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ABSTRACT

Teams composed of human and machine members operating in complex task environments must
effectively interact in response to information flow while adapting to environmental changes. This
study investigates how interpersonal coordination dynamics between team members are associ-
ated with team performance and shared situation awareness in a simulated urban search and res-
cue (USAR) task. More specifically, this study investigates (1) how communication recurrence
affected and reflected coordination dynamics between a USAR robot and human operator when
they used different communication strategies, and (2) how these dynamic characteristics of the
human–robot interpersonal coordination were associated with the team performance and shared
situation awareness. The USAR interpersonal coordination dynamics were systematically character-
ized using discrete recurrence quantification analysis. Results from this study indicate that (1)
teams demonstrating more flexibility in their coordination dynamics were more adaptive to
changes in the task environment, and (2) while robot explanations help to improve shared situ-
ation awareness, revisiting the same communication pattern (i.e., routine coordination) was associ-
ated with better team performance, but did not improve shared situation awareness.

1. Introduction

With advancements in data mining and machine learning
algorithms, machines (i.e., Artificial Intelligence -AI, syn-
thetic teammates, automated agents, and robots) are poised
to revolutionize work in almost every industry. Various
examples indicate that AI-enabled machines are becoming
nearly universally important to command and control mis-
sions. For instance, integrated wearable electronics with
large-scale machine control can allow warfighters access to
innumerable possible contingencies in critical situations,
such as the “F-35 Joint Strike Fighter”—a fighter plane and
flying sensor in one—which condenses vast amounts of data
from the environment into visualizations in the pilot’s hel-
met (Pellerin, 2015). High-impact applications can also be
found in healthcare and space exploration. For example, to
protect healthcare workers from the coronavirus pandemic
(COVID-19), robots have been deployed to help care for
patients at hospitals in Italy (Romero, 2020) and team with
health providers to deliver telehealth services in China
(Hornyak, 2020). The extent to which machines can aid
human endeavors over great geospatial and temporal distan-
ces is perhaps best exemplified by the Perseverance rover
and other robots distributed on Mars (mars.nasa.gov, n.d.).

In the context of increasingly capable machines, recent
work has used a team science lens to gain insight into how
machines can be designed to succeed in more dynamic task
domains. This team science lens acknowledges the strengths

of teams, the emergent qualities of teaming, and the support

for interdependencies needed for effective teaming.

Therefore, the team science lens effectively considers how

machines functioning more like active team members rather

than passive tools would need to be designed. The current

study focuses on human-machine teams (HMTs) in the

dynamic task context of urban search and rescue (USAR).

Previous work has demonstrated that in this context, com-

munication and coordination within HMTs is vital for

effective task and teamwork (Chiou et al., 2022; Demir

et al., 2017; Demir, Likens, et al., 2019; Demir, Amazeen,

et al., 2020; Demir, McNeese, et al., 2020; Johnson et al.,

2021; Kopp et al., 2022; Nalepka et al., 2021; Shah &

Breazeal, 2010).
In this study, we first define HMTs and explain interper-

sonal team communication and coordination in the context

of nonlinear dynamical systems (NDS). Then, we systematic-

ally analyze how effective teamwork can be achieved in

terms of communication (specifically robot explanations)

and coordination within HMTs. Finally, we discuss how our

findings can guide the design of future HMTs.

1.1. Human-machine teaming and teamwork

A team can be defined as two or more entities occupying

heterogeneous roles that work interdependently toward a

common goal or task (Cannon-Bowers et al., 1995); HMTs
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satisfy this definition while being comprised of humans and

interactive machines. HMTs are different from more trad-

itional configurations of humans and technology (e.g.,

supervisory control) in that machine team members need to

communicate and coordinate with human teammates

according to task interdependencies and may also be placed

in team structures in which machines have to “team” with

other machines on top of communicating and coordinating

with humans (O’Neill et al., 2022).
Before discussing the intricacies of HMTs as a process, it

is important to define two components of teaming as a pro-

cess: taskwork and teamwork. Taskwork refers to individual

responsibilities that do not require the participation of other

teammates, but must be executed well for the team’s goals

to be realized (Salas et al., 2008). On the other hand, team-

work refers to interdependent behaviors, such as social proc-

esses, enacted by multiple team members to achieve

common goals—it is essentially referring to the shared, goal-

oriented interactions among teammates (Marks et al., 2001).

Accordingly, a team’s success depends on its team member’s

skills, which contribute to the team processes involved in

accomplishing teamwork (Marks et al., 2001). Therefore, a

team member would need to be able to perform stable task-

work to contribute to teamwork, meeting with the needs of

other team members in the process. Consider, for instance,

a simple restaurant consisting of a server and a cook form-

ing a dyadic team. The server’s taskwork includes interacting

with customers and taking their orders, while the cook’s

individual-level task is to prepare food for the server to

bring to diners. Teamwork between the two refers to their

collective ability to achieve their shared goals, such as con-

sistently serving all customers high quality meals in a timely

manner. Their teamwork can be observed in the staff’s will-

ingness to negotiate the timing of new orders, including giv-

ing estimates about delayed orders if any, and relaying

customer feedback about served meals. In other words,

teamwork is often best represented by team members’ inter-

actions with one another (Cooke et al., 2013).
Although teamwork has been framed both as behavior

