


interdependently toward a common goal. We

refer to this entity as an HRT. However, even

with the introduction of robot technology in

USAR environments, many USAR missions

rely on robots that have limited communication

abilities or are only capable of displaying simple

elements of robot status to the human operator.

Although robot status information is pertinent,

this type of communication does not require the

HRT to engage beyond the surface level, rele-

gating the human operator to more of a monitor

or a supervisor rather than a teammate, with

team interactions being limited to inquiring

about or working within the constraints of their

robot teammate.

The limited or non-existent communication

capabilities of USAR robots can therefore

stagnate the effectiveness of HRTs, resulting

in robots being viewed as tools in a dependent

relationship rather than as a teammate in an

interdependent relationship. This objectifica-

tion, while important under some decision

contexts such as appropriate calibration of

trust in a tool, could also impede the ability of

human counterparts to establish a basis for

trust and interactive team cognition with in-

creasingly capable robots. Trust and interactive

team cognition are essential components of ef-

fective teams (Cooke et al., 2013; Schaefer,

2016).

When it comes to integrating robots into

HRTs, there is a justifiable concern of using the

teaming lens rather than the tool lens due to the

inevitable nature of robot automation failures

(Honig & Oron-Gilad, 2021). Unexpected robot

failures—even when those failures could be

attributed to environmental factors rather than

technological factors—typically result in di-

minished human trust and can result in the robot

teammates being viewed as unpredictable or

unreliable. Robot failures of this nature shed

light on the need for solutions to address the

shortcomings of semi-autonomous robot team-

mates to better realize their potential as useful

teammates.

With this in mind, the purpose of this study

was to explore how robot explanation and

transparency affect human trust and situation

awareness within HRTs and to quantify the best

modes ofHRTcommunication within a simulated

USAR environment. We also address to what

extent team member roles promote SA.

Robot Transparency

SA can be categorized into three ordinal

levels: perception of elements within a given

environment, comprehension of the present

situation, and projection of the situation’s future

status (Endsley, 1995). These three levels con-

tain essential information relevant to the state of

a dynamic environment. To support trust, the

Chen et al. (2014) SA-based agent transparency

(SAT) model expresses that an agent needs to

convey transparent interaction through (1) in-

formation that captures an agent’s purpose,

process, and performance; (2) support of the

human’s understanding of the agent’s reasoning

process and constraints; and (3) information that

helps with projecting the agent’s expected future

state (Chen et al., 2014; Lee & See, 2004). The

SA-based agent transparency model also sup-

ports SA for the HRT.

Related studies have shown that high levels

of transparency support SA (Selkowitz et al.,

2016), assist in the proper calibration of trust in

a robot (Mercado et al., 2016; Selkowitz et al.,

2016), and lead to increased task performance of

an HRT. Inadequate transparency can lead to

mistrust or inappropriate levels of trust in the

automation when humans and agents interact

(Lewis et al., 2018). If trust is low, the human

teammate will underuse the assistance of their

robot teammate. For example, miscalibrated

trust that results in the improper use of auto-

mation can lead to failures of omission or

commission (Chen et al., 2014).

On the other hand, placing too much trust in

a robot teammate can result in over-reliance on

robots for tasks outside the robot’s design pa-

rameters, which can negatively impact trust

(Yagoda & Gillan, 2012). Proper use of trans-

parency may help counteract miscalibrated trust

within an HRT and subsequently improve HRT

performance (Selkowitz et al., 2016). Therefore,

an interface that provides a teammate with in-

formation pertaining to the three SAT levels is

expected to improve situation awareness, trust

calibration, and the overall performance of the

team.

2 nn n - Journal of Cognitive Engineering and Decision Making



Although high levels of transparency would

seemingly allow information to flow without

unnecessary delay in team communication, re-

search has shown that team interaction (i.e.,

communication and coordination) mediates the

appropriate transfer of information that supports

effective team performance (Cooke et al., 2013).

It is one thing to be aware of elements within

one’s environment, but without knowing how to

incorporate information within the environment,

it can be hard to decipher how to effectively use

said information. This is especially so in USAR,

in which the team is often juggling multiple

channels of information. This is where robot

transparency and robot explanations become

essential. However, clarity is needed on how to

properly balance the levels of transparency and

explanation that impact the human teammate’s

trust in their robot teammate.

Robot Explanations

Explanations are explicit communication that

provide a reason behind a decision or action

occurring relative to a counterpart’s under-

standing (Miller, 2019). Explanations may be

used to provide further context or justification

for a task or plan deviation. Robot-driven,

context-based explanations within HRTs have

been shown to improve trust (Wang et al., 2018).

Explanations are particularly useful in dy-

namic, interactive tasks to correct misalignment

of expectations and to support team cognition

(Cooke et al., 2013; Miller, 2019). Without

explanations, the robot will have limited ability

to serve in a responsive role; thus, serving more

like a tool rather than a teammate (Chiou & Lee,

2021). Although the use of explanations can be

used to improve transparency in an HRT, ex-

planations and transparency are separate concepts.

In decision support systems, transparency is more

often conveyed through real-time information-

exchange modalities (e.g., live status indicators)

while explanations are considered retrospective,

contrastive, and responsive reasoning frequently

conveyed through verbal or text-based commu-

nication (Endsley, 1995; Miller, 2019).

