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Impact of Transparency and Explanations on Trust and
Situation Awareness in Human-Robot Teams
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Urban Search and Rescue (USAR) missions continue
to benefit from the incorporation of human—robot
teams (HRTs). USAR environments can be ambigu-
ous, hazardous, and unstable. The integration of robot
teammates into USAR missions has enabled human
teammates to access areas of uncertainty, including
hazardous locations. For HRTs to be effective, it is
pertinent to understand the factors that influence team
effectiveness, such as having shared goals, mutual un-
derstanding, and efficient communication. The purpose
of our research is to determine how to (I) better es-
tablish human trust, (2) identify useful levels of robot
transparency and robot explanations, (3) ensure situa-
tion awareness, and (4) encourage a bipartisan role
amongst teammates. By implementing robot trans-
parency and robot explanations, we found that the
driving factors for effective HRTs rely on robot ex-
planations that are context-driven and are readily
available to the human teammate.

Keywords: urban search and rescue, human robot
teams, robot explanations, robot transparency, trust in
robot, situation awareness

Introduction

Urban Search and Rescue (USAR) missions
are often physically demanding and dangerous
for human responders, involving tasks that can
risk their overall health and safety. At the same
time, the immediate aftermath of a disaster sit-
uation is often in dire need of rich and accurate
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information that can help to quickly improve
rescue teams’ situation awareness and their ability
to carry out their missions effectively. Previous
efforts have been made to minimize human ex-
posure to precarious and preventable dangers
while increasing their team’s capabilities through
the use of robotic counterparts, altogether known
as human-robot teams (HRTs).

In response to Hurricane Harvey and Irma in
2017, unmanned aerial vehicles were deployed
for a search and rescue effort post-disaster
(Greenwood et al., 2020). Unmanned aerial
vehicles helped to enhance situation awareness
(SA) by equipping first responders with relevant
information to assess the magnitude of the di-
saster, with minimal added risk to first res-
ponders’ health and safety (Greenwood et al.,
2020). Additionally, in June 0of 2021, in response
to the Miami Beach condominium collapse, first
responders were able to team up with semi-
autonomous throwable military robots (Brown,
2021). In short, robot teammates allowed human
responders to reduce information uncertainty in
compromised buildings (Brown, 2021).

Furthermore, ongoing initiatives within the
realm of USAR have demonstrated that semi-
autonomous robot teammates can be valuable
assets (Hong et al., 2018). For instance, robot
counterparts can aid in USAR environments
where visibility is diminished by displaying
transparency through specialized robot sensors
and navigation or mapping functions. Envi-
ronmental hazards that can result in diminished
visibility, such as fires, smoke, or dust, can not
only put responders at risk but also the potential
victims as well. These situational limitations can
severely constrain responders’ movements and
ability to make timely progress in the rescue
effort (Couceiro et al., 2020).

Each of these instances involves some
combination of humans and robots working
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interdependently toward a common goal. We
refer to this entity as an HRT. However, even
with the introduction of robot technology in
USAR environments, many USAR missions
rely on robots that have limited communication
abilities or are only capable of displaying simple
elements of robot status to the human operator.
Although robot status information is pertinent,
this type of communication does not require the
HRT to engage beyond the surface level, rele-
gating the human operator to more of a monitor
or a supervisor rather than a teammate, with
team interactions being limited to inquiring
about or working within the constraints of their
robot teammate.

The limited or non-existent communication
capabilities of USAR robots can therefore
stagnate the effectiveness of HRTs, resulting
in robots being viewed as tools in a dependent
relationship rather than as a teammate in an
interdependent relationship. This objectifica-
tion, while important under some decision
contexts such as appropriate calibration of
trust in a tool, could also impede the ability of
human counterparts to establish a basis for
trust and interactive team cognition with in-
creasingly capable robots. Trust and interactive
team cognition are essential components of ef-
fective teams (Cooke et al., 2013; Schaefer,
2016).

When it comes to integrating robots into
HRTs, there is a justifiable concern of using the
teaming lens rather than the tool lens due to the
inevitable nature of robot automation failures
(Honig & Oron-Gilad, 2021). Unexpected robot
failures—even when those failures could be
attributed to environmental factors rather than
technological factors—typically result in di-
minished human trust and can result in the robot
teammates being viewed as unpredictable or
unreliable. Robot failures of this nature shed
light on the need for solutions to address the
shortcomings of semi-autonomous robot team-
mates to better realize their potential as useful
teammates.

With this in mind, the purpose of this study
was to explore how robot explanation and
transparency affect human trust and situation
awareness within HRTs and to quantify the best
modes of HRT communication within a simulated

USAR environment. We also address to what
extent team member roles promote SA.

Robot Transparency

SA can be categorized into three ordinal
levels: perception of elements within a given
environment, comprehension of the present
situation, and projection of the situation’s future
status (Endsley, 1995). These three levels con-
tain essential information relevant to the state of
a dynamic environment. To support trust, the
Chen et al. (2014) SA-based agent transparency
(SAT) model expresses that an agent needs to
convey transparent interaction through (1) in-
formation that captures an agent’s purpose,
process, and performance; (2) support of the
human’s understanding of the agent’s reasoning
process and constraints; and (3) information that
helps with projecting the agent’s expected future
state (Chen et al., 2014; Lee & See, 2004). The
SA-based agent transparency model also sup-
ports SA for the HRT.

