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Objective: We review the current state-of-the-art in team
cognition research, but more importantly describe the limi-
tations of existing theories, laboratory paradigms, and measures
considering the increasing complexities of modern teams and
the study of team cognition.

Background: Research on, and applications of, team
cognition has led to theories, data, and measures over the last
several decades.

Method: This article is based on research questions
generated in a spring 2022 seminar on team cognition at
Arizona State University led by the first author.

Results: Future research directions are proposed for
extending the conceptualization of teams and team cognition by
examining dimensions of teamness; extending laboratory
paradigms to attain more realistic teaming, including nonhuman
teammates; and advancing measures of team cognition in a di-
rection such that data can be collected unobtrusively, in real
time, and automatically.

Conclusion: The future of team cognition is one of the
new discoveries, new research paradigms, and new measures.

Application: Extending the concepts of teams and team
cognition can also extend the potential applications of these
concepts.

Keywords: teamwork, team cognition, human-machine
teaming, unobtrusive measurement, team dynamics

TEAM COGNITION: STATE OF
THE SCIENCE

Teams are undeniably ubiquitous in today’s
world. Work and play alike increasingly involve
complex goals that extend well beyond individual
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tasks, needs, and capabilities. Salas and col-
leagues (1992) defined teams as “distinguishable
set[s] of two or more people who interact dy-
namically, interdependently and adaptively to-
ward common and valued goal[s], [...] assigned
specific roles or functions to perform and who
have a limited life span of membership” (p. 4),
which remains among the most cited and com-
prehensive definitions in the field. However, re-
cent studies have expanded upon or omitted some
of its key elements. The prominence of artificial
intelligence (Al) in today’s team contexts, for
example, has resulted in the conceptualization of
human-machine teams (HMTs, also “human-
autonomy teams”; O’Neill et al., 2020).

The same is true for how cognition at the team-
level has been framed in recent years. Dating
from the mid- to late 1990s, shared mental
models (SMMs; Cannon-Bowers et al., 1993)
and transactive memory systems (TMSs;
Moreland et al., 1996) have offered insight into
how team cognition can be understood as com-
posites or compilations of individual teammates’
cognition (Kozlowski & Chao, 2012; Mesmer-
Magnus et al., 2017). However, empirical evi-
dence has more recently driven the development
of interactive team cognition (ITC) theory, which
employs an ecological perspective that posits
team interactions themselves as team cognition
(Cooke et al., 2013). We note that ITC theory is
not mutually exclusive with composite or com-
pilational team cognition theories and that
combinations of these theories have brought
about more holistic approaches to the afore-
mentioned shifts in how teams are studied (e.g.,
Demir et al., 2018; Fiore & Wiltshire, 2016;
O’Neill et al., 2020).

Recent findings also indicate changes in the
contexts of how team cognition is studied. Over
the last two decades, field studies have shown
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that teams have become more distributed across
spatiotemporal contexts and increasingly re-
liant on virtual communication technologies
(Morrison-Smith & Ruiz, 2020)—a trend ac-
celerated by the Covid-19 pandemic. The in-
creased role of synthetic task environments
(STEs; Cooke & Shope, 2004) that feature
remote communication tools in empirical re-
search reflects these trends, as well. Wizard of
0Oz (WoZ) studies—dubbed so for the use of
confederates posing as machine teammates to
simulate theoretical Al capabilities—have re-
latedly seen significant use in conjunction with
STEs and remote data collection methods,
particularly in HMT research (Riek, 2012).
Trends towards gamification of team tasks have
also been observed in field applications (Kapp,
2012) and the design of STEs for laboratory
experiments (Cooke et al., 2020). More re-
cently, commercially developed games such as
Minecraft and Roblox have been adapted for
laboratory team studies, partially in response to
limitations of remote data collection (Lematta
et al., 2022).

It is notable that measures of team cognition
have somewhat lagged behind the pace of
change in theory and practice. Classical
measures of team cognition aggregate
individual-level measurements, such as surveys
and physiological sensor data, and are thus
more aligned with compositional views of team
cognition. Though numerous ways to measure
team cognition at the team-level have been
proposed and demonstrated (e.g., Gorman
et al., 2017; Kozlowski & Chao, 2012), com-
positional measures of team cognition remain
dominant (Mesmer-Magnus et al., 2017). This
is concerning, as such measures may prove
inadequate and impractical in studying team
cognition for novel team structures; it is diffi-
cult to even conceptualize how to administer
survey questionnaires to machine and animal
teammates in hybrid teams, for example. As an
alternative, interactive measures such as non-
linear coordination dynamics have been used to
model hybrid and all-human teams (Demir
et al.,, 2018; Gorman et al., 2010), in some
cases in real time (Gorman et al., 2012). It is
within this theoretical and methodological

context that the authors explore future direc-
tions in team cognition.

