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ABSTRACT

Teams composed of human and machine members operating in complex task environments must
effectively interact in response to information flow while adapting to environmental changes. This
study investigates how interpersonal coordination dynamics between team members are associ-
ated with team performance and shared situation awareness in a simulated urban search and res-
cue (USAR) task. More specifically, this study investigates (1) how communication recurrence
affected and reflected coordination dynamics between a USAR robot and human operator when
they used different communication strategies, and (2) how these dynamic characteristics of the
human-robot interpersonal coordination were associated with the team performance and shared
situation awareness. The USAR interpersonal coordination dynamics were systematically character-
ized using discrete recurrence quantification analysis. Results from this study indicate that (1)
teams demonstrating more flexibility in their coordination dynamics were more adaptive to
changes in the task environment, and (2) while robot explanations help to improve shared situ-
ation awareness, revisiting the same communication pattern (i.e., routine coordination) was associ-

ated with better team performance, but did not improve shared situation awareness.

1. Introduction

With advancements in data mining and machine learning
algorithms, machines (i.e., Artificial Intelligence -Al, syn-
thetic teammates, automated agents, and robots) are poised
to revolutionize work in almost every industry. Various
examples indicate that Al-enabled machines are becoming
nearly universally important to command and control mis-
sions. For instance, integrated wearable electronics with
large-scale machine control can allow warfighters access to
innumerable possible contingencies in critical situations,
such as the “F-35 Joint Strike Fighter”—a fighter plane and
flying sensor in one—which condenses vast amounts of data
from the environment into visualizations in the pilot’s hel-
met (Pellerin, 2015). High-impact applications can also be
found in healthcare and space exploration. For example, to
protect healthcare workers from the coronavirus pandemic
(COVID-19), robots have been deployed to help care for
patients at hospitals in Italy (Romero, 2020) and team with
health providers to deliver telehealth services in China
(Hornyak, 2020). The extent to which machines can aid
human endeavors over great geospatial and temporal distan-
ces is perhaps best exemplified by the Perseverance rover
and other robots distributed on Mars (mars.nasa.gov, n.d.).
In the context of increasingly capable machines, recent
work has used a team science lens to gain insight into how
machines can be designed to succeed in more dynamic task
domains. This team science lens acknowledges the strengths

of teams, the emergent qualities of teaming, and the support
for interdependencies needed for effective teaming.
Therefore, the team science lens effectively considers how
machines functioning more like active team members rather
than passive tools would need to be designed. The current
study focuses on human-machine teams (HMTSs) in the
dynamic task context of urban search and rescue (USAR).
Previous work has demonstrated that in this context, com-
munication and coordination within HMTs is vital for
effective task and teamwork (Chiou et al, 2022; Demir
et al., 2017; Demir, Likens, et al., 2019; Demir, Amazeen,
et al, 2020; Demir, McNeese, et al., 2020; Johnson et al,,
2021; Kopp et al, 2022; Nalepka et al, 2021; Shah &
Breazeal, 2010).

In this study, we first define HMTSs and explain interper-
sonal team communication and coordination in the context
of nonlinear dynamical systems (NDS). Then, we systematic-
ally analyze how effective teamwork can be achieved in
terms of communication (specifically robot explanations)
and coordination within HMTs. Finally, we discuss how our
findings can guide the design of future HMTs.

1.1. Human-machine teaming and teamwork

A team can be defined as two or more entities occupying
heterogeneous roles that work interdependently toward a
common goal or task (Cannon-Bowers et al., 1995); HMTs
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satisfy this definition while being comprised of humans and
interactive machines. HMTs are different from more trad-
itional configurations of humans and technology (e.g.,
supervisory control) in that machine team members need to
communicate and coordinate with human teammates
according to task interdependencies and may also be placed
in team structures in which machines have to “team” with
other machines on top of communicating and coordinating
with humans (O’Neill et al., 2022).

Before discussing the intricacies of HMTs as a process, it
is important to define two components of teaming as a pro-
cess: taskwork and teamwork. Taskwork refers to individual
responsibilities that do not require the participation of other
teammates, but must be executed well for the team’s goals
to be realized (Salas et al., 2008). On the other hand, team-
work refers to interdependent behaviors, such as social proc-
esses, enacted by multiple team members to achieve
common goals—it is essentially referring to the shared, goal-
oriented interactions among teammates (Marks et al., 2001).
Accordingly, a team’s success depends on its team member’s
skills, which contribute to the team processes involved in
accomplishing teamwork (Marks et al,, 2001). Therefore, a
team member would need to be able to perform stable task-
work to contribute to teamwork, meeting with the needs of
other team members in the process. Consider, for instance,
a simple restaurant consisting of a server and a cook form-
ing a dyadic team. The server’s taskwork includes interacting
with customers and taking their orders, while the cook’s
individual-level task is to prepare food for the server to
bring to diners. Teamwork between the two refers to their
collective ability to achieve their shared goals, such as con-
sistently serving all customers high quality meals in a timely
manner. Their teamwork can be observed in the staff’s will-
ingness to negotiate the timing of new orders, including giv-
ing estimates about delayed orders if any, and relaying
customer feedback about served meals. In other words,
teamwork is often best represented by team members’ inter-
actions with one another (Cooke et al., 2013).

Although teamwork has been framed both as behavior
and as a collective cognitive process (Salas et al., 1995), it is
generally agreed upon that an essential process of teamwork
is team coordination (Brannick et al., 1995). As such, a
teammate whose singular role is to facilitate teamwork, such
as a communication control center operator, has to make
reliable decisions at an individual level (e.g., who should
receive a certain message, which messages must be filtered
out or modified) to ensure effective interactions
between teammates.