Related studies have shown that high levels
of transparency support SA (Selkowitz et al.,
2016), assist in the proper calibration of trust in
a robot (Mercado et al., 2016; Selkowitz et al.,
2016), and lead to increased task performance of
an HRT. Inadequate transparency can lead to
mistrust or inappropriate levels of trust in the
automation when humans and agents interact
(Lewis et al., 2018). If trust is low, the human
teammate will underuse the assistance of their
robot teammate. For example, miscalibrated
trust that results in the improper use of auto-
mation can lead to failures of omission or
commission (Chen et al., 2014).

On the other hand, placing too much trust in
a robot teammate can result in over-reliance on
robots for tasks outside the robot’s design pa-
rameters, which can negatively impact trust
(Yagoda & Gillan, 2012). Proper use of trans-
parency may help counteract miscalibrated trust
within an HRT and subsequently improve HRT
performance (Selkowitz et al., 2016). Therefore,
an interface that provides a teammate with in-
formation pertaining to the three SAT levels is
expected to improve situation awareness, trust
calibration, and the overall performance of the
team.
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Although high levels of transparency would
seemingly allow information to flow without
unnecessary delay in team communication, re-
search has shown that team interaction (i.e.,
communication and coordination) mediates the
appropriate transfer of information that supports
effective team performance (Cooke et al., 2013).
It is one thing to be aware of elements within
one’s environment, but without knowing how to
incorporate information within the environment,
it can be hard to decipher how to effectively use
said information. This is especially so in USAR,
in which the team is often juggling multiple
channels of information. This is where robot
transparency and robot explanations become
essential. However, clarity is needed on how to
properly balance the levels of transparency and
explanation that impact the human teammate’s
trust in their robot teammate.

Robot Explanations

Explanations are explicit communication that
provide a reason behind a decision or action
occurring relative to a counterpart’s under-
standing (Miller, 2019). Explanations may be
used to provide further context or justification
for a task or plan deviation. Robot-driven,
context-based explanations within HRTs have
been shown to improve trust (Wang et al., 2018).

Explanations are particularly useful in dy-
namic, interactive tasks to correct misalignment
of expectations and to support team cognition
(Cooke et al., 2013; Miller, 2019). Without
explanations, the robot will have limited ability
to serve in a responsive role; thus, serving more
like a tool rather than a teammate (Chiou & Lee,
2021). Although the use of explanations can be
used to improve transparency in an HRT, ex-
planations and transparency are separate concepts.
In decision support systems, transparency is more
often conveyed through real-time information-
exchange modalities (e.g., live status indicators)
while explanations are considered retrospective,
contrastive, and responsive reasoning frequently
conveyed through verbal or text-based commu-
nication (Endsley, 1995; Miller, 2019).

However, the perennial challenge in de-
signing HRTs is to support the transfer of the
right information at the right time and to avoid

designs that contribute to information overload.
Whereas transparency displays are readily
available, they primarily present information
that has been predetermined as important. But,
in dynamic task environments, explanations
may even be perceived to be more useful than
immediately transparent information (Bartlett &
Cooke, 2015). If robot transparency is oper-
ationalized as a continuous state of information
about the robot teammate, including environ-
mental factors impacting the robot'’s ability to
function, and robot explanation is operational-
ized as explicit ad hoc communication that
conveys contrastive information with respect to
a human teammate’s understanding, then the
explicit communication that draws attention to
critical information may be more productive
than that of more implicit or passive commu-
nication such as status indicators (Shah &
Breazeal, 2010).

Our previous HRT research focused on dif-
ferent robot explanation strategies and found
that moderate levels of proactive information
updates, including explanations, were positively
related to team effectiveness in a simulated
USAR environment (Chiou et al., 2021). Insights
from this previous study suggest that when rel-
evant information is conveyed proactively, hu-
man teammates are better able to focus on the task
at hand, improving individual and overall team
performance (Chiou et al., 2021). Thus, the
current study focuses on investigating the line
between too much communication and robot
explanations and reduced communication and
robot explanations in a similar task environment.
The current study also attempts to determine the
appropriate balance of information conveyed to
a human operator through explanation and
transparency.

Trust in the Robot

In considering the development of an effec-
tive HRT, the implementation of robot trans-
parency and robot explanation is important for
trust. Trust can be defined as a willingness to be
vulnerable based on the expectations of the
behavior of another (Rousseau et al., 1998).
Increasingly autonomous robots may need hu-
mans to place higher trust in them, due to the
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inability of humans to fully monitor all aspects
of the robot in action. Because trust often requires
a sense of mutual understanding, this suggests
that team communication that contributes to this
sense of mutual understanding, including trans-
parency and explanation, is critical for both trust
as well as teaming (Edmonds et al., 2019).

One concern with respect to increasing trust
with increasingly autonomous robots is that
human operators may be more keen to attribute
blame to their robot teammate when unexpected
errors within the team occur (Lyons, 2013). This
mindset can prevail even when transparency is
used to convey the inner workings of the robot
teammate. To overcome the conflation between
robot and human teammates’ responsibility
within an HRT, it is important to explicitly make
human operators aware of their responsibility
within the team dynamics (Lyons, 2013).

As of this writing, robots in USAR are still
predominantly used or viewed as assistive tools,
even when traversing environments deemed too
dangerous for human responders (Greenwood
et al., 2020). This is because the promised or
envisioned autonomous robot capabilities are
not yet deployable in real-world USAR settings.
Yet, even with robots originally being viewed as
tools, human teammates often attribute re-
sponsibility to the robot, especially when re-
sponsibility is an explicit capability of the robot
(Yagoda & Gillan, 2012). Human perception of
robot teammates relies heavily on their associ-
ated mental models of how the robot commu-
nicates (Phillips et al., 2011). Meaning if the
human teammate views the robot as being ca-
pable of communicating ongoing errors, there
may also be a false preconception that the robot
teammate is capable of identifying how to ad-
dress said errors, even when the robot’s capa-
bilities have been explicitly outlined beforehand
(Phillips et. al, 2011).

