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Adaptive Attitude Control
for Foldable Quadrotors

Karishma Patnaik , Graduate Student Member, IEEE , and Wenlong Zhang , Member, IEEE

Abstract—Recent quadrotors have transcended conven-
tional designs, emphasizing more on foldable and recon-
figurable bodies. The state of the art still focuses on the
mechanical feasibility of such designs with limited discus-
sions on the tracking performance of the vehicle during
configuration switching. In this letter, we first present a
common framework to analyse the attitude errors of a fold-
ing quadrotor via the theory of switched systems. We then
employ this framework to investigate the attitude tracking
performance for two case scenarios - one with a con-
ventional geometric controller for precisely known system
dynamics; and second, with our proposed morphology-
aware adaptive controller that accounts for any modeling
uncertainties and disturbances. Finally, we cater to the
desired switching requirements from our stability analy-
sis by exploiting the trajectory planner to obtain superior
tracking performance while switching. Simulation results
are presented that validate the proposed control and plan-
ning framework for a foldable quadrotor’s flight through a
passageway.

Index Terms—Foldable drones, adaptive control, flexible
UAVs.

I. INTRODUCTION

F
OLDABLE quadrotors (FQrs) have created a paradigm
shift in the design of multirotor aerial vehicles for flying

through small openings and cluttered spaces [1]. While there
is ample research demonstrating the mechanical feasibility of
the foldable designs [2], [3], [4], limited literature exists on
the analysis of the low-level flight controller and the effects
of inflight configuration switching.

The low-level flight control for a FQr is challenging due
to the parameter-varying dynamics corresponding to its var-
ious configurations. Also, not accounting for any modeling
uncertainties, such as inertia or aerodynamics, can further
deteriorate the tracking performance. In this context, robust
controllers have been explored to obtain the desired tracking
performance by considering bounded model uncertainties [5],
[6], [7], [8]. The uncertainty bounds for these systems are
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Fig. 1. (a) Example of the foldable quadrotors [15] considered as
switching systems in this letter. (b) Illustrates a foldable quadrotor
switched system consisting of four individual subsystems.

generally held constant across the various configurations, and
may lead to chattering in the control inputs [9].

Alternatively, adaptive controllers that switch between var-
ious operating configurations have also been explored, which
fall into the broad category of switched systems (Fig. 1).
For example, researchers have synthesized different LQR
controllers for different configurations and the correspond-
ing vehicle dynamics [4], [10]. Other approaches employing
switched model predictive and back stepping controllers have
also been developed to address the parameter variation during
the change in configuration [11], [12], [13]. However, all the
aforementioned work assumed precise knowledge of vehicle
model for every configuration. In [14], the authors proposed an
adaptive controller with online parameter estimation, however
the rate of change of inertia was assumed negligible, which is
not true for switched FQr systems. Furthermore, existing meth-
ods fail to address discontinuities encountered during mode
switching. Since the goal of the foldable chassis is to ensure
that the vehicle flies through narrow constrained spaces safely,
it is important to ensure that this transition-induced disturbance
is not significant to cause instability or crashes. Therefore, the
switching signal should also be planned, for the transition to
occur safely, as a function of vehicle state while adhering to
geometric constraints.

To the best of the authors’ knowledge, this is the first work
that introduces a theoretical framework for studying the atti-
tude dynamics of FQrs by modeling them as switched systems.
The insights from our analysis are then employed to propose
an adaptive controller composed of a parameter estimation
law and a robust term, which is duly validated in simula-
tions. We consider three scenarios in our analysis: 1) the
simplest case with a precisely-known model, 2) the case with
modeling uncertainties in inertia and 3) the case with exter-
nal disturbances in addition to unknown inertia. Furthermore,
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we propose a coupled control and motion planning framework
for FQrs, by augmenting this attitude controller and a PD-type
position controller with a control-aware minimum-jerk trajec-
tory planner to enforce the stability conditions and guarantee
safety during switching.

