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Abstract—1In this paper, we present a decentralized control
approach based on a Nonlinear Model Predictive Control
(NMPC) method that employs barrier certificates for safe
navigation of multiple nonholonomic wheeled mobile robots in
unknown environments with static and/or dynamic obstacles.
This method incorporates a Learned Barrier Function (LBF)
into the NMPC design in order to guarantee safe robot
navigation, i.e., prevent robot collisions with other robots and
the obstacles. We refer to our proposed control approach as
NMPC-LBF. Since each robot does not have a priori knowledge
about the obstacles and other robots, we use a Deep Neural
Network (DeepNN) running in real-time on each robot to learn
the Barrier Function (BF) only from the robot’s LiDAR and
odometry measurements. The DeepNN is trained to learn the
BF that separates safe and unsafe regions. We implemented our
proposed method on simulated and actual Turtlebot3 Burger
robot(s) in different scenarios. The implementation results show
the effectiveness of the NMPC-LBF method at ensuring safe
navigation of the robots.

I. INTRODUCTION

Collision-free navigation of multiple mobile robots has
been extensively studied in the literature for different applica-
tions such as autonomous cars [1], warehouse automation [2],
planetary exploration [3], and service robots [4]. The existing
control approaches for collision-free navigation of multi-
robot systems can be categorized as centralized, distributed,
and decentralized methods. Although collision and deadlock
avoidance of robots can be guaranteed in centralized control
approaches, they suffer from the scalability issue since the
computational complexity increases with the number of the
robots [5], [6].

In distributed control approaches, inter-robot collision
avoidance can be established using inter-robot communi-
cation [6], [7]. However, inter-robot communication might
be unreliable, or even not possible. Thus, decentralized
control approaches have been developed to eliminate the
aforementioned limitations of centralized and distributed
approaches. However, existing decentralized methods are not
fully decentralized due to one or more of the following
simplifying assumptions: (1) the reliance of robots on inter-
robot communication; (2) a priori knowledge of the robots

This work was partially supported by DARPA AMP N6600120C4020,
NSF CNS 1932068, NSF IIP-1361926, and the NSF I/UCRC CES.

A. Salimi Lafmejani is with the School of Electrical, Computer
and Energy Engineering, Arizona State University (ASU), Tempe,
AZ, 85287 (asalimil@asu.edu). S. Berman is with the School
for Engineering of Matter, Transport and Energy, ASU, Tempe, AZ
85287 (spring.berman@asu.edu). G. Fainekos is with the
Toyota Research Institute of North America, Ann Arbor, MI 48105
(georgios.fainekos@toyota.com). The work was initiated
when G. Fainekos was with the School of Computing and Augmented
Intelligence, ASU, Tempe, AZ, 85281.

about the positions of obstacles in the environment; (3)
dependency of the approach on a global localization system
such as a camera or motion capture system; and (4) absence
of obstacles in multi-robot scenarios.

In traditional control methods for collision-free navigation
of mobile robots, collision avoidance has been achieved
by incorporating the gradient of an artificial potential field
into the controller design, e.g., navigation function-based
methods [8] or attraction-repulsion methods [9]. Recently,
several methods have been developed to incorporate collision
avoidance into the constraints of an optimization problem
in order to enforce the kinematics or dynamics of the
robot, constraints on the robot’s states and actuation, and
the dynamics of the environment [5], [6], [10]. For multi-
robot systems, collision avoidance is a more challenging
task since we need to ensure avoidance of both inter-robot
and robot-obstacle collisions. Collision avoidance can be
guaranteed by introducing distance functions between each
pair of the robots in a centralized framework, as described
in [5]. However, using distance functions in a decentralized
framework fails to ensure collision avoidance in dynamic
environments, since the constraint does not capture the dy-
namics of unsafe regions. To address this issue, one can use
Barrier Functions (BFs) to ensure collision avoidance. These
functions separate safe and unsafe regions in the environment
and can be included in a constrained minimization problem
whose solution minimally deviates from a nominal controller
with guaranteed stability [11].

