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Air Traffic Controllers (ATCs) communicate with pilots through radio communication. Speech intelligibility
is vital in ensuring that the message is conveyed accurately. Factors such as speech rate affect this. Addition-
ally, workload and stress have been shown to affect how people communicate significantly. In this paper, we
attempt to analyze the voice data of ATCs who participated in a simulated experiment in the context of these
non-verbal aspects of communication, particularly transmission length and speech rate. To better understand,
we analyzed our data at two levels: aggregate and individual. Moreover, we focused on a single participant to
see how such non-verbal characteristics evolve. Understanding these intricacies would contribute to building
automated detectors in real-time voice transmissions that would leverage technology to avert any incidents

brought about by stress and workload.

INTRODUCTION

Air Traffic Controller (ATC) is a demanding job as they
play a crucial role in ensuring the safety of passengers and
crews in an aircraft and the airspace in general. Costa (1996)
identified sources of stress for ATCs, among which is task load,
which is inherent to the demand of the work. They must be at
their optimal performance (i.e., lower stress level) to be effec-
tive. Workload was identified as one of the determining factors
in causing human error (Kantowitz & Sorkin, 1983). Humans
tend to be reliable when the workload is moderate and does not
change suddenly (Kantowitz & Casper, 1988). Workload is a
multifaceted structure that cannot be studied directly but can
be inferred from several quantifiable variables (Averty, Collet,
Dittmar, Athenes, & Vernet-Maury, 2004). In the aviation liter-
ature, most studies that attempt to measure ATC workload typ-
ically rely on self-report subjective ratings (during or after an
experiment) (Athenes, Averty, Puechmorel, Delahaye, & Col-
let, 2002). Such approaches are known to be prone to errors.
Devising objective measures to help avert these incidents or
alerts that forecast based on current working conditions could
improve ATC safety. Some studies have attempted to devise
measures for workload based on various task parameters to gen-
erate a workload index. A common approach is to count the
number of aircraft being managed simultaneously. Another is
to incorporate other information such as duration (i.e., length)
or content of the radio exchanges and judgments by experienced
observers to provide an objective workload measure (Athenes et
al., 2002).

ATCs communicate with pilots through radio, exchang-
ing spoken or verbal messages. Speech is primarily a verbal
activity. Aside from the message, the receiver also receives
extralinguistic information from the speaker (Prinzo, Lieber-
man, & Pickett, 1998). According to the Modulation Theory
of Speech, information transmitted in speech can be classified
into four qualities: linguistic, expressive, organic, and perspec-
tival (Traunmiiller, 1994). Speech is supported by nonverbal
aspects or non-linguistic (or paralinguistic) characteristics such
as intonation, voice quality, prosody, thythm, jitter, pausing, and
speech rate, which carry information on the psychological and

physiological state of the speaker (Rothkrantz, Wiggers, Van
Wees, & Van Vark, 2004; Traunmiiller, 1994).

Most accidents in aviation could be attributed to human er-
ror, most of which are associated with communication (Billings
& Cheaney, 1981). Miscommunication is affected by several
factors, including the pilot’s workload, audio signal quality,
speech accents of ATC and pilot, English proficiency, and use
of standard phraseology (Molesworth & Estival, 2015). Com-
munication is susceptible to distortion of systematic, environ-
mental, and internal factors that affect its comprehensibility or
speech intelligibility (SI). There is growing interest in research
on devising objective and non-intrusive SI metrics in fields such
as speech processing (Feng & Chen, 2022; Sgrensen, Boldt, &
Christensen, 2019). SI is measured as the average percentage
of words or phonetic units (e.g., syllables) that the listener can
recognize. In the context of ATC, many factors contribute to
low intelligibility, such as the quality of spoken utterance, back-
ground noise, speech accent, or a fast speaking rate. One of the
major causes of aircraft accidents has been attributed to low SI
of the ATC caused by a rapid rate of speech (O’hare, Wiggins,
Batt, & Morrison, 1994). Speaking rate affects the intelligibil-
ity of speech and its comprehension (Kopparapu, 2015). It is
reported that in the ATC industry, the average speaking rate is
four syllables per second (Said, 2011, as cited in Hou, Tian,
Chng, Ma, & Li, 2018). Hou et al. (2018) discussed the effects
of a high speaking rate on vowels (stressed and distressed) and
consonants which led them to propose an approach to stretch a
given utterance to improve SI automatically. Such verbal mis-
communications have also been identified as a causal factor in
operational errors and pilot deviations (Prinzo & Britton, 1993).
Goldman-Eisler (1961) found that an increase in speed of artic-
ulation (i.e., time per second) is associated with increased use
of prepared and well-learned sequences. A similar result was
found by Prinzo et al. (1998) where ATC participants reverted to
an automatic response leading to routine communication (char-
acterized by canned and repetitive nature) in dealing with high
demanding scenarios as opposed to a cognitive response when
dealing with a less demanding scenario. In another study, a
voice stress analysis was conducted to estimate mental state or
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psychological stress using several speech characteristics (Bren-
ner & Shipp, 1988). They found that the average fundamental
frequency, amplitude, and speech rate increased when task dif-
ficulty increased.