and as a collective cognitive process (Salas et al., 1995), it is

generally agreed upon that an essential process of teamwork

is team coordination (Brannick et al., 1995). As such, a

teammate whose singular role is to facilitate teamwork, such

as a communication control center operator, has to make

reliable decisions at an individual level (e.g., who should

receive a certain message, which messages must be filtered

out or modified) to ensure effective interactions

between teammates.
It is not unusual for taskwork and teamwork components

in complex team task environments to be at odds with each

other, particularly when it comes to the allocation of limited

resources (Chiou & Lee, 2016). The task of balancing the

two is a complex process. In all-human teams, this can be

mitigated by harnessing social intelligence and capability to

predict the needs, beliefs, and intentions of other team-

mates—abilities that machines are yet to have (Stowers

et al., 2021). Issues in prioritizing taskwork over teamwork

and vice versa are known to cause subpar HMT

performance compared to when the same machines and

humans are placed in purely machine or purely human

teams, respectively (OpenAI et al., 2019). This may partly be

due to machine shortcomings when interacting with human

teammates, which affect the latter’s cooperative behaviors

towards it and attitudes like trust (Chiou & Lee, 2016,

2021). Such limitations in machine-teaming capabilities may

cause disruptions in established taskwork, and teamwork

interdependencies may even lead to breakdowns in human-

machine coordination beyond repair, resulting in cata-

strophic disasters. An example of this is the Patriot Missile

incident where British and American confederates were shot

down in fratricide by the U.S. Army (Cummings, 2006).
One way to study coordination dynamics—including

breakdowns therein—is through looking at communication

data (e.g., instant messaging, transcripts from audio record-

ings), which has been used as real-time, non-obtrusive meas-

ures of team performance in the past (Gorman et al., 2012).

A benefit of using real-time data is that information loss

during post-processing of communication is minimized. For

example, nonlinear dynamical systems (NDS) analysis of

team communication data has been used to assess team situ-

ation awareness (TSA) in real-time (Grimm et al., 2018).

Recent work has also shown that it may be possible to use

real-time communication data as indirect online measures of

attitudes towards machine teammates, such as changes in

personifying and objectifying language indicating changes in

trust levels (Cohen et al., 2021). It is implicit, then, that

team performance as measured by the accomplishment of

teamwork goals may also be predicted in real-time by look-

ing at communication between teammates, which could be

the basis for novel interventions to aid maladaptive teams.

Rooted in this, the following section discusses interpersonal

communication and coordination.

1.2. Interpersonal communication and explanations

Interpersonal communication is an essential element of

team coordination (Cooke et al., 2013); it entails both the

quality of communicated content and “the sequencing of

messages in conversations and the sequencing of conversa-

tions into relationships” (Pearce, 1976, p. 17). Additionally,

interpersonal communication that is of analytical interest

within collaborative settings (a) is intentional, (b) is influ-

enced by psychological, technological, and environmental

factors, and (c) occurs only within certain relational con-

texts, i.e., there should be a common goal to achieve

(Gudykunst, 2000). Communicators apply their knowledge

of actions to construct output representations that reflect

their plans for accomplishing a team task. These representa-

tions are structured and consist of goals, ideas to be com-

municated, suitable language, and neural commands

required to produce the language (Cappella, 1987). One key

element of interpersonal communication that is structured

as such is the explanation.
Explanations are explicit communications that provide a

contrastive reason behind a decision or action occurring

relative to a teammate’s understanding and are often
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instantiated as responses to “why” questions (Miller, 2019).

Explanations should be clear, accurate, and explicit to

reduce task uncertainty, and should clarify the issue or

behaviors in question among the team members. Otherwise,

misunderstandings between teammates can arise, task uncer-

tainty and problems may continue, and in turn, adversely

affect situation awareness and performance (de Visser et al.,

2020). Explanations can also support building shared mental

models with robot teammates, preventing unexpected chal-

lenges, and improving timely adaptation to team task envi-

ronments (Miller, 2021). A previous study analyzing data

from the same experiment as this study discovered that a

moderate level of robot explanations contributed to better

shared situation awareness and team performance in a

dynamic task environment (Chiou et al., 2022). In the cur-

rent study, we focus on how varying levels of the quality of

robot explanations, can lead to different team coordin-

ation patterns.

1.3. Interpersonal coordination and nonlinear

dynamical systems

What team members say and how they say it seems to help

them develop a narrative for successful coordination (Arthur

et al., 2020), and in turn, effective teamwork (Demir, Likens,

et al., 2019). Coordination is defined as dependency man-

agement and can occur in biological, social, and physical

systems (Malone & Crowston, 1994). It can involve manag-

ing the components and processes of a system that change

over time (Butner et al., 2014), and can be observed on dif-

ferent levels and across substrates (Butler, 2011), such as

team communication (Louwerse et al., 2012) and physiology

(Likens et al., 2014; Palumbo et al., 2017). Relatedly, inter-

personal coordination refers to how behavior, physiology,

emotional, and cognitive states covary between individuals

over time (Wiltshire et al., 2020). Researchers have linked

communicative aspects of interpersonal coordination to

important constructs and outcomes in teamwork, such as

flow of the communication (Chanel et al., 2013; Demir,

Likens, et al., 2019; Gorman et al., 2016; Guastello &

Peressini, 2017; Wiltshire et al., 2018). Interpersonal coord-

ination is an essential measure of the dynamical systems

properties of teamwork, both in all-human teams (Gorman

et al., 2010; Guastello, 2010; Guastello & Guastello, 1998;

Likens et al., 2014; Ramos-Villagrasa et al., 2018; Schmidt &

Richardson, 2008; Wiltshire et al., 2020) and in HMTs

(Demir, Cooke, et al., 2018; Demir, McNeese, et al., 2018b;

Fiore & Wiltshire, 2016; Nalepka et al., 2021).
Teams can be described as continuously evolving dynam-

ical systems, such that team coordination has been charac-

terized using NDS methods (Gorman et al., 2010; Guastello,

2010). With NDS methods, it is also possible to characterize

team coordination dynamics between team members and

their task environment by using coordination of communi-

cation as an input (Demir, McNeese, et al., 2018a). In gen-

eral, an NDS is a system that continuously evolves through

its behavior, and its emergent behavior is the result of its

system components interacting over time (Thelen & Smith,

2007). In teams, specifically, many behavioral patterns

within the system can emerge, and transitions between pat-

terns are often sudden and nonlinear (Perone & Simmering,

2017). An NDS can behave in many ways, but all possible

behaviors fall within a multidimensional “state space.”