As a promising control approach for collision-free naviga-
tion of mobile robots [5], Model Predictive Control (MPC) is
a powerful feedback control method that computes optimal
control solutions by solving a constrained optimization prob-
lem over a prediction horizon [12], [13]. There are several
studies that incorporate BFs into constraints or directly into
the objective function of the MPC optimization to ensure
collision-free navigation of mobile robots. For instance, a
safety-critical MPC method with discrete-time BF has been
presented in [10] for collision-free navigation of mobile
robots in known, static environments. The existing BF-based
MPC methods analytically construct the BFs and incorporate
them into MPC design to ensure collision-free navigation,
which is impractical in real-world applications. Synthesizing
BFs is straightforward in a centralized control architecture
where the robots have information about the positions and
geometry of the obstacles. Given this information, a BF,
representing the boundary of the smallest circle that encloses
an obstacle, could be defined for each obstacle. On the other
hand, it would be challenging for each robot to individually
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construct BFs in a decentralized manner using only its own
sensor measurements due to the partial observability of the
environment and sparsity of the measured data. To address
this challenge, several recent studies have investigated the
use of neural networks (NNs) to learn BFs offline or online
in both known and unknown environments [14]-[19].

This paper presents a decentralized NMPC method with
learned BF for collision-free navigation of multiple nonholo-
nomic mobile robots in unknown environments. A learned
BF in the form of a Deep Neural Network (DeepNN) is
necessary since the map of the environment is unknown
and the BF constraints must be incorporated into the NMPC
optimization problem. That is, we need a map from a state
of the robot (as used in the NMPC loss function) to the
predicted BF value.

The following features of the proposed NMPC-LBF
method differentiate it from existing methods for multi-robot
navigation: (1) Robots do not require a priori information
about the locations or geometry of other robots or obstacles.
(2) There is no inter-robot communication that can be used
to avoid collisions between robots. (3) Safe navigation is
achieved in the presence of non-aggressive dynamic obsta-
cles. (4) Due to its decentralization, the proposed method can
be duplicated on any number of robots for safe navigation.
(5) A global localization system is not required since the
method can use on-board sensors of the robot. The main
novelty of our work compared to approaches for learning
BFs in [14]-[19] is to combine the NMPC with the learned
BF. Furthermore, through experiments on actual Turtlebot3
Burger robot(s), we demonstrate that our method is feasible
in practice (see [20]).

II. CONTROL PROBLEM FORMULATIONS
A. Nonlinear Model Predictive Control (NMPC)

Our proposed control approach utilizes a nonlinear MPC
(NMPC) method. We use the following modified version of
a discrete-time unicycle model that describes the kinematics
of a nonholonomic wheeled mobile robot (WMR):

x(k + 1) = x(k) + £(x(k), u(k))T,

cos(8(k)) —asin(f(k)) o1 ()
f(x(k),u(k)) = sin(g(k’)) acos(19(k:)) LJ

where k denotes the time step; 7T is the sampling time;
a is a small positive constant; the state vector x(k) =
[#(k) y(k) 6(k)]T is the robot’s pose, i.e., its position
x = [z y|" and heading angle 6 in the global coordinate
frame at time step k; and the control input vector u(k) =
[v(k) w(k)]T contains the robot’s control inputs, which are
its linear velocity v and angular velocity w at time step
k. If one uses the standard unicycle kinematic model of a
nonholonomic WMR as in [21], then the angular velocity
of the robot does not show up in the barrier constraint [22].
Thus, we use the modified kinematic model in Eq. (1) so
that the system has relative degree 1.

