


Condition. The experiment had a manual condition and a

two (automation type: speed, full) by two (automation level:

low, high) within subjects design. The speed automation in-

cluded cruise control, and full automation included cruise con-

trol and lane-keeping. The two levels of automation correspond

to the reliability level of the automation (e.g., low reliability

has a higher variance in the maintenance of distance/lane po-

sition). Hence, the testbed contained five Automation Condi-

tions (AC): Manual (M), Speed High (SH), Speed Low (SL),

Full High (FH), and Full Low (FL).

Procedure. Participants completed the manual condition

as a practice lap to acquaint themselves with the driving sim-

ulator. For the remaining four conditions, participants were in-

formed of the type of automation, but not the level of automa-

tion and the mean lap time was approximately 12 minutes. Par-

ticipants were monetarily compensated for their participation

and overall driving performance score. All five conditions were

scored, but the manual condition did not count against their

monetary compensation.

Tasks and Scoring. Participants are required to maintain

the car’s lane position, 5-20 meters behind a lead vehicle, and

monitor for pedestrians on the simulation. These tasks were en-

forced by the introduction of three types of perturbations. The

first perturbation was a change in the lead vehicle’s velocity,

which required accelerating or decelerating to maintain the re-

quired distance and avoid a collision. The second perturbation

was wind gusts that affected the participant’s vehicle lane po-

sition and required to adjust steering. The third perturbation

was the appearance of pedestrians, which could stand on the

side of the road, or walk across the car’s path. This required

proper identification of pedestrian type via button press, which

triggered their disappearance from the simulation.

Participants began each trial with 500 pts and could see

their changing score in the display. Points were deducted for

task violations such as deviations from the lane and distance

from the lead vehicle (-2 pts); incorrect or missed button presses

(-5 pts); and collisions with vehicles (-50 pts) or pedestrians (-

100 pts). Additionally, participants were awarded 100 pts for

completion of the driving course, which were awarded evenly

through the course. Thus, participants’ possible maximum final

score was 600 pts.

Operator’s Performance Classification

Performance of each operator can be reflected and mea-

sured by their score. Literature suggests that automation con-

dition and operator ability can impact the operators’ perfor-

mance (Hoff & Bashir, 2015). The performance of operator i

at time t under certain ACs (M, SL, SH, FL, FH) is denoted

by PAC
i (t). With these terms, we have the mean performance

dynamics of all 16 operators over certain automation condi-

tion P
AC
(t) =

∑
16
i=1 PAC

i (t)
16

. Thus we can explore how automa-

tion type (speed, full) and automation level (low, high) im-

pact the mean performance dynamics by comparing dynamics

of P
M
(t),P

SL
(t),P

SH
(t),P

FL
(t) and P

FH
(t) .

Each operator i has five performance dynamics PAC
i (t) due

to the five AC, thus each operator has five final scores PAC
i ( f ).

The ability of each operator is reflected by the final scores of the

five ACs. We say operator i belongs to Low-Performing Group

if all five final scores are below 300 (e.g., operator 4 and 13)

and operator i belongs to High-Performing Group if all five fi-

nal scores are above 400 (e.g., operator 2, 5 and 12). The re-

maining eleven operators belong to Medium-Performing Group

whose five final scores range from 0 to 600, see Figure 1.
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Figure 1. Operator’s final scores. The figure helps classify the operator’s per-

formance based on their final scores over five automation conditions (M, SH,

SL, FH, FL). Operators are ordered in ascending order based on their final score

in condition M.

Relative Risk

The concept of risk in automation usage has not been

clearly defined and measured. Our goal is to provide a com-

parison measure between the risk of automation usage and the

risk of manual control. We consider that the experimental de-

sign only registered penalties due to task violations and not

awards for task completions. Thus, we measure risk of automa-

tion usage through the points lost with automation usage and

risk of manual control through the points lost when automa-

tion was disengaged. In epidemiology (Schmidt & Kohlmann,

2008; Zhang & Yu, 1998), the risk ratio or Relative Risk (RR)

has been one of the most widely used measures of association

in disease spreading. Hence, we can define the relative risk

of automation usage as the comparison of the risk of using the

automation with the risk of not using the automation. In our

experiment, we define the relative risk dynamics of operator i

under certain automation condition ACrr (SL, SH, FL, FH) as

follows:

RR
ACrr
i (t) =

Risk of
automation usage

Risk of
manual control

=

Total Lost Points with
automation on over [0, t]

Total Lost Points without
automation over [0, t]+1

(1)

where the 1 in the denominator guarantees the meaningfulness

of the equation when the operators have not lost points while

having manual control. For example, the notation of RRSL
i (t) is

calculated as the ratio between the total lost points of operator i

during Speed Low automation over time [0, t] and the total lost

points of operator i without automation over time [0, t] plus one

(see Eq. 1).