Suppose the system develops some repeated behavior pat-

terns. In that case, that means it favors a region of the state

space and is said to have moved into an “attractor state,”

which a system is likely to return to sometime after depart-

ing it (Spencer & Perone, 2008). Teamwork behaviors and

patterns can emerge as teammates coordinate with one

another, as each member sets out to fulfill their respective

roles while also synchronizing with other team members to

achieve their common goal. This leads to emergent team

behavior that is ideally robust, flexible, and fault-tolerant

over time and under routine or novel conditions

(Maes, 1993).
Many studies have examined all-human team coordin-

ation using NDS methods to identify how the dynamical

properties of team coordination relate to factors such as

team composition and various kinds of task perturbations

(Gorman et al., 2012; Gorman et al., 2010; Gorman et al.,

2012; Schmidt & Richardson, 2008; Wiltshire et al., 2018). A

commonly used NDS method in these studies is Recurrence

Quantification Analysis (RQA). RQA quantifies the number

and length of recurrent patternspresent using a state-space

trajectory in a dynamical system (Fusaroli & Tyl�en, 2016;

Gorman et al., 2012; Russell et al., 2012; Strang et al., 2014;

Marwan et al., 2007). Researchers have previously investi-

gated team coordination in the context of HMTs by using

RQA and its multivariate extensions (Demir, McNeese,

et al., 2018a, 2019, 2020; Gorman et al., 2020; Nalepka et al.,

2021). For instance, Demir, Likens, et al. (2019) showed that

HMTs should be “flexible” to adapt to dynamic task uncer-

tainty and also be “stable” to maintain performance (for

more elaboration regarding stability and flexibility, see

Demir, Likens, et al., 2019). Similar studies have also used

RQA to observe how calibrated coordination (i.e., adjusting

the coordination based on the task situation) relates to bet-

ter team performance (Demir, Cooke, et al., 2018; Demir,

McNeese, et al., 2019, 2020) and team situation awareness

(Nalepka et al., 2021). However, previous uses of RQA in

the literature have focused broadly on coordination between

the team members, but in this study, we specifically manipu-

late robot explanations to see how interpersonal coordin-

ation changes and relates to team effectiveness.
This study examines the association between HMT inter-

personal coordination dynamics, robot explanations, and

team effectiveness (i.e., performance and shared situation

awareness) in a USAR simulation. Therefore, there are two

research questions. First, we addressed how communication

recurrence affects and reflects interpersonal coordination

dynamics between the USAR robot and human operator

when using different levels of explanation. The second

research question we addressed is how these dynamic char-

acteristics of the human-robot teams were associated with

team effectiveness metrics (i.e., shared situation awareness

and team performance).
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2. Task environment and experimental design

2.1. Simulated minecraft task environment

A simulated USAR task environment (Gonzalez et al., 2005)

developed in Minecraft (version 1.11.2) and based on a pre-

vious microworld design (Bartlett & Cooke, 2015) was used

to collect team communication data. This testbed afforded

dynamic reconfigurations to the task environment (Lematta

et al., 2019), requiring teams to adapt to the environment

through text chat communication. The USAR task involved

two team members: a “robot” team member that autono-

mously searched a partially collapsed building and located

potential victims and a “navigator” who remotely monitored

and documented key information through the robot’s live

video feed. The “robot” was, in fact, a highly-trained

researcher controlling a first-person perspective virtual ava-

tar in Minecraft. A check-list used by the other researcher

to train the researcher who mimic the “robot,” and the

“robot” used script to send the messages in a timely manner

(Chiou et al., 2022; Demir et al., 2017). This makes use of

the “Wizard of Oz” (WoZ) paradigm popular in user-cen-

tered research (Kelley, 1983). Study participants were

assigned to the navigator role and were told to complete

two USAR missions with the autonomous robot. The navi-

gator was to document the location of victims on a pre-col-

lapsed floor map of the building and was also tasked with

documenting any changes to the map (Figure 1). The goal

was to complete a reconnaissance mission before sending in

another team to recover victims safely.

In addition to the shared video feed, the robot interacted

with the navigator via a text chat communication system.
Participants were not limited to what they could ask or say

to the robot through the text chat, but the robot was limited

to only providing scripted explanations that were relevant to

the task environment, and to respond to the participant

using a series of pre-scripted phrases. For example, in
response to questions that were not relevant to the task

environment, the robot would reply with, “Sorry, I am

unable to help you with that.” The robot was purposefully

designed not to have complete natural language abilities, so

the scripted responses ensured some control across study

conditions and believability that participants were indeed
interacting with a robotic entity.

2.2. Experimental design

This study investigates how interpersonal coordination

dynamics were related to team effectiveness metrics through
a secondary analysis of data collected for a study on robot

explanation strategies (Chiou et al., 2022). Four between-

subject conditions tested three robot explanations strategies

and one communication priming condition. In the Always

Explain condition, the robot explained all plan deviations,

and other explanations were provided when requested. In
the Explain If Asked condition, all explanations were pro-

vided only when requested. In Pull Prime, participants

received some training that prompted them to initiate asking

the robot questions; otherwise, this was the same as the

Figure 1. (a) A screen view of simulated Minecraft task environment, (b) team members’ location (the randomly assigned participant on the left and the WoZ robot
on the right), and (c) task sequence.
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Explain If Asked condition. In Never Explain, the robot only

acknowledged, but never fulfilled requests for explanations.

3. Methods

3.1. Participants

An a priori power analysis was conducted using G�Power3
(Faul et al., 2007) to test the difference between the means

of 4-conditions by 2-missions using an F-test, with a

medium effect size (g2p ¼ 0.06; Cohen, 1977), and an alpha

(/) of 0.05. According to the result, a total sample of 60

participants with four equal-sized groups of n¼ 15 was

required to achieve a power of 0.90. A total of 60 partici-

pants (Mage ¼ 22.48, SDage ¼ 7.21, Male¼ 42, Female¼ 18)

from Arizona State University and the surrounding campus

community participated in a 1.5-h session study (each par-

ticipant was compensated $15). All participants were fluent

in English, reported normal or corrected-to-normal hearing

and vision (e.g., were not color blind), and reported having

experience using a computer mouse and keyboard.