Several factors heavily affect the speaking rate (e.g., native
or non-native speakers). For English, the average is between
130 and 200 words per minute (O’Sullivan, 2009 as cited in
Kopparapu, 2015). There is an interplay between the complex-
ity of the content and the rate (Kopparapu, 2015). For example,
130-145 for complex, 145-175 for average, and 175 for simple.
Speaking rate (words per minute) can be computed if the num-
ber of syllables per second (sps) is known using the following
formula: wpm = sps /y * 60, where v is a language-dependent
constant that captures the average number of syllables per word.
For English, it is suggested that y = 1.5 which have been es-
timated from adult speech samples (Yaruss, 2000). Cardosi,
Falzarano, and Han (1998) provided some recommendations
to reduce communication errors between pilots and controllers.
First, controllers are encouraged to speak slowly and distinctly.
At a normal rate of 156 words per minute, 5% of the controller’s
instructions resulted in a readback error or request for a repeat.
Increasing the rate to 210 words per minute increased the ratio
to 12%. Another recommendation is to keep transmissions short
with a maximum of four instructions per transmission.

Miscommunication could also be caused by the length of
the message (Barshi, 1997; Cardosi et al., 1998). This is at-
tributed to exceeding the capacity of short-term memory. Mes-
sages with three or more aviation topics led to a substantial in-
crease in misunderstanding. Although Barshi and Farris (2013)
found that speech rate by itself may not be a determining factor
in misunderstandings in ATC communication, it is worth noting
that in their experiments, their participants were undergraduate
students and had different contexts (e.g., did not use aviation
phraseology or a radar screen). Speech rate and message length
play a role in comprehending spoken messages.

This paper looks at the various non-verbal aspects of radio
communication and their relationship to workload in a simu-
lated working environment. Specifically, we focus on the trans-
mission length and the speech rate.

THE SIMULATION EXPERIMENT

A mid-fidelity radar simulation program was used to sim-
ulate the Terminal Radar Approach Control (TRACON) in
Phoenix Sky Harbor (KPHX) Quartz West and South East ar-
rivals. In this experiment, ATC participants interacted with
three pseudo-pilots who were part of the research team. They
were trained on phraseology, proper communication proce-
dures, and simulation controls. They act as pilots of multi-
ple aircraft assigned to their routes: Standard Terminal Ar-
rival Route (STAR); ARLIN4, BLYTHES, SUNNSS, and HYR-
DRRI1. Alongside the ATC participant is a ghost controller who
is also part of the research team and controls the tower. The
simulation program logs pertinent information about a scenario,
such as distance information of aircraft. Three 25-minute sce-
narios were designed with varying workloads by manipulating
the traffic density. The first scenario was the baseline in which
4-5 aircraft are visible simultaneously. The second scenario was
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high-workload, in which 10-12 aircraft were under the control
of the ATC. The third scenario was similar to the second except
for the addition of predefined and fixed off-nominal events such
as moderate turbulence, pilot deviation NORDO (No radio air-
craft), runway switch, and minimal fuel advisory. The following
constraints were imposed for all scenarios: (a) You must accept
all handoffs from the center approach. The center will not hold.
(b) You will only hand off to the final approach/KPHX tower.
(c) No route modifications that result in aircraft leaving your
control. (d) You will not request/issue commands to land at an
airport other than the field destination. No alternate airports.
You may only hand off to the final approach. (e) Keep aircraft
in your airspace. No handoffs (except to 120.9 sector) and no
point outs. (f) You must not declare emergencies.