METHODS

Over the course of a seminar in Spring 2022
at Arizona State University, we examined dif-
ferent topics in team cognition studied primarily
over the last decade, but in the context of prior
decades of work. Each graduate student was
teamed with an undergraduate student in the bi-
level class. The graduate student mentored the
undergraduate and they jointly identified a topic,
identified 10 or more relevant articles from the
last 10 years, provided an annotated bibliogra-
phy, selected the most relevant reading for the
class, collected pre-class statements on the
reading from the class, and led the class dis-
cussion. During the discussion, the un-
dergraduate would take notes in a shared Google
document of open issues, gaps, or future re-
search directions. At the final class meeting, the
class identified recurring themes and questions
by systematically considering the notes in the
shared document. A brainstorming discussion
was held to identify high-level research ques-
tions raised in each class. These high-level
questions were aggregated and as a group
consensus was reached on the themes that
emerged from them. We observed themes per-
taining to the definition of “team,” to machines
as teammates, and to methods and measures for
studying team cognition. Results of our dis-
cussions are summarized in the sections below.

ON TEAMS AND TEAMNESS

In this section, we outline some pressing
questions about team cognition in relation to
how teams have evolved both in field and lab-
oratory settings. We start by considering the
essential elements of a team and proposing a re-
examination of the properties that have been
used to define various types of teams. This in-
cludes several emerging team constructs, in-
cluding ad hoc teams, multiteam systems,
human-animal teams, and HMTSs.

Consider 3 groups of dancers: (1) a folk-dance
troupe choreographed such that dancers are paired
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with each other and perform steps relative to in-
dividual and paired positions; (2) a group of line
dancers performing simple steps together that can
also be executed alone; and (3) dancers scattered in
a club and independently performing their own
routines to the same music. If we compare the first
two groups only, the dance troupe may be con-
sidered more of a team and the line dancers more
of a group, though it can be argued that both are
teams in their own right. In contrast, the third
group may more clearly not be a team—until they
take on a line dance, that is. Why is it that not only
can we identify whether groups are teams or not
but also argue that one team is more team-like than
the other—or even compared to itself at a different
point in time?

Turning to classical definitions of teaming
(e.g., Salas et al., 1992) only gives us a partial
answer: all teams are groups, but not all groups
are teams. Existing taxonomical frameworks
that center on the attributes of teams as groups
also offer limited clarity. Earlier classification
schemes (e.g., Cohen & Bailey, 1997;
Sundstrom et al., 1990) often focus on whether
teams are of one type or another, such as if
a team is a project team or an action-oriented
team. However, these are often limited only to
teams whose structures and activities are rela-
tively static within stable organizational con-
texts. More recent work considers team
attributes irrespective of team types, which can
be used to factor in the dynamic nature of these
attributes. An example is the multidimensional
scaling paradigm by Hollenbeck et al. (2012)
that describes teams in terms of skill differen-
tiation, authority differentiation, and temporal
stability. Though such frameworks are certainly
useful for comparing different teams, applying
them can be a tedious process, limiting its utility
for tracking how such team attributes change
within teams over time. Additionally, because
both older and newer taxonomic schemes derive
their dimensions from teams that meet the tra-
ditional definition, they may not be as useful in
answering questions about how novel structures
like HMTs function as teams.

We observed in our discussions the re-
currence of questions about how team cognition
takes place in various team contexts, which lent
credence to the need for a structural supra-

paradigm within which the dimensions and
characteristics of team cognition could be
studied as a continuum. We summarize these
questions, along with examples that inspired
them in Table 1.

Discussions surrounding these questions led
us to a focus on team cognition as an emergent
state of activity instead of teams as specialized
groups. Marks et al. (2001, p. 357) defined team
processes as “members’ interdependent acts that
convert inputs to outcomes through cognitive,
verbal, and behavioral activities directed toward
organizing taskwork to achieve collective
goals.” They also indicated that team emergent
states, including team cognitive constructs like
SMMs, are the byproducts of interactive team
processes. More recently, Johnson and
Bradshaw (2021) described teamwork as ac-
tivities in which participants intentionally work
together through interdependent tasks that are
situated within a relational structure character-
ized by group identity and shared commitment.
Combining these with ITC theory allows us to
refine the definition of interactive team cognition
as follows: interactive team cognition is an
emergent state of activity that intermittently
arises as teams engage in acts of in-
terdependence, that is, teamwork, throughout
their limited lifespans. An implication of this is
that team cognition arises not simply from any
interaction between any two members of a team
but from those that involve interdependence.