3.2. Procedure

Participants were tasked with completing a series of simu-

lated reconnaissance missions as part of a human-machine

team. The team’s goals were to identify and triage trapped

victims in a collapsed virtual building and annotate any

structural changes to the building resulting from the col-

lapse. After obtaining informed consent, each participant

engaged in a 1 h and 10-min session that included a training

session followed by two actual missions with a 20-min break

in between the two missions. The training session included

a 10-min voiced-over slide presentation that explained the

task, the robot’s role and capabilities, team goals and indi-

vidual goals, how to communicate with the robot, and how

performance would be scored. Following the slide presenta-

tion, participants took part in an additional 10-min training

mission in which they observed the robot navigating a train-

ing version of the Minecraft environment (i.e., a simpler

building plan) while practicing how to communicate with

the robot.
After completing the training, participants completed two

20-min missions in which the participant workload

increased from Mission 1 to Mission 2 (i.e., the number of

critical victims in the same building increased to add tem-

poral urgency and difficulty). Before each mission, partici-

pants received an instruction sheet reminding them of the

mission goals, and a printed map of the pre-collapsed struc-

ture. The printed map also included information about the

robot’s planned search route, indicated by yellow arrows.

During each mission, the participants used the map by

marking victim locations and building changes on them as

the robot navigated the environment and relayed its location

to the participant (in real-time through its video feed and

via text chat). After each mission, participants were asked to

fill out the NASA Task Load Index (NASA TLX; Hart &

Staveland, 1988) workload assessment and a questionnaire

to assess trust in the robot. After the second mission, a sep-

arate questionnaire on participant demographics and percep-

tions about the missions was also administered. The robot’s

activity was obtained via game data through the Minecraft

program and included for analysis.

3.3. Measures

The following team effectiveness (1–4) and team process

(5–6) measures were obtained in this study: (1) shared situ-

ation awareness; (2) team performance; (3) trust in the robot

based on the Jian et al. (2000) trust in automation scale

(Jian et al., 2000; 4) perceived workload based on the NASA

Task Load Index (Hart & Staveland, 1988; 5) communica-

tion behaviors that were coded as either information pushes

(i.e., information sent by the robot) or pulls (i.e., informa-

tion requested by the participant; Demir et al., 2017, and (6)

communication flow. Demographics were also collected to

assess the representativeness of the sample population.

However, only the following measures were used for this

particular study to explore how dyadic team interaction and

robot explanations were related to team performance and

shared situation awareness:
Shared situation awareness was measured through the

participant’s ability to accurately mark the location of survi-

vors and building changes on the map in each mission. It is

a percentage score that is calculated by summing the cor-

rectly annotated collapses and openings on the map, divided

by the total number of collapses and openings, and multi-

plied by 100 (in terms of distribution, shared situation

awareness is normally distributed). In a previous analysis of

the same data set, the Always Explain condition teams were

more accurate (had higher shared situation awareness) than

the teams in the Pull-Prime condition but did not differ

from the remaining two conditions (Chiou et al., 2022). A

Shapiro-Wilk test (Shapiro & Wilk, 1965) showed a signifi-

cant departure from normality, W(120) ¼ 0.94, p< 0.0001.

Accordingly, the data is negatively skewed (skewness: �0.49;

see Figure 2). In order to meet the normality assumption,

we applied an arcsine transformation (variance-stabilizing

transformation; Lin & Xu, 2020) because of the data type

(data are proportions ranging from 0 to 100). The trans-

formation whose distribution is closer to normality (skew-

ness: �0.03; see Figure 2), Shapiro-Wilk test ¼ W(120) ¼
0.95, p¼ 0.0003. Therefore, later on, we also did regression

diagnostics tests during the regression model-building steps

(see the summary of the test results in Table 1).
Team performance was measured by calculating the pro-

portion of correctly identified victims in terms of location

and status. The number of victims triaged was counted, div-

ided by the number of victims (total in the structure), and

then multiplied by 100 for each mission. In a previous ana-

lysis of the same data, we reported that there was no signifi-

cant difference across the robot communication conditions

with respect to team performance (p> 0.05) (Chiou et al.,

2022). In terms of distribution of the data, a Shapiro-Wilk

test again showed a significant departure from normality,

W(120) ¼ 0.92, p< 0.0001, and a negative skew was found
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for the data (skewness: �1.17; see Figure 3). We applied an
arcsine transformation as in the shared situation awareness
measure to arrive at distribution that is closer to normality
(skewness: �0.14; see Figure 3 [right]), Shapiro-Wilk test ¼
W(120) ¼ 0.95, p¼ 0.0003. In Figure 3, it is noticeable that
there are some extreme values for the transformed dataset;
we tested and eliminated these by applying regression diag-
nostics while building the regression model (see Table 2).

Communication flow captures the flow of team members’
communications. The instant message data were coded
according to who sent a message. Navigator messages were
coded as “1” and robot messages as “0”. Across the condi-
tions, the communication flow length slightly differs from
one another: Always Explain: Mean ¼ 51.1, SD¼ 9.61;
Explain If Asked: Mean ¼ 44.9, SD¼ 9.60; Never Explain:
Mean ¼ 46.1, SD¼ 11.0; Pull Prime: Mean ¼ 58.4, SD¼ 12.0.

Figure 2. Shared situation awareness distribution: Left - before the transformation and right - after the transformation.

Table 1. Regression diagnostics.

Assessment Description Result

Outliers (Bonferroni Outlier Test) (R
package: CAR; Fox et al., 2022)

Assesses a t distribution to test
whether the model’s largest
studentized residual value’s outlier
status is statistically different from
the other observations in the
model. A significant p-value
indicates an extreme outlier that
warrants further examination.

rstudent = −3.43, Bonferroni = 0.098
(There was no extreme case to review, p > 0.05)

Normality (R package: MASS;
Ripley, 2021)

Assesses how closely the model
residuals resemble a normal
distribution

The histogram in the figure indicates that the residuals
are approximately normally distributed.