With this in mind, establishing trust while
maintaining a sense of responsibility may come
to depend on the means for maintaining SA
between the human and robot teammates. Even
with unexpected events, robots need to be rec-
ognized as a valuable asset, while avoiding
contributing to a human’s absolution of re-
sponsibility during a task (Lyons, 2013). By
providing the human teammate with appropriate

levels of SA, their role can be explicitly outlined
to further instill what they are responsible for
within the HRT, in order to find success as
a team. Therefore, to support SA, trust, and
perceived responsibility, we posit that the robot
must be capable of conveying its status clearly
and succinctly (e.g., transparently).

But the question remains: How to implement
robot transparency and robot explanations to
effectively support human-robot trust and HRT
effectiveness? To answer this question, we im-
plemented varying levels of robot transparency
and robot explanation as four conditions. The
intent of the study was to understand the role and
best modes of (1) robot explanation and (2)
robot transparency in support of trust, situation
awareness, and perceived workload to determine
the appropriate levels of team communication.
Assuming a teaming configuration with a semi-
autonomous robot, we also wanted to explore (3)
the role of perceived workload on trust in the
robot teammate. We hypothesize that SA will be
positively impacted by information availability
for both transparency and explanation. Sec-
ondly, we hypothesize that trust will increase
with more frequent robot explanations. Thirdly,
we hypothesize that trust will be negatively
affected as the human teammates’ workload
increases.

SIMULATED Minecraft Urban Search and
Rescue Study

Virtual Task Environment

To explore the effects of different modes of
robot transparency and robot explanations in an
HRT, our study team designed and deployed
a virtual and remotely operated testbed for
a USAR mission context. The testbed interface
used prerecorded Minecraft mission videos (as
seen in Figure 1) that were shown to the human
operator, leveraging the Wizard-of-Oz (WoZ)
method (Bradley et al., 2009). The testbed in-
terface included an embedded map and status
indicators that varied based on condition. These
Minecraft videos were then paused by an ex-
perimenter throughout the mission, according to
a mission script that was not known to partic-
ipants, conveying “live” stoppages involving the
robot teammate.
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Figure 1. Participant view: Minecraft simulation via Zoom (Wong et al., 2021).

An administrative application (Figure 2) was
custom-built for this study and used to stop and
start the previously recorded Minecraft video,
play sounds associated with implemented in-
teractive tasks (robot disruptions), and to display
a live timer countdown and the participant’s
mission points. Each mission had a fixed timer
displayed to participants to count down the al-
lotted mission time. In the midst of COVID-19,
this entirely virtual testbed of digital tools en-
abled the experimenter team to smoothly run the
study in a virtual setting with consistency and
without risking the health of participants or
experimenters.

Inclusion of Situation Awareness
Within Testbed

To answer our research questions regard-
ing HRT communication, it was important to
incorporate all three levels of SA into the ex-
perimental environment because our assess-
ment of team effectiveness (i.e., team performance)
was dependent on our measures of SA (i.e.,
made equivalent). Therefore, as part of our
study design, we developed a complex task
environment with dynamic scenarios and tools
that would involve the three levels of SA.
We describe below how these levels were

operationalized within the simulated HRT task
environment.

Level one SA (perception) focuses on how
elements within an environment are discerned.
To actualize this first level, disaster victims were
presented to participants in the task environment
in three colors: red, blue, and yellow. The var-
iation in victim color was to assess if participants
were capable of recognizing the correct in-
formation within their environment (note that
color-blind participants were excluded from the
study). Also, the inclusion of environmental
changes (fires, collapses, and openings) enabled
the need for participants to perceive the attrib-
utes associated with elements in the simulated
environment (Endsley, 1995). Identifying en-
vironmental changes was pertinent to the suc-
cess of creating a useful map for rescue after the
search was complete.

Level two SA (comprehension) was im-
plemented through the incorporation of a map
(dynamic and static; dependent on condition; see
Figure 2) and the interactive tasks (described in
more detail in Methods). The combination of
these two components within the missions re-
quired participants to understand the associated
significance with ongoing events and objects
within the intended environment (Endsley, 1995).
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Figure 2. An administrative application, moderator

The inclusion of the map gave participants
knowledge related to the robot’s location and
intended route of travel by the robot. The in-
teractive task required participants to use their
knowledge from ongoing events and not only just
notice but also understand that something about
their robot teammate required their attention.
Lastly, level three SA (projection) is associ-
ated with an adequate forecast of future actions
based on elements within your environment
(Endsley, 1995). By tasking participants with
finding solutions for the interactive tasks, we
were able to gauge participants’ ability to use
varying levels of robot transparency (displayed
through status indicators) and robot explanation
in conjunction with elements within their

control panel (Wong et al., 2021).

environment (e.g., fire blocking the route) to
then address the ongoing issue by identifying
a solution. Through the interactive tasks, we
wanted participants to use the various modes of
transparency and robot explanation capabilities
to identify the appropriate next steps in the event
of robot malfunction or unexpected event.

A baseline condition was also implemented
to represent an HRT task environment that
supported level one SA only. The robot was
instructed to only provide location-based in-
formation to the participant (see Table 1, Ex-
perimental Procedure for more details). In
contrast, the transparency and explanation
conditions were designed to support levels two
and three of the Chen SAT model. Within the
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Table 1. Experimental Conditions: Levels of Explanation and Transparency.

