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Risk has been a key factor influencing trust in Human-Automation interactions, though there is no unified tool
to study its dynamics. We provide a framework for defining and assessing relative risk of automation usage
through performance dynamics and apply this framework to a dataset from a previous study. Our approach
allows us to explore how operators’ ability and different automation conditions impact the performance and
relative risk dynamics. Our results on performance dynamics show that, on average, operators perform better
(1) using automation that is more reliable and (2) using partial automation (more workload) than full automa-
tion (less workload). Our analysis of relative risk dynamics indicates that automation with higher reliability
has higher relative risk dynamics. This suggests that operators are willing to take more risk for automation
with higher reliability. Additionally, when the reliability of automation is lower, operators adapt their behav-

ior to result in lower risk.

INTRODUCTION

Human-automation interaction research is critical to im-
prove human-machine teaming performance, and dynamic mea-
sures of the interactions are the key. The term trust in automa-
tion emerged through this research and has been widely studied
through self-assessed questionnaires (Itoh & Tanaka, 2000; J.
Lee & Moray, 1992; Xu & Dudek, 2015). In the literature there
exist variations on the definition of trust. Kramer (1999, p. 571)
defined it as "a state of perceived vulnerability or risk that is
derived from an individual’s uncertainty regarding the motives,
intentions, and perspective actions of others on whom they de-
pend". Mayer et al. (1995, p. 712) definition is widely accepted
due to its relevance to Human-Human interaction and Human-
Automation interaction (J. D. Lee & See, 2004; Stuck, 2020).
They define trust as a "willingness of a party to be vulnerable
to the actions of another party based on the expectation that the
other will perform a particular action important to the trustor,
irrespective of the ability to monitor or control that party". Both
definitions link the terms vulnerability and risk to trust and iden-
tify that individuals must be willing to put themselves at risk.

Risk is defined as "the product of the probability of an event
and the consequences that necessarily accompany that event”
(Sheridan, 2008, p. 418). Others define it as "the extent to which
there is uncertainty about whether potentially significant and/or
disappointing outcomes of decisions will be realized" (Sitkin
& Pablo, 1992, p. 10). Research indicates that risk is a key
factor influencing trust in the Human-Automation interaction
(Chancey et al., 2017; Hoff & Bashir, 2015; Kramer, 1999;
Loft et al., 2021; Lyons & Stokes, 2012; Mayer et al., 1995;
Sato et al., 2020). Lyons and Stokes (2012) reported an in-
creased reliance on automation when operators were faced with
higher-risk decisions. Chancey et al. (2017) observed an effect
of risk on task performance. Sato et al. (2020) found that a high
risk environment increased trust with high workload conditions.
Conversely, Loft et al. (2021) reported that participants were
more likely to reject automated advice for high-risk decisions.
Although trust has repeatedly been conceptualized as having a
component of risk, the role risk plays, as well as what elements

of risk impact trust (e.g., perceived risk, risk-taking propensity),
has not been clearly defined and studied (Stuck et al., 2021).

Research suggests that self-confidence which can be re-
flected through the operator’s performance, is an important fac-
tor that guides trust formation (Hoff & Bashir, 2015; J. D. Lee
& See, 2004). Gao and Lee (2006) used decision field theory to
mathematically model the preference of automation usage as a
difference of trust in automation and self-confidence. They de-
fine trust in automation as a function of the automation’s perfor-
mance and self-confidence as a function of the operator’s per-
formance. In addition, de Vries et al. (2003), showed that the
difference between the measure of trust and self-confidence is
highly predictive of automation reliance decision-making.

Motivated by Gao and Lee (2006) and Stuck et al. (2021)
work, we provide a framework for defining a time dependent
measure of relative risk of automation usage decision-making.
This measure is the ratio between the risk of automation usage
and the risk of manual control, which is measured by the au-
tomation’s and operator’s performance. Thus, this measure can
aid the operator in the decision-making process of engaging or
not the automation. The current study addresses the follow-
ing research questions: (1) what are the operator’s performance
dynamics across different types and levels of automation? (2)
what are the relative dynamics across different types and lev-
els of automation? and (3) what are the relative dynamics on
participants with different level of performance?