However, the perennial challenge in de-

signing HRTs is to support the transfer of the

right information at the right time and to avoid

designs that contribute to information overload.

Whereas transparency displays are readily

available, they primarily present information

that has been predetermined as important. But,

in dynamic task environments, explanations

may even be perceived to be more useful than

immediately transparent information (Bartlett &

Cooke, 2015). If robot transparency is oper-

ationalized as a continuous state of information

about the robot teammate, including environ-

mental factors impacting the robot’s ability to

function, and robot explanation is operational-

ized as explicit ad hoc communication that

conveys contrastive information with respect to

a human teammate’s understanding, then the

explicit communication that draws attention to

critical information may be more productive

than that of more implicit or passive commu-

nication such as status indicators (Shah &

Breazeal, 2010).

Our previous HRT research focused on dif-

ferent robot explanation strategies and found

that moderate levels of proactive information

updates, including explanations, were positively

related to team effectiveness in a simulated

USAR environment (Chiou et al., 2021). Insights

from this previous study suggest that when rel-

evant information is conveyed proactively, hu-

man teammates are better able to focus on the task

at hand, improving individual and overall team

performance (Chiou et al., 2021). Thus, the

current study focuses on investigating the line

between too much communication and robot

explanations and reduced communication and

robot explanations in a similar task environment.

The current study also attempts to determine the

appropriate balance of information conveyed to

a human operator through explanation and

transparency.

Trust in the Robot

In considering the development of an effec-

tive HRT, the implementation of robot trans-

parency and robot explanation is important for

trust. Trust can be defined as a willingness to be

vulnerable based on the expectations of the

behavior of another (Rousseau et al., 1998).

Increasingly autonomous robots may need hu-

mans to place higher trust in them, due to the
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inability of humans to fully monitor all aspects

of the robot in action. Because trust often requires

a sense of mutual understanding, this suggests

that team communication that contributes to this

sense of mutual understanding, including trans-

parency and explanation, is critical for both trust

as well as teaming (Edmonds et al., 2019).

One concern with respect to increasing trust

with increasingly autonomous robots is that

human operators may be more keen to attribute

blame to their robot teammate when unexpected

errors within the team occur (Lyons, 2013). This

mindset can prevail even when transparency is

used to convey the inner workings of the robot

teammate. To overcome the conflation between

robot and human teammates’ responsibility

within an HRT, it is important to explicitly make

human operators aware of their responsibility

within the team dynamics (Lyons, 2013).

As of this writing, robots in USAR are still

predominantly used or viewed as assistive tools,

even when traversing environments deemed too

dangerous for human responders (Greenwood

et al., 2020). This is because the promised or

envisioned autonomous robot capabilities are

not yet deployable in real-world USAR settings.

Yet, even with robots originally being viewed as

tools, human teammates often attribute re-

sponsibility to the robot, especially when re-

sponsibility is an explicit capability of the robot

(Yagoda & Gillan, 2012). Human perception of

robot teammates relies heavily on their associ-

ated mental models of how the robot commu-

nicates (Phillips et al., 2011). Meaning if the

human teammate views the robot as being ca-

pable of communicating ongoing errors, there

may also be a false preconception that the robot

teammate is capable of identifying how to ad-

dress said errors, even when the robot’s capa-

bilities have been explicitly outlined beforehand

(Phillips et. al, 2011).

With this in mind, establishing trust while

maintaining a sense of responsibility may come

to depend on the means for maintaining SA

between the human and robot teammates. Even

with unexpected events, robots need to be rec-

ognized as a valuable asset, while avoiding

contributing to a human’s absolution of re-

sponsibility during a task (Lyons, 2013). By

providing the human teammate with appropriate

levels of SA, their role can be explicitly outlined

to further instill what they are responsible for

within the HRT, in order to find success as

a team. Therefore, to support SA, trust, and

perceived responsibility, we posit that the robot

must be capable of conveying its status clearly

and succinctly (e.g., transparently).

But the question remains: How to implement

robot transparency and robot explanations to

effectively support human–robot trust and HRT

effectiveness? To answer this question, we im-

plemented varying levels of robot transparency

and robot explanation as four conditions. The

intent of the study was to understand the role and

best modes of (1) robot explanation and (2)

robot transparency in support of trust, situation

awareness, and perceived workload to determine

the appropriate levels of team communication.

Assuming a teaming configuration with a semi-

autonomous robot, we also wanted to explore (3)

the role of perceived workload on trust in the

robot teammate. We hypothesize that SAwill be

positively impacted by information availability

for both transparency and explanation. Sec-

ondly, we hypothesize that trust will increase

with more frequent robot explanations. Thirdly,

we hypothesize that trust will be negatively

affected as the human teammates’ workload

increases.