In an NMPC method, we first solve a nonlinear con-
strained optimization problem that minimizes a loss function

I(x,u) over a prediction horizon of N, time steps:

Ny—1
U* = argmin,, Z I(x(k),u(k)) (2)
k=0

x(k+1) =x(k) + f(x(k),u(k))Ts
Xmin < X(k) < Xmax, X(O) = Xc

Umin S u(k) S Umax

where x. is the robot’s current odometry measurement of
its pose and U* € R?*M» is a sequence of optimal control
inputs for the future IV, time steps. The bounds Xp;, and
Xmax ON the state vector can be imposed to restrict the robot
to move within a specific region, and the bounds u,, and
Umax ON the control inputs are determined by the capabilities
of the robot’s actuators. If the control objective is to drive
the robot to a target pose X, then the loss function can be
defined as the sum of two quadratic terms that quantify the
normed distance of the robot from the target pose and the
control effort:

[(x(k), u(k)) = [[x(k) — xetllg + [[uB) R, 3)

where Q and R are square weighting matrices and ||x||3 =
x” Ax. Given the optimal control inputs U*, only the first
control input U*(0) is applied to the robot’s actuators. Then,
the time step is incremented from & to k41, and optimization
problem (2) is solved again. We use the NMPC formulation
in Eq. (3) without stabilizing terminal costs or terminal
constraints, in order to speed up the convergence rate and
reduce the computation time (see [23]).

B. Control Barrier Functions (CBFs)

We define safety as a criterion that prevents the control in-
puts from driving the robot into a collision with other robots
or obstacles. Control barrier functions enable safety for
control synthesis by providing forward invariance property
of a specified safe set based on a Lyapunov-like condition.
We define a safe set C that represents the free space of the
domain, where the robot can move without colliding with
an obstacle. This set is described by the superlevel set of a
continuous differentiable function h(x(k)), which is known
as a barrier function [11], [24]:

C = {Vk € Zy, x(k) € R"| h(x(k)) > 0}. (4)

In order to prevent collisions, the control inputs must main-
tain the robot’s position X within the safe set C. In other
words, the set C must be forward invariant with respect
to f(x(k),u(k)) defined in Eq. (1). The closed set C is
called forward invariant if for every %(0) € C, x(k) € C
for all £ € Zy. Then, the safety certificate at time step k
during robot navigation can be encoded as a Control Barrier
Condition (CBC) as follows:

h(x(k + 1)) — h(x(k)) + vh(x(k)) > 0, 5)

where 7 is a small positive value less than one, i.e., 0 <
~v < 1. In [10], it was proved that adding the CBC (5) to the
constraints of the MPC optimization problem (2) ensures the
safety of the computed optimal control inputs.
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Fig. 1. LiDAR sensor rays and point sampling in safe and unsafe regions
within the sensing range of the LiDAR. The unsafe samples are taken from
the red shaded regions and the safe samples are in areas excluding the
unsafe regions. d ., dy idar, d;  show the distances of the robot to the

safe, boundary, and unsafe samples on a ray of LiDAR.
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Fig. 2. An illustration of ground-truth BF, h(x), and approximation of
BF by the DeepNN, h(X), on a single ray of LIDAR along with a 2D
visualization of safe and unsafe samples and a sample on the boundary of
an obstacle. We note that the sample points are defined in the  — y plane
with a height of zero.

ITI. DECENTRALIZED NMPC-LBF METHOD

In our NMPC-LBF method, the BF h is learned by training
a DeepNN h in real-time on each robot. Then, the trained
DeepNN h is used within the NMPC constraints to provide
an approximation of the BF h for the finite prediction horizon
of N, time steps.

A. Data Sampling and Training the DeepNN BF

The DeepNN should be trained to learn an approximation
of the BF. To train the DeepNN, we need to collect samples
from safe and unsafe regions that are observed by the robot
during navigation. Figure 1 demonstrates our method to
collect samples at each time instant. These samples are only

obtained in real-time based on the LiDAR sensor readings
and the current pose of the robot via odometry readings.