METHODS
Experiment Design

Testbed. Sixteen participants completed a '"leader-
follower" task with the assistance of an automation driving
system in a simulated environment. Additional information
about participants, task descriptions, measures and analyses
can be found in Drnec and Metcalfe (2016), Gremillion et al.
(2016), Neubauer et al. (2020) and Rodriguez et al. (2021).
The following information only highlight the key components
involved in calculating the relative risk dynamics.
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Condition. The experiment had a manual condition and a
two (automation type: speed, full) by two (automation level:
low, high) within subjects design. The speed automation in-
cluded cruise control, and full automation included cruise con-
trol and lane-keeping. The two levels of automation correspond
to the reliability level of the automation (e.g., low reliability
has a higher variance in the maintenance of distance/lane po-
sition). Hence, the testbed contained five Automation Condi-
tions (AC): Manual (M), Speed High (SH), Speed Low (SL),
Full High (FH), and Full Low (FL).

Procedure. Participants completed the manual condition
as a practice lap to acquaint themselves with the driving sim-
ulator. For the remaining four conditions, participants were in-
formed of the type of automation, but not the level of automa-
tion and the mean lap time was approximately 12 minutes. Par-
ticipants were monetarily compensated for their participation
and overall driving performance score. All five conditions were
scored, but the manual condition did not count against their
monetary compensation.

Tasks and Scoring. Participants are required to maintain
the car’s lane position, 5-20 meters behind a lead vehicle, and
monitor for pedestrians on the simulation. These tasks were en-
forced by the introduction of three types of perturbations. The
first perturbation was a change in the lead vehicle’s velocity,
which required accelerating or decelerating to maintain the re-
quired distance and avoid a collision. The second perturbation
was wind gusts that affected the participant’s vehicle lane po-
sition and required to adjust steering. The third perturbation
was the appearance of pedestrians, which could stand on the
side of the road, or walk across the car’s path. This required
proper identification of pedestrian type via button press, which
triggered their disappearance from the simulation.

Participants began each trial with 500 pts and could see
their changing score in the display. Points were deducted for
task violations such as deviations from the lane and distance
from the lead vehicle (-2 pts); incorrect or missed button presses
(-5 pts); and collisions with vehicles (-50 pts) or pedestrians (-
100 pts). Additionally, participants were awarded 100 pts for
completion of the driving course, which were awarded evenly
through the course. Thus, participants’ possible maximum final
score was 600 pts.

Operator’s Performance Classification

Performance of each operator can be reflected and mea-
sured by their score. Literature suggests that automation con-
dition and operator ability can impact the operators’ perfor-
mance (Hoff & Bashir, 2015). The performance of operator i
at time ¢ under certain ACs (M, SL, SH, FL, FH) is denoted
by PAC(¢). With these terms, we have the mean performance
dynamics of all 16 operators over certain automation condi-
tion PAC(I) _ L0 Thus we can explore how automa-

6 -
tion type (speed, full) and automation level (low, high) im-
pact the mean performance dynamics by comparing dynamics
of P (1), P°"(1),P"" (t),P" " () and P (1) .

Each operator i has five performance dynamics PiAC(t) due
to the five AC, thus each operator has five final scores PI-AC( 5.
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The ability of each operator is reflected by the final scores of the
five ACs. We say operator i belongs to Low-Performing Group
if all five final scores are below 300 (e.g., operator 4 and 13)
and operator i belongs to High-Performing Group if all five fi-
nal scores are above 400 (e.g., operator 2, 5 and 12). The re-
maining eleven operators belong to Medium-Performing Group
whose five final scores range from 0 to 600, see Figure 1.
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Figure 1. Operator’s final scores. The figure helps classify the operator’s per-
formance based on their final scores over five automation conditions (M, SH,
SL, FH, FL). Operators are ordered in ascending order based on their final score
in condition M.

Relative Risk

The concept of risk in automation usage has not been
clearly defined and measured. Our goal is to provide a com-
parison measure between the risk of automation usage and the
risk of manual control. We consider that the experimental de-
sign only registered penalties due to task violations and not
awards for task completions. Thus, we measure risk of automa-
tion usage through the points lost with automation usage and
risk of manual control through the points lost when automa-
tion was disengaged. In epidemiology (Schmidt & Kohlmann,
2008; Zhang & Yu, 1998), the risk ratio or Relative Risk (RR)
has been one of the most widely used measures of association
in disease spreading. Hence, we can define the relative risk
of automation usage as the comparison of the risk of using the
automation with the risk of not using the automation. In our
experiment, we define the relative risk dynamics of operator i
under certain automation condition AC,, (SL, SH, FL, FH) as

follows: Risk of Total Lost Points with
Cr . automation usage automation on over [0, t]
RR? (t) ~  Risk of " Total Lost Points without ey
manual control automation over [0, t]+1

where the 1 in the denominator guarantees the meaningfulness
of the equation when the operators have not lost points while
having manual control. For example, the notation of RRL(r) is
calculated as the ratio between the total lost points of operator i
during Speed Low automation over time [0,¢] and the total lost
points of operator i without automation over time [0,¢] plus one
(see Eq. 1).

