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A Kinematically Constrained
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Sensing for wearable robots is an ongoing challenge, especially given the recent trend of
soft and compliant robots. Recently, a wearable origami exoshell has been designed to
sense the user’s torso motion and provide mobility assistance. The materials of the exoshell
contribute to a lightweight design with compliant joints, which are ideal characteristics for
a wearable device. Common sensors are not ideal for the exoshell as they compromise these
design characteristics. Rotary encoders are often rigid metal devices that add considerable
weight and compromise the flexibility of the joints. Inertial measurement unit sensors are
affected by environments with variable electromagnetic fields and therefore not ideal for
wearable applications. Hall effect sensors and gyroscopes are utilized as alternative com-
patible sensors, which introduce their own set of challenges: noisy measurements and drift
due to sensor bias. To mitigate this, we designed the Kinematically Constrained Kalman
filter for sensor fusion of gyroscopes and Hall effect sensors, with the goal of estimating
the human’s torso and robot joint angles. We augmented the states to consider bias
related to the torso angle in order to compensate for drift. The forward kinematics of the
robot is incorporated into the Kalman filter as state constraints to address the unobserva-
bility of the torso angle and its related bias. The proposed algorithm improved the estima-
tion performance of the torso angle and its bias, compared to the individual sensors and the
standard Kalman filter, as demonstrated through bench tests and experiments with a human
user. [DOL: 10.1115/1.4056986]

Keywords: Estimation, Kalman filtering, medical robotics, robotics, sensor fusion, sensors
and sensor networks, service/rehabilitation robots
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1 Introduction

Recently, a new trend for wearable devices referred to as wear-
able origami exoshell has been designed, which consists of
origami modular structures that combine rigid and flexible materials
[1]. The exoshell is fabricated with layers of cardboard and flexible
polyester film, contributing to a lightweight and compliant device,
which are ideal characteristics for a wearable design. The origami
exoshell robot consists of triangular origami links that together
form a serial link robot with flexible joints. This device was
designed to be worn on the back of a human, as shown in Fig. 1,
to sense the user’s torso motion and provide mobility assistance.

Sensing for wearable robots is an ongoing challenge, especially
given the recent trend of soft and compliant robots [2]. While
placing rotary encoders at the robot’s joints has been a common
solution [3], our origami exoshell design is not ideal for traditional
encoders. Rotary encoders are often rigid metal devices that add
considerable weight to the design. Furthermore, the rigidness of
typical encoders affects the robot’s structural compliance, compro-
mising the flexibility of the layer and therefore the mobility of the
joint [4].

As an alternative, inertial measurement units (IMU) are used to
measure the robot and human kinematics [5]. IMUs consist of a
gyroscope, an accelerometer, and a magnetometer. Although
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some studies have achieved good performance with IMU sensors,
they often rely on using the magnetometer for drift correction [6].
This method is not ideal for long-term wearable applications as it
has been commonly reported that changes in the environment’s
magnetic field affect the magnetometer’s reliability [7]. Further-
more, it is often required to embed electronic hardware within the
robot, which will inflict even more disturbances due to the magnetic
field generated by these electronic components.

To overcome limitations in individual sensors, many studies have
utilized sensor fusion algorithms, such as the Kalman filter (KF).
Several studies have been successful at improving estimation per-
formance with the KF using a serial link robot similar to our
origami exoshell. For example, in several studies [8,9], a KF was
designed to fuse multiple sensors in a rigid and fixed serial link
robot. While performance was improved, the algorithms have the
underlying assumption that the base coordinate frame is fixed and
therefore cannot be applied when the robot is in free motion
while worn by a human user. Some studies have in fact focused
on KF for wearable applications [10,11], but they are commonly
designed for estimating the human alone and do not take into
account integration with a wearable robot system which introduces
electromechanical disturbances to the sensors. In Ref. [10], the
authors fuse the information from multiple IMU, but they do not
take into account magnetic disturbances from either the environ-
ment or a wearable robot system.

The sensor hardware limitations discussed are hard constraints of
our origami robot due to its design characteristics. Since placing an
encoder is not possible and using magnetometers is not ideal, in this
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Fig. 1 Origami exoshell and experimental setup to evaluate the
kinematic estimation of the fusion algorithm: (a) bench test setup
and (b) test with the human user wearing the origami exoshell

study we aim at encoder- and magnetometer-free sensor configura-
tions. We utilize Hall effect sensors and gyroscopes as these sensors
are lightweight, compact, and do not affect the flexibility of the
joints. This introduces additional challenges such as noisy measure-
ments from the Hall sensor and drift due to gyroscope bias.