Multicollinearity (R package: MASS;
Ripley, 2021)

Assesses when two or more
independent variables are highly
correlated with one another in
the model

Recurrence RateVif = 1.14
ExplanationsVif = 1.14
None of the VIFs was bigger than 2. Therefore, there was no
multicollinearity between Recurrence Rate and Explanations

Global Test of Model Assumptions (R
package: gvlma; Pena, 2019)

Assesses the linear model
assumptions, as well as performs
specific directional tests designed to
detect skewness, kurtosis, a nonlinear
link function, and heteroscedasticity.

Value p-value Decision

Global Stat 3.77 0.438 Acceptable
Skewness 0.08 0.785 Acceptable
Kurtosis 2.28 0.131 Acceptable
Link Function 1.40 0.236 Acceptable
Heteroscedasticity 0.01 0.893 Acceptable

All the assumptions are acceptable.
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The number of explanations is coded as 1 when the robot

provided explanations after the navigator asked a “why”

question or an implied “why” question, such as “what

about” questions or explanations which were directly given

by the robot without waiting for the questions (i.e., Always

Explain condition). In coding the explanations, there was

almost perfect agreement between raters [j¼ 0.936 (95% CI,

0.885–0.987)]. Therefore, we took the average of the two

raters’ codes and summed them across each mission.

4. Analytical perspective and results

4.1. Discrete recurrence quantification analysis

The team’s interpersonal coordination dynamics were quan-
tified using RQA on the communication flow data.

Interactions were represented by a binary code that yielded

a discrete, then used as an input into a discrete RQA.

Discrete RQA quantifies dyadic team coordination processes

and the dynamics that contribute to that process (Gorman

Figure 3. Team performance distribution: Left - before the transformation and right - after the transformation.

Table 2. Regression diagnostics.

Assessment Description Result

Outliers (Bonferroni Outlier
Test) (R package: CAR; Fox
et al., 2022)

Assesses a t distribution to test
whether the model’s largest
studentized residual value’s outlier
status is statistically different from
the other observations in the
model. A significant p-value
indicates an extreme outlier that
warrants further examination.

rstudent = −4.06, Bonferroni = 0.011
There were two extreme cases to review, p < 0.05.

We deleted one of the extreme cases on the dataset and re-run the
regression and outlier analyses: rstudent = 3.32, Bonferroni = 0.144

No extreme case was detected, p > 0.05

Normality (R package: MASS;
Ripley, 2021)

Assesses how closely the model
residuals resemble a normal
distribution

The histogram in the figure indicates that the residuals are
approximately normally distributed.

Multicollinearity (R package:
MASS; Ripley, 2021)

Assesses when two or more
independent variables are highly
correlated with one another in
the model

Recurrence Rate (Linear)Vif = 1.55
Recurrence Rate (Quadratic)Vif = 1.52
Maximum Length (Linear)Vif = 1.56
Determinism (Linear)Vif = 1.43

None of the VIFs was bigger than 2. Therefore, there was no multicollinearity
between the predictors in the model

Global Test of Model
Assumptions (R package:
gvlma; Pena, 2019)

Assesses the linear model
assumptions and performs specific
directional tests designed to
detect skewness, kurtosis, a
nonlinear link function, and
heteroscedasticity.

Value p-value Decision

Global Stat 2.73 0.605 Acceptable
Skewness 0.70 0.403 Acceptable
Kurtosis 0.64 0.425 Acceptable
Link Function 1.07 0.304 Acceptable
Heteroscedasticity 0.33 0.564 Acceptable

All the assumptions are acceptable.
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et al., 2012), allowing for a measurement of the effect of per-

turbations (in this context, building changes) on a team’s

stability. Several measures were extracted from discrete RQA

for this study, including percent determinism (DET), recur-

rence rate (RR), longest diagonal line (MaxL; i.e., stability),

entropy (ENTR), laminarity, trapping time, and longest ver-

tical line.

Figure 4(a) is a simple binary time series of length

N¼ 11, x(t) ¼ [1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0] and Figure 4(b)

is a visual representation, or recurrent points (RP) of the

time series (Demir et al., 2021). Discrete RPs are constructed

by placing a symbolic time series on both the horizontal and

vertical axes of a graph and plotting a recurrent point (black

box) whenever a symbol repeats. In this case, the value at

x(1) is repeated at x(3), x(4), and x(8); likewise, the value at

x(3) is repeated at x(4) and x(8). The RP in Figure 2(b)

gives a visual summary of these patterns, as well as repeti-

tions involving zeros. The example concerning points, x(1),

x(3), x(4), and x(8), are visually depicted in Figure 4(b) by

tracing upwards from the bottom-left corner to the top-left

corner of the plot, where “points” (black boxes) are plotted

each time the value at x(1) repeats at a later time in the ser-

ies. The red line from the lower left-hand corner to the

upper right-hand corner indicates the main diagonal. Only

the upper triangle of the RP is analyzed because the matrix

is symmetrical around the main diagonal. Recurrent points

forming diagonals off the main diagonal indicate patterns

that form when data segments match segments from earlier

or later times (Marwan & Webber, 2015). This study used

discrete RPs to examine the change in the following three

commonly used RQA measures: RR, DET, MaxL, and

ENTR. Note that these measures are content-independent

measures that characterize the patterns of interaction (flow),

rather than what is being talked about (Cooke &

Gorman, 2009).
Recurrence Rate (RR or percent recurrences) measures the

percentage of time a team revisits a communication pattern

and captures the overall tendency for recurrence (i.e., recur-

rence density) on an RP. It is given by the ratio of the num-

ber of recurrent points to the square of the time series

length. RR is calculated through the following formula

(Marwan et al., 2007):