Per definition of RR, we expect its dynamics lay in the
range of [0,600] where RRC (1) = 0 if there are no points
lost when automation is on, and RR? Cr (1) = 600 if all possi-
ble 600 pts are lost with automation usage. This property is
inherited to the calculation of the average relative risk, ﬁ(t),
of a certain group and automation condition. Our dynamic RR
measure accounts from the start of the trial. This is impor-
tant since participants could observe their score; thus, it im-
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pacts the perception of risk of automation usage from their ex-
perience on the trial. We could expect to use relative risk dy-
namics to aid decision-making of automation usage to achieve
the best outcomes (e.g., better score/performance). A value of
RR‘i4 (1) > 1 indicates a higher probability of losing points
while using automation. Thus, the rational decision would
be to use manual control to maintain good performance. In
the following section, we first explore how automation type
(speed, full) and automation level (low, high) impact the mean
RR dynamics of all participants by comparing dynamics of
ﬁSL(t),ﬁSH(t),ﬁFL(t) and ﬁFH(t). Second, we explore
the impact of operator’s ability on their RR dynamics over four
automation conditions ﬁ‘:c” where a corresponds to Low-(L),
Medium-(M), and High-Performing(H) Group, respectively.

RESULTS

In this section we do an exploratory study of RR dynam-
ics on the four different types of automation. For convenience,
our figures across varied automation conditions use the colors
orange (speed automation) and blue (full automation), solid or
dash line for high and low automation level, respectively, and
black solid line for manual condition. In figures focusing on
varied level of performance groups, we use green, blue, and
orange for Low, Medium, and High-Performing Group, respec-
tively.
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Figure 2. The figure shows the mean performance dynamics of all participants
across five automation conditions.

Performance Dynamics Across Automation Conditions

Figure 2 shows the average performance dynamics of all
16 operators over the five experimental conditions. The manual
condition performs best during the initial 200 seconds. Dur-
ing the interval from 200 to 700 sec, the order of the average
performance dynamics is SH > SL > FH > M > FL. Thus, on
average, operators are performing better (1) in speed automa-
tion (more workload) than full automation (less workload); and
(2) in high automation than low automation reliability. On aver-
age the RR value in FH is 48.8 (o = 8.5) higher than under FL
automation; and for SH is 8.2 (¢ = 4.7) higher than under SL
automation. Additionally, the high-reliability automation was
able to perform its tasks with more precision, in comparison to
the low reliability automation. Thus, operators performed bet-
ter with a high-level automation in comparison to the low-level
automation.
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Relative Risk Dynamics in varied Automation Conditions

Figure 3 depicts the average RR dynamics of all 16 partic-
ipants over four AC. Although performance (Figure 2) and RR
dynamics are associated, RR dynamics offers a detailed analysis
of the operator’s behavior and observation of a decreased per-
formance during automation usage (' RR) or manual control
(\( RR) at any time ¢. For example, we observe that (1) during
the first 250 sec of the trial SL and FL automation conditions
have a quick increase of RR, where RR(¢) for FL automation is
larger than SL. Thus, participants lost a considerable number of
points while using the automation during the first 250 sec. Con-
versely, we observe an opposite behavior for SH and FH as the
RR increases steadily. Moreover, (2) the RR(¢) for FH automa-
tion is similar or slightly larger than SH automation. After the
initial 250 sec of the trial, (3) RR in high automation reliability
(solid lines) is larger than in low automation reliability (dashed
lines). While RR(t) becomes larger in FH than in SH, we ob-
serve an opposite event for the low automation reliability. That
is, (4) RR(t) becomes smaller for FL automation in comparison
to SL automation.
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Figure 3. Average relative risk dynamics of all sixteen participants across SL,
SH, FL, and FH automation conditions.
Impact of Operator’s Performance Level on Relative Risk
Dynamics Across Varied Automation Conditions

Figure 4 depicts the average RR dynamics of Low-,
Medium-, and High-Performing Groups across the four differ-
ent automation conditions. The results show that (1) the range
of the average relative risk (RR(¢)) dynamics with low automa-
tion reliability (dashed lines, Fig. 4b and 4d) are larger than with
high automation reliability (solid lines, Fig. 4a and 4c). This is
due to the high increase of RR values in the Low-Performing
Group occurring around 100 sec. Additionally, we (2) observe
a distinctive "hump" type of RR dynamics for this group (green
line). This dynamic occurs in the first 200-250 sec with the
peak value occurring around 100 sec. The behavior is present
only for SH, SL, and FL automation conditions with an average
of 15.4 (0 =13.26), 16.4 (0 = 18.8), and 85 (¢ =42.1) higher,
correspondingly, in comparison to Medium-Performing Group.
Moreover, (3) the RR(t) values for SH, SL and FL conditions
are ordered as Medium>High>Low-Performing Group after a
certain time for each condition. Furthermore, (4) Medium- and
High-Performing Groups have smaller RR(z) dynamics during
low automation reliability and Medium-Performing Group has
higher RR value than the High-Performing Group. In addition
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Figure 4. The figures show the average relative risk dynamics of Low, Medium, High-Performing Group across four different automation conditions.

