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Abstract— In this paper, we investigate how the self-
synchronization property of a swarm of Kuramoto oscillators
can be controlled and exploited to achieve target densities and
target phase coherence. In the limit of an infinite number of
oscillators, the collective dynamics of the agents’ density is
described by a mean-field model in the form of a nonlocal
PDE, where the nonlocality arises from the synchronization
mechanism. In this mean-field setting, we introduce two space-
time dependent control inputs to affect the density of the
oscillators: an angular velocity field that corresponds to a state
feedback law for individual agents, and a control parameter
that modulates the strength of agent interactions over space
and time, i.e., a multiplicative control with respect to the
integral nonlocal term. We frame the density tracking problem
as a PDE-constrained optimization problem. The controlled
synchronization and phase-locking are measured with classical
polar order metrics. After establishing the mass conservation
property of the mean-field model and bounds on its nonlocal
term, a system of first-order necessary conditions for optimality
is recovered using a Lagrangian method. The optimality system,
comprising a nonlocal PDE for the state dynamics equation, the
respective nonlocal adjoint dynamics, and the Euler equation, is
solved iteratively following a standard Optimize-then-Discretize
approach and an efficient numerical solver based on spectral
methods. We demonstrate our approach for each of the two
control inputs in simulation.

I. INTRODUCTION

The emergence of collective behaviors from local interac-

tions is ubiquitous in nature. Large groups of individuals

can achieve complex macroscopic dynamical patterns by

exploiting local interactions. The exact mechanisms by which

flocks of birds and schools of fish respond to neighbors’

behavior are still being investigated, although various models

have been proposed in mathematical biology to achieve

such macroscopic behaviors in simulation that resemble

their natural counterparts in a qualitative way; see, e.g., the

Vicsek model [1]. Inspired by such biological systems, the

robotics community has devised control strategies for large-

scale collectives of robots with the goal of mimicking the

resilience, efficiency, and adaptive behavior of biological

swarms [2]. Under the assumption of identical dynamics

among individuals and a sufficiently large number of agents,

it is possible to model the macroscopic behavior of a swarm

of agents using a mean-field model [3], which describes the
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density of agents at a specific location in the state space at a

certain time. Mean-field models in the form of Louiville [4],

Fokker-Planck [5], and McKean-Vlasov [6] equations are

common in statistical physics and computational biology;

they provide a powerful framework for studying the behavior

of large-scale dynamical systems and have been recently

analyzed from a control-theoretic perspective.

The steady-state collective behavior of such large-scale

interacting systems is a prolific area of research in math-

ematical physics, along with the characterization of phase

transitions in these systems with respect to a set of phys-

ical parameters. Very recently, the emergence of spatially

inhomogeneous chimera states has been investigated for

nonlocally interacting chiral particles [7], while the effect

of non-reciprocal interactions between different species of

individuals has been studied in [8].

In this paper, we investigate how interactions, synchroniza-

tion patterns, and phase transitions can be exploited from

a control perspective. We consider a large-scale swarm of

identical Kuramoto oscillators, in which two possible control

mechanisms affect the dynamics of each individual oscillator:

an angular velocity control input and a control input that

locally modulates the strength of oscillator interactions. We

formulate an Optimal Control Problem (OCP) subject to

the mean-field nonlocal Partial Differential Equation (PDE)

model that describes the dynamics of the oscillator density,

and we derive a set of first-order necessary conditions for

optimality for this system. We then show in simulation how

the control inputs can guide the density of oscillators to target

distributions and accelerate their synchronization.

II. STATE DYNAMICS

The Kuramoto oscillator network [9] is a classical model

that describes synchronization in a variety of biological

and engineering systems. It consists of an array of coupled

oscillators that each affect the others’ phases via pairwise

interactions. We consider a swarm of N oscillators in which

the time-dependent phase θi(t) of each oscillator i is gov-

erned by the following controlled dynamical model:

θ̇i = ωi + u1 +
u2

N

N
∑

j=1

sin(θj−θi−α)+ η(t), i = 1, ..., N,

where ωi is the oscillator’s natural frequency, α is a constant

phase shift that gives rise to traveling wave solutions [7],

η(t) is a white noise stochastic process whose intensity is

associated with diffusion coefficient D > 0, u1 is an angular

velocity control input, and u2 is a control gain that modulates
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the strength of agent interactions. The usual Kuramoto phase

model [9] is recovered by setting u1 = 0 and u2 = K, where

K is a possibly non-constant interaction strength. Depending

on the sign and magnitude of K and its dependence on θ,

a variety of oscillator phase distributions, and hence degrees

of synchronization, can appear [10], [11].