SIMULATED Minecraft Urban Search and

Rescue Study

Virtual Task Environment

To explore the effects of different modes of

robot transparency and robot explanations in an

HRT, our study team designed and deployed

a virtual and remotely operated testbed for

a USAR mission context. The testbed interface

used prerecorded Minecraft mission videos (as

seen in Figure 1) that were shown to the human

operator, leveraging the Wizard-of-Oz (WoZ)

method (Bradley et al., 2009). The testbed in-

terface included an embedded map and status

indicators that varied based on condition. These

Minecraft videos were then paused by an ex-

perimenter throughout the mission, according to

a mission script that was not known to partic-

ipants, conveying “live” stoppages involving the

robot teammate.
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An administrative application (Figure 2) was

custom-built for this study and used to stop and

start the previously recorded Minecraft video,

play sounds associated with implemented in-

teractive tasks (robot disruptions), and to display

a live timer countdown and the participant’s

mission points. Each mission had a fixed timer

displayed to participants to count down the al-

lotted mission time. In the midst of COVID-19,

this entirely virtual testbed of digital tools en-

abled the experimenter team to smoothly run the

study in a virtual setting with consistency and

without risking the health of participants or

experimenters.

Inclusion of Situation Awareness

Within Testbed

To answer our research questions regard-

ing HRT communication, it was important to

incorporate all three levels of SA into the ex-

perimental environment because our assess-

ment of team effectiveness (i.e., team performance)

was dependent on our measures of SA (i.e.,

made equivalent). Therefore, as part of our

study design, we developed a complex task

environment with dynamic scenarios and tools

that would involve the three levels of SA.

We describe below how these levels were

operationalized within the simulated HRT task

environment.

Level one SA (perception) focuses on how

elements within an environment are discerned.

To actualize this first level, disaster victims were

presented to participants in the task environment

in three colors: red, blue, and yellow. The var-

iation in victim color was to assess if participants

were capable of recognizing the correct in-

formation within their environment (note that

color-blind participants were excluded from the

study). Also, the inclusion of environmental

changes (fires, collapses, and openings) enabled

the need for participants to perceive the attrib-

utes associated with elements in the simulated

environment (Endsley, 1995). Identifying en-

vironmental changes was pertinent to the suc-

cess of creating a useful map for rescue after the

search was complete.

Level two SA (comprehension) was im-

plemented through the incorporation of a map

(dynamic and static; dependent on condition; see

Figure 2) and the interactive tasks (described in

more detail in Methods). The combination of

these two components within the missions re-

quired participants to understand the associated

significance with ongoing events and objects

within the intended environment (Endsley, 1995).

Figure 1. Participant view: Minecraft simulation via Zoom (Wong et al., 2021).
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The inclusion of the map gave participants

knowledge related to the robot’s location and

intended route of travel by the robot. The in-

teractive task required participants to use their

knowledge from ongoing events and not only just

notice but also understand that something about

their robot teammate required their attention.

Lastly, level three SA (projection) is associ-

ated with an adequate forecast of future actions

based on elements within your environment

(Endsley, 1995). By tasking participants with

finding solutions for the interactive tasks, we

were able to gauge participants’ ability to use

varying levels of robot transparency (displayed

through status indicators) and robot explanation

in conjunction with elements within their

environment (e.g., fire blocking the route) to

then address the ongoing issue by identifying

a solution. Through the interactive tasks, we

wanted participants to use the various modes of

transparency and robot explanation capabilities

to identify the appropriate next steps in the event

of robot malfunction or unexpected event.

A baseline condition was also implemented

to represent an HRT task environment that

supported level one SA only. The robot was

instructed to only provide location-based in-

formation to the participant (see Table 1, Ex-

perimental Procedure for more details). In

contrast, the transparency and explanation

conditions were designed to support levels two

and three of the Chen SAT model. Within the

Figure 2. An administrative application, moderator control panel (Wong et al., 2021).
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transparency-only condition, battery status,

a dynamic map with preplanned labeled routes,

and the reroute icon indicators provided rea-

soning for certain actions and future status of the

robot. Within the explanation-only condition,

the robot was allowed to answer questions

pertaining to the mission and robot status.

Methods

The following sections will discuss the par-

ticipant sample, experimental procedure, study

design, and various components of the mission

task that study participants faced across two

mission sessions. During the missions, partic-

ipants were expected to work as a team with

a virtual robot in a partially collapsed building.

Participants were responsible for working with

their robot teammate to locate and identify

potential victims, identify and locate hazardous

environmental changes, and to assist the robot

during specific interactive tasks which were

designed into the simulated environment (see

Interactive Tasks and Mission Success section).

Participants and Power Analysis

An a priori power analysis was conducted

using G�Power3 (Faul et al., 2007) to test the

difference between the means of 4-group by 2-

mission using an F-test, a medium effect size

(η2p = .06), and an alpha of .05. According to the

results, a total sample of 48 participants with

four equal-sized groups of n = 12 is required to

achieve a power of .80. We also considered that

there may be issues during data collection, and

we increased the sample size.

Participants signed up to participate in this study

via Signup Genius, and they were recruited through

Arizona State University Slack channels, which

include faculty, staff, students, and other commu-

nitymembers with an@asu.edu email address. The

study took approximately 1-hour and 15-min, and

participants were randomly assigned to one of four

conditions (full, explanation-only, transparency-

only, and baseline—described in more detail in

the next section) following informed consent.

Experimental Procedure

To complete the USAR mission in the virtual

Minecraft environment, participants were in-

formed that they were a part of an HRT search

team that was responsible for generating a useful

map for the rescue team to be able to save

victims trapped inside. The goal of the mission

and various task roles involved were commu-

nicated to participants during a study onboard-

ing process and reinforced during a one-mission

training walk through (see Table 2 for more

information). The Minecraft missions and walk-

through tutorial were facilitated by Zoom and

a three-person team of researchers executing the

“live” events. Next, participants completed two

actual missions with the robot teammate in

Minecraft with the same research team, before

completing questionnaires capturing trust, de-

mographic information, and the NASA-Task

Load Index (TLX; Hart & Staveland, 1988).