To mitigate the limitations of each individual sensor, we design a
KF for sensor fusion of the gyroscopes and Hall effect sensors, to
attenuate Hall effect sensor noise and compensate for drift due to
gyroscope bias, which are the primary limitations of these
sensors. The KF design is tailored toward our specific application:
to estimate the human’s torso and robot joint angles with a wearable
serial link robot (with no fixed base frame). To compensate for drift,
the bias related to the kinematics of each joint was included as a
state estimate. Introducing these additional state estimates leads to
the unobservability of the KF, specifically of the bias related to
the torso kinematics. To handle this issue, we incorporate the
forward kinematics of the robot into the KF as state constraints. Pre-
vious theoretical studies have noted the possibility of utilizing the
state constraints to increase the observability of the KF [12], and
through this work, we demonstrate this approach for improving esti-
mation performance with a wearable serial link robot. The proposed
algorithm was evaluated on the origami exoshell through bench
tests and with human participants wearing the device. Our formula-
tion is a general approach that can be applicable to many wearable
robots that contain a kinematic chain, such as lower-limb exoskel-
etons [13-15], back spine robots [16—18], and many other devices
similar to our origami exoshell.

The remainder of the paper is organized as follows. Section 2 dis-
cusses the exoshell robot design and sensor hardware, and Sec. 3
presents the formulation of our proposed algorithm: the Kinemati-
cally constrained Kalman filter (KCKF). Section 4 describes the
experiments to evaluate the algorithm and presents the results
along with a discussion. Finally, the conclusions and future work
are discussed in Sec. 5.

2 System Hardware

The system consists of an origami exoshell robot with
embedded sensors throughout the structure of the robot. The
origami robot design and the sensors will be described in the follow-
ing sections.

2.1 Origami Robot Design. The basic building module of the
origami exoshell is a triangular origami link that enables one
degree-of-freedom (DOF) rotational motion with a 60 deg range
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Fig.2 (a) Origami exoshell design; arrows indicate the direction
of rotation. (b) Hall effect sensors are mounted at each joint, and
gyroscopes are mounted within each link. (c) The exoshell con-
sists of triangular origami modules that when connected form
a serial link robot with discrete joints.

of motion (ROM). The triangular modules are connected next to
each other to form a serial link robot, as depicted in Fig. 2. The mod-
ularity of this design allows the assembly of wearable serial link
robots with multiple DOF that are capable of achieving rotational
orientation in three dimensions (3D). The origami exoshell was
designed to be worn on the back of the human, as shown in
Fig. 1, in order to estimate and assist the user’s torso motion.
More details on the origami exoshell design can be found in
Ref. [1].

The triangular modules are fabricated with two outer rigid
layers of cardboard and a middle flexible polyester layer that
forms a living hinge. The flexibility of the layer is the fundamental
mechanism that allows 1DOF rotational motion of the origami.
The selected materials are lightweight and have inherent compli-
ance, ideal for wearable devices. As shown, the origami exoshell
design avoids the use of heavy and rigid metal elements that could
compromise the robot’s lightweight and compliant characteristics.
Rotary encoders are typically rigid and bulky metal devices.
Therefore, embedding rotary encoders within the origami exoshell
is not possible as it adds considerable weight and because there is
limited area for mounting. Furthermore, the rigidness of typical
encoders affects the robot’s structural compliance, compromising
the flexibility of the layer and therefore the mobility of the joint.
As a solution, the origami robot was embedded with Hall effect
sensors as an alternative to rotary encoders. Gyroscopes were
also mounted at each module to obtain angular rate measurements
of each link.

2.2 Hall Effect Sensors. Hall effect sensors (DRV5053, Texas
Instrument, Dallas, TX) were used on the origami robot to measure
the relative angle of the joint. These sensors do not compromise the
exoshell design as they are compact and lightweight, with a size of
4 mm by 3 mm and a weight of 0.1 g. In contrast, a typical rotary
encoder weighs approximately 100 g, demonstrating that a Hall
effect sensor is more lightweight than an encoder by multiple
orders of magnitude.
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Hall effect sensors have the capability to sense the magnetic flux
density. A pair of magnets and a Hall effect sensor were mounted on
the joints of the origami robot, as depicted in Fig 2. In this scenario,
changes in the joint angle lead to changes in the magnetic flux
density measured by the Hall effect sensor, due to changes in align-
ment and proximity between the magnetic field and the sensor. As
such, the Hall effect sensor exhibits a response to the joint angle
state. This working principle allows using a Hall effect sensor for
1DOF joint angle estimation.