The remainder of this letter is organized as follows:
Section II describes the problem setup with the error defini-
tions in Section III. Section IV analyzes the tracking stability
for the aforementioned three case scenarios with the proposed
controller while Section V describes the control-aware trajec-
tory generation. Finally, in Section VI, simulation results are
presented that validate the proposed control framework, and
Section VII concludes this letter.

II. PROBLEM STATEMENT

Let x = [R, �]T denote the rotation and angular velocity
respectively of a foldable quadrotor with the input u as the
thrust and torques [16]. Now, consider the following family of
systems ẋ = fp(x) corresponding to each configuration shown
in Fig. 1(b) as [17]:

Ṙ = R�̂

Hp�̇ − [Hp�]×� = u + � (1)

with p ∈ P where P ⊆ N is the index set and is finite such that
P = {1, 2, . . . , m}. To define a switched system generated by
the above family, we introduce the switching signal as a piece-
wise constant function σ : [0,∞) → P . It has a finite number
of discontinuities and takes a constant value on every interval
between two consecutive switching time instants. The role of
σ is to specify, at each time instant t, the index σ(t) ∈ P

of the active subsystem model from the family (1) that the
FQr currently follows. The hat map ·̂ : R3 −→ SO(3) is a
symmetric matrix operator defined by the condition that x̂y =
x×y ∀ x, y ∈ R3. The vee map ∨ : SO(3) −→ R3 represents the
inverse of the hat map and [.]× is the skew symmetric cross
product matrix. Further details about the switching signal and
the operators are given in the Appendix Sections A–C [18].
� ∈ R3 represents the disturbances and unmodelled dynamics
in the attitude dynamics. Finally, Hp denotes the moment of

inertia of the pth subsystem.

III. ERROR DEFINITIONS

This section describes the definitions of the attitude errors
for the tracking problem. The readers are referred to [16] for
further details. Consider the error function, �, and attitude
errors eR and e� defined as follows

�(R, Rd) = 1

2
tr
[

G(I − RT
d R)

]

eR(R, Rd) = 1

2
(GRT

d R − RTRdG)∨

e�(R,�, Rd,�d) = � − RTRd�d (2)

where G ∈ R3×3 is given by diag[g1, g2, g3]T for distinct
positive constants g1, g2, g3 ∈ R. With these definitions, the
following statements hold:

1) � is locally positive definite about R = Rd

2) the left trivialized derivative of � is given by eR

3) the critical points of � where eR = 0 are
{Rd}

⋃

{Rd exp(π ŝ)} for s ∈ {e1, e2, e3}
4) the bounds on � are given by

b1‖eR(R, Rd)‖2 ≤ �(R, Rd) ≤ b2‖eR(R, Rd)‖2 (3)

The time derivative of the errors are given by

d

dt
�(R, Rd) = eR · e�

ėR = 1

2
(RT

d Rê� + ê�RTRd)
∨ ≡ C(RT

d , R)e�

with C(RT
d , R) = 1

2
(tr[RTRdG]I − RTRdG)

It can also be verified that C(RT
d , R) is bounded by

‖C(RT
d , R)‖ ≤ 1√

2
tr[G]. Furthermore,

ė� = �̇ + �̂RTRd�d − RTRd�̇d = �̇ − αD (4)

where αD = RTRd�̇d − �̂RTRd�d physically represents the
angular acceleration term.

IV. CONTROLLER DESIGN AND STABILITY ANALYSIS

In this section, we will develop adaptive controllers for atti-
tude tracking of FQrs for the three case scenarios mentioned
in Section I, and present the stability analysis by employing
the theory of switched systems. For this letter, we consider
the sub-level set L = {Rd, R ∈ SO(3)|�(R, Rd) < 2} such
that the initial attitude error satisfies �(R(0), Rd(0)) < 2.
Note that this requires that the initial attitude error should
be less than 180o. Future extensions of this letter will ana-
lyze complete low-level flight controller stability over the
entire SO(3).

A. Case With the Precise Model of Hp , � = [0 0 0]T

1) Attitude Tracking of Individual Subsystems: The attitude
dynamics for an individual subsystem from the switched
system of (1) can be rewritten in the form of Hp�̇−Y1hp = u

where Y1 ∈ R3×3 and hp = [hpxx hpyy hpzz hpxy hpxz hpzz ]
T is

the vector encompassing the unique elements of the moment
of inertia tensor.