Study Design

In this study, we focused on testing four

different conditions, which we describe as full,

explanation-only, transparency-only, and base-

line. In essence, robot explanation and robot

transparency were implemented at varying levels

(see Table 1).

Based on the condition, participants were

responsible for using the available robot trans-

parency and robot explanation to assist their

robot teammate (see Table 2).

To support sustained task engagement and

the collection of high-quality interaction and

Table 1. Experimental Conditions: Levels of Explanation and Transparency.

Condition Level of available explanation Level of available transparency

Full Full explanation Dynamic map and status indicators
Transparency-only Limited to location-only questions Dynamic map and status indicators
Explanation-only Full explanation Static map only
Baseline Limited to location-only questions Static map only
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communication data, participants completed two

missions with varying levels of workload (i.e.,

number of victims, environmental changes, and

interactive tasks the human operator had to

face). The first mission had a lower workload

(16 victims to identify, 2 environmental

changes, and 2 interactive tasks), and the second

mission had a higher workload (24 victims to

identify, 8 environmental changes, and 6 in-

teractive tasks). Increasing workload between

missions allowed us to study the effect of in-

creased workload on trust within the HRT.

Team Roles

Mission success was designed to require

active participation from both the robot and

human teammates. The role of the robot was to

physically search the building room by room,

and the role of the human was to watch the

“live” feed from their robot’s camera. To

complete the mission, participants needed to

report different types and locations of victims

and environmental changes. Two team aids were

involved to facilitate the mission; an Incident

Commander was responsible for recording

identified victims and environmental changes

communicated by participants via Zoom text

chat and providing recommendations in the

event of an unexpected stoppage. If necessary,

a Mechanic was responsible for repairing the

robot teammate based on the Incident

Commander’s recommendation in the event of

an unexpected stoppage, only after participants

identified the correct reason as part of the in-

teractive task. The robot and Incident Com-

mander were played by experimenters who

followed predetermined scripts to communicate

with participants via Zoom’s text chat feature,

based on participant responses. The Mechanic

interactions were preprogrammed into the video

recording.

Interactive Tasks and Mission Success

Interactive tasks (Table 3) were incorporated

to encourage participants to be more active in

accomplishing the team mission and responsible

for reporting the robot’s performance status,

thereby encouraging a sense of team in-

terdependence. By having each team member

rely on one another for the retrieval of relevant

information that contributes to the overarching

search and rescue goal furthered the need for

effective team communication. During the in-

teractive tasks, participants needed to gather

knowledge from their perceived environment,

use it to comprehend the situation, and project

the future state of the robot to assist in the team’s

progress throughout the missions.

Mission success relied on how efficiently

HRTs progressed through the interactive tasks.

At certain points throughout the missions, robot

stoppages would occur and require direct as-

sistance from the human for the robot to move

forward in its task. Robot stoppages were caused

by pausing the prerecorded video representing

the robot’s camera view as it traversed the

partially collapsed building, so that it would

appear as if the robot could not move. Once

participants noticed their robot teammate had

stopped, they would need to use the available

levels of robot transparency (check the status

indicators) and robot explanation capabilities

(address the robot via text chat) to identify the

issue to the Incident Commander.

Table 2. Experimental Sequence of Events and Components.

Mission Elements Interactive tasks (reasons)

Task training
(5 min 30 s)

Victims: 7; environmental
changes: 2; duration: 5 min 30 s

1 robot stoppage (stuck)

Mission 1
(14 min)

Victims: 16; environmental
changes: 2; duration: 14 min

2 robot stoppage (stuck)

Mission 2
(21 min)

Victims: 24; environmental
changes: 8; duration: 21 min

2 robot stoppage (overheat, stuck, gas leak,
unexplainable robot malfunction, battery, and
robot vision impairment)
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Participants were informed during the on-

boarding process that if the robot happened to

incur an unexpected event, they would be unable

to continue the mission until they correctly

identified the issue and received a recommen-

dation from the Incident Commander. However,

in the event that participants were unable to

identify the correct issue, the Incident Com-

mander would still provide a recommendation

after a one-minute time limit had passed, ef-

fectively releasing them from the task. Although

this one-minute time limit could potentially

result in a performance floor effect in terms of

time to complete the mission, it was more rel-

evant for our research objective to eventually

allow all participants to get through as much of

the mission as possible, even if they happened to

be really poor at troubleshooting the issue with

Table 3. Interactive Tasks and Requirements.