RR eð Þ ¼
1

N2

XN

i, j¼1

Ri, jðeÞ (1)

where R is the binary recurrence matrix of x!, N is length

ði, j ¼ 1, :::, N, Þ, and the similarity threshold is e � 0

(Schultz et al., 2015). This formula can be interpreted as the

probability of finding a recurrence trajectory x! (recon-

structed from a time series x, e.g., by time delay embedding,

see Packard et al., 1980). RR quantifies the percentage of

points that return to the same local neighborhood in the

reconstructed phase space over time. An RR of 0% means

the time series never revisit the same local neighborhood,

whereas a rate of 100% means the time series revisit per-

fectly. In team coordination dynamics, we interpret percent

recurrence as a team’s tendency to revisit a communication

pattern during teamwork.
Percent determinism (DET) is an index of how determin-

istic the structure of dyadic communication behavior is, cal-

culated as the ratio of recurrence points forming diagonal

lines to all recurrent points in the upper triangle of the RPs

(Marwan et al., 2007). In this study, it was used in order to

characterize how organized each team’s communication

behaviors were by measuring the distribution of recurrent

points on the recurrence plot; highly organized systems are

bound to repeat sequences of states many times, represented

by many diagonal lines in an RP, whereas mildly determinis-

tic systems would rarely do so and can be seen by the pres-

ence of only a few diagonal lines in an RP (Allen et al.,

2017). DET was specifically calculated as follows (Marwan

et al., 2007):

DET ¼

PN
l¼lmin

lPðlÞ
PN

l¼1
lPðlÞ

(2)

where “l” is the diagonal line length considered when its

value is � lmin, and P(l) is the probability distribution of

line lengths. A DET of 0% means the time series never

repeats, whereas a rate of 100% means the time series

repeats perfectly. We interpret DET as a percentage of team

coordination predictability in this context.

Figure 4. (a) Example Discrete Time Series, and (b) Discrete Recurrence Plot. Recurrent “points” (block boxes) are plotted whenever ‘1’ repeats at a later time
(reprinted from Demir et al., 2021).
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Maximum Line Length (MaxL) is an indicator of the sys-

tem’s stability and captures the length of the longest diag-

onal sequence of recurrent states in the RP (Marwan et al.,

2007). In an RP for a binary time series, it is simply the lon-

gest diagonal line. According to (Eckmann et al., 1987), the

length of the diagonal lines is inversely proportional to the

largest positive Lyapunov Exponent (i.e., index of attractor

stability, see Abarbanel, 1996; Kantz & Schreiber, 1997;

Stergiou, 2016). It is calculated as follows:

MaxL ¼ max lif gNl

i¼1

� �
(3)

where li is a diagonal line length which is a segment of the

trajectory, and the total diagonal lines are Nl ¼
P

l�lmin
PðlÞ

(Marwan et al., 2007). MaxL provides information about the

stability of team coordination. Higher MaxL indicates higher

stability and vice versa.
Entropy (ENTR) refers to the Shannon entropy of the

probability p lð Þ ¼ PðlÞ=Nl to find a diagonal line of exactly

length l in the RP:

ENTR ¼ �
XN

l¼ lmin

p lð Þln pðlÞ (4)

ENTR reflects the complexity of the RP in respect of the

diagonal lines. Lower entropy represents lower complexity in

team coordination and vice versa.

4.2. Split plot analysis of variance

In order to address how conditions differ according to each

of the team coordination dynamics measures across the mis-

sions, we applied split-plot Analysis of Variance (ANOVA).

Recurrence rate findings show that there was a significant

condition main effect, F(3, 60) ¼ 5.21, p¼ 0.003, though

there was no mission main effect, F(1, 60) ¼ 1.16, p¼ 0.692,

nor an interaction effect of condition by mission, F(3, 60) ¼
1.10, p¼ 0.357. According to the significant condition main

effect of RR, the Always Explain condition had significantly

higher RR than the Never Explain and Pull-Prime conditions

(p¼ 0.003, p¼ 0.001, respectively; see Figure 5(a)). That is,

the teams in Always Explain had higher coupling strength

while Never Explain and Pull-Prime conditions had weaker

coupling strength. Entropy findings also show that there was

a significant condition main effect, F(3, 60) ¼ 3.16,

p¼ 0.031, though there was no mission main effect, F(1, 60)

¼ 0.72, p¼ 0.399 nor an interaction effect of condition by

mission, F(3, 60) ¼ 1.79, p¼ 0.158. According to the signifi-

cant condition main effect of entropy (Figure 5(b)), teams

in the Always Explain condition had significantly higher

entropy than all the other three conditions (Never Explain,

p¼ 0.019, Explain If Asked, p¼ 0.032, and Pull-Prime,

p¼ 0.007). Our prior results in Chiou et al. (2022) indicated

that teams in the Always Explain condition also had signifi-

cantly higher shared situation awareness than the other con-

ditions, which, in light of these findings, suggests that teams

in Always Explain had more complex in their coordination

than the other three conditions, enabling them to be more

adaptive to the dynamic task environment.
On the other hand, the findings for DET indicate that the

condition main effect, F(3, 60) ¼ 1.99, p¼ 0.124, mission

main effect F(1, 60) ¼ 1.68, p¼ 0.199, and condition by

mission interaction effect, F(3, 60) ¼ 1.09, p¼ 0.361, were

not statistically significant. Similarly, MaxL results also show

that there was no significant effects of condition, F(3, 60) ¼
2.39, p¼ 0.078, and mission main effects, F(1, 60) ¼ 1.63,

p¼ 0.207, nor interaction effect of condition by mission,

F(3, 60) ¼ 0.74, p¼ 0.533.

4.3. Stepwise regression

We used stepwise regression (based on Akaike information

criteria, AIC) to determine the best set of predictors for

shared situation awareness and team performance from the

robot explanations and coordination measures. We chose

stepwise regression to eliminate the multicollinearity issue by

including an additional predictor variable and eliminating a

predictor variable (i.e., forward selection and backward elim-

ination, respectively) already in the model (Weisberg, 2005).