The control moment in this case can be generated according
to (5) as proposed in [19].

u = −kReR − k�e� − Yhp (5)

where Y = Y1−Y2 with Hpαd � Y2hp. The exact definitions of
Y1 and Y2 are given in Appendix, Section D and E respectively.

Proposition 1: For positive constants k� and kR, if the
positive constant c is chosen such that

c1 < min

{

√
2k�

tr[G]
,

4
√

2kRk�(�
p
min)

2

√
2k2

��
p
max + 4kR(�

p
min)

2
tr[G]

,

√

b1kR�
p
min,

√

b2kR�
p
max

}

(6)

then the attitude tracking dynamics of the individual sub-
systems, (eR, e�), are exponentially stable in the sublevel
set L. Moreover, if each subsystem resides in a particular
switched state for a minimum dwell-time given by τd in (7),
the switched system in (1) is asymptotically stable in L. Here,

�
(·)
max and �

(·)
min refer to the maximum and minimum eigen val-

ues respectively of the quantity (·) and W
p

2 is defined as (10)
∀ p ∈ P .

τd >
1

2(
∑

βi)
log

∏

�
W

p

2
max

∏

�
W

p

1
min

, p = 1, 2..m ∈ P (7)

Authorized licensed use limited to: ASU Library. Downloaded on July 14,2023 at 00:42:19 UTC from IEEE Xplore.  Restrictions apply. 



PATNAIK AND ZHANG: ADAPTIVE ATTITUDE CONTROL FOR FOLDABLE QUADROTORS 1293

Proof: Here we provide a brief sketch of the stability of
the attitude tracking errors for the individual subsystem. For
full details, the readers are referred Sections F, G and H for
individual subsystem proofs of cases A, B and C respectively.

Consider the individual subsystem’s Lyapunov candidate
∀p = 1, 2..m ∈ P as

Vp = 1

2
eT
�Hpe� + kR�(R, Rd) + c1eR · e� (8)

In the sub-level set L,

�
W

p

1
min‖z1‖2 ≤ Vp ≤ �

W
p

2
max‖z1‖2 (9)

where z1 = [‖eR‖ ‖e�‖]T and W
p

1 , W
p

2 ∈ R2×2 are

W
p

1 = 1

2

[

b1kR − c1

−c1 �pmin

]

, W
p

2 = 1

2

[

b2kR c1

c1 �pmax

]

(10)

We can show that (similar to the proof in [19])

V̇p ≤ −2βpVp (11)

where βp = �
W

p
3

min

2�
W

p
2

max

. Hence the tracking errors are exponen-

tially stable for the individual subsystems. This implies that if
σ(t) = p for t ∈ [t0, t0 + τd), we have

Vp(z1(t0 + τd)) ≤ e−2βpτdVp(z1(t0)) (12)

2) Stability of the Overall Switched System: We will use
multiple Lyapunov functions to prove the stability of the
switched system. Consider the following Lemma 1:

Lemma 1 [17, pp. 41-42]: Consider a finite family of
globally asymptotically stable systems, and let Vp, p ∈ P

be a family of corresponding radially unbounded Lyapunov
functions. Suppose that there exists a family of positive def-
inite continuous functions Wp, p ∈ P with the property
that for every pair of switching times (ti, tj), i < j, such
that σ(ti) = σ(tj) and σ(tk) 
= p for ti < tk < tj, we
have

Vp(x(tj)) − Vp(x(ti)) ≤ −Wp(x(ti)), (13)

then the switched system (1) is globally asymptotically stable.
Proof: Employing (11), we can find a desired lower bound

on the dwell-time, that corresponds to the amount of time that
a system should reside in subsystem p to ensure that the over-
all tracking errors converge to zero. To elaborate, consider a
system when P = {1, 2} and σ takes values of 1 on [t0, t1)
and 2 on [t1, t2) such that ti+1 − ti ≥ τd, i = 0, 1. From (12),
the minimum dwell-time can be calculated using the theory
of the switched systems [17] as (7), which guarantees that the
switched system (1) is asymptotically stable in L by employing
Lemma 1.