Condition

Level of available explanation

Level of available transparency

Full Full explanation
Transparency-only
Explanation-only
Baseline

Full explanation

Limited to location-only questions

Limited to location-only questions

Dynamic map and status indicators
Dynamic map and status indicators
Static map only
Static map only

transparency-only condition, battery status,
a dynamic map with preplanned labeled routes,
and the reroute icon indicators provided rea-
soning for certain actions and future status of the
robot. Within the explanation-only condition,
the robot was allowed to answer questions
pertaining to the mission and robot status.

Methods

The following sections will discuss the par-
ticipant sample, experimental procedure, study
design, and various components of the mission
task that study participants faced across two
mission sessions. During the missions, partic-
ipants were expected to work as a team with
a virtual robot in a partially collapsed building.
Participants were responsible for working with
their robot teammate to locate and identify
potential victims, identify and locate hazardous
environmental changes, and to assist the robot
during specific interactive tasks which were
designed into the simulated environment (see
Interactive Tasks and Mission Success section).

Participants and Power Analysis

An a priori power analysis was conducted
using G*Power3 (Faul et al., 2007) to test the
difference between the means of 4-group by 2-
mission using an F-test, a medium effect size
(’712, =.06), and an alpha of .05. According to the
results, a total sample of 48 participants with
four equal-sized groups of n = 12 is required to
achieve a power of .80. We also considered that
there may be issues during data collection, and
we increased the sample size.

Participants signed up to participate in this study
via Signup Genius, and they were recruited through
Arizona State University Slack channels, which
include faculty, staff, students, and other commu-
nity members with an (@asu.edu email address. The

study took approximately 1-hour and 15-min, and
participants were randomly assigned to one of four
conditions (full, explanation-only, transparency-
only, and baseline—described in more detail in
the next section) following informed consent.

Experimental Procedure

To complete the USAR mission in the virtual
Minecraft environment, participants were in-
formed that they were a part of an HRT search
team that was responsible for generating a useful
map for the rescue team to be able to save
victims trapped inside. The goal of the mission
and various task roles involved were commu-
nicated to participants during a study onboard-
ing process and reinforced during a one-mission
training walk through (see Table 2 for more
information). The Minecraft missions and walk-
through tutorial were facilitated by Zoom and
a three-person team of researchers executing the
“live” events. Next, participants completed two
actual missions with the robot teammate in
Minecraft with the same research team, before
completing questionnaires capturing trust, de-
mographic information, and the NASA-Task
Load Index (TLX; Hart & Staveland, 1988).

Study Design

In this study, we focused on testing four
different conditions, which we describe as full,
explanation-only, transparency-only, and base-
line. In essence, robot explanation and robot
transparency were implemented at varying levels
(see Table 1).

Based on the condition, participants were
responsible for using the available robot trans-
parency and robot explanation to assist their
robot teammate (see Table 2).

To support sustained task engagement and
the collection of high-quality interaction and
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Table 2. Experimental Sequence of Events and Components.

Mission Elements Interactive tasks (reasons)

Task training  Victims: 7; environmental 1 robot stoppage (stuck)

(5 min 30 s) changes: 2; duration: 5min 30's
Mission 1 Victims: 16; environmental 2 robot stoppage (stuck)
(14 min) changes: 2; duration: 14 min
Mission 2 Victims: 24; environmental 2 robot stoppage (overheat, stuck, gas leak,
(21 min) changes: 8; duration: 21 min unexplainable robot malfunction, battery, and

robot vision impairment)

communication data, participants completed two
missions with varying levels of workload (i.e.,
number of victims, environmental changes, and
interactive tasks the human operator had to
face). The first mission had a lower workload
(16 victims to identify, 2 environmental
changes, and 2 interactive tasks), and the second
mission had a higher workload (24 victims to
identify, 8 environmental changes, and 6 in-
teractive tasks). Increasing workload between
missions allowed us to study the effect of in-
creased workload on trust within the HRT.

Team Roles

Mission success was designed to require
active participation from both the robot and
human teammates. The role of the robot was to
physically search the building room by room,
and the role of the human was to watch the
“live” feed from their robot’s camera. To
complete the mission, participants needed to
report different types and locations of victims
and environmental changes. Two team aids were
involved to facilitate the mission; an Incident
Commander was responsible for recording
identified victims and environmental changes
communicated by participants via Zoom text
chat and providing recommendations in the
event of an unexpected stoppage. If necessary,
a Mechanic was responsible for repairing the
robot teammate based on the Incident
Commander’s recommendation in the event of
an unexpected stoppage, only after participants
identified the correct reason as part of the in-
teractive task. The robot and Incident Com-
mander were played by experimenters who
followed predetermined scripts to communicate

with participants via Zoom’s text chat feature,
based on participant responses. The Mechanic
interactions were preprogrammed into the video
recording.

Interactive Tasks and Mission Success

Interactive tasks (Table 3) were incorporated
to encourage participants to be more active in
accomplishing the team mission and responsible
for reporting the robot’s performance status,
thereby encouraging a sense of team in-
terdependence. By having each team member
rely on one another for the retrieval of relevant
information that contributes to the overarching
search and rescue goal furthered the need for
effective team communication. During the in-
teractive tasks, participants needed to gather
knowledge from their perceived environment,
use it to comprehend the situation, and project
the future state of the robot to assist in the team’s
progress throughout the missions.

Mission success relied on how efficiently
HRTs progressed through the interactive tasks.
At certain points throughout the missions, robot
stoppages would occur and require direct as-
sistance from the human for the robot to move
forward in its task. Robot stoppages were caused
by pausing the prerecorded video representing
the robot’s camera view as it traversed the
partially collapsed building, so that it would
appear as if the robot could not move. Once
participants noticed their robot teammate had
stopped, they would need to use the available
levels of robot transparency (check the status
indicators) and robot explanation capabilities
(address the robot via text chat) to identify the
issue to the Incident Commander.
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Table 3. Interactive Tasks and Requirements.