We define R as the number of rays on the LiDAR sensor,
r ={1,2,..., R} as the index for the rays, «, as the angle
between the direction of the robot’s heading and the r-th ray
of the LiDAR, and d, jigar(k) as the distance measured by
the LiDAR in the direction of the r-th ray at the k-th time
step. Then, we sample points within the sensing range of the
robot along each ray of the LiDAR as illustrated in Fig. 1. Let
us define dpax as the maximum distance that the robot can
sense. Then, we take S number of samples on each ray of the
LiDAR. We define X, (k) € R? as the position in the global
coordinate frame of the s-th sample, s € {1,2, ..., S}, on the
r-th ray at the k-th time step. Therefore, we have in total
Nsamples = R x S samples available in the dataset at each time
step to train the DeepNN. By calculating d, s = dmaxs/S as
the distance of sample position X, s(k) to the origin of the
robot’s local frame, we can readily compute the position of
the sample as:

Xr,5(k) = %Xc + R (0(k))dy s (k)
~ |cos(6(k)) —sin(0(k))
R.(0(k)) = Lin(e(zf)) cos(8 ))]

_ o Jeos(ar(k))
dr,s (k) - dT,s |:Sln(04,-(k)):|
where (k) is the heading angle of the robot at the k-th time
step and R, (0(k)) is the standard rotation matrix that per-
forms a rotation through angle (k) around about the positive
z axis. This rotation matrix transforms vectors described in
the local frame of the robot into vectors described in the
global frame = — y. We note that X, , is located in the safe
region, the boundary of an obstacle, or an unsafe region
within the sensing range of the LiDAR. Thus, the input for
training the DeepNN is the set of all sampled points, defined
as the vector X, € R™MwmiesX2 We describe the ground-truth
outputs as the value of the BF at the input samples:

h(ir,S(k)) = |dr,s - dr,lidar(k” -9, )

where § > 0 denotes half of the width of the unsafe region
around the distance measured by the LiDAR and is set to a
positive value greater than the radius of the smallest circle
surrounding the robot.

Thus, the input-output set of data for training the DeepNN
can be described by D = {X,, H,} in which each row of
X, € RNamiesX2 i the position vector of the sampled point
Xrs, 8 = {1,2,...,5}, and each row of Hy € RN jg
the corresponding ground-truth output value of BF, h(X, s).
We employ the incremental learning method to train the
DeepNN h : R2 — R that provides an approximation of
the BF. Figure 2 illustrates samples on a single ray of the
robot’s LiDAR and the change of the ground-truth BF and
its approximation with respect to the distance to an obstacle.

In the current implementation of our method, training data
is collected and used for training the DeepNN at every
iteration of the control loop. However, other (re-)training

0

(
(K (6)
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schemes are possible — especially, if we would like to
reduce the impact of over-fitting and/or consider NN-based
prediction models for the dynamic obstacles.

B. Symbolic Representation of the DeepNN BF

When an analytical representation of the CBC (5) is
available along with a map of the environment and motion
predictions of the dynamic obstacles, then the BF conditions
could be directly incorporated in the constraints of the
NMPC (2). However, in our application, we consider an
unknown map. Therefore, we need to use a learning-based
BF h to predict the CBC. As a consequence, a symbolic
representation of the DeepNN h is necessary so that it can
be used in the resulting optimization problem.

Recalling that X(k), where k € {0, 1, ..., N, — 1}, denote
the future states of the robot for the NMPC finite horizon,
we can obtain a symbolic expression of the approximated
BF for each predicted future state, given the activation
functions on each node of the DeepNN and the optimal
weights after each training. We give the symbolic expression
of x(k) as the input to the DeepNN and obtain a symbolic
expression for the approximation of the BF, i.e., h(x(k)),
at the output of the DeepNN. The symbolic expression is
used to generalize the representation of the approximated BF
with respect to (k) that allows us to compute h(x(k)) for
any possible future state of the robot. The approximated BF
can be easily computed by using the Forward Propagation
(FP) technique. The required computations in FP to obtain a
symbolic expression of the approximated BF are:

A =0(Z), Zi=""W[A__;1+b
Ao =x(k), Ap = h(x(k)), 1=1,2,...L

where 0 is the index for the input layer, [ is the index
for hidden layers, L denotes the number of hidden layers,
and o is the activation function on each node. The weight
matrix containing the weights on the connections between
two consecutive layers [ — 1 and [ is defined by ‘~'W,.
Moreover, Z; is an affine transformation on the previous
layer’s output A;_;, and A; describes the output of layer
[ after applying the activation function on Z;.

