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AbstractÐ Finding Nash equilibrial policies for two-player
differential games requires solving Hamilton-Jacobi-Isaacs
(HJI) PDEs. Self-supervised learning has been used to approx-
imate solutions of such PDEs while circumventing the curse
of dimensionality. However, this method fails to learn discon-
tinuous PDE solutions due to its sampling nature, leading to
poor safety performance of the resulting controllers in robotics
applications when player rewards are discontinuous. This paper
investigates two potential solutions to this problem: a hybrid
method that leverages both supervised Nash equilibria and the
HJI PDE, and a value-hardening method where a sequence
of HJIs are solved with a gradually hardening reward. We
compare these solutions using the resulting generalization and
safety performance in two vehicle interaction simulation studies
with 5D and 9D state spaces, respectively. Results show that
with informative supervision (e.g., collision and near-collision
demonstrations) and the low cost of self-supervised learning,
the hybrid method achieves better safety performance than the
supervised, self-supervised, and value hardening approaches on
equal computational budget. Value hardening fails to generalize
in the higher-dimensional case without informative supervision.
Lastly, we show that the neural activation function needs to be
continuously differentiable for learning PDEs and its choice can
be case dependent.

I. INTRODUCTION

Problem statement. Human-robot interactions (HRIs) in

real time can be modeled as general-sum differential games.

The Nash equilibrial value of the game is a viscosity solution

to the Hamilton-Jacobi-Isaacs (HJI) equations [1], and is a

function of the players’ states and time. Conventional algo-

rithms for solving Hamilton-Jacobi PDEs are known to suffer

from the curse of dimensionality [2], i.e., values become

hard to compute for high-dimensional state spaces. Recent

attempts consider self-supervised (i.e., physics-informed)

learning that forces the consistency between the value and

the PDE, and have achieved empirical success on a variety of

differential games [3], [4]. While convergence of this method

has been proven for Lipschitz and HÈolder continuous player

rewards [4], [5], our experiments suggest that convergence

to the true values cannot be achieved when players’ rewards,

and thus the values, are discontinuous with respect to states

and time. Such discontinuity can occur when players receive
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both continuous rewards, e.g., energy consumption or path-

following losses, and those encoded from temporal logic,

e.g., safety penalties. We discuss the challenge of learning

discontinuous values using a toy case in Sec. III.

Solutions. We examine two potential solutions to this

challenge: (1) A hybrid method where we leverage both

supervised equilibrial data generated by Pontryagin’s Maxi-

mum Principle (PMP) [6] and the HJI equations; (2) A mod-

ified self-supervised method where we gradually harden an

initially softened reward. Comparisons are performed on two

vehicle interaction studies: An uncontrolled intersection case

with a 5D value function with complete information where

players know each other’s types and incomplete information

where player types are private and inferred, and a collision

avoidance case with a 9D value function.

Contributions. Our study leads to the following new

findings: (1) We show that the hybrid method achieves better

generalization performance on value prediction and safer

control policies than other methods under the same com-

putational budget. On the other hand, value-hardening fails

to generalize in the higher-dimensional case, indicating the

importance of informative supervision. To the authors’ best

knowledge, this is the first paper that addresses the challenge

in approximating values of HJI PDEs with discontinuous

reward; (2) We show that the choice of neural activation in

the value network is important: relu does not generalize

well due to its discontinuous derivative. Performance of

sin activation varies across case studies, indicating the

need for hyperparameter tuning. tanh and continuously

differentiable variants of relu, e.g., gelu, generalize well

using the hybrid method. These new findings add counter

examples to the existing literature that promotes the use

of sin activation for value approximation [3], and support

recent discussions on the need for adaptive activations for

neural network-based PDE solvers [7].

II. RELATED WORK

Solving Hamilton-Jacobi PDEs via deep learning. With

the development of auto-differentiation [8], deep neural net-

works have become means to solving PDEs when analytical

methods suffer from the curse of dimensionality [9]. Existing

methods of this kind can be grouped into three types:

ªBoundary matchingº methods first reformulate PDEs as

backward stochastic differential equations and solve them

by forcing a match between the terminal states of the resul-

tant stochastic processes and the boundary conditions [10],

[11]. ªEquation matchingº methods, which are often called

physics-informed neural nets (PINN), directly force a match
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between a surrogate function and the PDE [3], [12]. Both

boundary and equation matching are self-supervised, and

have proven convergence to the ground truth solutions when

both the network and the governing equations are continu-

ous [4], [11], [12]. Lastly, supervised learning methods train

a network based on sampled solutions to the PDE. To the

authors’ best knowledge, there is currently few generalization

analysis for this method. Recent studies have investigated the

effectiveness of ªequation matchingº at solving PDEs with

discontinuous solutions (e.g., Burgers equation [7]) where

both initial and terminal boundaries are specified. We show in

this paper that PDEs with only terminal (or initial) boundary

conditions, such as HJIs, cause an unidentifiability issue.

Games with incomplete information. Zero-sum dynamic

games with incomplete- or imperfect-information can be

solved by counterfactual regret minimization (CFR) [13] or

Regularized Nash Dynamics (RND) [14], which have been

successfully applied to heads-up Texas hold’em poker [15],

[16] and Stratego [14]. However, there have so far been

few applications of CFR and RND to continuous-time in-

teractions with incomplete information, e.g., through time

discretization. On the other hand, attempts to directly solve

HRIs are often facilitated by simplifications of the underlying

games that balance theoretical soundness and practical utility.