Remark 1: Since the active reconfigurable quadrotors are
designed to avoid collisions while flying through narrow gaps,
by strictly adhering to the dwell time obtained in (7) and not
allowing for the configuration switching, can be conservative.
Hence the trajectory planner is designed to choose the switch-
ing signal trajectory, σ(t), by accounting for both, the dwell
time and also the geometric space constraints, as discussed in
Section V.

B. Case With Model Uncertainties in Hp , � = [0 0 0]T

The dwell-time derived in (7) ensures that the switched
system is stable when the model (e.g., moment of inertia)
is known. However, this is not the case for almost all real-
world scenarios. To handle modeling errors, we will estimate
the moment of inertia online for each subsystem.

There have been many approaches to estimate the moment
of inertia online [16], however only recently researchers
have tried to ensure physical consistency of the inertia esti-
mates [20], [21]. For this letter, we aim to ensure physical
consistency during adaptation of the inertia parameters and
hence adopt the methodology presented in [20].

1) Attitude Tracking for Individual Subsystems: For the pth

subsystem, let us assume that the control torques are now
generated according to

u = −kReR − k�e� − Yĥp, (14)

˙̂
hp = −(∇2ψ(ĥp))

−1YTeA, (15)

eA = e� + c2eR, (16)

where the inertia parameters are estimated based on the aug-
mented error eA. Here, ψ(·) is the log-determinant function
which ensures that the estimates of the inertia parameters
are physically consistent given that the initial guess is also
physically consistent.

Assumption 1: The minimum eigen value �
p
max and the

maximum eigen values �
p
min of the true inertia matrix Hp for

the pth subsystem are known.
Proposition 2: Suppose that Assumption 1 holds. For the

control generated according to (14)-(16), with positive con-
stants k� and kR in , if the positive constant c is chosen such
that (17) holds, the attitude tracking errors, (eR, e�), for the
individual subsystems converge to zero asymptotically.

c2 < min

{

√

2b1kR�
p
min

(�
p
max)2

,

√
2k�

�
p
maxtr[G]

,
4kRk�

k2
� + 4√

2
kR�

p
maxtr[G]

}

(17)

Proof: We will again proceed to first analyze the stability of
the individual system and the stability of the switched system.
Consider the Lyapunov candidate for individual subsystem as
the following

Vp = 1

2
eT
�Hpe� + kR�(R, Rd) + ceR · Hpe� + dψ (hp‖ĥ) (18)

where dψ (hp‖ĥp) is the Bregman divergence operator [20]:

dψ (hp‖ĥp) = ψ(hp) − ψ(ĥp) − (hp − ĥp)
T∇ψ(ĥp)

and the time-derivative of dψ (hp‖ĥp) is

ḋψ (·) = (ĥp − hp)
T∇2ψ(ĥp)

˙̂
hp (19)

As shown in [20], dψ (hp‖ĥp) can be taken as an approximation
for the geodesic estimation error with the properties required
of a desired Lyapunov candidate. Also, from (3) we have that
Vp is lower-bounded by

zTW11z ≤ Vp (20)
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where z = [z1, z2]T = [‖eR‖, ‖e�‖, dψ (hp‖ĥ)]T ∈ R3 and

W11 ∈ R3×3 is given by

W11 =

⎡

⎣

b1kR
1
2

c2�
p
max 0

1
2

c2�
p
max

1
2
�

p
min 0

0 0 1

⎤

⎦ (21)

Furthermore, we have

zT
1 W

p

13z1 ≤ Vp ≤ zT
1 W

p

23z1 (22)

where z1 = [‖eR‖, ‖e�‖]T and W
p

13, W
p

23 ∈ R2×2 are given by

W
p

13 =
[

b1kR
1
2

c2�
p
max

1
2

c2�
p
max

1
2
�

p
min

]