Focusing on Zow a team functions rather than
who it comprises thus entails describing the
extent to which a team’s interactions involve
team cognition, through a multidimensional
construct that we refer to as teamness. Teamness
conceptually allows us to answer the question of
how a team appears more team-like at one point
in time over another by qualifying the differ-
ences and similarities between and within in-
stances of teaming. To illustrate, studies on team
coordination dynamics have shown that a team’s
performance is positively correlated with the
variability of its coordination and decision-
making strategies (Demir et al., 2018, 2021;
Gorman et al., 2010). The diversity of a team’s
coordination strategies over a set of interactions
may be a dimension of teamness and might
explain the observed relative effectiveness of
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TABLE 1: Questions About Team Cognition as Observed in Various Team Structures

Questions About Team Cognition

Notable Examples

1. Human teammates: Do teammates have to be
people?

2. Heterogeneity: Can there be degrees of
homogeneity in teams due to shared tasks and
roles?

Human-animal teams suggest that teams can also

include nonhumans that perform team tasks
beyond human capabilities and have been
suggested as a blueprint for designing HMTs
(Phillips et al., 2016). Examples are human-canine
narcotics search teams, human-dolphin fishing
teams, or human-canine sheep management
teams.

In human-machine teams, certain sophisticated

machines may serve as teammates to humans, just
as animals fill this role. Artificially intelligent forms
of automation which exhibit an increased level of
autonomy from human control and direction with
functions and capabilities beyond those of simple
tools may be considered teammates (O'Neill

et al., 2020).

Centaur teams, in which humans and Al agents form

very tightly coupled, often dyadic structures,
perform the same tasks as a collective unit that is
"half-human, half-Al” (Muller, 2022). The term
was first popularized by chess grandmaster Garry
Kasparov, who, after his historic loss to IBM's
Deep Blue, initiated the first “Centaur Chess”
competition. Results showed that centaur chess
teams outperformed both grandmasters and solo
computer players, suggesting the presence of
emergent team cognition (Case, 2018).

Borrowing from the concept of “mosaic warfare,”

mosaic teams are virtual, decentralized, ad hoc
teams composed of a vast array of team members
with heterogeneous areas of expertise. However,
these teams also have non-MECE (mutually
exclusive, collectively exhaustive) team states
(McChrystal et al., 2015), with redundant roles
within teams to leverage skill differences among
individuals.

(Continued)
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TABLE 1: (Continued)

Questions About Team Cognition Notable Examples

3. Shared goal and identity: Do teams have to have Human and animal members of human-animal
a shared goal or a shared identity? teams such as human-canine search teams are

likely to have different understandings of what
the shared goal is or the collective identity of the
group because of their different cognitive
abilities. Nevertheless, interactions between
them satisfy the definition of team processes and
teamwork (Johnson & Bradshaw, 2021; Marks
et al., 2001).

Dispersed or virtual teams involve team members
interacting over temporal or spatial distances, via
technology. The impact of virtual settings on
dispersed team dynamics, information exchange
behaviors, communication, and team emergent
properties is not yet fully understood (Espinosa
et al., 2015). Dispersed team members may hold
uniquely divergent views about their collective
identity and shared goals because of cultural
distances, though it is undeniable that teamwork
occurs in them.

In multiteam systems such as in a military Joint All-
Domain Command and Control (JADC2) system,
heterogeneous teams operating across different
domains (such as land, air, or water) coordinate
between and within subunits in response to
multiple rapidly changing environments (Gorman
et al., 2006). Further research is needed to
determine how local and global goals and identity
factor into team cognition in such systems.

(Continued)
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TABLE 1: (Continued)

Questions About Team Cognition Notable Examples

4. Hierarchy and authority: Do teammates need to In surgical teams, putative hierarchies among
have the same perception of hierarchy or authority ~ nurses, surgeons, and assistants have been shown
differentiation? to dissolve and re-emerge over time, depending

on the complexity of the surgical procedure and
the criticality of the medical situation (Barth et al.,
2015; van den Oever & Schraagen, 2021). When
such hierarchical structures dissolve, initiation of
and participation in exploratory communication
and direction-setting occurs in a lateral fashion.