Per definition of RR, we expect its dynamics lay in the

range of [0,600] where RR
ACrr
i (t) = 0 if there are no points

lost when automation is on, and RR
ACrr
i (t) = 600 if all possi-

ble 600 pts are lost with automation usage. This property is

inherited to the calculation of the average relative risk, RR(t),
of a certain group and automation condition. Our dynamic RR

measure accounts from the start of the trial. This is impor-

tant since participants could observe their score; thus, it im-
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pacts the perception of risk of automation usage from their ex-

perience on the trial. We could expect to use relative risk dy-

namics to aid decision-making of automation usage to achieve

the best outcomes (e.g., better score/performance). A value of

RR
ACrr
i (t) > 1 indicates a higher probability of losing points

while using automation. Thus, the rational decision would

be to use manual control to maintain good performance. In

the following section, we first explore how automation type

(speed, full) and automation level (low, high) impact the mean

RR dynamics of all participants by comparing dynamics of

RR
SL
(t),RR

SH
(t),RR

FL
(t) and RR

FH
(t). Second, we explore

the impact of operator’s ability on their RR dynamics over four

automation conditions RR
ACrr

a where a corresponds to Low-(L),

Medium-(M), and High-Performing(H) Group, respectively.

RESULTS

In this section we do an exploratory study of RR dynam-

ics on the four different types of automation. For convenience,

our figures across varied automation conditions use the colors

orange (speed automation) and blue (full automation), solid or

dash line for high and low automation level, respectively, and

black solid line for manual condition. In figures focusing on

varied level of performance groups, we use green, blue, and

orange for Low, Medium, and High-Performing Group, respec-

tively.

0 100 200 300 400 500 600 700

Time (s)

340

360

380

400

420

440

460

480

500

520

540

S
c

o
re

Average Score Dynamics of All Operators

Manual

Speed High

Speed Low

Full High

Full Low

Figure 2. The figure shows the mean performance dynamics of all participants

across five automation conditions.

Performance Dynamics Across Automation Conditions

Figure 2 shows the average performance dynamics of all

16 operators over the five experimental conditions. The manual

condition performs best during the initial 200 seconds. Dur-

ing the interval from 200 to 700 sec, the order of the average

performance dynamics is SH > SL > FH > M > FL. Thus, on

average, operators are performing better (1) in speed automa-

tion (more workload) than full automation (less workload); and

(2) in high automation than low automation reliability. On aver-

age the RR value in FH is 48.8 (σ = 8.5) higher than under FL

automation; and for SH is 8.2 (σ = 4.7) higher than under SL

automation. Additionally, the high-reliability automation was

able to perform its tasks with more precision, in comparison to

the low reliability automation. Thus, operators performed bet-

ter with a high-level automation in comparison to the low-level

automation.

Relative Risk Dynamics in varied Automation Conditions

Figure 3 depicts the average RR dynamics of all 16 partic-

ipants over four AC. Although performance (Figure 2) and RR

dynamics are associated, RR dynamics offers a detailed analysis

of the operator’s behavior and observation of a decreased per-

formance during automation usage (↗ RR) or manual control

(↘ RR) at any time t. For example, we observe that (1) during

the first 250 sec of the trial SL and FL automation conditions

have a quick increase of RR, where RR(t) for FL automation is

larger than SL. Thus, participants lost a considerable number of

points while using the automation during the first 250 sec. Con-

versely, we observe an opposite behavior for SH and FH as the

RR increases steadily. Moreover, (2) the RR(t) for FH automa-

tion is similar or slightly larger than SH automation. After the

initial 250 sec of the trial, (3) RR in high automation reliability

(solid lines) is larger than in low automation reliability (dashed

lines). While RR(t) becomes larger in FH than in SH, we ob-

serve an opposite event for the low automation reliability. That

is, (4) RR(t) becomes smaller for FL automation in comparison

to SL automation.
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Figure 3. Average relative risk dynamics of all sixteen participants across SL,

SH, FL, and FH automation conditions.

Impact of Operator’s Performance Level on Relative Risk

Dynamics Across Varied Automation Conditions

Figure 4 depicts the average RR dynamics of Low-,

Medium-, and High-Performing Groups across the four differ-

ent automation conditions. The results show that (1) the range

of the average relative risk (RR(t)) dynamics with low automa-

tion reliability (dashed lines, Fig. 4b and 4d) are larger than with

high automation reliability (solid lines, Fig. 4a and 4c). This is

due to the high increase of RR values in the Low-Performing

Group occurring around 100 sec. Additionally, we (2) observe

a distinctive "hump" type of RR dynamics for this group (green

line). This dynamic occurs in the first 200-250 sec with the

peak value occurring around 100 sec. The behavior is present

only for SH, SL, and FL automation conditions with an average

of 15.4 (σ = 13.26), 16.4 (σ = 18.8), and 85 (σ = 42.1) higher,

correspondingly, in comparison to Medium-Performing Group.