Remark: In some cases, we may want to use the contin-
uous time formulation of BF [24], e.g., in an approximation
method. In continuous time, the equivalent CBC condition
requires the derivative of the BF. A symbolic representation
of the gradient of the approximated BF, i.e., VA(X(k)), is not
as straightforward as deriving a symbolic representation for
h(x(k)). However, it is still possible to compute it. To do so,
we can use the Back Propagation (BP) technique to calculate
a symbolic expression for the gradient with respect to the
DeepNN’s inputs, i.e., (k). For example, if we assume that
o(x) = tanh(x), then through BP, we obtain a symbolic
expression for the approximated gradient of the BF with
respect to the inputs by:

®)

LiDAR data

(\scan)
Data Sampling Robot
(II1-A) (Fig. 1)
Odometry data
(\odom)
D:{Xs, Hs}
U™ (0)
- h(x(k
x(k) Deep NN Q)
(I1-B)
OR(x(k))
ax(k) %(k)
Fig. 3. Block diagram of the NMPC-LBF method described in Eq. (11).

\scan and \odom are ROS topics through which the states of the robot and
the LIDAR measurements would be available.

C. Incorporating BF into NMPC

Given the BF approximated by the DeepNN, we define
sets that correspond to the safe region, its boundary, and the
unsafe region of the environment, respectively:

C={x|h(x)>6}, 9C={x|hEx) =0} (10)
U={x|hx) <}

For all future N, time steps, we calculate h(%(k)) via FP
computations through the DeepNN, which also determines
whether each future state will be in the set C, 0C, or U.
The constrained optimization problem of our NMPC-LBF
method is formulated as:

Np—1
U*, X" = argmin,_,, Z l(x(k),u(k))
k=0
x(k + 1) = x(k) + F(x(k), u(k)) T,
x(0) = x,

(11)

Xmin < X(k) < Xmax,
Umin S u(k) S Umax
h(x(k + 1)) = h(x(k)) +vh(x(k)) > 0 (CBC)

where X* is a sequence of optimal states. In order to
reduce the computational complexity in this optimization
problem, we use the multiple shooting method and lift up the
problem by considering both x and u as decision variables in
the minimization. We implement and solve this constrained
nonlinear optimization problem via CasADi, which is a
powerful framework specialized for solving NMPC problems
by providing a symbolic expression of the problem. In the
decentralized framework of our method, each robot solves
the optimization problem described in Eq. (11) independently
in which the BF is being learned by the DeepNN online in
the loop at each time step. Figure 3 shows a block diagram
of the NMPC-LBF method.

oh(x(k)) AL 0Zp O0A, 07, D. Implementation and Parameter Tuning
ox(k) — 0Zr 0Ap_ 1 " 0Z, 0x(k) ) We describe the implementation of our method using the
0A; 1 — tanh? (Z) 0z, -1y T pseudo codes in Algorithms 1 and 2. Algorithm 1 presents
07z, Uy N L the NMPC-LBF method step by step. After initialization of
10300
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Algorithm 1 NMPC-LBF Method

Algorithm 2 Data Sampling and DeepNN Training

Input: X(0)7 Xrefs Qa R, Xmin> Xmax> Wmin> Wmax» Ts’ Np
Output: U*(0)
1: Initialize ROS node, odometry and LiDAR scan sub-

scribers, and velocity command publishers; symbolically
formulate Eq. (11) using CasADi

2: while ||x(k) — Xpet(k)|| > erer do

3:  Obtain robot’s pose and LiDAR measurements

4:  Algorithm 2: Data Sampling and DeepNN Training

5. Solve optimization problem in Eq. (11) to obtain U*

6:  Publish U*(0) to ROS topics of robot’s velocity
commands

7. Update initial guess: U(0) < U*(0), X(0) < x.

8:  Increment time step: k < k + 1

9: end while

the problem and formulating the optimization problem (line
1), the main loop (line 2 to 9) is executed online to collect
the samples and train the DeepNN as described in Algorithm
2 given the robot’s current pose from odometry and LiDAR
measurements. We obtain optimal control inputs after solving
Eq. (11) and apply them to the robot. Then, we shift the
prediction horizon and initialize the states and control inputs
in the optimization problem with a warm start. This loop is
executed up to the point that the distance of the robot to its
goal becomes less than ey = 0.1.

