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AbstractÐ In this paper, we present a decentralized control
approach based on a Nonlinear Model Predictive Control
(NMPC) method that employs barrier certificates for safe
navigation of multiple nonholonomic wheeled mobile robots in
unknown environments with static and/or dynamic obstacles.
This method incorporates a Learned Barrier Function (LBF)
into the NMPC design in order to guarantee safe robot
navigation, i.e., prevent robot collisions with other robots and
the obstacles. We refer to our proposed control approach as
NMPC-LBF. Since each robot does not have a priori knowledge
about the obstacles and other robots, we use a Deep Neural
Network (DeepNN) running in real-time on each robot to learn
the Barrier Function (BF) only from the robot’s LiDAR and
odometry measurements. The DeepNN is trained to learn the
BF that separates safe and unsafe regions. We implemented our
proposed method on simulated and actual Turtlebot3 Burger
robot(s) in different scenarios. The implementation results show
the effectiveness of the NMPC-LBF method at ensuring safe
navigation of the robots.

I. INTRODUCTION

Collision-free navigation of multiple mobile robots has

been extensively studied in the literature for different applica-

tions such as autonomous cars [1], warehouse automation [2],

planetary exploration [3], and service robots [4]. The existing

control approaches for collision-free navigation of multi-

robot systems can be categorized as centralized, distributed,

and decentralized methods. Although collision and deadlock

avoidance of robots can be guaranteed in centralized control

approaches, they suffer from the scalability issue since the

computational complexity increases with the number of the

robots [5], [6].

In distributed control approaches, inter-robot collision

avoidance can be established using inter-robot communi-

cation [6], [7]. However, inter-robot communication might

be unreliable, or even not possible. Thus, decentralized

control approaches have been developed to eliminate the

aforementioned limitations of centralized and distributed

approaches. However, existing decentralized methods are not

fully decentralized due to one or more of the following

simplifying assumptions: (1) the reliance of robots on inter-

robot communication; (2) a priori knowledge of the robots
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about the positions of obstacles in the environment; (3)

dependency of the approach on a global localization system

such as a camera or motion capture system; and (4) absence

of obstacles in multi-robot scenarios.

In traditional control methods for collision-free navigation

of mobile robots, collision avoidance has been achieved

by incorporating the gradient of an artificial potential field

into the controller design, e.g., navigation function-based

methods [8] or attraction-repulsion methods [9]. Recently,

several methods have been developed to incorporate collision

avoidance into the constraints of an optimization problem

in order to enforce the kinematics or dynamics of the

robot, constraints on the robot’s states and actuation, and

the dynamics of the environment [5], [6], [10]. For multi-

robot systems, collision avoidance is a more challenging

task since we need to ensure avoidance of both inter-robot

and robot-obstacle collisions. Collision avoidance can be

guaranteed by introducing distance functions between each

pair of the robots in a centralized framework, as described

in [5]. However, using distance functions in a decentralized

framework fails to ensure collision avoidance in dynamic

environments, since the constraint does not capture the dy-

namics of unsafe regions. To address this issue, one can use

Barrier Functions (BFs) to ensure collision avoidance. These

functions separate safe and unsafe regions in the environment

and can be included in a constrained minimization problem

whose solution minimally deviates from a nominal controller

with guaranteed stability [11].

As a promising control approach for collision-free naviga-

tion of mobile robots [5], Model Predictive Control (MPC) is

a powerful feedback control method that computes optimal

control solutions by solving a constrained optimization prob-

lem over a prediction horizon [12], [13]. There are several

studies that incorporate BFs into constraints or directly into

the objective function of the MPC optimization to ensure

collision-free navigation of mobile robots. For instance, a

safety-critical MPC method with discrete-time BF has been

presented in [10] for collision-free navigation of mobile

robots in known, static environments. The existing BF-based

MPC methods analytically construct the BFs and incorporate

them into MPC design to ensure collision-free navigation,

which is impractical in real-world applications. Synthesizing

BFs is straightforward in a centralized control architecture

where the robots have information about the positions and

geometry of the obstacles. Given this information, a BF,

representing the boundary of the smallest circle that encloses

an obstacle, could be defined for each obstacle. On the other

hand, it would be challenging for each robot to individually
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construct BFs in a decentralized manner using only its own

sensor measurements due to the partial observability of the

environment and sparsity of the measured data. To address

this challenge, several recent studies have investigated the

use of neural networks (NNs) to learn BFs offline or online

in both known and unknown environments [14]±[19].