A sensor characterization was performed to analyze the sensor
response to joint angle state. A cyclic motion was performed on a
single origami hinge while recording Hall effect sensor measure-
ments and ground truth measurements of the origami’s joint angle
obtained from a Motion Capture system (T40s, VICON Inc., Los
Angeles, CA). The sensor response is presented in Fig. 3. An expo-
nential curve fitting was performed over the Hall effect sensor char-
acterization data to obtain a mathematical model that allows
estimating the origami’s joint angle. The model for one sensor is
summarized in Eq. (1) in which V is the voltage measured from
the sensor and 6, is the estimated angle measurement of the Hall
effect sensor.

0,(V) =0.07>37V — (2.22 x 10°)e 34V )

The sensor characterization in Fig. 3 demonstrates a significant
saturation for one side of the origami’s joint angle (e.g., 6>0)
which considerably affects the estimation performance for this
region. As such, two Hall effect sensors were mounted on opposite
sides of each joint in order to measure the complete ROM by oper-
ating simultaneously, as illustrated in Fig. 3.

2.3 Gyroscope Sensor. Gyroscope sensors (LSM6DSO,
STMicroelectronics, Geneva, Switzerland) were used on the
origami robot to measure the angular rate of the links and estimate
the joint angular position. The gyroscopes were mounted on each
link of the origami exoshell robot as demonstrated in Fig. 2. The rel-
ative orientation between each gyroscope was physically aligned to
one another by means of design constraints and as such allowed the
assumption that in the neutral position, the inertial frames of the
gyroscopes are aligned. With this assumption, the angular rate of
each joint can be computed by measuring the neighboring gyro-
scopes as follows:

0, =w; — Wiy 2)

where ; = [éx éy 0. ]l. is the 3D angular speed of joint i with
respect to the x-, y- and z-axes, and w; = [wx wy (‘)Z]i is the
gyroscope 3D angular rate measurement of link /; with respect to
the x-, y- and z-axes.

The joint angle can be estimated by integration of the joint’s
angular rate Eq. (2) obtained through the gyroscope measurements.
However, a major disadvantage is that integration of the gyroscope
signal leads to a drift in the joint angle estimate that decays perfor-
mance over extended use.

3 Sensor Fusion With Kalman Filter

The origami robot was integrated with two different types of
sensors: gyroscopes and Hall effect sensors. Both types of sensors
have different sensing capabilities but complementary qualities
for joint angle estimation. The Hall effect sensors are able to directly
measure the joint angle state but provide a significantly noisier mea-
surement. In contrast, gyroscopes provide a less noisy estimate of
the joint angle but they suffer from bias which significantly
affects the estimation performance over time. The limitations and
advantages of each sensor have complementary properties to one
another, as the Hall effect sensor can be used to compensate for
the drift in the gyroscopes measurements, and the gyroscope
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provides a significantly less noisy measurement input. These com-
plementary properties make sensor fusion an ideal method to over-
come the individual limitations of each sensor and improve joint
angle estimation performance.

3.1 Kalman Filter Algorithm Formulation. The KF was
selected as the method to fuse the sensor information from the gyro-
scopes and the Hall effect sensors. The formulation of our KF will
consider the general case of a serial link origami robot with # joints
and 3DOFs at each joint. This formulation aims to estimate the 3D
kinematics of the robot and the human.

The standard form of the KF for the discrete domain in state space
system consists of the state transition Eq. (3) and the measurement
Eq. 4)

x(k + 1) = Ax(k) + Bu(k) + v(k) 3)

y(k) = Cx(k) +v(k) “

where x(k) € RO+O*1 and y(k) e R®**! are the system state
and measurement vector at time k; v(k), and v(k) are the process
noise and measurement noise with covariances Q € R®"+6)x ©1+6)
and R € R+ x 6n+3).

Considering a serial link robot with #n joints, and two Hall effect
sensors per joint, the system measurement is given by (5)

T
o =[8,w &, &, ] s)

where @), = [Hﬁu 050, 6 Z]' and @, =[0), 0}, 0] are the

left side (Hﬁli) and right side (6’;”) Hall effect sensor angle measure-
ments of joint i with respect to the x-, y-, and z-axes.