Status indicator

Interactive task What happens operation

Incident commander
response

Correct participant
response

Stuck Robot becomes  Stuck status
stuck in indicator turns
doorway or yellow while
opening robot is stuck

Low battery Robot begins Battery changes

moving slow/
choppy due to
diminished
battery level

Overheating Robot encounters Internal
fire attempt to temperature
avoid and then increases from
stops moving to 100

Gas leak Limited to Gas leak status
location-only indicator turns
questions yellow while gas

is detected

Robot Camera begins to  All indicators light

malfunctions  spin around and

reaches a stop

up yellow

facing the
ceiling
Loss camera Screen becomes  No status indicator
signal static changes

from green to red
once it reaches
critical condition

The robot should
attempt to free itself
by clearing a path and
wiggling out of the
opening

Incident commander | would recommend the
or IC robot robot to reroute and
battery is low find an outlet. It looks

like there is an outlet
at the top of the right
hallway

Incident commander | would recommend the
or IC the robot is robot to reroute to
overheating the mechanic before

severely damaging
itself

Incident commander | would recommend the
orlCtherobothas  robot to reroute and
detected a gas search the rooms with
leak gas first in case there

are still any victims
alive. Victims in those
rooms are more likely
to be in a critical
condition

Incident commander | would recommend the
or IC the robot is robot reroute to the
malfunctioning mechanic to fix any

malfunctions

Incident commander
orICrobot is stuck

68

Incident commander The mechanic can fix the
or IC camera loss of camera signal
signal is lost remotely within 15 s.

In the meantime, |
would recommend
the robot reroute and
go around

Participants were informed during the on-
boarding process that if the robot happened to
incur an unexpected event, they would be unable
to continue the mission until they correctly
identified the issue and received a recommen-
dation from the Incident Commander. However,
in the event that participants were unable to
identify the correct issue, the Incident Com-
mander would still provide a recommendation

after a one-minute time limit had passed, ef-
fectively releasing them from the task. Although
this one-minute time limit could potentially
result in a performance floor effect in terms of
time to complete the mission, it was more rel-
evant for our research objective to eventually
allow all participants to get through as much of
the mission as possible, even if they happened to
be really poor at troubleshooting the issue with
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the robot. (The goals of this study are less fo-
cused on traditional production measures of
performance like time to complete the mission
and more on team effectiveness measures like
situation awareness, trust, communication, and
workload). It was assumed that the countdown
timer fixed in the upper left-hand corner of the
participant’s screen created some time pressure
during these interactive tasks and simulated
a sense of urgency to correctly identify the issue
before the one-minute mark.

To further facilitate sustained attention and
active engagement during the interactive task
(i.e., to prevent participants from simply waiting
for the one-minute mark in the event they
happened to encounter the Incident Commander
releasing them from this task early on in a mis-
sion), participants could hear up to three different
sounds as an interactive task occurred: (1)
a ticking timer acknowledging an interactive task
is taking place, (2) a positive ding indicating the
participant has correctly identified the ongoing
issue, or (3) a negative buzzer indicating the
participant has incorrectly identified the ongoing
issue. All participants were able to enter as many
attempts as they desired (i.e., they had unlimited
guesses) within the allotted one-minute time
frame.

Explanations Through
Participant-Generated Questions

Communication. During the study on-
boarding process, participants were informed of
types of communication and possible questions
they could use when communicating with their
robot teammate. Participants were also in-
formed that certain functions may or may not be
available and that it “would be up to them to
figure out the best way to relay information.”
Depending on the participant’s condition, com-
munication availability would vary as follows,
see Table 4.

Communication Implementation. The pur-
pose of the explanation-only and full conditions
is to see how participants communicate with
their robot teammate given increasing levels of
complete robot responsiveness capabilities.
During the study onboarding process, partic-
ipants were shown examples of mission-related

questions they could ask their robot teammate.
Upon completing the onboarding process par-
ticipants were guided through a training mission,
where the experimenters walked participants
through the types of tasks that would be com-
pleted as part of the mission, including prac-
ticing communication with the robot and the
other team aids.

Robot explanations were primarily linked to
the designed interactive tasks and were initiated
by the human teammate’s questions. This pro-
vided the requisite communication data needed
to see where or what questions were typically
asked when there were robot deviations to
planned or expected behaviors. Participants
were not restricted in terms of how they should
ask the question as long as the question was
relevant to the mission and the randomly as-
signed condition and ended in a question mark.
If those criteria were met, then the robot would
respond depending on the condition.

In the event participants asked questions that
were not relevant to the mission, in conditions
with high explanation (full and explanation-
only) the robot teammates would inform their
human teammate they could not answer the
question asked (i.e., “I do not have the capabilities
to answer that”). In low-explanation conditions
(baseline and transparency-only), participants
would not receive a response from their robot
teammate. These instructions, framed as HRT
communication requirements due to the robot’s
limitations with respect to natural language pro-
cessing, served a dual purpose for analyzing the
resulting communication data (text chat tran-
scripts) in an unambiguous way.

Transparency Indicators

Within the low transparency conditions
(explanation-only and baseline), the level of
robot transparency was limited to a static map
that displayed the robot teammates’ preplanned
route. Participants in the high-transparency
conditions (full and transparency-only) had
access to a map that displayed a preplanned
route with a continuous live update of the robot’s
location and status indicators. The status in-
dicators were used to convey higher trans-
parency information that was not afforded in the
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Table 4. Types of Explanation Questions.