It is not unusual for taskwork and teamwork components
in complex team task environments to be at odds with each
other, particularly when it comes to the allocation of limited
resources (Chiou & Lee, 2016). The task of balancing the
two is a complex process. In all-human teams, this can be
mitigated by harnessing social intelligence and capability to
predict the needs, beliefs, and intentions of other team-
mates—abilities that machines are yet to have (Stowers
et al., 2021). Issues in prioritizing taskwork over teamwork
and vice versa are known to cause subpar HMT

performance compared to when the same machines and
humans are placed in purely machine or purely human
teams, respectively (OpenAl et al., 2019). This may partly be
due to machine shortcomings when interacting with human
teammates, which affect the latter’s cooperative behaviors
towards it and attitudes like trust (Chiou & Lee, 2016,
2021). Such limitations in machine-teaming capabilities may
cause disruptions in established taskwork, and teamwork
interdependencies may even lead to breakdowns in human-
machine coordination beyond repair, resulting in cata-
strophic disasters. An example of this is the Patriot Missile
incident where British and American confederates were shot
down in fratricide by the U.S. Army (Cummings, 2006).

One way to study coordination dynamics—including
breakdowns therein—is through looking at communication
data (e.g., instant messaging, transcripts from audio record-
ings), which has been used as real-time, non-obtrusive meas-
ures of team performance in the past (Gorman et al., 2012).
A benefit of using real-time data is that information loss
during post-processing of communication is minimized. For
example, nonlinear dynamical systems (NDS) analysis of
team communication data has been used to assess team situ-
ation awareness (TSA) in real-time (Grimm et al.,, 2018).
Recent work has also shown that it may be possible to use
real-time communication data as indirect online measures of
attitudes towards machine teammates, such as changes in
personifying and objectifying language indicating changes in
trust levels (Cohen et al, 2021). It is implicit, then, that
team performance as measured by the accomplishment of
teamwork goals may also be predicted in real-time by look-
ing at communication between teammates, which could be
the basis for novel interventions to aid maladaptive teams.
Rooted in this, the following section discusses interpersonal
communication and coordination.

1.2. Interpersonal communication and explanations

Interpersonal communication is an essential element of
team coordination (Cooke et al., 2013); it entails both the
quality of communicated content and “the sequencing of
messages in conversations and the sequencing of conversa-
tions into relationships” (Pearce, 1976, p. 17). Additionally,
interpersonal communication that is of analytical interest
within collaborative settings (a) is intentional, (b) is influ-
enced by psychological, technological, and environmental
factors, and (c) occurs only within certain relational con-
texts, ie., there should be a common goal to achieve
(Gudykunst, 2000). Communicators apply their knowledge
of actions to construct output representations that reflect
their plans for accomplishing a team task. These representa-
tions are structured and consist of goals, ideas to be com-
municated, suitable language, and neural commands
required to produce the language (Cappella, 1987). One key
element of interpersonal communication that is structured
as such is the explanation.

Explanations are explicit communications that provide a
contrastive reason behind a decision or action occurring
relative to a teammate’s understanding and are often



instantiated as responses to “why” questions (Miller, 2019).
Explanations should be clear, accurate, and explicit to
reduce task uncertainty, and should clarify the issue or
behaviors in question among the team members. Otherwise,
misunderstandings between teammates can arise, task uncer-
tainty and problems may continue, and in turn, adversely
affect situation awareness and performance (de Visser et al.,
2020). Explanations can also support building shared mental
models with robot teammates, preventing unexpected chal-
lenges, and improving timely adaptation to team task envi-
ronments (Miller, 2021). A previous study analyzing data
from the same experiment as this study discovered that a
moderate level of robot explanations contributed to better
shared situation awareness and team performance in a
dynamic task environment (Chiou et al., 2022). In the cur-
rent study, we focus on how varying levels of the quality of
robot explanations, can lead to different team coordin-
ation patterns.

1.3. Interpersonal coordination and nonlinear
dynamical systems

What team members say and how they say it seems to help
them develop a narrative for successful coordination (Arthur
et al., 2020), and in turn, effective teamwork (Demir, Likens,
et al,, 2019). Coordination is defined as dependency man-
agement and can occur in biological, social, and physical
systems (Malone & Crowston, 1994). It can involve manag-
ing the components and processes of a system that change
over time (Butner et al., 2014), and can be observed on dif-
ferent levels and across substrates (Butler, 2011), such as
team communication (Louwerse et al., 2012) and physiology
(Likens et al., 2014; Palumbo et al., 2017). Relatedly, inter-
personal coordination refers to how behavior, physiology,
emotional, and cognitive states covary between individuals
over time (Wiltshire et al., 2020). Researchers have linked
communicative aspects of interpersonal coordination to
important constructs and outcomes in teamwork, such as
flow of the communication (Chanel et al, 2013; Demir,
Likens, et al, 2019; Gorman et al, 2016; Guastello &
Peressini, 2017; Wiltshire et al.,, 2018). Interpersonal coord-
ination is an essential measure of the dynamical systems
properties of teamwork, both in all-human teams (Gorman
et al, 2010; Guastello, 2010; Guastello & Guastello, 1998;
Likens et al., 2014; Ramos-Villagrasa et al., 2018; Schmidt &
Richardson, 2008; Wiltshire et al., 2020) and in HMTs
(Demir, Cooke, et al., 2018; Demir, McNeese, et al., 2018b;
Fiore & Wiltshire, 2016; Nalepka et al., 2021).

Teams can be described as continuously evolving dynam-
ical systems, such that team coordination has been charac-
terized using NDS methods (Gorman et al., 2010; Guastello,
2010). With NDS methods, it is also possible to characterize
team coordination dynamics between team members and
their task environment by using coordination of communi-
cation as an input (Demir, McNeese, et al., 2018a). In gen-
eral, an NDS is a system that continuously evolves through
its behavior, and its emergent behavior is the result of its
system components interacting over time (Thelen & Smith,
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2007). In teams, specifically, many behavioral patterns
within the system can emerge, and transitions between pat-
terns are often sudden and nonlinear (Perone & Simmering,
2017). An NDS can behave in many ways, but all possible
behaviors fall within a multidimensional “state space.”
Suppose the system develops some repeated behavior pat-
terns. In that case, that means it favors a region of the state
space and is said to have moved into an “attractor state,”
which a system is likely to return to sometime after depart-
ing it (Spencer & Perone, 2008). Teamwork behaviors and
patterns can emerge as teammates coordinate with one
another, as each member sets out to fulfill their respective
roles while also synchronizing with other team members to
achieve their common goal. This leads to emergent team
behavior that is ideally robust, flexible, and fault-tolerant
over time and under routine or conditions
(Maes, 1993).