, W
p

23 = 1

2

[

b2kR
1
2
c2�

p
min

1
2

c2�
p
min

1
2
�

p
max

]

i.e.,

�
W

p

13
min ‖z1‖2 ≤ Vp ≤ �

W
p

23
max‖z1‖2 (23)

Differentiating Vp along the solutions of the system and sub-

stituting for the control law, u, and parameter estimate law,
˙̂
h,

from (14) and (16)

V̇p ≤ −
(

k� − c2√
2
�pmax tr[G]

)

‖e�‖2 − c2kR‖eR‖2

+ c2k�‖eR‖‖e�‖ = −zT
1 W

p

31z1 (24)

where W
p

31 ∈ R2×2 is defined in (25).

W31 =
[

c2kR − c2k�

2

− c2k�

2
k� − c2√

2
�

p
maxtr[G]

]

(25)

This implies that the errors z1 = [‖eR‖, ‖e�‖]T asymptot-
ically converge to zero.

Remark 2: Although the tracking errors converge to their
zero equilibrium, (25) does not ensure that the parameter
errors converge. This is because of the absence of persis-
tence of excitation which would aid in parameter convergence
to true values. However, the attitude tracking errors are still
guaranteed to be stable and do not depend on the parameter
estimation error.

Remark 3: The Assumption 1 requires that the minimum
and maximum eigenvalues of the true inertia matrix be known.
These values are only used to find the constant c in (16) and
therefore can be relaxed such that values from approximate
CAD models should be enough [2], [3].

2) Stability of the Switched System: We will again use
multiple Lyapunov functions to establish the stability of
the attitude tracking dynamics with the proposed adaptive
controller. Consider the following Proposition 3.

Proposition 3: Consider the system (1) and that
Assumption 1 holds. With the control generated accord-

ing to (14)-(16), if the initial guess of inertia parameters, ĥp

for each subsystem is adaptively updated and the switching
is performed at time tj >> ti such that (26) holds, then
the attitude tracking errors, eR, e�, of the switched system
converge to zero asymptotically.

‖z1(tj)‖2 ≤

⎛

⎝

�
W

p

13
min

�
W

p

23
max

⎞

⎠‖z1(ti)‖2 (26)

Proof: To analyze this case, consider a switched system
generated by two dynamical systems such that P = [1, 2].
Let ti < tj be two switching times when σ = 1. Then, using

Proposition 3, the fourth term in (18), dψ (hp‖ĥ), is adaptively

Fig. 2. Lyapunov function of the attitude tracking error during configura-
tion switching. τs and τd represent the attitude settling-time and desired
dwell-time respectively.

updated from the previous value, hence is constant at the two
time instants ti and tj. Next, (23) provides the bounds on the
first three terms of the Lyapunov candidate at the two time
intervals. Hence if the switching time instant is chosen such
that (26) holds, the switched system is asymptotically stable
using Lemma 1.

Remark 4: Note that Proposition 3 enforces the minimum
dwell-time (τd) requirement for the switched system stability.
As mentioned in Remark 2, the planner is made aware of the
dwell-time such that the reference trajectory is generated to
accommodate the dwell-time requirements as described in the
following Section. V.

Remark 5: Since it is well-known that the adaptive con-
trollers can be unstable even for slight disturbance, we modify
the control law proposed in (14)-(16) to include a robust term
in the following Section IV-C.

C. Case With Model Uncertainties in Hp and External

Disturbances, � 
= [0 0 0]T

Finally we discuss the case when we have modelling uncer-
tainties coupled with external disturbances to improve the
robustness of the proposed adaptive controller in the presence
of disturbances.

Assumption 2: The disturbances in attitude dynamics have
known bounds, i.e., ‖�‖ ≤ δR for a positive constant.

Proposition 4: Suppose Assumptions 1 and 2 hold. Then,
if the control torques are generated according to

u = −kReR − k�e� − Yĥ + µ, (27)

˙̂
h = −(∇2ψ(ĥ))−1YTeA, (28)

µ = −
(

δR − η

‖eA‖
) eA

‖eA‖ , (29)

eA = e� + c2eR (30)

where η is a small positive constant which is adaptively
chosen such that η < zT

1 W
p

31z1, the attitude tracking errors
asymptotically converge to their zero equilibrium.