We also chose AIC because our sample size was limited, and

AIC places a moderate penalty on the number of predictor

variables compared to Bayesian, which places a heavier pen-

alty (Weisberg, 2005). This analysis was conducted in R (R

Figure 5. (a) Recurrence Rate and (b) entropy across the conditions (Error bars indicate 95% Confidence Interval).
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Development Core Team, 2016), using the MASS packages

for stepwise regression (Ripley, 2021) and lm-beta (Behrendt,

2014) for adding standardized regression coefficients.

4.4. Predicting shared situation awareness and

regression diagnostics

First, we applied stepwise regression (AIC) to predict shared

situation awareness via team coordination measures and

explanations. The regression model accounted for 9.42%

(Adjusted R-squared) of the variance (F(2, 117) ¼ 7.19,

p¼ 0.001; Table 3).

dYTSA ¼ �0:41RRþ 0:01Explanations2 þ 0:87 (5)

Based on the model shown in Equation 5, we ran regres-

sion diagnostics to investigate if the calculated model and

the assumptions we made about the data and the model are

consistent with the recorded data. All the assumptions were

accordingly met (see Table 1); therefore, we continued sum-

marizing the regression model in Equation 5.
According to the findings, robot explanations contributed

to better shared situation awareness, and the recurrence rate

adversely contributed (Table 3). We interpret this as indicat-

ing that when the robot explained the unpredictable situ-

ation, the navigator was able to code the collapses and

openings on the map, which implied a better shared situ-

ation awareness. Another interesting finding is that the

recurrence rate was negatively associated with shared situ-

ation awareness. These findings indicate that during the per-

turbations in this specific task, the robot explanations were

more helpful than repetitive team coordination patterns in

maintaining shared situation awareness.

4.5. Predicting team performance and regression

diagnostics

We applied another stepwise regression to predict team per-

formance by explanations and team coordination measures.

The following model is obtained, F(4, 115) ¼ 3.37,

p¼ 0.012, and the model was able to account for 7.39%

(adjusted R-squared) of the variance:

dYPerformance ¼ �0:03MaxLþ 0:04ENTRþ 0:25RRþ 0:74RR2 þ 1:11

(6)

As in the previous section, we ran regression diagnostics

to investigate the consistency of the calculated model and

the assumptions we made about the data and the model

with the recorded data. These findings are summarized in

Table 2. Based on the outlier test, there were two extreme

cases (rstudent¼�4.06, Bonferroni p¼ 0.011) which we

needed to exclude. However, we only excluded one of them

(chosen based on the distance Q-Q plot) and re-run step-

wise regression and the outlier test. Based on the new

regression model, there were no extreme cases to eliminate

(rstudent¼ 3.32, Bonferroni p¼ 0.144), and the rest of the

regression assessment was not violated.
After the diagnostics, the final model was significant, F(4,

114) ¼ 2.64, p¼ 0.038, and the model was able to account

for 5.25% (adjusted R-squared) of the variance (see

Equation 7 and Table 4):

dYPerformance ¼ �0:04MaxLþ 0:09DET þ 0:20RRþ 0:59RR2 þ 1:11

(7)

According to the significant findings (see Table 4), stable

coordination (MaxL) of the human-robot dyad was nega-

tively associated with performance, but revisiting the same

communication pattern (RR) was positively related. We

interpret this as being related to how the identification of

the victims might have been a more routine task in com-

parison to tasks that are more shared situation awareness-

intensive (e.g., identifying collapses and openings); thus, this

task requires more similar types of communication patterns

rather than explanations (not like shared situation aware-

ness). However, as this is still a dynamic task, and therefore,

the stability (MaxL) in team coordination did not help for

this task. This may indicate that for dyads in dynamic task

environments, especially USAR or command-and-control,

time pressure requires more effective interactions rather

than more stable (MaxL) ones.

5. Discussion and conclusion

In this study, navigators made plans prior to executing their

USAR missions. However, much like many real-world scen-

arios in which HMTs are expected to be deployed, the task

environment in this study included dynamic events that

required deviations from the original plan. These deviations

were generally observable to the navigator but executed by

the WoZ robot autonomously, and the reasons for devia-

tions may not have been immediately apparent from the

navigator’s perspective. In the Always Explain condition,

deviations from the plan were always explained by the robot

proactively. This was expected to improve the navigator’s

understanding of the robot’s behavior and improve coordin-

ation among the team members.
In dynamic task contexts, establishing shared situation

awareness is a continuous process (Endsley & Jones, 2001)

that involves exchanging information between teammates

and coordinating team activities in response to changing

external constraints. Shared situation awareness is not

Table 3. Results for predicting shared situation awareness.

Variable Term B SE B b t p

Recurrence rate Linear (RR) �0.41 0.16 �0.23 �2.44 0.016
Explanations Quadratic 0.01 0.01 0.33 3.54 0.001

Note. “B” and “SE B” refer to unstandardized regression coefficient and its
Standard Error, respectively, while “b” refers to standardized regression
coefficient.

Table 4. Results for predicting the dyadic team performance.

Variable Term B SE B b t p

Max line Linear (MaxL) �0.04 0.01 �0.40 �2.79 0.006
Determinism Linear (DET) 0.09 0.06 0.16 1.44 0.153
Recurrence rate Linear (RR) 0.20 0.08 0.27 2.39 0.018

Quadratic (RR2) 0.59 0.31 0.21 1.90 0.060

Note. “B” and “SE B” refer to unstandardized regression coefficient and its
Standard Error, respectively, while “b” refers to standardized regression
coefficient.
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merely the level of shared awareness between teammates. An

HMT can be treated as a single cognitive system that exe-

cutes actions to perceive the environment and simultan-

eously act upon those perceptions towards a goal in a

perception-action loop (Gorman et al., 2006).
Understanding interpersonal coordination dynamics in

HMT is important for designing robotic systems that func-

tion effectively with people as teammates. This study investi-

gated how interpersonal coordination dynamics are

associated with communication strategies in a robot-assisted

USAR simulation using discrete RQA. The associations

between interpersonal coordination dynamics and robot

explanations with shared situation awareness and team per-

formance were also examined.
We addressed two research questions. The first question

is how communication recurrence affects and reflects inter-

personal coordination dynamics between the USAR robot

and human navigator when using different communication

strategies. The proactive provision of explanations by the

robot in the Always Explain condition may have allowed the

human navigator to adjust their behaviors in response to the

robot’s deviations more effectively, resulting in overall more

synchronized interactions. It was also found that teams in

the Always Explain condition had higher ENTR in their

coordination dynamics than those in the other conditions.