Condition

Level of robot responsivity

Example question

High explanation: Full and
explanation-only

Low explanation:
Transparency-only and
baseline

Address all questions pertaining to the
mission that end in a question mark

Address only questions that refer to location
information and end in a question mark

1. Why are you stopped?
2. Are you stuck?

3. Is that a fire?

4. Can you reroute?

1. Where are you?

2. What room are we in?
3. What is our location?

Table 5. Transparency Status Indicators With Explanation of Needed Action (Wong et al., 2021).

Indicator icon Description

Action

Off

O
=]

Robot's operational status

Robot's battery life

The presence of a fire in the
environment

environmental conditions

Robot is deviating from the
preplanned mission route

EH TE
== Robot has encountered an
= ope.ning in the building
environment
@ Presence of gas leak in the
Ima]

environment

Robot's internal temperature

Any environmental collapses are
impeding the robots route

Robot is unable to move due to

Team need to attempt to find a new path to
avoid heat damager; if the robot is damaged,
the team will reroute to the mechanic

Additional information about robot status; no
additional action

When the battery is low, the team will reroute to
a charging station

Team will reroute to get to rooms blocked by
collapse to incident commander

Team will reroute around the fire to continue
with the mission; teammate reports fire to
incident commander

Participants will identify the problem with the
robot teammate. The robot will then wiggle
to release itself

Additional information about robot status; no
additional action

Team will enter opening to ensure room is clear:
Teammate reports opening to incident
commander

Team will find a new route to search rooms with
gas leak safely and identify most critical
victims first

baseline or explanation-only condition, see Table
5. Status indicators, operationalized as dynamic
icons (see Table 3), were specifically designed
and selected for the robot to communicate task-
relevant information to participants in an efficient
manner; during the onboarding process partic-
ipants were made aware of each status indicator’s
meaning.

Measures

Three dependent measures were used in this
study: SA, trust, and workload. Trust and work-
load questionnaires were given to participants after
Mission 1 and Mission 2. Two different trust in-
struments were used to measure trust in human—
robot interaction (HRI) and trust in teams
(described in more detail later).
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Situation Awareness

A point system (see Table 6) was created and
implemented to assess participants’ overall sit-
uation awareness within the simulated USAR
environment. All conditions had three main
components that comprised our situation aware-
ness measure in this study: victims, environmental
changes (fire, collapses, and openings), and in-
teractive tasks; bonus points were awarded for
completing a mission early.

Identification of victims and environmental
changes contributed to the assessed situation
awareness in terms of perception, whereas ac-
knowledgment of interactive tasks, listed in Table 3,
contributed to the assessed comprehension-related
situation awareness. The point system was influ-
enced by two factors: level of SA and weighted
value for reproducing a useful map for the rescue
team based on our pilot studies. Participants were
made aware of the point system during the on-
boarding and training mission prior to the start of
Mission 1.

In developing our point system, identification
of victim type (i.e., color) was considered the
lowest level of difficulty among the tasks. One
point was equally awarded and taken away when
victims were correctly and incorrectly identified.
Points awarded to identifying environmental
changes varied based on correct and incorrect
identification. The number of awarded and de-
ducted points was based on the difficulty and the
importance of proper identification of the type of
environmental change to the overall mission (see
Table 6).

The interactive tasks were considered the
highest due to the level of task difficulty and
importance to the team’s success. There were
two essential parts to completing these in-
teractive tasks: acknowledgment and proper
identification of the robot stoppage.

Table 6. Situation Awareness Scoring System.

Description Correct Incorrect
Victim 2+ 2-
Environmental change 5+ 2-
Interactive task acknowledged 3+ 3-
Interactive task identification 2+ 2-

Acknowledgment was a necessary component,
but not the entirety of the mission task. In the event
that participants acknowledged but did not correctly
identify the interactive task, this could negatively
affect the HRT, possibly resulting in running out of
time and not being able to finish the search.

SA scores were calculated for both Mission 1
(52 possible points) and Mission 2 (118 possible
points) separately. The sum of all participants’
SA scores was then calculated and divided by
the total possible points and then converted to
a decimal form.

Trust in the Robot Teammate

To measure trust in the robot teammate,
Schaefer’s (2016) Trust Perception Scale-HRI
was included as part of the study questionnaire.
We used an adapted version of the recommended
14 item Subject Matter Experts (SMEs) sub-
scale. Of the 14 items we used 12 of the
questions, omitting two that were not relevant to
our study:

1. What percent of the time did the robot
teammate function successfully?

2. What percent of the time did the robot
teammate act consistently?

3. What percent of the time was the robot
teammate reliable?

4. What percent of the time was the robot
teammate predictable?

5. What percent of the time was the robot
teammate dependable?

6. What percent of the time did the robot
teammate follow directions?

7. What percent of the time did the robot
teammate meet the needs of the mission?

8. What percent of the time did the robot
teammate perform exactly as instructed?

9. What percent of the time did the robot
teammate make errors?

10. What percent of the time did the robot
teammate provide appropriate information?

11. What percent of the time was the robot
teammate unresponsive?

12. What percent of the time did the robot
teammate malfunction?

We also changed the tense of the questions
from future to past tense and changed “robot” to
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“robot teammate.” We used a sliding bar re-
sponse scale that ranged from 0% to 100%,
rather than having a set selection of potential
responses. This permitted participants to have
finer-grained control over their response to the
question items.