Interactive task What happens
Status indicator
operation

Correct participant
response

Incident commander
response

Stuck Robot becomes
stuck in
doorway or
opening

Stuck status
indicator turns
yellow while
robot is stuck

Incident commander
or IC robot is stuck

The robot should
attempt to free itself
by clearing a path and
wiggling out of the
opening

Low battery Robot begins
moving slow/
choppy due to
diminished
battery level

Battery changes
from green to red
once it reaches
critical condition

Incident commander
or IC robot
battery is low

I would recommend the
robot to reroute and
find an outlet. It looks
like there is an outlet
at the top of the right
hallway

Overheating Robot encounters
fire attempt to
avoid and then
stops moving

Internal
temperature
increases from 68
to 100

Incident commander
or IC the robot is
overheating

I would recommend the
robot to reroute to
the mechanic before
severely damaging
itself

Gas leak Limited to
location-only
questions

Gas leak status
indicator turns
yellow while gas
is detected

Incident commander
or IC the robot has
detected a gas
leak

I would recommend the
robot to reroute and
search the rooms with
gas first in case there
are still any victims
alive. Victims in those
rooms are more likely
to be in a critical
condition

Robot
malfunctions

Camera begins to
spin around and
reaches a stop
facing the
ceiling

All indicators light
up yellow

Incident commander
or IC the robot is
malfunctioning

I would recommend the
robot reroute to the
mechanic to fix any
malfunctions

Loss camera
signal

Screen becomes
static

No status indicator
changes

Incident commander
or IC camera
signal is lost

Themechanic can fix the
loss of camera signal
remotely within 15 s.
In the meantime, I
would recommend
the robot reroute and
go around
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the robot. (The goals of this study are less fo-

cused on traditional production measures of

performance like time to complete the mission

and more on team effectiveness measures like

situation awareness, trust, communication, and

workload). It was assumed that the countdown

timer fixed in the upper left-hand corner of the

participant’s screen created some time pressure

during these interactive tasks and simulated

a sense of urgency to correctly identify the issue

before the one-minute mark.

To further facilitate sustained attention and

active engagement during the interactive task

(i.e., to prevent participants from simply waiting

for the one-minute mark in the event they

happened to encounter the Incident Commander

releasing them from this task early on in a mis-

sion), participants could hear up to three different

sounds as an interactive task occurred: (1)

a ticking timer acknowledging an interactive task

is taking place, (2) a positive ding indicating the

participant has correctly identified the ongoing

issue, or (3) a negative buzzer indicating the

participant has incorrectly identified the ongoing

issue. All participants were able to enter as many

attempts as they desired (i.e., they had unlimited

guesses) within the allotted one-minute time

frame.

Explanations Through

Participant-Generated Questions

Communication. During the study on-

boarding process, participants were informed of

types of communication and possible questions

they could use when communicating with their

robot teammate. Participants were also in-

formed that certain functions may or may not be

available and that it “would be up to them to

figure out the best way to relay information.”

Depending on the participant’s condition, com-

munication availability would vary as follows,

see Table 4.

Communication Implementation. The pur-

pose of the explanation-only and full conditions

is to see how participants communicate with

their robot teammate given increasing levels of

complete robot responsiveness capabilities.

During the study onboarding process, partic-

ipants were shown examples of mission-related

questions they could ask their robot teammate.

Upon completing the onboarding process par-

ticipants were guided through a trainingmission,

where the experimenters walked participants

through the types of tasks that would be com-

pleted as part of the mission, including prac-

ticing communication with the robot and the

other team aids.

Robot explanations were primarily linked to

the designed interactive tasks and were initiated

by the human teammate’s questions. This pro-

vided the requisite communication data needed

to see where or what questions were typically

asked when there were robot deviations to

planned or expected behaviors. Participants

were not restricted in terms of how they should

ask the question as long as the question was

relevant to the mission and the randomly as-

signed condition and ended in a question mark.

If those criteria were met, then the robot would

respond depending on the condition.

In the event participants asked questions that

were not relevant to the mission, in conditions

with high explanation (full and explanation-

only) the robot teammates would inform their

human teammate they could not answer the

question asked (i.e., “I do not have the capabilities

to answer that”). In low-explanation conditions

(baseline and transparency-only), participants

would not receive a response from their robot

teammate. These instructions, framed as HRT

communication requirements due to the robot’s

limitations with respect to natural language pro-

cessing, served a dual purpose for analyzing the

resulting communication data (text chat tran-

scripts) in an unambiguous way.

Transparency Indicators

Within the low transparency conditions

(explanation-only and baseline), the level of

robot transparency was limited to a static map

that displayed the robot teammates’ preplanned

route. Participants in the high-transparency

conditions (full and transparency-only) had

access to a map that displayed a preplanned

route with a continuous live update of the robot’s

location and status indicators. The status in-

dicators were used to convey higher trans-

parency information that was not afforded in the
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baseline or explanation-only condition, see Table

5. Status indicators, operationalized as dynamic

icons (see Table 3), were specifically designed

and selected for the robot to communicate task-

relevant information to participants in an efficient

manner; during the onboarding process partic-

ipants were made aware of each status indicator’s

meaning.

Measures

Three dependent measures were used in this

study: SA, trust, and workload. Trust and work-

load questionnaires were given to participants after

Mission 1 and Mission 2. Two different trust in-

struments were used to measure trust in human–

robot interaction (HRI) and trust in teams

(described in more detail later).

Table 4. Types of Explanation Questions.

Condition Level of robot responsivity Example question

High explanation: Full and
explanation-only

Address all questions pertaining to the
mission that end in a question mark

1. Why are you stopped?
2. Are you stuck?
3. Is that a fire?
4. Can you reroute?

Low explanation:
Transparency-only and
baseline

Address only questions that refer to location
information and end in a question mark

1. Where are you?
2. What room are we in?
3. What is our location?

Table 5. Transparency Status Indicators With Explanation of Needed Action (Wong et al., 2021).