Kuramoto oscillators with noise are known to exhibit

synchronization once the quantity K
D

exceeds a threshold,

assuming that K > 0. Furthermore, traveling wave solu-

tions and spatially inhomogeneous phases known as chimera

states are known to arise for particular combinations of the

interaction kernel and the phase shift α [12], [11], [10].

The complex polar order parameter defined below is used

to measure phase coherence and synchronization intensity:

R(t)eiψ(t) =
1

N

N
∑

j=1

eiθj(t) (1)

The amplitude R takes values in the interval [0, 1], where

0 corresponds to disordered motion (incoherence) and 1
to global synchronization (phase locking). The variable ψ

denotes the mean-field phase.

For the sake of simplicity, we assume that all oscillators

have the same natural frequency, ωi = ω. Without loss of

generality, we can select ω = 0, which is equivalent to

expressing the oscillator dynamics in a frame rotating at

angular velocity ω.

In the limit of an infinite number of oscillators, i.e., N →
∞, the oscillator density q(θ, t) satisfies the following mean-

field nonlocal PDE,

qt −Dqθθ + ∂θ (u2 w[q]q + u1 q) = 0, (2)

where

w[q] =

∫

S1′

sin(θ′ − θ − α) q(θ′, t)dθ′ (3)

is a nonlocal integral term describing the oscillator interac-

tions. Note that we use the notation S1′ for the unit circle

to highlight the role of the integration variable θ′.

Eq. (2) is a nonlocal parabolic PDE that describes the

evolution in space-time of the probability density of a single

oscillator having phase θ at time t, or equivalently, the

normalized concentration of a population of oscillators at

this phase and time. The natural functional space for q is the

space of absolutely continuous probability measures, that is,

q ∈ V where V = {f ∈ L2(0, T,H1(S1)) :
∫

S1 f(θ, t)dθ =
1 and f ≥ 0 a.e. t ∈ (0, T )}. In the following, we will refer

to the solution of Eq. (2) with u1 ≡ 0 and u2 ≡ K as the

uncontrolled mean-field dynamics. In this case, we will set

K = 1.

Equation (2) is defined on the unit circle S1 and is

thus naturally equipped with periodic boundary conditions.

The mean-field equivalent [7] of the complex polar order

parameter is:

R(t)eiψ(t) =

∫

S1

eiθq(θ, t) dθ (4)

This continuous version of the polar order parameter has

the same range for R as its discrete counterpart, since the

oscillator density q is normalized to have unitary total mass.

In the following, we will make frequent use of Green’s

theorem for functions defined on S1. Given functions f, g :
S1 → R, we have that:

∫

S1

fθg dθ = −

∫

S1

fgθ dθ. (5)

We will also need the following identity,
∫

S1

w[f ]g dθ =

∫

S1

w∗[g]f dθ, (6)

where the functional w∗ is defined as:

w∗[g] =

∫

S1′

sin(θ − θ′ − α) g(θ′)dθ′.

It is straightforward to prove Eq. (6) by exchanging the

variables of integration.

It is also easy to show that Eq. (2) conserves the total

mass, m(t) =
∫

S1 q dθ, for any choice of control functions

u1, u2 and parameters D, α. First, note that Eq. (2) can be

equivalently written as follows, where −Dqθθ is written as

∂θ(−Dqθ):

qt + ∂θ (u2 w[q]q + u1 q −Dqθ) = 0. (7)

Then, we have that

ṁ =

∫

S1

qt dθ = −

∫

S1

∂θ (u2 w[q]q + u1 q −Dqθ) dθ = 0,

where we have substituted the state dynamics (7) and applied

Eq. (5) with g ≡ 1. Furthermore, the velocity w[q] of the

transport field w[q] q, which is induced by the nonlocal wave,

is bounded by 1, as we demonstrate in the next lemma.