Most attempts of this type simplify games as optimal control

problems or complete-information games (e.g., [17]±[22]),

and some use belief updates to adapt motion planning (e.g.,

[23]±[28]). For real-time control, [29] proposed to solve

linear-quadratic games iteratively to approximate the equi-

librial policy of a complete-information differential game.

Unlike existing studies, in this paper we achieve real-time

belief update and feedback control in incomplete-information

games by learning off-line the Nash equilibrial values of

hypothetical games to be played by all possible combinations

of player types. The values then enable online Bayesian

belief update to correct players’ (false) beliefs about each

other’s type.
III. METHODS

Notations. Let Xi (resp. Ui) be the state (resp. action)

space for Player i. The time-independent state dynamics of

Player i is denoted by ẋi[t] = f(xi[t], ui[t]) for xi[t] ∈
Xi and ui[t] ∈ Ui. Dependence of time will be omitted

when possible. For a fixed-time interaction within [0, T ], the

instantaneous and terminal losses of Player i are denoted by

l((xi, x−i), ui) and c(xi, x−i), respectively. For a complete-

information differential game between two players, the value

function of Player i is νi(·, ·, ·) : Xi × X−i × [0, T ] → R

where the arguments are in the order of the ego’s (Player

i’s) states, the other player’s states, and the current time.

To reduce notational burden, we will use fi, li, ci, and νi
respectively for the player-wise dynamics, losses, and the

value, and use ai = (ai, a−i) to concatenate variables from

the ego (i) and the other players. We use ∇x· to denote

partial derivative with respective to x.

Preliminaries. Hamilton-Jacobi-Isaacs equations: The

Nash equilibrial values of a two-player general-sum differen-

tial game solve the following HJI equations (L) and satisfy

the boundary conditions (D) [30]:

L(νi,∇xiνi, xi, t) := ∇tνi +∇xiν
T
i fi − li = 0

D(νi, xi) := νi(xi, T )− ci = 0, for i = 1, 2.
(1)

Here players’ policies are derived by maximizing the equi-

librial Hamiltonian hi(xi,∇xi
νi, t) = ∇xi

νTi fi − li: ui =
argmaxu∈Ui

{hi} for i = 1, 2.

Pontryagin’s Maximum Principle: While solving the HJI

would provide a feedback control policy, it is often more

tractable to compute open-loop policies for specific initial

state (x̄1, x̄2) ∈ X1 ×X2 by solving the following boundary

value problem (BVP) according to PMP1:

ẋi = fi, xi[0] = x̄i,

λ̇i = −∇xi
hi, λi[T ] = −∇xi

ci,

ui = argmax
u∈Ui

{hi} for i = 1, 2.
(2)

Here λi is the time-dependent co-state for Player i. The co-

state connects PMP and HJI through λi = ∇xi
νi. Solutions

to Eq. (2) are specific to the given initial states.

Self-supervised learning for differential games. This

approach directly trains a neural network that approximately

satisfies the governing equations. Let ν̂i(·, ·, ·) : Xi ×X−i ×
[0, T ] → R be a neural network that approximates νi, and

let D =
{(

x
(k)
1 , x

(k)
2 , t(k)

)}K

k=1
be uniform samples in

X1 × X1 × [0, T ]. We extend the existing formulation for

solving zero-sum games [3] to the general-sum setting:

min
ν̂1,ν̂2

L1 (ν̂1, ν̂2; θ) :=

K
∑

k=1

2
∑

i=1

∥

∥

∥
L(ν̂i,∇xi ν̂i, x

(k)
i , t(k))

∥

∥

∥

+ C1ϕ
(

D(ν̂i, x
(k)
i )

)

,

(3)

where ν̂
(k)
i is a shorthand for ν̂i

(

x
(k)
i , x

(k)
−i , t

(k)
)

and C1

balances the inconsistencies of the value network to the

HJI (L) and to the boundary conditions (D). It is worth

noting that in each iteration of solving Eq. (3), a sub-routine

is needed to find the control policies that maximize the

Hamiltonian. [12] proved the convergence of ν̂i to νi via

solving Eq. (3) when ϕ(·) is a H3/2-norm; [4] provided

convergence and generalization analyses of the learning in

forms of Eq. (3) for linear second-order elliptic and parabolic

type PDEs (which include HJI) with continuity assumptions

on L, D, and ν̂i.

Challenge in approximating discontinuous HJI values.

We use a toy case to explain the challenge in approximating

discontinuous solutions of a differential equation with only

terminal boundary conditions using self-supervised learning:

Consider a 1D function ν(·) as a solution to ∇xν−δ(x) = 0
with the boundary condition ν(1) = 0 within x ∈ [−1, 1],
where δ(x) is a delta function that peaks at x = 0 (see

Fig. 1). With uniform samples, the self-supervised loss (L1)

can be minimized almost surely using a horizontal line

1We note that solving BVP has its own numerical challenges when the
equilibrium involves singular arcs [31]. These challenges are not explored
in this paper.
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