Proof: The proof is similar as presented in Section IV-B
and is given in the Appendix Section H.

Remark 6: The Assumption 2 assumes that the disturbances
in the attitude dynamics are bounded [16], [21]. Since this
value is used to generate the robust control term µ, a rough
approximate can be used based on the aerodynamic conditions
of the flight space.

V. CONTROL-AWARE MINIMUM JERK TRAJECTORY

The Proposition 3 in Section IV-B2 with (26) implies that
for the switched system to have asymptotic tracking stability,
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Fig. 3. Performance of the proposed attitude controller when the vehicle switches between the two configurations shown in Fig. 2(a) at t = 30s
from 1 to 2 (black dash-dotted vertical line) and at t = 60s from 2 to 1 (pink dashed vertical line) by following (26). With the proposed adaptive
controller, the attitude errors converge to the reference (horizontal dotted lines).

the minimum dwell-time before switching should be calculated
as a percentage of the initial tracking error. This is shown by
the blue line in Fig. 2. However, this doesn’t still quantify the
bounds of ‖Vi(t) −Vj(t)‖ ∀i 
= j; i, j ∈ P as shown by the red
line.

Assumption 3: The upper bound on the estimation error for
the pth subsystem, z

p

2(t) is known.
Assumption 4: The settling time corresponding to the max-

imum attitude error for the pth subsystem is known.
Proposition 5: Suppose that Assumptions 1, 3 and 4 hold, if

switching is performed at t = τs when ‖z
p

1(τs)‖ ≤ ρ where τs

denotes the settling-time for the attitude errors, eR and e�, and
ρ > 0 denotes the region within which the errors remain, we
have the minimum value of the difference in the two Lyapunov
functions at the same time instant (the jump in the Lyapunov
value, shown by the red line in Fig. 2b), as

‖Vi(τs) − Vj(τs)‖ ≤ (�
W i

21
max + �

W
j

21
max)ρ

+ �
W i

21
max‖zi

2(τs)‖ + �
W

j

21
max‖z

j

2(τs)‖ (31)

Proof: Proposition 5 directly follows from the minimum
value of (32) by employing (18):

Vp ≤ �
W

p

21
max‖z‖2, with W21 =

⎡

⎣

b2kR
1
2

c2�
p
min 0

1
2

c2�
p
min

1
2
�

p
max 0

0 0 1

⎤

⎦ (32)

Remark 7: The Assumption 3 implies that the maximum
estimation error should be bounded. This can be achieved
in various ways for example by using the Projection opera-
tor, [22], [23], and by assuming a maximum estimation error.

Remark 8: The Assumption 4 requires that the settling time
for the quadrotor for a pth configuration be known and this
information can be approximated estimated as a rough upper
bound from real experimental data.

Since the position controller is a proportional-derivative
control on position, waypoint planning to fly through pas-
sages is not ideal which would result in high initial attitude
errors such that zi

1(t) � ρ if the vehicle switches before the
attitude errors’ settling-time. Alternatively, the minimum-jerk
trajectory (MJT) planner can be successfully employed here to
ensure zi

1(τ ) ≤ ρ by imposing the desired velocity boundary
conditions at the entrance of the passageway, where configu-
ration switching is mandated by the geometric constraint. The
time taken to reach this velocity should be set to at least τs.
By ensuring that the vehicle has attained this velocity, the atti-
tude errors will be lower at the entrance of the passageway in
the absence of external disturbances. Hence this will lead to
lower bounds on the tracking errors as given by (31).