This paper presents a decentralized NMPC method with

learned BF for collision-free navigation of multiple nonholo-

nomic mobile robots in unknown environments. A learned

BF in the form of a Deep Neural Network (DeepNN) is

necessary since the map of the environment is unknown

and the BF constraints must be incorporated into the NMPC

optimization problem. That is, we need a map from a state

of the robot (as used in the NMPC loss function) to the

predicted BF value.

The following features of the proposed NMPC-LBF

method differentiate it from existing methods for multi-robot

navigation: (1) Robots do not require a priori information

about the locations or geometry of other robots or obstacles.

(2) There is no inter-robot communication that can be used

to avoid collisions between robots. (3) Safe navigation is

achieved in the presence of non-aggressive dynamic obsta-

cles. (4) Due to its decentralization, the proposed method can

be duplicated on any number of robots for safe navigation.

(5) A global localization system is not required since the

method can use on-board sensors of the robot. The main

novelty of our work compared to approaches for learning

BFs in [14]±[19] is to combine the NMPC with the learned

BF. Furthermore, through experiments on actual Turtlebot3

Burger robot(s), we demonstrate that our method is feasible

in practice (see [20]).

II. CONTROL PROBLEM FORMULATIONS

A. Nonlinear Model Predictive Control (NMPC)

Our proposed control approach utilizes a nonlinear MPC

(NMPC) method. We use the following modified version of

a discrete-time unicycle model that describes the kinematics

of a nonholonomic wheeled mobile robot (WMR):

x(k + 1) = x(k) + f(x(k),u(k))Ts

f(x(k),u(k)) =





cos(θ(k)) −a sin(θ(k))
sin(θ(k)) a cos(θ(k))

0 1





[

v
ω

]

(1)

where k denotes the time step; Ts is the sampling time;

a is a small positive constant; the state vector x(k) =
[x(k) y(k) θ(k)]T is the robot’s pose, i.e., its position

x̄ = [x y]T and heading angle θ in the global coordinate

frame at time step k; and the control input vector u(k) =
[v(k) ω(k)]T contains the robot’s control inputs, which are

its linear velocity v and angular velocity ω at time step

k. If one uses the standard unicycle kinematic model of a

nonholonomic WMR as in [21], then the angular velocity

of the robot does not show up in the barrier constraint [22].

Thus, we use the modified kinematic model in Eq. (1) so

that the system has relative degree 1.

In an NMPC method, we first solve a nonlinear con-

strained optimization problem that minimizes a loss function

l(x,u) over a prediction horizon of Np time steps:

U∗ = argminu

Np−1
∑

k=0

l(x(k),u(k)) (2)

x(k + 1) = x(k) + f(x(k),u(k))Ts

xmin ≤ x(k) ≤ xmax, x(0) = xc

umin ≤ u(k) ≤ umax

where xc is the robot’s current odometry measurement of

its pose and U∗ ∈ R
2×Np is a sequence of optimal control

inputs for the future Np time steps. The bounds xmin and

xmax on the state vector can be imposed to restrict the robot

to move within a specific region, and the bounds umin and

umax on the control inputs are determined by the capabilities

of the robot’s actuators. If the control objective is to drive

the robot to a target pose xref, then the loss function can be

defined as the sum of two quadratic terms that quantify the

normed distance of the robot from the target pose and the

control effort:

l(x(k),u(k)) = ||x(k)− xref||
2

Q + ||u(k)||2R, (3)

where Q and R are square weighting matrices and ||x||2A ≡
xTAx. Given the optimal control inputs U∗, only the first

control input U∗(0) is applied to the robot’s actuators. Then,

the time step is incremented from k to k+1, and optimization

problem (2) is solved again. We use the NMPC formulation

in Eq. (3) without stabilizing terminal costs or terminal

constraints, in order to speed up the convergence rate and

reduce the computation time (see [23]).