Human-machine teams are different from traditional
supervisory control in human-automation
interaction paradigms (Sheridan, 2012). This is not
just because machine team member actions can
occur autonomously (O'Neill et al., 2020) but also
due to the interactive capabilities of machine
teammates that allow them to initiate and
participate in coordinative activities such as
negotiation (Chiou & Lee, 2021). We note that
this is not mutually exclusive with hierarchical
team contexts, though people’s capacity to
consider machine teammates as equals in more
lateral teaming contexts has been questioned
(Groom & Nass, 2007).

5. Interdependence: Can teammate Action-oriented teams are teams that “conduct
interdependence be a matter of degree of complex, time-limited engagements with
interdependence? Can interdependencies among  audiences, adversaries, or challenging
teammates change over time? environments in ‘performance events’ for which

teams maintain specialized, collective skill”
(Sundstrom, 1999). Such events are “periods of
time over which performance accumulates, and
feedback is available.” (Mathieu & Button, 1992,
p. 1761). Examples of action-oriented teams
include search and rescue teams, infantry
platoons, aviation crews, cooking teams, sports
teams, and musical teams. It has been observed
that degrees of interdependence change
dynamically within such teams, in that individual
taskwork and coordinative teamwork relative to
each other change over time. The effects of
dynamic team membership, particularly those in
mosaic and ad hoc teams, may also change how
each teammate's taskwork is interdependent
upon another. In addition, per the earlier dancing
example, degrees of interdependence may differ
across teams. Further studies are needed to
accurately track changes in interdependence and
its effects on teamwork in general.




FuTture DirecTioN IN TEaM COGNITION

HMTs and all-human teams at given points in
time beyond their composition.

We note that the concept of teamness needs
further development through the identification
and measurement of interaction-based di-
mensions. In Table 1, we have identified po-
tential dimensions in team composition, role
heterogeneity, diversity of shared goals and
identity, authority structure, and degrees of in-
terdependence; and there are likely more. We
believe that its application can advance team
science away from needless debates on whether
groups like human-machine systems fit tradi-
tional definitions of teams (c.f., Shneiderman,
2022, ch. 14; Groom & Nass, 2007), towards
how system interactions could be engineered to
promote interdependent interactions from which
beneficial emergent system characteristics can
arise (National Academies of Science, 2021).

TEAM COGNITION IN
HUMAN-MACHINE TEAMS

As indicated in Question 1 of Table 1, in-
telligent machines can be considered teammates
just as animals can be considered teammates
(Phillips et al., 2016). In many ways, we may do
better to consider machine teammates as mem-
bers of another species. Considering a machine as
a teammate does not mean that the machines are
in control, that machines are human or human-
like, or that the machine is not human-centered.
In fact, designing a machine to work well with
humans as a teammate can increase human-
centeredness. In addition, this design can draw
on what we know from the team literature (e.g.,
team composition, team process, team de-
velopment, and team measurement) to do so.

In the past, automation and Al have been
construed as functioning mostly as a tool,
without autonomy, and completely under
human supervisory control (Sheridan, 2012).
But with increasing capabilities in Al and the
growth of sociotechnical systems, more re-
search has acknowledged that Al can function
as part of a team (Chiou & Lee, 2021; O’Neill
et al., 2020; Seeber et al., 2020; Zieba et al.,
2010). A robot that searches for Improvised
Explosive Devices ahead of soldiers all con-
nected through GPS sensors and communication

systems functions as an integral part of the team
or system. It is critical to understand how human-
machine interactions may be more complex than
dyadic supervisory control structures. Existing
literature on teamwork provides a starting place
to do so, but not all of the team cognition liter-
ature can be expected to translate to this new
teaming arrangement. Working with machines
may change the way teams work together, as
recent literature shows (e.g., McNeese, et al.,
2018). Studying the teamness of human-
machine interactions may aid in the de-
velopment of theoretical teamwork models that
can predict how HMTs function.

We acknowledge some issues that have been
raised in studying team cognition in HMTs. Al
technology has not yet reached the level of
general human intelligence; machine teammates
may therefore have limited context awareness or
social and emotional intelligence (O’Neill et al.,
2020). Machines may excel at taskwork, but lack
in teamwork (Chiou & Lee, 2016). In addition,
there are many open research questions relevant
to how interactions and collaborations will be
affected by the presence of nonhuman team-
mates (Seeber et al., 2020). How are team
processes such as conflict resolution, co-
ordination, and backup behavior affected? How
do leadership behaviors, motivation, and psy-
chological safety work in a human-machine
team? How does the degree to which the ma-
chine is thought of as a true teammate affect
teaming behaviors?