Lemma II.1. For all probability densities q(t) ∈ H1(S1),
‖w[q(t)]‖L∞(S1) ≤ 1 for a.e. t ∈ (0, T )

Proof. Using Eq. (3) and the fact that q is a probability

density, we obtain the following inequality:

|w[q(t)]| =

∣

∣

∣

∣

∫

S1′

sin(θ′ − θ − α) q(θ′, t)dθ′
∣

∣

∣

∣

≤ sup
θ′∈S1′

(| sin(θ′ − θ − α)|)

∫

S1′

|q|dθ′ ≤ 1.

Consequently, we have that

‖w[q(t)]‖L∞(S1) = sup
q(t)∈H1(S1)

|w[q(t]| ≤ 1.

In the following lemma, we use Lemma II.1 to obtain an

upper bound on the norm of the mean-field state q. For this

purpose, we select as control space U = L2(0, T, L∞(S1))

Lemma II.2. For any u1, u2 ∈ U , it holds that

‖q‖
2
V ≤ CU (u1, u2) ‖q0‖

2
L2(S1) , (8)

where q0 ∈ L2(S1) is the initial probability density and

CU (u1, u2) ≡ ‖u1‖U + ‖u2‖U .
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Proof. We just need to show that Gårding’s inequality holds

for this problem, and then we can proceed as in Theorem 1

in [13]. The weak form of Eq. (2) can be written as:
∫

S1

qt(t)φ dθ + a(q(t), φ) = 0 ∀φ ∈ H1(S1)

for a.e. t ∈ (0, T ), where the form a(q, φ), defined as

a(q, φ) =

∫

S1

(Dqθφθ − (u2w[q] + u1)q φθ) dθ,

is obtained by multiplying Eq. (2) by a test function φ ∈
H1(S1), integrating the equation over the domain S1, and

then applying Eq. (5). We need to show that for almost every

t ∈ (0, T ), there exists λ(t) > 0 such that:

a(q(t), q(t)) + λ(t) ‖q(t)‖
2
L2(S1) ≥ α0(t) ‖q(t)‖

2
H1(S1)

for some α0(t) ≥ 0; i.e., that the form a is weakly

coercive. First, by applying Lemma II.1, the Cauchy-Schwarz

inequality, and Cauchy’s inequality with ε (see e.g. [14],

Appendix B.2), we can show that for every ε ≥ 0,
∣

∣

∣

∣

∫

S1

(u2w[q] + u1)q qθdθ

∣

∣

∣

∣

≤ ‖(u2w[q] + u1)‖L∞(S1) ‖q‖L2(S1) ‖qθ‖L2(S1)

≤
(

‖u2‖L∞(S1) + ‖u1‖L∞(S1)

)

‖q‖L2(S1) ‖qθ‖L2(S1)

= C ‖q‖L2(S1) ‖qθ‖L2(S1)

≤
C2

4ε
‖q‖

2
L2(S1) + ε ‖qθ‖

2
L2(S1) ,

where C ≡ CL∞(S1)(u1, u2) ≡ ‖u1‖L∞(S1) + ‖u2‖L∞(S1).

Therefore, for a.e. t ∈ (0, T ), we can now write:

a(q, q) + λ ‖q‖
2
L2(S1)

≥ D ‖qθ‖
2
L2(S1) + λ ‖q‖

2
L2(S1)

−

∣

∣

∣

∣

∫

S1

(u2w[q] + u1)q qθdθ

∣

∣

∣

∣

≥ (D − ε) ‖qθ‖
2
L2(S1) +

(

λ−
C2

4ε

)

‖q‖
2
L2(S1)

≥
D

2
‖qθ‖

2
L2(S1) +

(

λ−
C2

2D

)

‖q‖
2
L2(S1)

≥
D

2
‖qθ‖

2
L2(S1) +

C2

2D
‖q‖

2
L2(S1)

≥ α0 ‖q‖
2
H1(S1) ,

where we have chosen ε = D
2 , λ = C2

D
, and α0 = min{ε, λ2 }.

Note that the time dependence of variables in the inequalities

above is omitted to improve readability.

We can thus conclude that the form a is weakly coercive

and apply the same reasoning as in [13], Theorem 1, to

establish a bound on the norm of the mean-field state for

every u1, u2 ∈ U .