There are several parameters in the NMPC-LBF method
that should be tuned carefully to achieve the expected per-
formance of the robot to safely navigate in the environment.
To implement the NMPC-LBF method, we recommend the
following values for parameters to achieve the desired per-
formance: prediction horizon N, = 10 ~ 20, sampling time
Ts = 0.01 ~ 0.05 s, weight matrices Q = diag(5, 5,0.05)
and R = diag(2,0.5), learning rate I, = 0.01, number of
samples on each ray of LiDAR S = 50, half width of
unsafe region 6 = 0.2 m, number of epochs nepochs = 20
in the training of DeepNN, and 5 = 0.1 ~ 0.2 in the CBC.
We use a fully-connected DeepNN that is implemented in
TensorFlow [25] and Keras [26] with 2 neurons at the input,
and one output. The network architecture for the hidden
layers is n; = {32,32,16,16,8}, and we use tanh as the
activation function for all nodes.

IV. SIMULATION AND EXPERIMENTAL RESULTS

To evaluate the effectiveness of our method, we imple-
mented it on simulated TurtleBot3 (TB3) Burger robots [27]
in Gazebo and on an actual TB3 Burger robot.

For the simulation analysis, we simulated different scenar-
ios for navigation of single and multiple robots in unknown
environments. Due to space limitations, we only present
results for two of these scenarios in this paper. Videos of the
experiments with the real robot and all simulations, including
the simulations not discussed here, are available at [20].

In scenario 1, a single robot should stabilize to a goal
position in an environment with six unknown static obstacles.

Input: x., X(k)a dr,lidara Amax> R, S, 1, Nepochs
Output: h(x(k)), dh(x(k))/0x (k)

3 Compute d, ,, o, given r and s

4. for s < S do

5: Compute d, s in Eq. (6)

6 Obtain sample positions X, s in Eq. (6)
7 Collect data samples X X,

8: end for
9: end for A
10: Calculate and return h(x(k)) via FP

Figure 4 shows a snapshot of the initial configuration of the
robot and its trajectory during a simulation of this scenario.
The distance of the robot to the goal position and the optimal
control inputs over time are presented in Figure 5. In our
previous work [21], this control objective was achieved in the
same environment using gradient-based feedback controllers
that require the robot to have a priori knowledge about
the positions and geometry of the obstacles. In contrast,
the NMPC-LBF method can perform online learning in an
unknown environment with dynamic obstacles and multiple
robots. This property of the NMPC-LBF method allows its
real-time deployment on actual robots.

In scenario 2, four robots should stabilize to their goal
positions while avoiding collisions with one another and
two unknown static obstacles in the environment. Figure 6
shows a snapshot of the initial configuration of the robots
(R #i, ¢ = {1,2,3,4}) and their trajectories during a
simulation of this scenario. Plots of the distances of the
robots to their goal positions over time are shown in Fig. 7.

In experimental tests (see the video [20]), we implemented
the NMPC-LBF method on a single robot in three different
scenarios in which the robot should stabilize to its goal posi-
tion in an environment with one or two unknown obstacle(s).
Two of the scenarios have static obstacle(s), and the third has
a dynamic obstacle. To implement the controller, we used a
computer with Linux Ubuntu 16.0, Intel Core i5 processor,
8GB memory, and ROS Kinetic. The average computation
time for solving the NMPC-LBF is 0.25 s and the update
rate of the DeepNN weights is 0.15 s. The NMPC-LBF code
in Python is available at [28].