Indicator icon Description Action

Off On

Robot’s internal temperature Team need to attempt to find a new path to
avoid heat damager; if the robot is damaged,
the team will reroute to the mechanic

Robot’s operational status Additional information about robot status; no
additional action

Robot’s battery life When the battery is low, the teamwill reroute to
a charging station

Any environmental collapses are
impeding the robots route

Team will reroute to get to rooms blocked by
collapse to incident commander

The presence of a fire in the
environment

Team will reroute around the fire to continue
with the mission; teammate reports fire to
incident commander

Robot is unable to move due to
environmental conditions

Participants will identify the problem with the
robot teammate. The robot will then wiggle
to release itself

Robot is deviating from the
preplanned mission route

Additional information about robot status; no
additional action

Robot has encountered an
opening in the building
environment

Teamwill enter opening to ensure room is clear:
Teammate reports opening to incident
commander

Presence of gas leak in the
environment

Team will find a new route to search rooms with
gas leak safely and identify most critical
victims first
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Situation Awareness

A point system (see Table 6) was created and

implemented to assess participants’ overall sit-

uation awareness within the simulated USAR

environment. All conditions had three main

components that comprised our situation aware-

ness measure in this study: victims, environmental

changes (fire, collapses, and openings), and in-

teractive tasks; bonus points were awarded for

completing a mission early.

Identification of victims and environmental

changes contributed to the assessed situation

awareness in terms of perception, whereas ac-

knowledgment of interactive tasks, listed in Table 3,

contributed to the assessed comprehension-related

situation awareness. The point system was influ-

enced by two factors: level of SA and weighted

value for reproducing a useful map for the rescue

team based on our pilot studies. Participants were

made aware of the point system during the on-

boarding and training mission prior to the start of

Mission 1.

In developing our point system, identification

of victim type (i.e., color) was considered the

lowest level of difficulty among the tasks. One

point was equally awarded and taken away when

victims were correctly and incorrectly identified.

Points awarded to identifying environmental

changes varied based on correct and incorrect

identification. The number of awarded and de-

ducted points was based on the difficulty and the

importance of proper identification of the type of

environmental change to the overall mission (see

Table 6).

The interactive tasks were considered the

highest due to the level of task difficulty and

importance to the team’s success. There were

two essential parts to completing these in-

teractive tasks: acknowledgment and proper

identification of the robot stoppage.

Acknowledgment was a necessary component,

but not the entirety of the mission task. In the event

that participants acknowledged but did not correctly

identify the interactive task, this could negatively

affect the HRT, possibly resulting in running out of

time and not being able to finish the search.

SA scores were calculated for both Mission 1

(52 possible points) and Mission 2 (118 possible

points) separately. The sum of all participants’

SA scores was then calculated and divided by

the total possible points and then converted to

a decimal form.

Trust in the Robot Teammate

To measure trust in the robot teammate,

Schaefer’s (2016) Trust Perception Scale-HRI

was included as part of the study questionnaire.

We used an adapted version of the recommended

14 item Subject Matter Experts (SMEs) sub-

scale. Of the 14 items we used 12 of the

questions, omitting two that were not relevant to

our study:

1. What percent of the time did the robot

teammate function successfully?

2. What percent of the time did the robot

teammate act consistently?

3. What percent of the time was the robot

teammate reliable?

4. What percent of the time was the robot

teammate predictable?

5. What percent of the time was the robot

teammate dependable?

6. What percent of the time did the robot

teammate follow directions?

7. What percent of the time did the robot

teammate meet the needs of the mission?

8. What percent of the time did the robot

teammate perform exactly as instructed?

9. What percent of the time did the robot

teammate make errors?

10. What percent of the time did the robot

teammate provide appropriate information?

11. What percent of the time was the robot

teammate unresponsive?

12. What percent of the time did the robot

teammate malfunction?

We also changed the tense of the questions

from future to past tense and changed “robot” to

Table 6. Situation Awareness Scoring System.

Description Correct Incorrect

Victim 2+ 2-
Environmental change 5+ 2-
Interactive task acknowledged 3+ 3-
Interactive task identification 2+ 2-
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“robot teammate.” We used a sliding bar re-

sponse scale that ranged from 0% to 100%,

rather than having a set selection of potential

responses. This permitted participants to have

finer-grained control over their response to the

question items.

Participants’ trust in robot scores was cal-

culated for both missions by finding the sum of

positive language questions asked on the

questionnaire (e.g., “What percent of the time

did the robot teammate act consistently?”) and

then subtracting that total from the sum of

negative language-based questions (e.g., “What

percent of the time did the robot teammate make

errors?”).

Trust in a Team

To measure trust in a team, we used six

items from Costa and Anderson’s (2009)

21-item trust questionnaire to assess trust

within teammates regardless of the USAR task

context.

1. In this team, we can rely on each other.

2. In this team, we have complete confidence in

each other’s ability to perform tasks.

3. In this team, we do not hesitate to help each

other when in need.

4. In this team, we work in a climate of co-

operation (i.e., environment in which you work

together).

5. In this team, some of us hold back relevant

information.

6. In this team, we minimize what we tell about

ourselves.