Participants and Procedure

A total of six retired ATCs participated in this study. They
all had prior experience in civilian TRACON (M=30 years,
SD=10.97 years). Each participant was trained to use the soft-
ware prior to the actual scenarios. They all had to perform the
three scenarios with a break in between. To counterbalance the
ordering effects, the order in which scenario they were going
to perform was predetermined. Participants were debriefed and
interviewed after the experiment. They were compensated for
their participation in the experiment.

Multiple sensors were used throughout the experiment
(e.g., eye-tracking, ECG, affect). However, we focus only on
the voice data recorded in this analysis. This includes trans-
mission exchanges between the ATC participant, the pseudo-
pilots, and the ghost controller. These voice recordings were
transcribed using an automated speech recognition (ASR) ser-
vice. The ASR service automatically added timestamps to ver-
bal messages. However, due to the domain-specific nature of the
content of the transmissions, the transcripts had to be manually
inspected and corrected.

EXPLORATORY DATA ANALYSIS

This study is part of a larger project that is fusing data in
the National Airspace System to predict risk. The data reported
here represent only a subset of the data we collect from the hu-
man component. The goal is to develop a model that combines
the data for the best risk prediction. In this analysis, we fo-
cused on two non-verbal features of transmission, particularly
the length and the speech rate. A transmission’s length is the
duration in seconds calculated using the timestamp information
from the transcript. A script was written to automatically count
the number of words in a transmission and obtain the word
count. Using this information, we divided it by the transmission
length to estimate the speaker’s speech rate as words per minute.
Additionally, Syllables, a Python library, was used to bench-
mark this estimate, which can estimate the number of syllables
based on pattern matching. In this analysis, we looked into two
speech rate types: words per second (wps) and syllables per
second (sps). Most of the linguistic and speech literature used
sps. We found a significant positive correlation between the two
units (r = 0.85, p < .001). Therefore, in succeeding analyses,
we decided to focus on sps to estimate speech rate.
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Figure 1. Speech rate of participants grouped by scenarios.

Descriptive Statistics

We begin by focusing only on the transmissions that orig-
inated from the ATC participant. Participants were exposed to
three conditions with varying workloads. Were there any differ-
ences between the participants’ transmission length and speech
rate between scenarios? To answer this question, a Multivariate
Analysis of Variance (MANOVA) was performed to determine
how these differ across participants and scenarios. Figure 1 il-
lustrates the distribution of the speech rate of each participant
for all the transmissions in every scenario. Results showed
a significant difference in transmission length and speech rate
between participants and scenarios. We carried out individual
ANOVA tests, performed post hoc analyses for the two factors,
and tested against a Bonferroni-adjusted alpha level of .025. In-
terestingly, we found that only the baseline (M=4.13, SD=2.02)
and high-workload (M=3.79, SD=1.93) had significant differ-
ences in transmission length. In terms of speech rate, both high-
workload (M=6.13, SD=2.42) and high-workload off-nominal
(M=6.08, SD=2.04) had no significant difference, while both
high-workload conditions had significant differences from the
baseline (M=5.68, SD=1.99). This finding is contrary to that of
Prinzo et al. (1998) in which they did not find any significant
differences in the speech rate of the participants between condi-
tions (light and heavy scenarios). In our case, we did find some
significant differences. It could be that our baseline and high
workload conditions were more extreme than those of Prinzo
and colleagues.

