS) 3, 4 (1981), 431–483. https://doi.org/10.1145/357146.357150

Krzysztof R Apt and Ernst-Rüdiger Olderog. 2019. Fifty years of Hoare’s logic. Formal Aspects of Computing 31, 6 (2019),

751–807. https://doi.org/10.1007/s00165-019-00501-3

Michael R Clarkson and Fred B Schneider. 2010. Hyperproperties. Journal of Computer Security 18, 6 (2010), 1157–1210.

https://doi.org/10.1109/CSF.2008.7

Martin Davis, Kurt Godel, and Stephen C Kleene. 1990. On Undecidable Propositions of Formal Mathematical Systems.

PostscriptumIntroductory Note to 1934. Journal of Symbolic Logic 55, 1 (1990).

Edsko de Vries and Vasileios Koutavas. 2011. Reverse Hoare Logic. In Software Engineering and Formal Methods, Gilles

Barthe, Alberto Pardo, and Gerardo Schneider (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 155–171. https:

//doi.org/10.1007/978-3-642-24690-6_12

Azadeh Farzan, Danya Lette, and Victor Nicolet. 2022. Recursion synthesis with unrealizability witnesses. In Proceedings

of the 43rd ACM SIGPLAN International Conference on Programming Language Design and Implementation. 244–259.

https://doi.org/10.1145/3519939.3523726

Yu Feng, Ruben Martins, Osbert Bastani, and Isil Dillig. 2018. Program synthesis using con�ict-driven learning. ACM

SIGPLAN Notices 53, 4 (2018), 420–435. https://doi.org/10.1145/3192366.3192382

John K Feser, Swarat Chaudhuri, and Isil Dillig. 2015. Synthesizing data structure transformations from input-output

examples. ACM SIGPLAN Notices 50, 6 (2015), 229–239. https://doi.org/10.1145/2737924.2737977

RobertW Floyd. 1993. Assigning meanings to programs. In Program Veri�cation. Springer, 65–81. https://doi.org/10.1007/978-

94-011-1793-7_4

Sumit Gulwani. 2011. Automating string processing in spreadsheets using input-output examples. ACM Sigplan Notices 46,

1 (2011), 317–330. https://doi.org/10.1145/1926385.1926423

Charles Antony Richard Hoare. 1969. An axiomatic basis for computer programming. Commun. ACM 12, 10 (1969), 576–580.

https://doi.org/10.1145/363235.363259

Qinheping Hu, Jason Breck, John Cyphert, Loris D’Antoni, and Thomas Reps. 2019. Proving unrealizability for syntax-guided

synthesis. In International Conference on Computer Aided Veri�cation. Springer, 335–352. https://doi.org/10.1007/978-3-

030-25540-4_18

Qinheping Hu, John Cyphert, Loris D’Antoni, and Thomas Reps. 2020. Exact and approximate methods for proving

unrealizability of syntax-guided synthesis problems. In Proceedings of the 41st ACM SIGPLAN Conference on Programming

Language Design and Implementation. 1128–1142. https://doi.org/10.1145/3385412.3385979

Qinheping Hu and Loris D’Antoni. 2018. Syntax-guided synthesis with quantitative syntactic objectives. In International

Conference on Computer Aided Veri�cation. Springer, 386–403. https://doi.org/10.1007/978-3-319-96145-3_21

Marius Kamp and Michael Philippsen. 2021. Approximate Bit Dependency Analysis to Identify Program Synthesis Problems

as Infeasible. In Veri�cation, Model Checking, and Abstract Interpretation - 22nd International Conference, VMCAI 2021,

Copenhagen, Denmark, January 17-19, 2021, Proceedings (Lecture Notes in Computer Science, Vol. 12597), Fritz Henglein,

Sharon Shoham, and Yakir Vizel (Eds.). Springer, 353–375. https://doi.org/10.1007/978-3-030-67067-2_16

Jinwoo Kim, Loris D’Antoni, and Thomas Reps. 2022. Unrealizability Logic. arXiv preprint arXiv:2211.07117 (2022).