V. ANALYSIS AND DISCUSSION
A. Stability and Feasibility

The stability of the proposed control approach can be
established using proofs similar to those in our previous
work [5] if we can show that the associated optimization
problem in Eq. (11), with CBCs as constraints, has recursive
feasibility [29]. Let us denote X and U as the feasible sets of
states and control inputs for the robot. We use the simplified
notation Z = X x U. Suppose that X(0) is known and is
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Fig. 4. A snapshot of the simulation of scenario 1 in Gazebo. The robot
should stabilize to the goal position at the origin of the global frame.
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Fig. 5. Distance to goal position and optimal control inputs over time of
the robot in scenario 1.

Fig. 6. A snapshot of the simulation of scenario 2 in Gazebo. All robots
should stabilize to their goal positions while avoiding collisions with other
robots and static obstacles.

in a feasible state, i.e., X(0) € X. Then, the optimization
problem in Eq. (11) has feasible solutions if and only if for
all time steps 0, ..., N, — 1: (a) the optimal control solutions
and corresponding predicted states are a subset of the feasible
set, i.e., X* x U* C Z, and (b) the CBCs in Eq. (5) are

Optimal control inputs
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Fig. 7. Distances of the robots to their goal positions over time in scenario
2.

satisfied.

To prove statement (a), we consider the kinematic model
of each robot in Eq. (1). If the initial state and initial
control input are in the feasible set, i.e., X(0) x u(0) € Z,
then the recursive feasibility of the optimization problem
in Eq. (11) trivially holds. To establish statement (b), we
would need two conditions: (i)  is a “good” approximation
of h, and (ii) the sampling rate T is sufficient. Even though
condition (ii) can be guaranteed given the dynamics of the
robots and the obstacles, condition (i) remains challenging
to demonstrate, in general. Using NN verification methods,
e.g., [30], [31], we could establish that the approximation
error is bounded. If the error is bounded, then we could
guarantee that any control input that satisfies the CBC in the
optimization problem in Eq. (11) will also satisfy the CBC
(5). This will be the focus of our future work.

B. Limitations of Proposed NMPC-LBF Method

As a limitation of our decentralized method, a powerful
computational resource on the robot is required to train the
DeepNN and solve the optimization problem of NMPC-
LBF in real-time. In turn, this allows us to increase the
resolution of sampling points on each ray of the LiDAR
to collect more data, which could preempt the over-fitting
problem in training of the DeepNN. Another limitation is the
challenging task of tuning the parameters of the NMPC-LBF
method, which significantly affects the safety and stability of
the robot during navigation. Although inter-robot collision
avoidance can be ensured in our method, there are some
special cases in which collision avoidance between the robot
and dynamic obstacles is not guaranteed. If the velocity
vector of a dynamic obstacle aligns with the velocity vector
of the robot and has a greater magnitude, then they might
collide since the robot’s control inputs are constrained and
there are no known constraints on the obstacle’s dynamics.

Due to the generalization error in learning of the BF by
the DeepNN, there always exists a difference between the
learned BF and its ground-truth values. Given the ground-
truth values of the BF, computing the approximation error for
the training sample positions would be possible, whereas we
are not able to compute it for test sample positions that are
not in our dataset. This issue could be addressed by using
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an NN verification method, e.g., [30], [31], to bound the
approximation error. Lastly, the NMPC-LBF method does
not necessarily generate smooth trajectories while approach-
ing the obstacles. This issue could be solved by using a
stochastic NMPC method as described in [32] to generate
graceful motions of the robot during navigation.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a decentralized control ap-
proach based on an NMPC method leveraged by a DeepNN
to learn BF to ensure safety for navigation of mobile robots
in unknown environments in the presence of other robots and
obstacles. The proposed method does not require inter-robot
communication and it can be scaled up to be implemented
on any number of robots. Future work includes modifying
the method for learning the BF over the prediction horizon,
and therefore estimating the unsafe regions at future time
steps, by using a history of the robots’ LiDAR readings as
inputs to the DeepNN. Another direction for future work is
to redesign the optimization problem in order to encourage
smoothness in the robots’ navigation.
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