Participants’ trust in robot scores was cal-
culated for both missions by finding the sum of
positive language questions asked on the
questionnaire (e.g., “What percent of the time
did the robot teammate act consistently? ) and
then subtracting that total from the sum of
negative language-based questions (e.g., “What
percent of the time did the robot teammate make
errors?”).

Trust in a Team

To measure trust in a team, we used six
items from Costa and Anderson’s (2009)
21-item trust questionnaire to assess trust
within teammates regardless of the USAR task
context.

1. In this team, we can rely on each other.

2. In this team, we have complete confidence in
each other’s ability to perform tasks.

3. In this team, we do not hesitate to help each
other when in need.

4. In this team, we work in a climate of co-
operation (i.e., environment in which you work
together).

5. In this team, some of us hold back relevant
information.

6. In this team, we minimize what we tell about
ourselves.

For the purposes of this study, we used
questions from three of the four original cat-
egories: propensity to trust, perceived trust-
worthiness, and cooperative behaviors. The
six questions chosen to represent those three
categories were considered the most applica-
ble to both a human and an automated team-
mate and avoided redundancy with the
questions from the trust in the robot teammate
questionnaire.

Participant’s trust in a team was calculated for
both missions by finding the sum of positively
valanced question items (e.g., “In this team, we
can rely on each other”’) and then subtracting the

total from the sum of the negatively valanced
items (e.g., “In this team, some of us hold back
relevant information”).

Workload

NASA-TLX (Hart & Staveland, 1988) as-
sessed participants’ perception of workload
during both missions. Workload scores were
calculated by totaling the sum of the question-
naire responses for both missions.

Data Analysis and Results

The first split-plot analysis of variance
(ANOVA) addresses how situation awareness
differed across conditions and missions. Although
there were significant condition, F (3, 57) =5.75,
p = .002, and mission main effects, ' (1, 57) =
12.04, p = .001, condition by mission interaction
effect was not significant, ' (3, 57) = .49, p=.693.
According to the significant condition main effect,
teams in the baseline condition had significantly
lower SA scores than the other conditions
(transparency-only: p = .027, explanation-only:
p = .001, and full: p = .001), whereas the other
conditions did not differ on the SA score, p >.050,
see Figure 3(a). According to the significant
mission main effect, SA scores significantly de-
creased from Mission 1 to Mission 2, p = .001,
across all conditions, likely due to the high
workload in Mission 2.

The second split-plot ANOVA addresses how
trust in the robot differed across conditions and
missions. Although there was a significant
mission main effect, F' (1, 57) =312, p <.0001,
and the condition main effect, F' (3, 57) = 2.05,
p =.117, condition by mission interaction effect
was not statistically significant, F (3, 57)=1.01,
p = .394. According to the significant mission
main effect, the operator’s trust in the robot
significantly decreased from Mission 1 to
Mission 2, p <.0001, likely due to the increase in
interactive tasks with the robot in Mission 2
(Figure 4).

The next split-plot ANOVA addresses how
team trust differed across conditions and mis-
sions. Although there was a significant condi-
tion, F'(3,57)=3.37, p=.025, and mission main
effects, F'(1,57)=30.4, p <.0001, the condition
by mission interaction effect was not significant,
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Figure 3. Mean SA across (a) conditions and (b) missions (error bars are 95% confidence intervals).

F (3, 57) = .35, p = .788. According to the
significant condition main effect, teams in the
baseline condition had significantly lower team
trust than other conditions (transparency-only:
p = .038, explanation-only: p = .011, and full:
p = .007), whereas the other conditions did not
differ on the team trust score, p > .050, see
Figure 5(a). According to the significant mission
main effect, team trust in the robot significantly
decreased from Mission 1 to Mission 2, p <
.0001, likely due to the robot’s abnormal be-
haviors in Mission 2, see Figure 5.

The final split-plot ANOVA addresses how
the operator’s perceived workload differed
across conditions and missions. Although
there were significant condition, F' (3, 57) =
3.54, p =.020, and mission main effects, F (1,
57)=21.4,p <.0001, the condition by mission
interaction effect was not significant, F (3,
57) = 1.88, p = .143. According to the sig-
nificant condition main effect, teams in
baseline condition had significantly higher
perceived workload than transparency-only,
p = .034, and full conditions, p = .003, but
comparable amounts in the explanation-only
condition, p = .149. All other conditions were
not different in terms of perceived workload,
p > .050, see Figure 6(a). According to the
significant mission main effect, participant
perceived workload significantly increased
from Mission 1 to Mission 2, p < .0001,
possibly due to the robot’s abnormal behaviors
during interactive tasks and environmental
changes in Mission 2, see Figure 6.
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Figure 4. Mean trust in the robot across missions
(error bars are 95% confidence intervals).

Discussion

Implications for Robot Transparency
and Explanations

This study sought to understand which modes
of robot explanation and transparency best
support trust, situation awareness, and perceived
workload and also explored how participants’
perceived workload impacted trust in the robot
teammate. Results from this study support hy-
pothesis one; SA was positively impacted by the
availability of information in both transparency
and explanation conditions. The results also
supported hypothesis three, that increasing
workload can negatively affect trust. Although
hypothesis two, that trust will increase with more
frequent robot explanations, was not directly
supported, there was some support showing that
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information, including both transparency and
explanations, improved trust in the robot.
Previous research would suggest that the most
successful conditions would be those containing
robot transparency (Lakhmani et al., 2016).
However, in the transparency-only condition, we
noticed HRTs did not have as high of an SA score
when in comparison to HRTs in condition with
more detailed explanations. Due to the way
transparency was operationalized across con-
ditions, and the use of robot explanations that
provided reasoning for unplanned robot behav-
iors, human teammates were able to have in-
creased levels of trust, higher levels of SA, and
more successful missions. By using a point system
to measure SA within the USAR environment, we
were able to evaluate team performance as
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missions (error bars are 95% confidence intervals).

individual components needed to complete the
overall mission goal.