Beyond limitations in the abilities of the ma-
chine teammates, the teamness of human-machine
interactions may be impacted by the human’s
perceptions, beliefs, and attitudes toward machine
teammates, and the composition of humans and
machines on the team (Musick et al., 2021;
Walliser et al., 2019). Anthropomorphism, the
process through which people prescribe human-
like characteristics to nonhuman entities (Epley
et al., 2007), means that humans can be easily
swayed by the trivial characteristics of intelligent
agents giving them the appearance of advanced
capabilities that do not exist (National Academies
of Sciences, 2021; Philips et al., 2011). Other
factors of perception include trustworthiness,
machine behavior, and friendliness (Phillips et al.,
2011; Shneiderman, 1989; Sims et al., 2005).
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Overall, it is essential to understand how humans
perceive intelligent machines, the factors that
guide those perceptions, and their resulting effects
on team interactions and performance. These are
open research questions, as raised in a recent report
by the National Academies of Sciences (2021).

EXTENDING LABORATORY PARADIGMS
TO STUDY TEAM COGNITION

Laboratory paradigms must be extended to
study team cognition as dimensions of team-
ness vary within and between contexts (see
Table 1). Paramount to this is the development
of testbeds that have a high degree of eco-
logical validity and thus mirror the demands,
pressures, risks, and dynamics of real-world
teaming. Yet, incorporating these factors into
laboratory paradigms requires careful con-
sideration of the tradeoffs between control,
validity, and practical constraints. For in-
stance, realism and the emergence of self-
organized dynamics might be enhanced in
ateaming experiment by allowing teams a high
degree of flexibility in how they can in-
terdependently pursue shared goals within
a simulation environment. However, this
flexibility may also present challenges to
maintaining experimental control and tracta-
bility of variables for data analysis. Other
aspects of teamness, like role heterogeneity or
diversity of shared goals, are challenging to
implement when using inexperienced teams
that do not possess the domain-specific
knowledge required to understand the nu-
ance of the interactions within a given task.

Designing an effective teaming study not
only requires a scenario with adequate task fi-
delity, but in some cases, it also requires that
participants perceive risk in a manner similar to
the real world. For example, perceptions of risk
influence the development of trust, including in
human-machine teams (Chiou & Lee, 2021;
Stuck et al., 2022). However, it is often ethically
difficult or impossible to create realistic per-
ceptions of the high-impact risks experienced by
many real-world teams (e.g., physical harm).
Furthermore, the examination of risk is com-
plicated in human-machine teams due to the
ambiguity surrounding accountability and

responsibility. Another challenge is that team
cognition studies tend to examine ad hoc teams
of inexperienced participants that are formed for
only short durations. Although these experi-
ments can provide some degree of insight into
team behaviors and patterns of interaction, they
offer little insight into teams comprised of more
experienced individuals or teams who have
extensive experience working together, both of
which impact teamwork to a great degree.

Advances in synthetic task environments
(STEs) that recreate the cognitive realism of
a specific team environment have begun to
evolve to support some of these research needs.
Notably, STEs have recently been developed
using modified commercial games, making STE
development more accessible and financially
feasible (Cooke et al., 2020). Likewise, im-
provements in the availability and bandwidth of
internet- and computer-mediated collaborative
tools have made it possible to conduct distrib-
uted team research in which participants or
experimenters are geographically dispersed
(Lematta et al., 2022). In addition, distributed
STEs may allow researchers access to larger
pools of potential participants, which in turn
makes larger team studies more practical.
However, the potential of distributed STEs have
yet to be fully realized for studying teams that
remain together for extended periods of time,
teams that include expert participants who are
often difficult to access, and the examination of
multiteam systems. STEs also offer a potentially
low overhead opportunity to study teams that
include nonhumans (e.g., HMTs) through
“Wizard of Oz” paradigms (Riek, 2012). Other
opportunities exist in utilizing observation of
“teams in the wild” through internet ethnogra-
phy or the analysis of teamwork in online video
games. However, such research requires ad-
vances in data collection and analysis methods
and creates new concerns for privacy and
confidentiality.