This indicates that the coordination dynamics were also

more complex when the robot provided proactive explana-

tions of deviations in addition to recurring proportionally

more often. The greater complexity might be attributed to

how the Always Explain condition allowed for explanations

that were either proactively given by the robot or answers to

questions from the navigator (i.e., more interaction types

were used). This may have, in turn, led to more similar

response flow patterns over time as participants learned to

respond according to whether the explanation was solicited

or not. The other measures of interpersonal coordination

dynamics (DET and MaxL) did not differ between the con-

ditions. Overall, these findings suggest that robot explan-

ation appears to influence the temporal dynamics of

coordination to some degree, which complements previous

research that focuses on transparency, situation awareness,

and trust calibration (Mercado et al., 2016).
The second research question was how the robot explana-

tions and coordination dynamic characteristics of human-

robot teams were associated with team effectiveness (i.e.,

shared situation awareness and performance). Team per-

formance in this task was defined as the number of correctly

triaged victims, which required locating them in the struc-

ture and marking them appropriately within the simulation.

The results show that, although robot explanations improved

shared situation awareness, team coordination dynamics

measures were associated with team performance either

positively (i.e., RR), negatively (i.e., MaxL), or not at all (i.e.,

DET, ENTR).
RR was positively associated with better team perform-

ance. In this task, information exchange was necessary due

to role interdependence, and a stronger recurrence commu-

nication pattern is likely to reflect more effective

information exchange. Although RR was associated with

improved team performance, it was also negatively associ-

ated with shared situation awareness, indicating that teams

with high shared situation awareness may still perform rela-

tively poorly without sufficiently stable coordination dynam-

ics. In this case, teams in Always Explain tended towards

repeating the same communication flow patterns more often

than teams in the other conditions, which helped their team

performance, but not shared situation awareness.
MaxL was negatively related to team performance. MaxL

measures the duration of the longest interaction sequences

and, in this study, provided a measure of the stability and

length of the HMT’s coupling. This finding suggests that

longer and more sustained recurrent interaction sequences

were actually negatively associated with team performance.

Higher MaxL indicates extended team interactions which

may have interfered with the primary task, which needed to

be interleaved with their communications. Overly stable

HMT coordination dynamics have also been associated with

rigidity in other dynamic team environments such as RPAS

(Demir et al., 2018), which may have been detrimental to

the performance given the dynamic nature of this USAR

simulation. Together with the RR regression results, we

believe this indicates that the dynamic nature of the USAR

task environment requires teams to adaptively switch

between different coordination patterns that are distinct

from one another yet moderately stable (previously discov-

ered by Demir, Likens, et al., 2019). Extending this further

could provide evidence for multifractality in team coordin-

ation dynamics (Likens et al., 2014). This is a gap in the

current studies, and it might be a future direction of

this study.
In summary, the findings from this study suggest that

when a robotic agent provides proactive explanations to its

human navigator, it may lead to more recurrent and com-

plex communication patterns. Altogether, our results are not

surprising; repeating established communication patterns

might aid in the performance of routine tasks, but they

might not help as much during perturbations, in which a

shared understanding of the immediate team task context is

more important. Furthermore, extended and overly stable

recurrent exchanges appear to be detrimental to perform-

ance in this task context. More broadly, the present results

support recent efforts to understand the relationship

between the temporal nature of interpersonal coordination

and team effectiveness. It also demonstrates how RQA can

be applied to unobtrusively increase our understanding of

the temporal aspect of HMT coordination without relying

on resource-consuming content-based approaches (e.g., con-

tent analysis).

5.1. Limitations and future work

There were several limitations to this study, including the

generalizability of the findings from a sample of university

students operating in a game-based USAR environment to

designing systems that trained experts operating in real-

world settings might use. To mitigate this challenge, the task
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environment for this study was intentionally designed to

elicit key teaming and cognitive aspects of the task context

from novice participants (Lematta et al., 2019). However,

experience and expertise can play a large role in situation

awareness. Future studies should seek to build upon our

findings by examining the impact of expertise and task

familiarity on shared situation awareness in the robot-

teamed USAR context.
Another limitation is that though we believe that discrete

RQA is sufficient for the purposes of this study, there are

several types of RQA. Another RQA method to examine

dyadic interaction is Cross Recurrence Quantification

Analysis (CRQA; Dale et al., 2011). CRQA can also be an

appropriate method for this communication flow data,

because there is a binary time series for both the navigator

and “robot.” CRQA may have allowed us to interpret recur-

rence rate as coupling strength, which would provide an

additional perspective into our data. Gorman et al. (2020)

demonstrated that windowing could give finer-grained real-

time analyses rather than analyzing the data across the trials.
Our implementation of the Always Explain condition was

designed to promote integrated mental models in teams

(Chiou et al., 2022). However, it is possible that individual

differences in perceptions of robot explanations may have

instead to degraded trust in the robot. For future studies, we

recommend a more nuanced analysis into what constitutes

sufficient or desirable levels of proactive explanation, and

how matching such levels might relate to the measures

explored in this study.
Finally, we acknowledge that team composition might

have been a limitation in this study, as well. This task was

based upon key elements of real-world USAR operations

combined with WoZ-enabled robot behaviors to answer

research questions about human-robot interactions.

However, real USAR operations typically take place as part

of larger teams (Murphy, 2019). Future work can extend

these results to teams with more than two members to see

how interpersonal coordination affects team effectiveness

within larger and multi-level teams.
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