Because our point system for measuring SA
was developed using face validity for addressing
our research questions, further research should
be conducted to validate it prior to broader
adoption. That being said, our SA measure en-
abled us to assess whether the elements of
transparency (map and status indicators) were
effective. At the same time, our results indicate
that conditions reliant on this transparency in-
formation alone, operationalized as status in-
dicators, did not result in HRTs with the highest
SA. The full condition (full transparency and
explanation) showed that robot transparency
through status indicators and a continuously up-
dated map had little to no impact when compared
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to the explanation-only condition (full explana-
tion and limited transparency). Although this was
due to how we designed the study and the sub-
sequent point system, it essentially demonstrates
that context-based robot explanations in team task
environments characterized by uncertainty may
be essential to improving SA. Robot explanations
provided human counterparts with the necessary
information for quicker decision-making in the
interactive tasks, enabling human teammates to be
more active members within the HRT and better
able to support team effectiveness.

Implications for Trust of the Robot

The purpose of the interactive tasks was not
only to simulate the type of dynamic and un-
certain environment that characterizes USAR
but also to encourage a more active role for study
participants as well as interactivity within the
HRT. In previous pilot studies, we found that
participants tended to take on more passive roles
in this task environment when left to their own
devices, initiating fewer communication threads
than expected and that would be required within
a more dynamic team task (Chiou et al., 2021).
Through the interactive tasks, we were able to
see how these unexpected events—and the ro-
bots’ ability to handle these events with respect
to their human teammate—affected trust within
an HRT and the overall effect on human trust in
their robot teammate.

The increase in interactive tasks from Mis-
sion 1 (two interactive tasks) to Mission 2 (six
interactive tasks) led to an increase in perceived
workload for human teammates, as well as
a decrease in team trust with the robot. It is
possible that the combination of increased
perceived workload as well as the increase in
number of interactive tasks was attributed to the
robot performing poorly at its task rather than
due to factors in the environment or other
causes. Future studies would benefit from ex-
plicitly measuring attribution of blame and trust
as it relates to HRT in dynamic and uncertain
task environments (Hsiung & Chiou, 2019).

Higher levels of team trust in the explanation
and full conditions had a notable tradeoff in
terms of increased perceived workload. Perhaps
having to read and understand the additional text

of'the robot explanations contributes to the overall
perceived workload, and it is possible that with
additional communication comes additional
cognitive overhead. At the same time, the baseline
condition had the highest workload despite en-
joying the least amount of communication—
a consequence of having to figure out most of
the task elements on your own without the team
benefits that come with increased communication.
Yet, trust in the robot teammate was only sig-
nificantly lower in the baseline condition relative
to the other conditions. The baseline condition
was also a more extreme condition in which
participants had access to limited robot in-
formation; these limitations left abnormal robot
behavior unexplained, reinforcing lower trust in
the HRT as they progressed throughout the
missions and the interactive tasks.

Implications for Workload

In USAR missions, workload is another
critical factor that can hinder appropriate human
trust in HRTs (Khasawneh et al., 2019). USAR is
a notoriously high workload environment
characterized by human operator fatigue due to
the urgent and critical nature of the task envi-
ronment. This subsequently creates the potential
for fatigued operators to distrust and disuse
technology that cannot immediately demon-
strate reliability (Khasawneh et al., 2019). We
were able to see some of these same trends play
out within the human—robot teams in our study, in
that our conditions with lower workload generally
also had higher trust. When the robot encountered
a stoppage, it consequently had a negative impact
on the HRT’s SA score because it cut into the time
that the teams had to complete their SA-related
mission tasks. Thus, with the interactive tasks
contributing to a higher workload for the HRT,
compounded with being a potential barrier to
obtaining a higher SA score, we were able to see
that when technology requires additional work to
maintain, monitor, or operate, it is often associated
with distrust or mistrust. As a result, the increased
workload related to addressing complexities in the
environment may not only hinder trust de-
velopment in teams but also an HRT’s overall team
performance (Khasawneh et al., 2019). This
presents a challenge for designing and
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implementing future robots for complex and un-
certain task environments, especially without the
ability to provide responsive explanations.

Limitations and Future Research

Within our remote testbed, we used pre-
recorded missions. Prerecorded videos were
a tool that allowed us to simulate dynamic events
while keeping control over what information was
displayed to each participant. However, pre-
recorded videos also limited our study in terms of
being able to observe a greater variety of natu-
ralistic interactions between teammates. Pre-
recorded videos limited the involvement of the
participant with the robot’s task to relatively short
bursts within the designed interactive tasks, each
lasting 1 min long or less. Future studies could
extend our work by investigating human—robot
interactions with real-time teaming.

Conclusion

Human trust within HRTs benefits from readily
available, context-driven robot explanations or
transparency information (Wang et al., 2018).
Although our study demonstrated workload to be
higher in conditions with full explanation, HRTs
attained higher levels of SA and were more suc-
cessful at completing the task at hand than HRTs in
the control condition.

As expected in the baseline condition with lim-
ited robot transparency and explanation capabilities,
SA scores were the lowest. Therefore, HRTs with
robot teammates that are capable of providing
explanations that are responsive to their human
counterparts may not only improve human trust
but also improve SA. Furthermore, from our
study, we were able to see that robot explanations
also enable teammates to take on more active
roles that allow them to assist one another,
serving as a fundamental building block for
productive HRTs.
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