III. THE OPTIMAL CONTROL PROBLEM

In this section, we formulate an OCP subject to the mean-

field dynamics in Eq. (2). A natural objective is to compute

the minimum-energy control inputs u1, u2 that drive the

oscillator density to a target density z(θ, t) at a final time

t = T . We define the cost functional to be minimized as

J(q, u1, u2) = Jq(q) + Ju(u1, u2),

where

Jq(q) =
αr

2

∫ T

0

∫

S1

(q(θ, t)− z(θ, t))2 dθ dt

+
αt

2

∫

S1

(q(θ, T )− z(θ, T ))2dθ,

Ju(u1, u2) =
1

2

∫ T

0

∫

S1

(β1u1(θ, t)
2 + β2u2(θ, t)

2)dθdt,

and αr, αt, β1, and β2 are nonnegative weighting constants.

The OCP can be written as:

min
u1,u2,q

J(q, u1, u2) = Jq(q) + Ju(u1, u2)

s.t.

qt −Dqθθ + ∂θ (u2 w[q]q + u1 q) = 0,

q(θ, 0) = q0(θ).

(9)

We consider the control inputs u1 and u2 to be acting

simultaneously in the OCP, and we derive a set of first-

order necessary optimality conditions accordingly using a

Lagrangian method. In order to do so, we define the La-

grangian functional [15] as:

L(q, u, p) = J(q, u1, u2)

−

∫ T

0

∫

S1

(qt −Dpθθ + ∂θ (u2 w[q]q + u1 q)) p dθdt,

where p : S1 × (0, T ) 7→ R is the adjoint field still to be

determined. The adjoint dynamics are recovered by taking

the Gateaux derivative with respect to the state q and setting

it to zero for any state variation. We focus on deriving the

first variation of the third term of the PDE constraint in (9),

since the treatment of the time derivative and diffusion terms

is standard in the literature on OCPs for parabolic equations

(see e.g. [15]). First, it is useful to note that:

∫ T

0

∫

S1

∂θ

(

u2 w[q](q)
)

p dθdt

= −

∫ T

0

∫

S1

u2 w[q]q pθ dθdt.

(10)

Taking the first variation of the term of interest, we have:

∂

∂ε

∣

∣

∣

0

∫

S1

−u2 w[q + εψ](q + εψ) pθ dθdt

=

∫

S1

−u2

(

w[q]ψ + w[ψ]q
)

pθ dθdt

= −

∫

S1

(

u2w[q]pθ + w∗[u2pθ q]
)

ψ dθdt,

where we have used Eq. (6) to take out ψ from the nonlocal

operator w. Regarding the component of the term that

contains u1, we use Eq. (5) to write:
∫

S1

∂θ

(

u1 q
)

p dθ = −

∫

S1

u1 q pθdθ
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so that the state variation of this term reads:

∂

∂ε

∣

∣

∣

0

∫

S1

u1

(

q + εψ
)

pθdθ =

∫

S1

u1 pθψdθ. (11)

The adjoint dynamics can be then written as:

−pt−Dpθθ−
(

u2 w[q]+u1

)

pθ−w
∗[u2 pθ q] = αr (q − z) ,

(12)

with the final time condition specified as:

p(θ, T ) = αt (q(θ, T )− z(θ, T )) .

We can now derive the Euler equation for the reduced

gradient with respect to the controls u1 and u2. Using Eq.

(11), the first variation of the Lagrangian with respect to the

velocity control input u1 is straightforward to compute:

∇Ju1
(θ, t) = β1u1(θ, t) + q(θ, t) pθ(θ, t). (13)

This control mechanism for mean-field PDEs, i.e., optimal

control of a velocity field, has been considered in various

applications (see e.g. [13], [5]), and controllability results

[16] have been obtained for the case where agent interactions

are not present (i.e., u2 ≡ 0). In order to recover the reduced

gradient with respect to u2, we make use of Eq. (10), which

is linear in u2. We can then find that the reduced gradient

has the form:

∇Ju2
(θ, t) = β2u2(θ, t) + w[q](θ, t) q(θ, t) pθ(θ, t). (14)

Note that the integral term w[q] makes this gradient equation

nonlocal, in contrast to gradient equation (13), which means

that at each point in space-time, the equation depends on the

entire state solution q.