TEAM COGNITION:
MEASUREMENT NEEDS

The dimensions of teamness outlined in Table 1
suggest that measurement needs may vary de-
pending on the kind of team. For instance,
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understanding effectiveness for distributed action-
oriented teams may require considering different
variables, instruments, and modeling techniques
from collocated knowledge-oriented teams. Fur-
ther, measurement needs for one team may vary as
their tasks, goals, and contexts evolve. Require-
ments for measurement may be different because
how the team functions to achieve its goals may be
different, and hence, characterizing teams by di-
mensions of teamness is an important step to
measuring them. Research is needed to identify
appropriate metrics for teams specific to teams’
degree of teamness.

ITC theory posits that measures of teamwork
are most appropriate at the team-level (Cooke
et al., 2013). But what does “team-level” really
mean? If teams are a different kind of system
than individuals, individual-level measures may
miss parts of teaming that cannot be ascribed to
individuals. Overall, future research is needed to
define team-level constructs based on what
teams are and how teams work, rather than
solely extrapolating individual factors to teams.

For example, the demand imposed on the
team by tasks relative to the amount of work
teams can do may depend on group dynamics
and team interdependence. Hence, adding up
individuals’ workloads may lead to large dis-
crepancies in accurately estimating team
workload. The need for team-level measurement
poses a challenge to existing measurement
techniques. In particular, physiological meas-
ures must be captured at the individual level, but
what would a team-level measurement of heart-
rate variability look like (c.f., Kazi et al., 2021)?
Researchers have considered heart-rate syn-
chronization as a collective measure of workload
(Demir et al., 2022; Dias et al., 2019), but re-
search is needed to further scope team-level
physiological measures.

The concept of team trust exemplifies chal-
lenges in defining team-level constructs. For
example, consider trust in a team of three.
Teammate 1 may trust Teammate 2 and Team-
mate 3, but Teammate 1 may not trust Teammate
2 and Teammate 3 working together. Teammate
1’s trust in Teammate 2 may also be affected by
what Teammate 3 says about them. Teammate

I’s trust in Teammate 2 or Teammate 3 in the
moment may also depend on context, such as
what Teammate 1 needs of Teammate 2 or
Teammate 3. Overall, there is much more po-
tential complexity in team trust than individual
trust, which is already a complex concept. Team
science needs working definitions of team trust
as well as measures that accommodate this
complexity.

Whereas many aspects of teamwork are time-
sensitive, some of the best measures available
for team effectiveness constructs are not. For
constructs such as trust and situation awareness,
taking a team out of their workflow or requesting
their self-report in a survey may disrupt re-
searchers’ ability to capture constructs reliably
and may reduce the extent that team-based
scenarios reflect real work. In team assess-
ment applications such as training or real-world
operations, there is often no time to interrupt the
team to measure them. Team science needs to
advance measures of teamwork that can be
passively or unobtrusively collected, and
measures and assessment outputs that are gen-
erated in real time to provide useful feedback in
a timely manner. Moreover, not all time is
created equal. Events, situations, and tasks
contextualize team interactions over time, which
means the characteristics of effective team in-
teraction are likely to shift as context shifts. In
sum, time-sensitivity in measurements means
minimizing the impact of measurement on
a team’s time-sensitive task, generating outputs
that are usable as real time feedback, and un-
derstanding the temporal context of team in-
teractions (Gorman, et al., 2020).

CONCLUSION

Team cognition is not a monolithic construct,
nor is the definition of team, which has many
dimensions such as size and interdependence.
Our conceptual definition of teamness means
that teams and teamwork are more nuanced than
previous definitions suggest. Empirical findings
on team cognition may be specific to the point in
the multidimensional space of teamness that
reflects the specific team and teamwork studied.
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For instance, what kind of team training is most
appropriate for human-machine teams of high
interdependence with hierarchical control
structures? Likewise, team composition, struc-
ture, and function are important considerations
that may affect the generalizability of results.
How does a massively distributed and hetero-
geneous team maintain team situation awareness
as compared to a small all-human colocated
team? Equally important is the type of teammate
with nonhuman teammates playing increasingly
important roles. Laboratory paradigms and
measurement practices need to adapt to the
growing complexity associated with these new
and varied types of teams. The future of team
cognition is one of the new discoveries, new
research paradigms, and new measures.
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KEY POINTS

e All teams are not equal, but differ across multiple
dimensions that may define “teamness.”

e Future research on team cognition should identify
how teams work by these dimensions.

® Research is needed on team cognition when
teammates are not all human.

® Laboratory paradigms and measures of team
cognition require advances.
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