The MJT planner is generated according to

r∗(t) = argmin
r(t)

∫ T

0

...
r 2 dt (33)

with the following boundary conditions:

r(0) = [0, 0, 0]T , ṙ(0) = [0, 0, 0]T , r̈(0) = [0, 0, 0]T

r(τ ) = rdes, ṙ(τ ) = ṙdes, r̈(τ ) = [0, 0, 0]T (34)

where rdes and ṙdes denote the coordinates of the entrance of
the passageway and the desired velocity to fly through the
passageway respectively and τ ≥ max {τs, τd} where τd is
defined as tj − ti from (26) for the pth system.
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Fig. 4. The tracking results for minimum-jerk trajectory and waypoint
based methods. The MJT based trajectory leads to low deviations from
the trajectory, while the waypoint based one leads to safety constraint
violations.

VI. RESULTS AND DISCUSSION

This section describes the various case scenarios simulated
to validate the proposed controller for the switched system.
The position controller from Fig. 1 is implemented from [19]
to generate the necessary desired orientation and thrust. Please
refer Appendix Section I1 for further details about the simu-
lation parameters. Results for the case scenario (2) are shown
in Fig. 3(a)-(d). We show how the switching is performed
after the errors have decreased and the tracking errors con-
verge to their zero equilibrium to validate Proposition 3. The
parameter estimates also converge (however, this is not guar-
anteed due to the absence of persistence of excitation). Since
the developed controller is a PD controller, it is inherently
robust to small uncertainties and hence almost perfect track-
ing of roll and pitch rate in the body frame is observed even
when the inertia estimates oscillate (Fig. 3(a)). However, for
the subsystem 1, the uncertainty in the z direction is signif-
icantly higher, and oscillations in yaw rate are observed for
initial 30s. Perfect yaw rate tracking is eventually achieved by
utilizing the estimation of the inertia parameters. Additional
validation results for case (3) and the comparison plots with
a conventional robust controller are presented in Appendix
Sections I2–I3 [18].

Next, we integrate the proposed attitude controller with a
minimum-jerk trajectory planner and compare the performance
against a waypoint-based planner to validate Proposition 4.
The MJT-based planning framework demonstrates how the
vehicle transitions from the initial configuration to the new
configuration at [0.5 0 − 2]Tm at t = 9.02s without giving
rise to additional tracking errors as shown in Fig. 4(a)-(b),
shown in red solid lines. The waypoint based planner, how-
ever, arrives at the same position at t = 5.24s which is less
than the maximum attitude settling time (τs = 8.87s) and
therefore has high attitude errors during the transitioning. This
leads to higher switch-based disturbances, violating the safety
constraints as shown in Fig. 4(b).

VII. CONCLUSION

In this letter, we presented an approach for analyzing the
attitude tracking stability of foldable quadrotors (FQrs) by
modeling them as switched systems. We employed this analy-
sis to design an adaptive control law and derived the necessary
dwell-time requirements for guaranteeing the asymptotic sta-
bility of the attitude tracking errors in the presence of bounded

disturbances. Another highlight of the work was to exploit
the attitude settling-time information and design the boundary
conditions for a control-aware trajectory planner to achieve
stable flights during switching. Future work includes exten-
sion of the adaptive control law to account for other matched
and mismatched input uncertainties.

REFERENCES

[1] K. Patnaik and W. Zhang, “Towards reconfigurable and flexible mul-
tirotors,” Int. J. Intell. Robot. Appl., vol. 5, no. 3, pp. 365–380,
2021.

[2] K. Patnaik et al, “Design and control of SQUEEZE,” in Proc. IEEE/RSJ

Int. Conf. Intell. Robots Syst., 2020, pp. 1364–1370.

[3] K. Patnaik, S. Mishra, Z. Chase, and W. Zhang, “Collision recovery
control of a foldable quadrotor,” in Proc. IEEE/ASME Int. Conf. Adv.

Intell. Mechatronics, 2021, pp. 418–423.

[4] D. Falanga, K. Kleber, S. Mintchev, D. Floreano, and D. Scaramuzza,
“The foldable drone: A morphing quadrotor that can squeeze and fly,”
IEEE Robot. Autom. Lett., vol. 4, no. 2, pp. 209–216, Apr. 2019.

[5] A. Fabris, K. Kleber, D. Falanga, and D. Scaramuzza, “Geometry-aware
compensation scheme for morphing drones,” in Proc. IEEE Int Conf

Robot Autom, 2021, pp. 592–598.