Many studies have examined all-human team coordin-
ation using NDS methods to identify how the dynamical
properties of team coordination relate to factors such as
team composition and various kinds of task perturbations
(Gorman et al, 2012; Gorman et al., 2010; Gorman et al.,
2012; Schmidt & Richardson, 2008; Wiltshire et al., 2018). A
commonly used NDS method in these studies is Recurrence
Quantification Analysis (RQA). RQA quantifies the number
and length of recurrent patternspresent using a state-space
trajectory in a dynamical system (Fusaroli & Tylén, 2016;
Gorman et al.,, 2012; Russell et al., 2012; Strang et al., 2014;
Marwan et al., 2007). Researchers have previously investi-
gated team coordination in the context of HMTs by using
RQA and its multivariate extensions (Demir, McNeese,
et al,, 2018a, 2019, 2020; Gorman et al., 2020; Nalepka et al.,
2021). For instance, Demir, Likens, et al. (2019) showed that
HMTs should be “flexible” to adapt to dynamic task uncer-
tainty and also be “stable” to maintain performance (for
more elaboration regarding stability and flexibility, see
Demir, Likens, et al., 2019). Similar studies have also used
RQA to observe how calibrated coordination (i.e., adjusting
the coordination based on the task situation) relates to bet-
ter team performance (Demir, Cooke, et al., 2018; Demir,
McNeese, et al., 2019, 2020) and team situation awareness
(Nalepka et al., 2021). However, previous uses of RQA in
the literature have focused broadly on coordination between
the team members, but in this study, we specifically manipu-
late robot explanations to see how interpersonal coordin-
ation changes and relates to team effectiveness.

This study examines the association between HMT inter-
personal coordination dynamics, robot explanations, and
team effectiveness (i.e., performance and shared situation
awareness) in a USAR simulation. Therefore, there are two
research questions. First, we addressed how communication
recurrence affects and reflects interpersonal coordination
dynamics between the USAR robot and human operator
when using different levels of explanation. The second
research question we addressed is how these dynamic char-
acteristics of the human-robot teams were associated with
team effectiveness metrics (i.e., shared situation awareness
and team performance).

novel
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(a)

The robot is searching for
victims in the Minecraft
environment.

(©

In the Future:
The human operator The rescue teams searches for
marks victims’ victims based on the location
location on the map provided by the robot.

Figure 1. (a) A screen view of simulated Minecraft task environment, (b) team members’ location (the randomly assigned participant on the left and the WoZ robot

on the right), and (c) task sequence.

2, Task environment and experimental design
2.1. Simulated minecraft task environment

A simulated USAR task environment (Gonzalez et al., 2005)
developed in Minecraft (version 1.11.2) and based on a pre-
vious microworld design (Bartlett & Cooke, 2015) was used
to collect team communication data. This testbed afforded
dynamic reconfigurations to the task environment (Lematta
et al, 2019), requiring teams to adapt to the environment
through text chat communication. The USAR task involved
two team members: a “robot” team member that autono-
mously searched a partially collapsed building and located
potential victims and a “navigator” who remotely monitored
and documented key information through the robot’s live
video feed. The “robot” was, in fact, a highly-trained
researcher controlling a first-person perspective virtual ava-
tar in Minecraft. A check-list used by the other researcher
to train the researcher who mimic the “robot,” and the
“robot” used script to send the messages in a timely manner
(Chiou et al., 2022; Demir et al., 2017). This makes use of
the “Wizard of Oz” (WoZ) paradigm popular in user-cen-
tered research (Kelley, 1983). Study participants were
assigned to the navigator role and were told to complete
two USAR missions with the autonomous robot. The navi-
gator was to document the location of victims on a pre-col-
lapsed floor map of the building and was also tasked with
documenting any changes to the map (Figure 1). The goal
was to complete a reconnaissance mission before sending in
another team to recover victims safely.

In addition to the shared video feed, the robot interacted
with the navigator via a text chat communication system.
Participants were not limited to what they could ask or say
to the robot through the text chat, but the robot was limited
to only providing scripted explanations that were relevant to
the task environment, and to respond to the participant
using a series of pre-scripted phrases. For example, in
response to questions that were not relevant to the task
environment, the robot would reply with, “Sorry, I am
unable to help you with that.” The robot was purposefully
designed not to have complete natural language abilities, so
the scripted responses ensured some control across study
conditions and believability that participants were indeed
interacting with a robotic entity.

2.2. Experimental design

This study investigates how interpersonal coordination
dynamics were related to team effectiveness metrics through
a secondary analysis of data collected for a study on robot
explanation strategies (Chiou et al, 2022). Four between-
subject conditions tested three robot explanations strategies
and one communication priming condition. In the Always
Explain condition, the robot explained all plan deviations,
and other explanations were provided when requested. In
the Explain If Asked condition, all explanations were pro-
vided only when requested. In Pull Prime, participants
received some training that prompted them to initiate asking
the robot questions; otherwise, this was the same as the



Explain If Asked condition. In Never Explain, the robot only
acknowledged, but never fulfilled requests for explanations.