Jinwoo Kim, Qinheping Hu, Loris D’Antoni, and Thomas Reps. 2021. Semantics-guided synthesis. Proceedings of the ACM

on Programming Languages 5, POPL (2021), 1–32. https://doi.org/10.1145/3410258

Anvesh Komuravelli, Arie Gur�nkel, and Sagar Chaki. 2016. SMT-based model checking for recursive programs. Formal

Methods in System Design 48, 3 (2016), 175–205. https://doi.org/10.1007/978-3-319-08867-9_2

John McCarthy. 1993. Towards a mathematical science of computation. In Program Veri�cation. Springer, 35–56. https:

//doi.org/10.1007/978-94-011-1793-7_2

Sergey Mechtaev, Alberto Griggio, Alessandro Cimatti, and Abhik Roychoudhury. 2018. Symbolic execution with existential

second-order constraints. In Proceedings of the 2018 26th ACM Joint Meeting on European Software Engineering Conference

and Symposium on the Foundations of Software Engineering. 389–399. https://doi.org/10.1145/3236024.3236049

Ulrich Möncke and Reinhard Wilhelm. 1991. Grammar Flow Analysis. In Attribute Grammars, Applications and Systems,

International Summer School SAGA, Prague, Czechoslovakia, June 4-13, 1991, Proceedings (Lecture Notes in Computer

Science, Vol. 545), Henk Alblas and Borivoj Melichar (Eds.). Springer, 151–186. https://doi.org/10.1007/3-540-54572-7_6

Tobias Nipkow. 2002. Hoare logics for recursive procedures and unbounded nondeterminism. In International Workshop on

Computer Science Logic. Springer, 103–119. https://doi.org/10.1007/3-540-45793-3_8

Peter W O’Hearn. 2019. Incorrectness logic. Proceedings of the ACM on Programming Languages 4, POPL (2019), 1–32.

https://doi.org/10.1145/3371078

David von Oheimb. 1999. Hoare logic for mutual recursion and local variables. In International Conference on Foundations of

Software Technology and Theoretical Computer Science. Springer, 168–180. https://doi.org/10.1007/3-540-46691-6_13

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 23. Publication date: January 2023.

23:30 Jinwoo Kim, Loris D’Antoni, and Thomas Reps

Phitchaya Mangpo Phothilimthana, Archibald Samuel Elliott, AnWang, Abhinav Jangda, Bastian Hagedorn, Henrik Barthels,

Samuel J Kaufman, Vinod Grover, Emina Torlak, and Rastislav Bodik. 2019. Swizzle inventor: data movement synthesis

for GPU kernels. In Proceedings of the Twenty-Fourth International Conference on Architectural Support for Programming

Languages and Operating Systems. 65–78. https://doi.org/10.1145/3297858.3304059

Andrew Reynolds, Morgan Deters, Viktor Kuncak, Cesare Tinelli, and Clark Barrett. 2015. Counterexample-guided

quanti�er instantiation for synthesis in SMT. In International Conference on Computer Aided Veri�cation. Springer,

198–216. https://doi.org/10.1007/978-3-319-21668-3_12

Marcelo Sousa and Isil Dillig. 2016. Cartesian hoare logic for verifying k-safety properties. In Proceedings of the 37th ACM

SIGPLAN Conference on Programming Language Design and Implementation. 57–69. https://doi.org/10.1145/2908080.

2908092

Glynn Winskel. 1993. The formal semantics of programming languages: an introduction. MIT press.

Received 2022-07-07; accepted 2022-11-07

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 23. Publication date: January 2023.

	Abstract
	1 Introduction
	2 Motivating Examples
	2.1 Challenge 1: Infinite Sets of Programs
	2.2 Challenge 2: Tracking (Infinite) Input-Output Relations
	2.3 Why Not Recursive Hoare Logic?

	3 Unrealizability Logic
	3.1 Preliminary Definitions
	3.2 Basic Definitions for Unrealizability Logic
	3.3 The Rules of Unrealizability Logic

	4 Soundness, Completeness, and Other Theoretical Results
	4.1 A Sketch of the Proof of Completeness
	4.2 Undecidability of Unrealizability and Decidable Fragments

	5 The Power of Unrealizability Logic
	5.1 Dealing with an Infinite Number of Examples
	5.2 Loops and Expressing Proof Strategies from Other Frameworks
	5.3 Working with Symbolic Examples and Auxiliary Variables

	6 Related and Future Work
	7 Conclusion
	Acknowledgments
	References