B. Control Barrier Functions (CBFs)

We define safety as a criterion that prevents the control in-

puts from driving the robot into a collision with other robots

or obstacles. Control barrier functions enable safety for

control synthesis by providing forward invariance property

of a specified safe set based on a Lyapunov-like condition.

We define a safe set C that represents the free space of the

domain, where the robot can move without colliding with

an obstacle. This set is described by the superlevel set of a

continuous differentiable function h(x̄(k)), which is known

as a barrier function [11], [24]:

C = {∀k ∈ Z0, x̄(k) ∈ R
n| h(x̄(k)) ≥ 0}. (4)

In order to prevent collisions, the control inputs must main-

tain the robot’s position x̄ within the safe set C. In other

words, the set C must be forward invariant with respect

to f(x̄(k),u(k)) defined in Eq. (1). The closed set C is

called forward invariant if for every x̄(0) ∈ C, x̄(k) ∈ C
for all k ∈ Z0. Then, the safety certificate at time step k
during robot navigation can be encoded as a Control Barrier

Condition (CBC) as follows:

h(x̄(k + 1))− h(x̄(k)) + γh(x̄(k)) ≥ 0, (5)

where γ is a small positive value less than one, i.e., 0 <
γ ≤ 1. In [10], it was proved that adding the CBC (5) to the

constraints of the MPC optimization problem (2) ensures the

safety of the computed optimal control inputs.
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Algorithm 1 NMPC-LBF Method

Input: x(0), xref, Q, R, xmin, xmax, umin, umax, Ts, Np

Output: U∗(0)

1: Initialize ROS node, odometry and LiDAR scan sub-

scribers, and velocity command publishers; symbolically

formulate Eq. (11) using CasADi

2: while ||x(k)− xref(k)|| > eref do

3: Obtain robot’s pose and LiDAR measurements

4: Algorithm 2: Data Sampling and DeepNN Training

5: Solve optimization problem in Eq. (11) to obtain U∗

6: Publish U∗(0) to ROS topics of robot’s velocity

commands

7: Update initial guess: U(0)← U∗(0), X(0)← xc

8: Increment time step: k ← k + 1
9: end while

the problem and formulating the optimization problem (line

1), the main loop (line 2 to 9) is executed online to collect

the samples and train the DeepNN as described in Algorithm

2 given the robot’s current pose from odometry and LiDAR

measurements. We obtain optimal control inputs after solving

Eq. (11) and apply them to the robot. Then, we shift the

prediction horizon and initialize the states and control inputs

in the optimization problem with a warm start. This loop is

executed up to the point that the distance of the robot to its

goal becomes less than eref = 0.1.

There are several parameters in the NMPC-LBF method

that should be tuned carefully to achieve the expected per-

formance of the robot to safely navigate in the environment.

To implement the NMPC-LBF method, we recommend the

following values for parameters to achieve the desired per-

formance: prediction horizon Np = 10 ∼ 20, sampling time

Ts = 0.01 ∼ 0.05 s, weight matrices Q = diag(5, 5, 0.05)
and R = diag(2, 0.5), learning rate lr = 0.01, number of

samples on each ray of LiDAR S = 50, half width of

unsafe region δ = 0.2 m, number of epochs nepochs = 20
in the training of DeepNN, and β = 0.1 ∼ 0.2 in the CBC.

We use a fully-connected DeepNN that is implemented in

TensorFlow [25] and Keras [26] with 2 neurons at the input,

and one output. The network architecture for the hidden

layers is nl = {32, 32, 16, 16, 8}, and we use tanh as the

activation function for all nodes.