Moreover, (3) the RR(t) values for SH, SL and FL conditions

are ordered as Medium>High>Low-Performing Group after a

certain time for each condition. Furthermore, (4) Medium- and

High-Performing Groups have smaller RR(t) dynamics during

low automation reliability and Medium-Performing Group has

higher RR value than the High-Performing Group. In addition
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Figure 4. The figures show the average relative risk dynamics of Low, Medium, High-Performing Group across four different automation conditions.

to this, during FL automation, all performance groups maintain

a RR below the value of one. We identified specific dynamics

pertaining to the operators’ level of performance and type of

automation. The (5) Low-Performing Group has a large spike

of relative risk at the beginning of trial SH, SL and FL. The

(6) Medium-Performing Group shows two distinct types of dy-

namics. The first type, observed in trials SL and FL, resembles

the Low-Performing group with considerably smaller RR val-

ues. The second type, observed in trials SH and FH, resembles

an oscillatory step function. The (7) High-Performing Group

displays three types of RR dynamics. The first type, observed

in trials SH and FH, is an increasing function; the second, ob-

served in SL, is an oscillatory function, and the third, observed

in FL, is a constant function.

DISCUSSION

In this study, we defined and derived a time-dependent

measure to compare the risk of automation usage and risk of

manual control to assist decision-making of automation usage.

This measure was derived through the operators’ performance

dynamics, which allowed us to identify that their performance

was better when using partial automation than when using full

automation. This could be due to the lower number of tasks that

need to be performed by the automation when it is being used.

Additionally, a higher workload might maintain the participant

engaged and alert to all the required tasks; that is, while using

the full automation the operators might experience a sense of

ease and lose concentration on the required task. Furthermore,

performance dynamics demonstrated that operators always per-

form better using automation with high reliability.

The analysis of relative risk dynamics reflects that (1) dur-

ing partial automation (i.e., more workload) and full automa-

tion (i.e., less workload) with low reliability, operators used au-

tomation soon after starting the simulation (before 250 sec) and

were not able to assess the usage of a low reliable automation.

Therefore, (2) operators lost more points when using automa-

tion at the beginning of the trial, which is represented with a

spike in relative risk. These results could reflect the trust cal-

ibration process and the development of learned trust. In this

initial process, the operator who encounters a novel automation

gathers experiential data of the automation performing the task

to inform their level of trust in that system (Hoff and Bashir,

2015). During the early stage of the trial, the operator is likely

to overtrust the automation, expecting its capability to be greater

than it truly is. Hence, the operator inadvertently allows the

automation more frequent opportunities to fail before appropri-

ately calibrating their level of trust and reducing reliance on au-

tomation. Moreover, (3) partial and full automation with high

reliability display dynamics resembling an increasing step func-

tion. Then the initial trust calibration, and formation of learned

trust results from few failures due to high-reliability automation.

Hence, the user may increase their reliance on the automation

over time. Additionally, (4) operators used the automation more

towards the middle and end of the drive, which indicates they

learned about the automation reliability during the first 250 sec

of each trial. The study of the dynamics pertaining to the oper-

ator’s level of performance reflects (5) a large spike of relative

risk at the beginning of the trials in the Low-Performing Group.

This result may suggest that operators’ decisions of when to
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use the automation are particularly poor and represent poorly

calibrated situational trust, as they use the automation in situ-

ations where it underperforms and disuse it when it would be

most beneficial. Instead, the High-Performing Group demon-

strates across conditions behaviors that are indicative of much

more appropriate levels of trust, where RR gradually increases

as they rely increasingly on a high-performing automation. We

hypothesize that this behavior contributes to the three types of

RR dynamics for this group. Finally, we observe that (6) the

maximum value of RR(t) drastically increases from an automa-

tion with high-reliability to a low-reliability automation in the

Low-Performing Group.

The contributions of this work are (i) the study of oper-

ators’ performance dynamics across different types and lev-

els of automation; (ii) a precise definition and mathematical

derivation of the measurable variable relative risk for decision-

making in automation usage; (iii) the study of relative risk dy-

namics across different types and levels of automation; and

(iv) the study of relative risk dynamics on operators with dif-

ferent level of performance. This framework is applicable to

other testbeds that record the operator’s and automation’s per-

formance through a scoring system and can take into account a

reward system for successfully completed tasks. A limitation to

this framework is the inability to assess complex risks (e.g., risk

of losing a human life).
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