IV. SIMULATION RESULTS AND DISCUSSION

In this section, we solve the OCP numerically using an

iterative gradient descent method and analyze the results.

At each iteration, the current control input values u1, u2
are used to solve the state and adjoint equations, Eqs. (2)

and (12). The reduced gradient is then computed using Eqs.

(13) and (14), and the control inputs are updated such that

they produce a sufficient decrease in the cost functional.

The numerical algorithm is implemented in Python and

the operators are discretized using the open-source software

Dedalus [17], which makes efficient use of novel spectral

algorithms for the solution of PDEs. Although we have

derived optimality conditions for the general case where both

u1 and u2 are applied, we optimize u1 and u2 separately in

the simulations in order to investigate the ability of each

input to steer the state dynamics towards the target density.

In the u1-controlled case, we set u2 ≡ K = 1 and design

the velocity control input u1(θ, t) to steer an initial density

of oscillators towards a target density z(θ) at final time T .

A similar control problem is solved in [5], which does not

include agent interactions, and in [6], which includes inter-

actions in the form of spatially attractive/repulsive potentials.

Our aim is to investigate the effect of the control input

u1 on the synchronization mechanism, as compared to the

uncontrolled dynamics (u1 = 0, u2 = 1).

In the u2-controlled case, we set u1 = 0 and design

the interaction strength control input u2(θ, t), which locally

regulates the intensity of agent interactions, to solve this den-

sity steering problem. At each iteration of the optimization

algorithm, u2(θ, t) is updated using Eq. (14); the adjoint

equation (12) is the same for both the u1-controlled and u2-

controlled cases. We note that the influence of the integral

term w[q] may limit the control authority with respect

to u2; these restrictions on controllability must be further

investigated.

In all simulations, we set T = 10 s and choose D = 0.25
and α = 0, for which a synchronized phase is the solution of

the uncontrolled system at steady-state [7] in the form of a

Gaussian density that can be characterized semi-analytically.

The objective of the OCP is to speed up the convergence of

the state dynamics to the synchronized phase while steering

the mean phase to the mean of the target density. Toward this

end, we define the target density as a relatively low-variance

Gaussian function with a mean of 3
2π rad.

Fig. 1 plots the time evolution of the phase coherence pa-

rameter, the amplitude of the complex polar order parameter

in Eq. (4), for both controlled systems and the uncontrolled

system. The trajectories of the phase coherence parameter

and mean phase in the complex plane for all three systems are

plotted in Fig. 2, along with the target coherence and mean

phase. These figures show that both control inputs u1 and

u2 are able to steer the system towards the target coherence

and mean phase, with u1 producing synchronization more

quickly than u2. In contrast, the uncontrolled system achieves

synchronization much more slowly, and it convergences to

a mean phase that differs from the target phase. Figure 5

plots the u1-controlled and u2-controlled densities and the

uncontrolled density at the final time T = 10 s, along with

the target density. The controlled densities have both closely

approached the target density, while the uncontrolled system

has not yet synchronized.

The state dynamics of the uncontrolled, u1-controlled, and

u2-controlled systems over the entire simulation are shown

in Figs. 3, 4, and 7, respectively. The u2-controlled system

exhibits more complex dynamics than the u1-controlled sys-

tem before converging to the target density; this is due to the

previously mentioned limitations on control authority with

respect to u2. The space-time evolution of the corresponding

control input u1 and the controlled nonlocal transport field

w[q]u2 are plotted in Figs. 6 and 8, respectively. The quantity

w[q]u2 is plotted rather than u2 in order to directly compare

the controlled transport fields produced by u1 and u2.

It is worthwhile to comment on the signs of the control

inputs. The positive (negative) sign of the velocity control

input u1 generates a transport field in the direction of

increasing (decreasing) θ, while the role of the sign for the

interaction strength control input u2 is more subtle. Positive

values of u2 drive the corresponding oscillator density toward

alignment, and thus synchronization, while negative values

produce oscillator disalignment [11]. Thus, in order to reach

a target density, both locally repelling and locally aligning

interaction strength inputs are needed.
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