Individual Differences

As earlier mentioned, participants were exposed to the dif-
ferent scenarios at different orders. We wanted to identify how
the order of the scenarios may have played a role in their fea-
tures. Participants 1 and 2 had baseline as their first scenario;
3 and 4 had high-workload; 5 and 6 had high-workload off-
nominal. As illustrated in Figure 2, there was no significant dif-
ference within participants across three conditions. It raises the
question of whether workload affected the participants’ physio-
logical aspects as exhibited in speech. It is noteworthy that the
speech rate of the participants in their first scenario has been
the same for the other two scenarios regardless of workload.
Further, participants 5 and 6 had lower speech rates and both
were exposed to the high-workload off-nominal conditions at
the beginning.
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Figure 2. Speech rate in scenarios arranged based on assigned pre-defined order.

Scenario Analysis

So far, we have only looked at the summary statistics:
the trend in terms of the length of their transmission and their
speech rate (syllables per second). We would like to know how
the participants respond to the varying workload as operational-
ized by traffic density on the radar. The following uses the five-
second interval window in which missing values were interpo-
lated based on the pattern. To account for individual differences
since such non-linguistic features are very personal to the par-
ticipants (Goldman-Eisler, 1961), we obtained the percentage of
change to allow for comparison between participants and across
conditions.

We zoomed into one participant as illustrated in Figure 3.
We visualized the difficulty of a scenario by showing the pro-
gression of traffic density (red dotted line). The blue line repre-
sents the percentage of change in the speech rate of the partici-
pant. This represents the change from the previous to the current
time interval (i.e., T and T-5 seconds). The figure also high-
lights the sections in gray those instances when a loss of sepa-
ration (LOS) was detected. LOS refers to the event where the
minimum safe separation between multiple aircraft is not main-
tained (i.e., three miles spacing horizontally within 40 miles of
a major airport as defined by the Federal Aviation Administra-
tion), potentially leading to unsafe operational conditions. For
this participant, it is interesting to note how the workload has
not significantly affected the speech rate. Could it be that the
participant managed the task at hand? We attempted to perform
a time-series correlation between the differences in the work-
load and the differences between the speech rate of the partici-
pants. However, we did not find any significant findings. Fur-
ther analysis is warranted especially considering the temporal
component of the data.

LIMITATIONS AND FUTURE WORK

In this paper, we explored and focused on two non-
content communication features, namely: transmission length
and speech rate. In the future, we intend to explore various
measures that allow for better quantification of workload and
task complexity. For example, Averty et al. (2004) proposed a
metric called Traffic Load Index (TLI), which accounts for the
gravity or seriousness of the potential conflict and the urgency
related to time pressure.

The current approach focuses only on summary statistics
after the experiment. More value can be seen if predictive sys-
tems can be developed to forecast possible values in the fu-
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Figure 3. Overview of the three scenarios for a single participant.

ture and prevent potential accidents. Succeeding analyses must
take into account the temporal component of the data. Be-
cause we are handling multiple time-series data, we can do a
vector autoregression to account for the multiple factors and
examine how one factor affects the other. With the growing
popularity of machine learning, another direction would be to
explore the performance of recurrent neural networks, such as
LSTM (long short term memory), to account for the variations
of the values that could potentially detect anomalous behavior
and could indicate or alert potential dangers and prevent them
from happening. Interest in the seq2seq approach (Sutskever,
Vinyals, & Le, 2014) has started to rise especially using avi-
ation datasets for forecasting. However, this would entail the
collection of more data from more participants. Lastly, most
of the data in this analysis were obtained from transcripts after
running through an automated speech recognition system. In
reality, such a process could add unnecessary delay and may
sometimes be unreliable, especially for domain-specific corpus
(phraseology of ATC). It requires a specific model that has been
trained. We had to manually run and correct them before pro-
ceeding with the analysis. With the nature of radio communi-
cation, some research or potential direction has been looking
at the voice signals themselves, or acoustic analysis (Prinzo et
al., 1998). Voice signals could uncover speech rate, emotions,
or stress indicators. These features can be extracted and ana-
lyzed in real-time, provided the existence of models. Finally,
as previously noted, speech rate or any non-linguistic proper-
ties are personality-dependent (Goldman-Eisler, 1961; Prinzo
et al., 1998). Therefore, in building future models, these id-
iosyncrasies have to be considered.
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