[6] N. Zhao, W. Yang, C. Peng, G. Wang, and Y. Shen, “Comparative val-
idation study on bioinspired morphology-adaptation flight performance
of a morphing quad-rotor,” IEEE Robot. Autom. Lett., vol. 6, no. 3,
pp. 5145–5152, Jul. 2021.

[7] T. Lew et al., “Contact inertial odometry: Collisions are your friends,”
2019, arXiv:1909.00079.

[8] S. H. Derrouaoui, Y. Bouzid, and M. Guiatni, “Nonlinear robust control
of a new reconfigurable unmanned aerial vehicle,” Robotics, vol. 10,
no. 2, p. 76, 2021.

[9] J.-J. E. Slotine, W. Li, and J.-J. E. Slotine, Applied Nonlinear Control.
Englewood Cliffs, NJ, USA: Prentice Hall, 1991.

[10] N. Bucki, J. Tang, and M. W. Mueller, “Design and control of a midair-
reconfigurable quadcopter using unactuated hinges,” IEEE Trans. Robot.,
early access, Aug. 25, 2022, doi: 10.1109/TRO.2022.3193792.

[11] A. Papadimitriou, S. S. Mansouri, C. Kanellakis, and G. Nikolakopoulos,
“Geometry aware NMPC scheme for morphing quadrotor naviga-
tion in restricted entrances,” in Proc. Eur. Control Conf., 2021,
pp. 1597–1603.

[12] A. Papadimitriou and G. Nikolakopoulos, “Switching model predictive
control for online structural reformations of a foldable quadro-
tor,” in Proc. 46th Annu. Conf. IEEE Ind. Electron. Soc., 2020,
pp. 682–687.

[13] S. H. Derrouaoui, Y. Bouzid, and M. Guiatni, “Adaptive integral back-
stepping control of a reconfigurable quadrotor with variable parameters-
estimation,” J. Syst. Control Eng., vol. 236, no. 7, p. 803, 2022.

[14] J. M. Butt, X. Ma, X. Chu, and K. W. S. Au, “Adaptive flight stabilization
framework for a planar 4R-foldable quadrotor: Utilizing morphing to
navigate in confined environments,” in Proc. Amer. Control Conf., 2022,
pp. 1–7.

[15] D. Yang, S. Mishra, D. M. Aukes, and W. Zhang, “Design, planning,
and control of an origami-inspired foldable quadrotor,” in Proc. Amer.

Control Conf., 2019, pp. 2551–2556.

[16] T. Lee, “Robust adaptive attitude tracking on SO(3) with an application
to a quadrotor UAV,” IEEE Trans. Control Syst. Technol., vol. 21, no. 5,
pp. 1924–1930, Sep. 2013.

[17] D. Liberzon, Switching in Systems and Control, vol. 190. Boston, MA,
USA: Springer, 2003.

[18] K. Patnaik and W. Zhang, “Adaptive attitude control for foldable
quadrotors,” 2022, arXiv:2209.08676.

[19] T. Lee, M. Leok, and N. H. McClamroch, “Geometric tracking control
of a quadrotor UAV on SE(3),” in Proc. IEEE Conf. Decis Control,
2010, pp. 5420–5425.

[20] T. Lee, J. Kwon, and F. C. Park, “A natural adaptive control law for
robot manipulators,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst.,
2018, pp. 1–9.

[21] B. T. Lopez and J.-J. E. Slotine, “Sliding on manifolds: Geometric atti-
tude control with quaternions,” in Proc. IEEE Int. Conf. Robot. Autom.,
2021, pp. 11140–11146.

[22] K. Tsakalis. “Some background on adaptive estimation.” 1998. [Online].
Available: http://tsakalis.faculty.asu.edu/notes/e303.pdf

[23] P. A. Ioannou and J. Sun, Robust Adaptive Control. Chelmsford, MA,
USA: Courier Corp., 2012.

Authorized licensed use limited to: ASU Library. Downloaded on July 14,2023 at 00:42:19 UTC from IEEE Xplore.  Restrictions apply. 