3. Methods
3.1. Participants

An a priori power analysis was conducted using G*Power3
(Faul et al., 2007) to test the difference between the means
of 4-conditions by 2-missions using an F-test, with a
medium effect size (r]}% = 0.06; Cohen, 1977), and an alpha
(ox) of 0.05. According to the result, a total sample of 60
participants with four equal-sized groups of n=15 was
required to achieve a power of 0.90. A total of 60 partici-
pants (Mg = 22.48, SDge. = 7.21, Male =42, Female=18)
from Arizona State University and the surrounding campus
community participated in a 1.5-h session study (each par-
ticipant was compensated $15). All participants were fluent
in English, reported normal or corrected-to-normal hearing
and vision (e.g., were not color blind), and reported having
experience using a computer mouse and keyboard.

3.2. Procedure

Participants were tasked with completing a series of simu-
lated reconnaissance missions as part of a human-machine
team. The team’s goals were to identify and triage trapped
victims in a collapsed virtual building and annotate any
structural changes to the building resulting from the col-
lapse. After obtaining informed consent, each participant
engaged in a 1h and 10-min session that included a training
session followed by two actual missions with a 20-min break
in between the two missions. The training session included
a 10-min voiced-over slide presentation that explained the
task, the robot’s role and capabilities, team goals and indi-
vidual goals, how to communicate with the robot, and how
performance would be scored. Following the slide presenta-
tion, participants took part in an additional 10-min training
mission in which they observed the robot navigating a train-
ing version of the Minecraft environment (i.e., a simpler
building plan) while practicing how to communicate with
the robot.

After completing the training, participants completed two
20-min missions in which the participant workload
increased from Mission 1 to Mission 2 (i.e., the number of
critical victims in the same building increased to add tem-
poral urgency and difficulty). Before each mission, partici-
pants received an instruction sheet reminding them of the
mission goals, and a printed map of the pre-collapsed struc-
ture. The printed map also included information about the
robot’s planned search route, indicated by yellow arrows.
During each mission, the participants used the map by
marking victim locations and building changes on them as
the robot navigated the environment and relayed its location
to the participant (in real-time through its video feed and
via text chat). After each mission, participants were asked to
fill out the NASA Task Load Index (NASA TLX; Hart &
Staveland, 1988) workload assessment and a questionnaire
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to assess trust in the robot. After the second mission, a sep-
arate questionnaire on participant demographics and percep-
tions about the missions was also administered. The robot’s
activity was obtained via game data through the Minecraft
program and included for analysis.

3.3. Measures

The following team effectiveness (1-4) and team process
(5-6) measures were obtained in this study: (1) shared situ-
ation awareness; (2) team performance; (3) trust in the robot
based on the Jian et al. (2000) trust in automation scale
(Jian et al., 2000; 4) perceived workload based on the NASA
Task Load Index (Hart & Staveland, 1988; 5) communica-
tion behaviors that were coded as either information pushes
(i.e., information sent by the robot) or pulls (i.e., informa-
tion requested by the participant; Demir et al., 2017, and (6)
communication flow. Demographics were also collected to
assess the representativeness of the sample population.
However, only the following measures were used for this
particular study to explore how dyadic team interaction and
robot explanations were related to team performance and
shared situation awareness:

Shared situation awareness was measured through the
participant’s ability to accurately mark the location of survi-
vors and building changes on the map in each mission. It is
a percentage score that is calculated by summing the cor-
rectly annotated collapses and openings on the map, divided
by the total number of collapses and openings, and multi-
plied by 100 (in terms of distribution, shared situation
awareness is normally distributed). In a previous analysis of
the same data set, the Always Explain condition teams were
more accurate (had higher shared situation awareness) than
the teams in the Pull-Prime condition but did not differ
from the remaining two conditions (Chiou et al, 2022). A
Shapiro-Wilk test (Shapiro & Wilk, 1965) showed a signifi-
cant departure from normality, W(120) = 0.94, p < 0.0001.
Accordingly, the data is negatively skewed (skewness: —0.49;
see Figure 2). In order to meet the normality assumption,
we applied an arcsine transformation (variance-stabilizing
transformation; Lin & Xu, 2020) because of the data type
(data are proportions ranging from 0 to 100). The trans-
formation whose distribution is closer to normality (skew-
ness: —0.03; see Figure 2), Shapiro-Wilk test = W(120) =
0.95, p=10.0003. Therefore, later on, we also did regression
diagnostics tests during the regression model-building steps
(see the summary of the test results in Table 1).

Team performance was measured by calculating the pro-
portion of correctly identified victims in terms of location
and status. The number of victims triaged was counted, div-
ided by the number of victims (total in the structure), and
then multiplied by 100 for each mission. In a previous ana-
lysis of the same data, we reported that there was no signifi-
cant difference across the robot communication conditions
with respect to team performance (p>0.05) (Chiou et al,
2022). In terms of distribution of the data, a Shapiro-Wilk
test again showed a significant departure from normality,
W(120) = 0.92, p<0.0001, and a negative skew was found



6 M. DEMIR ET AL.

30

20

Frequency
15

10

w

— |

r T T T T 1
0.0 02 04 06 08 10

30

25

20
1

Frequency

10

—

r T T 1
0.0

Figure 2. Shared situation awareness distribution: Left - before the transformation and right - after the transformation.

Table 1. Regression diagnostics.

Assessment Description

Result

Assesses a t distribution to test
whether the model’s largest
studentized residual value’s outlier
status is statistically different from
the other observations in the
model. A significant p-value
indicates an extreme outlier that
warrants further examination.

Outliers (Bonferroni Outlier Test) (R
package: CAR; Fox et al., 2022)

rstudent = —3.43, Bonferroni = 0.098
(There was no extreme case to review, p > 0.05)

Normality (R package: MASS;
Ripley, 2021)

Assesses how closely the model
residuals resemble a normal
distribution

ion of

sresid

The histogram in the figure indicates that the residuals
are approximately normally distributed.

Assesses when two or more
independent variables are highly
correlated with one another in
the model

Multicollinearity (R package: MASS;
Ripley, 2021)

Recurrence Ratey;r = 1.14

Explanationsy;s = 1.14

None of the VIFs was bigger than 2. Therefore, there was no
multicollinearity between Recurrence Rate and Explanations

Assesses the linear model
assumptions, as well as performs
specific directional tests designed to
detect skewness, kurtosis, a nonlinear
link function, and heteroscedasticity.