For the purposes of this study, we used

questions from three of the four original cat-

egories: propensity to trust, perceived trust-

worthiness, and cooperative behaviors. The

six questions chosen to represent those three

categories were considered the most applica-

ble to both a human and an automated team-

mate and avoided redundancy with the

questions from the trust in the robot teammate

questionnaire.

Participant’s trust in a team was calculated for

both missions by finding the sum of positively

valanced question items (e.g., “In this team, we

can rely on each other”) and then subtracting the

total from the sum of the negatively valanced

items (e.g., “In this team, some of us hold back

relevant information”).

Workload

NASA-TLX (Hart & Staveland, 1988) as-

sessed participants’ perception of workload

during both missions. Workload scores were

calculated by totaling the sum of the question-

naire responses for both missions.

Data Analysis and Results

The first split-plot analysis of variance

(ANOVA) addresses how situation awareness

differed across conditions andmissions. Although

there were significant condition, F (3, 57) = 5.75,

p = .002, and mission main effects, F (1, 57) =

12.04, p = .001, condition by mission interaction

effect was not significant,F (3, 57) = .49, p= .693.

According to the significant conditionmain effect,

teams in the baseline condition had significantly

lower SA scores than the other conditions

(transparency-only: p = .027, explanation-only:

p = .001, and full: p = .001), whereas the other

conditions did not differ on the SA score, p > .050,

see Figure 3(a). According to the significant

mission main effect, SA scores significantly de-

creased from Mission 1 to Mission 2, p = .001,

across all conditions, likely due to the high

workload in Mission 2.

The second split-plot ANOVA addresses how

trust in the robot differed across conditions and

missions. Although there was a significant

mission main effect, F (1, 57) = 312, p < .0001,

and the condition main effect, F (3, 57) = 2.05,

p = .117, condition by mission interaction effect

was not statistically significant, F (3, 57) = 1.01,

p = .394. According to the significant mission

main effect, the operator’s trust in the robot

significantly decreased from Mission 1 to

Mission 2, p < .0001, likely due to the increase in

interactive tasks with the robot in Mission 2

(Figure 4).

The next split-plot ANOVA addresses how

team trust differed across conditions and mis-

sions. Although there was a significant condi-

tion, F (3, 57) = 3.37, p = .025, and mission main

effects, F (1, 57) = 30.4, p < .0001, the condition

by mission interaction effect was not significant,
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F (3, 57) = .35, p = .788. According to the

significant condition main effect, teams in the

baseline condition had significantly lower team

trust than other conditions (transparency-only:

p = .038, explanation-only: p = .011, and full:

p = .007), whereas the other conditions did not

differ on the team trust score, p > .050, see

Figure 5(a). According to the significant mission

main effect, team trust in the robot significantly

decreased from Mission 1 to Mission 2, p <

.0001, likely due to the robot’s abnormal be-

haviors in Mission 2, see Figure 5.

The final split-plot ANOVA addresses how

the operator’s perceived workload differed

across conditions and missions. Although

there were significant condition, F (3, 57) =

3.54, p = .020, and mission main effects, F (1,

57) = 21.4, p < .0001, the condition by mission

interaction effect was not significant, F (3,

57) = 1.88, p = .143. According to the sig-

nificant condition main effect, teams in

baseline condition had significantly higher

perceived workload than transparency-only,

p = .034, and full conditions, p = .003, but

comparable amounts in the explanation-only

condition, p = .149. All other conditions were

not different in terms of perceived workload,

p > .050, see Figure 6(a). According to the

significant mission main effect, participant

perceived workload significantly increased

from Mission 1 to Mission 2, p < .0001,

possibly due to the robot’s abnormal behaviors

during interactive tasks and environmental

changes in Mission 2, see Figure 6.

Discussion

Implications for Robot Transparency

and Explanations

This study sought to understand which modes

of robot explanation and transparency best

support trust, situation awareness, and perceived

workload and also explored how participants’

perceived workload impacted trust in the robot

teammate. Results from this study support hy-

pothesis one; SAwas positively impacted by the

availability of information in both transparency

and explanation conditions. The results also

supported hypothesis three, that increasing

workload can negatively affect trust. Although

hypothesis two, that trust will increase with more

frequent robot explanations, was not directly

supported, there was some support showing that

Figure 3. Mean SA across (a) conditions and (b) missions (error bars are 95% confidence intervals).

Figure 4. Mean trust in the robot across missions

(error bars are 95% confidence intervals).

14 nn n - Journal of Cognitive Engineering and Decision Making



information, including both transparency and

explanations, improved trust in the robot.

Previous research would suggest that the most

successful conditions would be those containing

robot transparency (Lakhmani et al., 2016).

However, in the transparency-only condition, we

noticed HRTs did not have as high of an SA score

when in comparison to HRTs in condition with

more detailed explanations. Due to the way

transparency was operationalized across con-

ditions, and the use of robot explanations that

provided reasoning for unplanned robot behav-

iors, human teammates were able to have in-

creased levels of trust, higher levels of SA, and

more successful missions. By using a point system

to measure SAwithin the USAR environment, we

were able to evaluate team performance as

individual components needed to complete the

overall mission goal.