The input to the system is the angular rate, as it is imposed by the
human’s movement.

u(k)=[o1k)  @2(k) wpk)]" ©)

The system states x(k) include the robot joint angles 6; =
[6x 6, 0] and the human torso angles ¢;=[¢. &, ¢.],
with respect to the x-, y- and z-axes, as depicted in Fig. 4. The
human torso angle ¢ corresponds to the robot’s end-effector
orientation with respect to the base frame, as shown in Fig. 4(b).
To compensate for gyroscope drift, the system state of the standard
KF was augmented to include an estimation of the gyroscope sen-
sor bias b;. The system states are given by Eq. (7), where b; =
[bx by b,]i are the gyroscope bias corresponding to joint i,

30° |
20° |
10°

0°

uoneIneg

/v Hall 1
-20° T &

Angle Mocap (deg)

-30° | 7z

-40° | Hall 2
1 1.2 14 1.6 1.8 2
Voltage (V)

Fig. 3 Hall effect sensors characterization plot. Two Hall effect
sensors are placed on opposite sides of the origami joint,
depicted as colored boxes in the illustration.
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and by =[b. by b:], is the bias corresponding to ¢.
x(k) = [01(k) 02(k) - - - Bu(k) (k) b1 (k) ba(k) --- by(k) by(k) 1"

@)
With this formulation, the measurement matrix C is
Tl 03 -+ 03 03 -+ 037
L 03 --- 03 05 --- 05
03 L -+ 03 03 --- 04
c=|0s L -+ 03 03 -+ 0 ®)
03 03 -+ L 03 --- 05
LOs 03 - I3 03 --- 03

where [, is an n x n identity matrix, and 0, represents a n X n matrix
with all elements being zero. The structure of the measurement
matrix C shows that for each joint two Hall effect sensors
measure simultaneously the angle state to avoid loss of information
due to sensor saturation.

For the process model of the system, we assume the following
discrete first-order dynamic model

Oik + 1) = 0;(k) + (@i1(k) — @;(k) — bi(k))z; (C)]

where 7, is the time between sampled measurements. The process
model in Eq. (9) describes the evolution of the joint angle state
and incorporates the gyroscope measurement and its related drift
due to sensor bias.

Similarly, the process model for the human’s torso angle is given
by Eq. (10). The human torso angle ¢ corresponds to the robot’s
end-effector orientation with respect to the base, as depicted in
Fig. 4, and therefore utilizes the gyroscope measurements of the
base (w;) and the end-effector link (w,41) to simulate a virtual
joint. To compensate for the combined bias effect of the two

(a)

Fig. 4 (a) Human wearing the origami exoshell robot; torso
angles ¢ correspond to the relative orientation between the coor-
dinate frames of the top and bottom body segments. (b) lllustra-
tion of the origami exoshell robot with state variables; the torso
angles ¢ correspond to the relative orientation between the coor-
dinate frames of the base and the end-effector links of the
origami robot.

011005-4 / Vol. 3, JANUARY 2023

gyroscopes at the distal ends of the robot, a bias of the virtual

joint by is incorporated into the process model

Pk +1) = (k) + (@n+1(k) — @1(k) — by (k)1 (10)

According to this process model, the transition matrix A is given
by Eq. (11)

[z 03 --- 03 03 —It; 03 e 03 03 7
0 5 --- 03 03 O3 =Lty - 03 03
03 03 --- I 03 03 03 - =kt 03

A= 03 03 --- 03 L 0 03 e 03 —Ixt,

T10s 03 - 03 03 L 03 e 03 03
03 03 --- 03 03 O3 I e 03 03
03 03 --- 03 03 O3 03 R 03
LO3 03 --- 03 03 O3 03 <o 03 I

an
The input model is given by the matrix in Eq. (12) according to
the process model

[ —Lt, Lty 03 e 03 03
03 —It, Izt - 05 03
03 03 -ty --- 03 03
B=|: i (12)
0; 03 03 e =Lty B
—I3t;, 03 03 R 0} =Ly
L 03143 i

Then, the process noise covariance for this model is

4 3
[ TR\ (W)

0=| % 2 (13)
§1(3n+3) 1 lan13)

In Sec. 3.2, the standard formulation of the KF will be augmented
to incorporate state constraints over the joint kinematics.