Global Test of Model Assumptions (R
package: gvima; Pena, 2019)

Value p-value Decision
Global Stat 3.77 0.438 Acceptable
Skewness 0.08 0.785 Acceptable
Kurtosis 2.28 0.131 Acceptable
Link Function 1.40 0.236 Acceptable
Heteroscedasticity 0.01 0.893 Acceptable

All the assumptions are acceptable.

for the data (skewness: —1.17; see Figure 3). We applied an
arcsine transformation as in the shared situation awareness
measure to arrive at distribution that is closer to normality
(skewness: —0.14; see Figure 3 [right]), Shapiro-Wilk test =
W(120) = 0.95, p=10.0003. In Figure 3, it is noticeable that
there are some extreme values for the transformed dataset;
we tested and eliminated these by applying regression diag-
nostics while building the regression model (see Table 2).

Communication flow captures the flow of team members’
communications. The instant message data were coded
according to who sent a message. Navigator messages were
coded as “1” and robot messages as “0”. Across the condi-
tions, the communication flow length slightly differs from
one another: Always Explain: Mean 51.1, SD=9.61;
Explain If Asked: Mean = 44.9, SD=9.60; Never Explain:
Mean = 46.1, SD = 11.0; Pull Prime: Mean = 58.4, SD=12.0.
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Assessment

Description

Result

Outliers (Bonferroni Outlier
Test) (R package: CAR; Fox

Assesses a t distribution to test
whether the model’s largest

studentized residual value’s outlier
status is statistically different from
the other observations in the
model. A significant p-value
indicates an extreme outlier that
warrants further examination.

et al, 2022)

rstudent = —4.06, Bonferroni=0.011
There were two extreme cases to review, p < 0.05.
We deleted one of the extreme cases on the dataset and re-run the
regression and outlier analyses: rstudent = 3.32, Bonferroni = 0.144
No extreme case was detected, p > 0.05

Normality (R package: MASS;
Ripley, 2021)

Assesses how closely the model
residuals resemble a normal
distribution

Density
2
~

sresid

The histogram in the figure indicates that the residuals are
approximately normally distributed.

Assesses when two or more
independent variables are highly
correlated with one another in
the model

Multicollinearity (R package:
MASS; Ripley, 2021)

Recurrence Rate (Linear)y;s = 1.55
Recurrence Rate (Quadratic)y;r = 1.52
Maximum Length (Linear);s = 1.56
Determinism (Linear) ;s = 1.43

None of the VIFs was bigger than 2. Therefore, there was no multicollinearity

between the predictors in the model

Global Test of Model Assesses the linear model Value p-value Decision
Assumptions (R package: assumptions and performs specific  opal Stat 273 0.605 Acceptable
gvima; Pena, 2019) directional tests designed to Skewness 0.70 0.403 Acceptable

dete_ct ske\{vness, ku_rt05|s, a Kurtosis 0.64 0.425 Acceptable
nonlinear I|nk.fgnct|on, and Link Function 1.07 0.304 Acceptable
heteroscedasticity. Heteroscedasticity 0.33 0.564 Acceptable

All the assumptions are acceptable.

The number of explanations is coded as 1 when the robot
provided explanations after the navigator asked a “why”
question or an implied “why” question, such as “what
about” questions or explanations which were directly given
by the robot without waiting for the questions (i.e., Always
Explain condition). In coding the explanations, there was
almost perfect agreement between raters [ =0.936 (95% CI,
0.885-0.987)]. Therefore, we took the average of the two
raters’ codes and summed them across each mission.

4. Analytical perspective and results
4.1. Discrete recurrence quantification analysis

The team’s interpersonal coordination dynamics were quan-
tified using RQA on the communication flow data.
Interactions were represented by a binary code that yielded
a discrete, then used as an input into a discrete RQA.
Discrete RQA quantifies dyadic team coordination processes
and the dynamics that contribute to that process (Gorman
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Figure 4. (a) Example Discrete Time Series, and (b) Discrete Recurrence Plot. Recurrent “points” (block boxes) are plotted whenever ‘1’ repeats at a later time

(reprinted from Demir et al., 2021).

et al,, 2012), allowing for a measurement of the effect of per-
turbations (in this context, building changes) on a team’s
stability. Several measures were extracted from discrete RQA
for this study, including percent determinism (DET), recur-
rence rate (RR), longest diagonal line (MaxL; i.e., stability),
entropy (ENTR), laminarity, trapping time, and longest ver-
tical line.

Figure 4(a) is a simple binary time series of length
N=11,x(t) =[1,0,1,1,0,0, 0, 1, 0, 0, 0] and Figure 4(b)
is a visual representation, or recurrent points (RP) of the
time series (Demir et al., 2021). Discrete RPs are constructed
by placing a symbolic time series on both the horizontal and
vertical axes of a graph and plotting a recurrent point (black
box) whenever a symbol repeats. In this case, the value at
x(1) is repeated at x(3), x(4), and x(8); likewise, the value at
x(3) is repeated at x(4) and x(8). The RP in Figure 2(b)
gives a visual summary of these patterns, as well as repeti-
tions involving zeros. The example concerning points, x(1),
x(3), x(4), and x(8), are visually depicted in Figure 4(b) by
tracing upwards from the bottom-left corner to the top-left
corner of the plot, where “points” (black boxes) are plotted
each time the value at x(1) repeats at a later time in the ser-
ies. The red line from the lower left-hand corner to the
upper right-hand corner indicates the main diagonal. Only
the upper triangle of the RP is analyzed because the matrix
is symmetrical around the main diagonal. Recurrent points
forming diagonals off the main diagonal indicate patterns
that form when data segments match segments from earlier
or later times (Marwan & Webber, 2015). This study used
discrete RPs to examine the change in the following three
commonly used RQA measures: RR, DET, MaxL, and
ENTR. Note that these measures are content-independent
measures that characterize the patterns of interaction (flow),
rather than what is being talked about (Cooke &
Gorman, 2009).