IV. SIMULATION AND EXPERIMENTAL RESULTS

To evaluate the effectiveness of our method, we imple-

mented it on simulated TurtleBot3 (TB3) Burger robots [27]

in Gazebo and on an actual TB3 Burger robot.

For the simulation analysis, we simulated different scenar-

ios for navigation of single and multiple robots in unknown

environments. Due to space limitations, we only present

results for two of these scenarios in this paper. Videos of the

experiments with the real robot and all simulations, including

the simulations not discussed here, are available at [20].

In scenario 1, a single robot should stabilize to a goal

position in an environment with six unknown static obstacles.

Algorithm 2 Data Sampling and DeepNN Training

Input: xc, x(k), dr,lidar, dmax, R, S, lr, nepochs

Output: ĥ(x(k)), ∂ĥ(x(k))/∂x(k)

1: X̄s = [ ], r = 0, s = 0
2: for r < R do

3: Compute dr,s, αr given r and s
4: for s < S do

5: Compute dr,s in Eq. (6)

6: Obtain sample positions x̄r,s in Eq. (6)

7: Collect data samples X̄s ← x̄r,s

8: end for

9: end for

10: Calculate and return ĥ(x̄(k)) via FP

Figure 4 shows a snapshot of the initial configuration of the

robot and its trajectory during a simulation of this scenario.

The distance of the robot to the goal position and the optimal

control inputs over time are presented in Figure 5. In our

previous work [21], this control objective was achieved in the

same environment using gradient-based feedback controllers

that require the robot to have a priori knowledge about

the positions and geometry of the obstacles. In contrast,

the NMPC-LBF method can perform online learning in an

unknown environment with dynamic obstacles and multiple

robots. This property of the NMPC-LBF method allows its

real-time deployment on actual robots.

In scenario 2, four robots should stabilize to their goal

positions while avoiding collisions with one another and

two unknown static obstacles in the environment. Figure 6

shows a snapshot of the initial configuration of the robots

(R #i, i = {1, 2, 3, 4}) and their trajectories during a

simulation of this scenario. Plots of the distances of the

robots to their goal positions over time are shown in Fig. 7.

In experimental tests (see the video [20]), we implemented

the NMPC-LBF method on a single robot in three different

scenarios in which the robot should stabilize to its goal posi-

tion in an environment with one or two unknown obstacle(s).

Two of the scenarios have static obstacle(s), and the third has

a dynamic obstacle. To implement the controller, we used a

computer with Linux Ubuntu 16.0, Intel Core i5 processor,

8GB memory, and ROS Kinetic. The average computation

time for solving the NMPC-LBF is 0.25 s and the update

rate of the DeepNN weights is 0.15 s. The NMPC-LBF code

in Python is available at [28].

V. ANALYSIS AND DISCUSSION

A. Stability and Feasibility

The stability of the proposed control approach can be

established using proofs similar to those in our previous

work [5] if we can show that the associated optimization

problem in Eq. (11), with CBCs as constraints, has recursive

feasibility [29]. Let us denote X and U as the feasible sets of

states and control inputs for the robot. We use the simplified

notation Z = X × U. Suppose that x̄(0) is known and is
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an NN verification method, e.g., [30], [31], to bound the

approximation error. Lastly, the NMPC-LBF method does

not necessarily generate smooth trajectories while approach-

ing the obstacles. This issue could be solved by using a

stochastic NMPC method as described in [32] to generate

graceful motions of the robot during navigation.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a decentralized control ap-

proach based on an NMPC method leveraged by a DeepNN

to learn BF to ensure safety for navigation of mobile robots

in unknown environments in the presence of other robots and

obstacles. The proposed method does not require inter-robot

communication and it can be scaled up to be implemented

on any number of robots. Future work includes modifying

the method for learning the BF over the prediction horizon,

and therefore estimating the unsafe regions at future time

steps, by using a history of the robots’ LiDAR readings as

inputs to the DeepNN. Another direction for future work is

to redesign the optimization problem in order to encourage

smoothness in the robots’ navigation.
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