Because our point system for measuring SA

was developed using face validity for addressing

our research questions, further research should

be conducted to validate it prior to broader

adoption. That being said, our SA measure en-

abled us to assess whether the elements of

transparency (map and status indicators) were

effective. At the same time, our results indicate

that conditions reliant on this transparency in-

formation alone, operationalized as status in-

dicators, did not result in HRTs with the highest

SA. The full condition (full transparency and

explanation) showed that robot transparency

through status indicators and a continuously up-

dated map had little to no impact when compared

Figure 5. Mean team trust across (a) conditions and (b) missions (error bars are 95% confidence intervals).

Figure 6. Mean workload across (a) conditions and (b) missions (error bars are 95% confidence intervals).
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to the explanation-only condition (full explana-

tion and limited transparency). Although this was

due to how we designed the study and the sub-

sequent point system, it essentially demonstrates

that context-based robot explanations in team task

environments characterized by uncertainty may

be essential to improving SA. Robot explanations

provided human counterparts with the necessary

information for quicker decision-making in the

interactive tasks, enabling human teammates to be

more active members within the HRT and better

able to support team effectiveness.

Implications for Trust of the Robot

The purpose of the interactive tasks was not

only to simulate the type of dynamic and un-

certain environment that characterizes USAR

but also to encourage a more active role for study

participants as well as interactivity within the

HRT. In previous pilot studies, we found that

participants tended to take on more passive roles

in this task environment when left to their own

devices, initiating fewer communication threads

than expected and that would be required within

a more dynamic team task (Chiou et al., 2021).

Through the interactive tasks, we were able to

see how these unexpected events—and the ro-

bots’ ability to handle these events with respect

to their human teammate—affected trust within

an HRT and the overall effect on human trust in

their robot teammate.

The increase in interactive tasks from Mis-

sion 1 (two interactive tasks) to Mission 2 (six

interactive tasks) led to an increase in perceived

workload for human teammates, as well as

a decrease in team trust with the robot. It is

possible that the combination of increased

perceived workload as well as the increase in

number of interactive tasks was attributed to the

robot performing poorly at its task rather than

due to factors in the environment or other

causes. Future studies would benefit from ex-

plicitly measuring attribution of blame and trust

as it relates to HRT in dynamic and uncertain

task environments (Hsiung & Chiou, 2019).

Higher levels of team trust in the explanation

and full conditions had a notable tradeoff in

terms of increased perceived workload. Perhaps

having to read and understand the additional text

of the robot explanations contributes to the overall

perceived workload, and it is possible that with

additional communication comes additional

cognitive overhead. At the same time, the baseline

condition had the highest workload despite en-

joying the least amount of communication—

a consequence of having to figure out most of

the task elements on your own without the team

benefits that comewith increased communication.

Yet, trust in the robot teammate was only sig-

nificantly lower in the baseline condition relative

to the other conditions. The baseline condition

was also a more extreme condition in which

participants had access to limited robot in-

formation; these limitations left abnormal robot

behavior unexplained, reinforcing lower trust in

the HRT as they progressed throughout the

missions and the interactive tasks.

Implications for Workload

In USAR missions, workload is another

critical factor that can hinder appropriate human

trust in HRTs (Khasawneh et al., 2019). USAR is

a notoriously high workload environment

characterized by human operator fatigue due to

the urgent and critical nature of the task envi-

ronment. This subsequently creates the potential

for fatigued operators to distrust and disuse

technology that cannot immediately demon-

strate reliability (Khasawneh et al., 2019). We

were able to see some of these same trends play

out within the human–robot teams in our study, in

that our conditions with lower workload generally

also had higher trust. When the robot encountered

a stoppage, it consequently had a negative impact

on the HRT’s SA score because it cut into the time

that the teams had to complete their SA-related

mission tasks. Thus, with the interactive tasks

contributing to a higher workload for the HRT,

compounded with being a potential barrier to

obtaining a higher SA score, we were able to see

that when technology requires additional work to

maintain, monitor, or operate, it is often associated

with distrust or mistrust. As a result, the increased

workload related to addressing complexities in the

environment may not only hinder trust de-

velopment in teams but also anHRT’s overall team

performance (Khasawneh et al., 2019). This

presents a challenge for designing and
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implementing future robots for complex and un-

certain task environments, especially without the

ability to provide responsive explanations.

Limitations and Future Research

Within our remote testbed, we used pre-

recorded missions. Prerecorded videos were

a tool that allowed us to simulate dynamic events

while keeping control over what information was

displayed to each participant. However, pre-

recorded videos also limited our study in terms of

being able to observe a greater variety of natu-

ralistic interactions between teammates. Pre-

recorded videos limited the involvement of the

participant with the robot’s task to relatively short

bursts within the designed interactive tasks, each

lasting 1 min long or less. Future studies could

extend our work by investigating human–robot

interactions with real-time teaming.

Conclusion

Human trust within HRTs benefits from readily

available, context-driven robot explanations or

transparency information (Wang et al., 2018).

Although our study demonstrated workload to be

higher in conditions with full explanation, HRTs

attained higher levels of SA and were more suc-

cessful at completing the task at hand thanHRTs in

the control condition.

As expected in the baseline condition with lim-

ited robot transparency and explanation capabilities,

SA scores were the lowest. Therefore, HRTs with

robot teammates that are capable of providing

explanations that are responsive to their human

counterparts may not only improve human trust

but also improve SA. Furthermore, from our

study, we were able to see that robot explanations

also enable teammates to take on more active

roles that allow them to assist one another,

serving as a fundamental building block for

productive HRTs.
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