Recurrence Rate (RR or percent recurrences) measures the
percentage of time a team revisits a communication pattern
and captures the overall tendency for recurrence (i.e., recur-
rence density) on an RP. It is given by the ratio of the num-
ber of recurrent points to the square of the time series
length. RR is calculated through the following formula

(Marwan et al., 2007):

1 X
RR(e) = ﬁ.zl R; j(¢) 1)
iy j=

where R is the binary recurrence matrix of X, N is length
(i, j=1,.., N,), and the similarity threshold is &>0
(Schultz et al.,, 2015). This formula can be interpreted as the
probability of finding a recurrence trajectory x (recon-
structed from a time series x, e.g., by time delay embedding,
see Packard et al., 1980). RR quantifies the percentage of
points that return to the same local neighborhood in the
reconstructed phase space over time. An RR of 0% means
the time series never revisit the same local neighborhood,
whereas a rate of 100% means the time series revisit per-
fectly. In team coordination dynamics, we interpret percent
recurrence as a team’s tendency to revisit a communication
pattern during teamwork.

Percent determinism (DET) is an index of how determin-
istic the structure of dyadic communication behavior is, cal-
culated as the ratio of recurrence points forming diagonal
lines to all recurrent points in the upper triangle of the RPs
(Marwan et al., 2007). In this study, it was used in order to
characterize how organized each team’s communication
behaviors were by measuring the distribution of recurrent
points on the recurrence plot; highly organized systems are
bound to repeat sequences of states many times, represented
by many diagonal lines in an RP, whereas mildly determinis-
tic systems would rarely do so and can be seen by the pres-
ence of only a few diagonal lines in an RP (Allen et al,
2017). DET was specifically calculated as follows (Marwan
et al., 2007):

0
N IP(D)

N
. Zl:l

DET = (2)

where “I” is the diagonal line length considered when its
value is > I,;, and P(I) is the probability distribution of
line lengths. A DET of 0% means the time series never
repeats, whereas a rate of 100% means the time series
repeats perfectly. We interpret DET as a percentage of team
coordination predictability in this context.
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Figure 5. (a) Recurrence Rate and (b) entropy across the conditions (Error bars indicate 95% Confidence Interval).

Maximum Line Length (MaxL) is an indicator of the sys-
tem’s stability and captures the length of the longest diag-
onal sequence of recurrent states in the RP (Marwan et al,,
2007). In an RP for a binary time series, it is simply the lon-
gest diagonal line. According to (Eckmann et al., 1987), the
length of the diagonal lines is inversely proportional to the
largest positive Lyapunov Exponent (i.e., index of attractor
stability, see Abarbanel, 1996; Kantz & Schreiber, 1997;
Stergiou, 2016). It is calculated as follows:

MaxL = max ({li}f\L) 3)
where J; is a diagonal line length which is a segment of the
trajectory, and the total diagonal lines are Ny =), P(])
(Marwan et al., 2007). MaxL provides information about the
stability of team coordination. Higher MaxL indicates higher
stability and vice versa.

Entropy (ENTR) refers to the Shannon entropy of the
probability p(I) = P(I)/N; to find a diagonal line of exactly
length [ in the RP:

N

ENTR= — > p(lnp())

=" Inin

(4)

ENTR reflects the complexity of the RP in respect of the
diagonal lines. Lower entropy represents lower complexity in
team coordination and vice versa.

4.2. Split plot analysis of variance

In order to address how conditions differ according to each
of the team coordination dynamics measures across the mis-
sions, we applied split-plot Analysis of Variance (ANOVA).
Recurrence rate findings show that there was a significant
condition main effect, F(3, 60) = 521, p=0.003, though
there was no mission main effect, F(1, 60) = 1.16, p =0.692,
nor an interaction effect of condition by mission, F(3, 60) =
1.10, p=0.357. According to the significant condition main
effect of RR, the Always Explain condition had significantly
higher RR than the Never Explain and Pull-Prime conditions
(p=0.003, p=0.001, respectively; see Figure 5(a)). That is,
the teams in Always Explain had higher coupling strength

while Never Explain and Pull-Prime conditions had weaker
coupling strength. Entropy findings also show that there was
a significant condition main effect, F(3, 60) = 3.16,
p=0.031, though there was no mission main effect, F(1, 60)
= 0.72, p=0.399 nor an interaction effect of condition by
mission, F(3, 60) = 1.79, p=0.158. According to the signifi-
cant condition main effect of entropy (Figure 5(b)), teams
in the Always Explain condition had significantly higher
entropy than all the other three conditions (Never Explain,
p=0.019, Explain If Asked, p=0.032, and Pull-Prime,
p=0.007). Our prior results in Chiou et al. (2022) indicated
that teams in the Always Explain condition also had signifi-
cantly higher shared situation awareness than the other con-
ditions, which, in light of these findings, suggests that teams
in Always Explain had more complex in their coordination
than the other three conditions, enabling them to be more
adaptive to the dynamic task environment.

On the other hand, the findings for DET indicate that the
condition main effect, F(3, 60) = 1.99, p=0.124, mission
main effect F(1, 60) = 1.68, p=0.199, and condition by
mission interaction effect, F(3, 60) = 1.09, p=0.361, were
not statistically significant. Similarly, MaxL results also show
that there was no significant effects of condition, F(3, 60) =
2.39, p=0.078, and mission main effects, F(1, 60) = 1.63,
p=0.207, nor interaction effect of condition by mission,
F(3, 60) = 0.74, p=0.533.