to this, during F'L automation, all performance groups maintain
a RR below the value of one. We identified specific dynamics
pertaining to the operators’ level of performance and type of
automation. The (5) Low-Performing Group has a large spike
of relative risk at the beginning of trial SH, SL and FL. The
(6) Medium-Performing Group shows two distinct types of dy-
namics. The first type, observed in trials SL and FL, resembles
the Low-Performing group with considerably smaller RR val-
ues. The second type, observed in trials SH and FH, resembles
an oscillatory step function. The (7) High-Performing Group
displays three types of RR dynamics. The first type, observed
in trials SH and FH, is an increasing function; the second, ob-
served in SL, is an oscillatory function, and the third, observed
in FL, is a constant function.

DISCUSSION

In this study, we defined and derived a time-dependent
measure to compare the risk of automation usage and risk of
manual control to assist decision-making of automation usage.
This measure was derived through the operators’ performance
dynamics, which allowed us to identify that their performance
was better when using partial automation than when using full
automation. This could be due to the lower number of tasks that
need to be performed by the automation when it is being used.
Additionally, a higher workload might maintain the participant
engaged and alert to all the required tasks; that is, while using
the full automation the operators might experience a sense of
ease and lose concentration on the required task. Furthermore,
performance dynamics demonstrated that operators always per-

form better using automation with high reliability.

The analysis of relative risk dynamics reflects that (1) dur-
ing partial automation (i.e., more workload) and full automa-
tion (i.e., less workload) with low reliability, operators used au-
tomation soon after starting the simulation (before 250 sec) and
were not able to assess the usage of a low reliable automation.
Therefore, (2) operators lost more points when using automa-
tion at the beginning of the trial, which is represented with a
spike in relative risk. These results could reflect the trust cal-
ibration process and the development of learned trust. In this
initial process, the operator who encounters a novel automation
gathers experiential data of the automation performing the task
to inform their level of trust in that system (Hoff and Bashir,
2015). During the early stage of the trial, the operator is likely
to overtrust the automation, expecting its capability to be greater
than it truly is. Hence, the operator inadvertently allows the
automation more frequent opportunities to fail before appropri-
ately calibrating their level of trust and reducing reliance on au-
tomation. Moreover, (3) partial and full automation with high
reliability display dynamics resembling an increasing step func-
tion. Then the initial trust calibration, and formation of learned
trust results from few failures due to high-reliability automation.
Hence, the user may increase their reliance on the automation
over time. Additionally, (4) operators used the automation more
towards the middle and end of the drive, which indicates they
learned about the automation reliability during the first 250 sec
of each trial. The study of the dynamics pertaining to the oper-
ator’s level of performance reflects (5) a large spike of relative
risk at the beginning of the trials in the Low-Performing Group.
This result may suggest that operators’ decisions of when to
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use the automation are particularly poor and represent poorly
calibrated situational trust, as they use the automation in situ-
ations where it underperforms and disuse it when it would be
most beneficial. Instead, the High-Performing Group demon-
strates across conditions behaviors that are indicative of much
more appropriate levels of trust, where RR gradually increases
as they rely increasingly on a high-performing automation. We
hypothesize that this behavior contributes to the three types of
RR dynamics for this group. Finally, we observe that (6) the
maximum value of RR(¢) drastically increases from an automa-
tion with high-reliability to a low-reliability automation in the
Low-Performing Group.

The contributions of this work are (i) the study of oper-
ators’ performance dynamics across different types and lev-
els of automation; (ii) a precise definition and mathematical
derivation of the measurable variable relative risk for decision-
making in automation usage; (iii) the study of relative risk dy-
namics across different types and levels of automation; and
(iv) the study of relative risk dynamics on operators with dif-
ferent level of performance. This framework is applicable to
other testbeds that record the operator’s and automation’s per-
formance through a scoring system and can take into account a
reward system for successfully completed tasks. A limitation to
this framework is the inability to assess complex risks (e.g., risk
of losing a human life).
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