4.3. Stepwise regression

We used stepwise regression (based on Akaike information
criteria, AIC) to determine the best set of predictors for
shared situation awareness and team performance from the
robot explanations and coordination measures. We chose
stepwise regression to eliminate the multicollinearity issue by
including an additional predictor variable and eliminating a
predictor variable (i.e., forward selection and backward elim-
ination, respectively) already in the model (Weisberg, 2005).
We also chose AIC because our sample size was limited, and
AIC places a moderate penalty on the number of predictor
variables compared to Bayesian, which places a heavier pen-
alty (Weisberg, 2005). This analysis was conducted in R (R
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Table 3. Results for predicting shared situation awareness.

Table 4. Results for predicting the dyadic team performance.

Variable Term B SEB p t p Variable Term B SEB p t p

Recurrence rate Linear (RR) —0.41 0.16 —-0.23 —244  0.016  Max line Linear (MaxL) —0.04 001 —-040 —279 0.006

Explanations Quadratic 0.01 0.01 0.33 3.54 0.001 Determinism Linear (DET) 0.09 0.06 0.16 144 0.153
Recurrence rate Linear (RR) 0.20 0.08 0.27 239 0.018

Note. “B" and “SE B”" refer to unstandardized regression coefficient and its
Standard Error, respectively, while “f” refers to standardized regression
coefficient.

Development Core Team, 2016), using the MASS packages
for stepwise regression (Ripley, 2021) and Im-beta (Behrendt,
2014) for adding standardized regression coefficients.

4.4. Predicting shared situation awareness and
regression diagnostics

First, we applied stepwise regression (AIC) to predict shared
situation awareness via team coordination measures and
explanations. The regression model accounted for 9.42%
(Adjusted R-squared) of the variance (F(2, 117) = 7.19,
p=0.001; Table 3).

Y1sa = —0.41RR + 0.01Explanations® + 0.87 (5

Based on the model shown in Equation 5, we ran regres-
sion diagnostics to investigate if the calculated model and
the assumptions we made about the data and the model are
consistent with the recorded data. All the assumptions were
accordingly met (see Table 1); therefore, we continued sum-
marizing the regression model in Equation 5.

According to the findings, robot explanations contributed
to better shared situation awareness, and the recurrence rate
adversely contributed (Table 3). We interpret this as indicat-
ing that when the robot explained the unpredictable situ-
ation, the navigator was able to code the collapses and
openings on the map, which implied a better shared situ-
ation awareness. Another interesting finding is that the
recurrence rate was negatively associated with shared situ-
ation awareness. These findings indicate that during the per-
turbations in this specific task, the robot explanations were
more helpful than repetitive team coordination patterns in
maintaining shared situation awareness.

4.5. Predicting team performance and regression
diagnostics

We applied another stepwise regression to predict team per-
formance by explanations and team coordination measures.
The following model is obtained, F(4, 115) = 3.37,
p=0.012, and the model was able to account for 7.39%
(adjusted R-squared) of the variance:

Yperformance = —0.03MaxL + 0.04ENTR + 0.25RR + 0.74RR> + 1.11
(6)

As in the previous section, we ran regression diagnostics
to investigate the consistency of the calculated model and
the assumptions we made about the data and the model
with the recorded data. These findings are summarized in
Table 2. Based on the outlier test, there were two extreme
cases (rstudent=—4.06, Bonferroni p=0.011) which we
needed to exclude. However, we only excluded one of them

Quadratic (RR?) 059 031 0.21 1.90 0.060

Note. “B" and “SE B" refer to unstandardized regression coefficient and its
Standard Error, respectively, while “f" refers to standardized regression
coefficient.

(chosen based on the distance Q-Q plot) and re-run step-
wise regression and the outlier test. Based on the new
regression model, there were no extreme cases to eliminate
(rstudent=3.32, Bonferroni p=0.144), and the rest of the
regression assessment was not violated.

After the diagnostics, the final model was significant, F(4,
114) = 2.64, p=0.038, and the model was able to account
for 5.25% (adjusted R-squared) of the wvariance (see
Equation 7 and Table 4):

Yerformance = —0.04MaxL + 0.09DET + 0.20RR + 0.59RR? + 1.11
(7)

According to the significant findings (see Table 4), stable
coordination (MaxL) of the human-robot dyad was nega-
tively associated with performance, but revisiting the same
communication pattern (RR) was positively related. We
interpret this as being related to how the identification of
the victims might have been a more routine task in com-
parison to tasks that are more shared situation awareness-
intensive (e.g., identifying collapses and openings); thus, this
task requires more similar types of communication patterns
rather than explanations (not like shared situation aware-
ness). However, as this is still a dynamic task, and therefore,
the stability (MaxL) in team coordination did not help for
this task. This may indicate that for dyads in dynamic task
environments, especially USAR or command-and-control,
time pressure requires more effective interactions rather
than more stable (MaxL) ones.

5. Discussion and conclusion

In this study, navigators made plans prior to executing their
USAR missions. However, much like many real-world scen-
arios in which HMTSs are expected to be deployed, the task
environment in this study included dynamic events that
required deviations from the original plan. These deviations
were generally observable to the navigator but executed by
the WoZ robot autonomously, and the reasons for devia-
tions may not have been immediately apparent from the
navigator’s perspective. In the Always Explain condition,
deviations from the plan were always explained by the robot
proactively. This was expected to improve the navigator’s
understanding of the robot’s behavior and improve coordin-
ation among the team members.

In dynamic task contexts, establishing shared situation
awareness is a continuous process (Endsley & Jones, 2001)
that involves exchanging information between teammates
and coordinating team activities in response to changing
external constraints. Shared situation awareness is not



merely the level of shared awareness between teammates. An
HMT can be treated as a single cognitive system that exe-
cutes actions to perceive the environment and simultan-
eously act upon those perceptions towards a goal in a
perception-action loop (Gorman et al., 2006).

Understanding interpersonal coordination dynamics in
HMT is important for designing robotic systems that func-
tion effectively with people as teammates. This study investi-
gated how interpersonal coordination dynamics are
associated with communication strategies in a robot-assisted
USAR simulation using discrete RQA. The associations
between interpersonal coordination dynamics and robot
explanations with shared situation awareness and team per-
formance were also examined.

We addressed two research questions. The first question
is how communication recurrence affects and reflects inter-
personal coordination dynamics between the USAR robot
and human navigator when using different communication
strategies. The proactive provision of explanations by the
robot in the Always Explain condition may have allowed the
human navigator to adjust their behaviors in response to the
robot’s deviations more effectively, resulting in overall more
synchronized interactions. It was also found that teams in
the Always Explain condition had higher ENTR in their
coordination dynamics than those in the other conditions.
This indicates that the coordination dynamics were also
more complex when the robot provided proactive explana-
tions of deviations in addition to recurring proportionally
more often. The greater complexity might be attributed to
how the Always Explain condition allowed for explanations
that were either proactively given by the robot or answers to
questions from the navigator (i.e., more interaction types
were used). This may have, in turn, led to more similar
response flow patterns over time as participants learned to
respond according to whether the explanation was solicited
or not. The other measures of interpersonal coordination
dynamics (DET and MaxL) did not differ between the con-
ditions. Overall, these findings suggest that robot explan-
ation appears to influence the temporal dynamics of
coordination to some degree, which complements previous
research that focuses on transparency, situation awareness,
and trust calibration (Mercado et al., 2016).

The second research question was how the robot explana-
tions and coordination dynamic characteristics of human-
robot teams were associated with team effectiveness (i.e.,
shared situation awareness and performance). Team per-
formance in this task was defined as the number of correctly
triaged victims, which required locating them in the struc-
ture and marking them appropriately within the simulation.
The results show that, although robot explanations improved
shared situation awareness, team coordination dynamics
measures were associated with team performance either
positively (i.e., RR), negatively (i.e., MaxL), or not at all (i.e.,
DET, ENTR).

RR was positively associated with better team perform-
ance. In this task, information exchange was necessary due
to role interdependence, and a stronger recurrence commu-
nication pattern is likely to reflect more effective
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information exchange. Although RR was associated with
improved team performance, it was also negatively associ-
ated with shared situation awareness, indicating that teams
with high shared situation awareness may still perform rela-
tively poorly without sufficiently stable coordination dynam-
ics. In this case, teams in Always Explain tended towards
repeating the same communication flow patterns more often
than teams in the other conditions, which helped their team
performance, but not shared situation awareness.

MaxL was negatively related to team performance. MaxL
measures the duration of the longest interaction sequences
and, in this study, provided a measure of the stability and
length of the HMT’s coupling. This finding suggests that
longer and more sustained recurrent interaction sequences
were actually negatively associated with team performance.
Higher MaxL indicates extended team interactions which
may have interfered with the primary task, which needed to
be interleaved with their communications. Overly stable
HMT coordination dynamics have also been associated with
rigidity in other dynamic team environments such as RPAS
(Demir et al.,, 2018), which may have been detrimental to
the performance given the dynamic nature of this USAR
simulation. Together with the RR regression results, we
believe this indicates that the dynamic nature of the USAR
task environment requires teams to adaptively switch
between different coordination patterns that are distinct
from one another yet moderately stable (previously discov-
ered by Demir, Likens, et al., 2019). Extending this further
could provide evidence for multifractality in team coordin-
ation dynamics (Likens et al., 2014). This is a gap in the
current studies, and it might be a future direction of
this study.

In summary, the findings from this study suggest that
when a robotic agent provides proactive explanations to its
human navigator, it may lead to more recurrent and com-
plex communication patterns. Altogether, our results are not
surprising; repeating established communication patterns
might aid in the performance of routine tasks, but they
might not help as much during perturbations, in which a
shared understanding of the immediate team task context is
more important. Furthermore, extended and overly stable
recurrent exchanges appear to be detrimental to perform-
ance in this task context. More broadly, the present results
support recent efforts to understand the relationship
between the temporal nature of interpersonal coordination
and team effectiveness. It also demonstrates how RQA can
be applied to unobtrusively increase our understanding of
the temporal aspect of HMT coordination without relying
on resource-consuming content-based approaches (e.g., con-
tent analysis).

5.1. Limitations and future work

There were several limitations to this study, including the
generalizability of the findings from a sample of university
students operating in a game-based USAR environment to
designing systems that trained experts operating in real-
world settings might use. To mitigate this challenge, the task
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environment for this study was intentionally designed to
elicit key teaming and cognitive aspects of the task context
from novice participants (Lematta et al, 2019). However,
experience and expertise can play a large role in situation
awareness. Future studies should seek to build upon our
findings by examining the impact of expertise and task
familiarity on shared situation awareness in the robot-
teamed USAR context.

Another limitation is that though we believe that discrete
RQA is sufficient for the purposes of this study, there are
several types of RQA. Another RQA method to examine
dyadic interaction is Cross Recurrence Quantification
Analysis (CRQA; Dale et al,, 2011). CRQA can also be an
appropriate method for this communication flow data,
because there is a binary time series for both the navigator
and “robot.” CRQA may have allowed us to interpret recur-
rence rate as coupling strength, which would provide an
additional perspective into our data. Gorman et al. (2020)
demonstrated that windowing could give finer-grained real-
time analyses rather than analyzing the data across the trials.

Our implementation of the Always Explain condition was
designed to promote integrated mental models in teams
(Chiou et al., 2022). However, it is possible that individual
differences in perceptions of robot explanations may have
instead to degraded trust in the robot. For future studies, we
recommend a more nuanced analysis into what constitutes
sufficient or desirable levels of proactive explanation, and
how matching such levels might relate to the measures
explored in this study.

Finally, we acknowledge that team composition might
have been a limitation in this study, as well. This task was
based upon key elements of real-world USAR operations
combined with WoZ-enabled robot behaviors to answer
research  questions about human-robot interactions.
However, real USAR operations typically take place as part
of larger teams (Murphy, 2019). Future work can extend
these results to teams with more than two members to see
how interpersonal coordination affects team effectiveness
within larger and multi-level teams.
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