3.2 State Constraints in the Kalman Filter. Since the
origami robot consists of a series of interconnected links, there
exists a kinematic chain that imposes state dependencies between
a particular joint and the subsequent joints. Examining the illustra-
tion in Fig. 4, we can identify that the human torso angle corre-
sponds to the end-effector orientation, which can also be obtained
through the forward kinematics of the robot. For a serial link
robot, the equation of the forward kinematics F' depends on the
states of all the robot joints. In our case, the forward kinematics
that relates to the human torso angle are given by Eq. (14)

¢=F(0)=20,'=01+02+~”+0,, (14)

The forward kinematics equation provides an equality state con-
straint in the form of Eq. (15), which can be implemented into the
KF

Dx(k)=d (15)

The KF measurement equation can be augmented to include
equality state constraints by treating it as a perfect measurement
as shown in Eq. (16), where 05 represents a 3 x 1 vector with all
elements being zero

)]
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In this context, the corresponding values for the variables of the
state constraints are d = [O 0 0] , and

D=[I; I --- Iz —-I; 03 03 03 0 03] (17)
To incorporate the kinematic state constraints into the KF formu-

lation, the measurement vector and the measurement matrix were
augmented as shown below

T
YOkewr = [ 6,0 8,0 - 8,.® &0 0s] (8)

L 03 --- 03 03 03 03 --- 03 03]
L 03 --- 03 03 03 03 --- 03 03
O3 Iz -~ 03 03 03 03 --- 03 O3
O 5 --- 03 03 03 03 --- 03 O3
Cxckr =
0 03 --- Iz 03 03 03 --- 03 O3
0 03 -+ I3 03 03 03 --- 03 O3
s L - I - 03 03 --- 03 03]
(19)

Now, according to the modified measurement equation, the mea-
surement noise covariance R is given by

R= [ O‘%alll@’l 06’1)(3 ] (20)
O3x(6n+3)

where 0,5, represents an n x m matrix with all elements being zero,
and oy, is the standard deviation of the Hall effect sensor noise
which was obtained experimentally ()., = 3.2 deg).

3.3 Observability of the Kalman Filter. A KF with a system
of unobservable states will not converge to a meaningful solution,
since by definition, an unobservable state is one in which no infor-
mation may be obtained through the measurement equations [19].
The observability of the KCKF was analyzed, which takes into
account the process model (3) and measurement Eq. (4). A
system with a state vector x(k) of dimension N is observable if
the observability matrix O defined in Eq. (21) has a row rank N
- o

CA

AN~

We computed the observability matrix O and analyzed the
observability of each state variable by inspecting that the corre-
sponding column vector of O is linearly independent. The observ-
ability matrix of the KCKF, defined by Egs. (11) and (19), has
row rank N, which implies that the system has full observability
of all the states. In contrast, the observability matrix of the standard
KF, defined by Egs. (11) and (8), which does not incorporate the
kinematic state constraints, has a row rank N — 6, which reveals
that the system is unobservable. Specifically, the state variables
that are unobservable are the 3D torso angle ¢ and its related
bias by.

The observability analysis reveals that incorporating forward
kinematics as state constraints contributes to achieving the observ-
ability of the system. This is because the KCKF treats the forward
kinematics of the robot as measurements and provides information
on the torso angle state ¢ in Eq. (10), which combined with Eq. (9)
permits observability of the related bias state b.

ASME Letters in Dynamic Systems and Control

4 Experiments, Results and Discussion of Fusion
Algorithm Performance

The estimation performance of the sensor fusion algorithm was
verified with the origami exoshell design presented in Fig. 1. The
joint kinematics of the origami robot was estimated with the
sensor fusion algorithm and compared to ground truth measure-
ments obtained from a motion capture system. Three types of exper-
iments were performed to evaluate the performance of the
algorithm: cyclic motion test, extended use test, and evaluation
with a human user. Through the experiments, we will demonstrate
the capability of our fusion algorithm to (1) attenuate sensor noise,
(2) compensate drift due to sensor bias, (3) be robust for extended
use, and (4) be capable of improving kinematic estimation
performance.

4.1 Cyclic Motion Experiments. The motion performed on
the origami robot was aimed to mimic the human’s motion during
gait. A cyclic motion, similar to the motion of the human’s torso
during walking, was manually induced on the origami robot.

The experimental setup can be seen in Fig. 1(a). For this
experiment, the origami robot consisted of five links and four
joints (n=4). Two of the joints allowed rotation about the x-axis
(0, and 65) and the other two about the y-axis (6, and 6,). With
this configuration, the origami robot can perform rotational
motion in two dimensions (2D). Therefore, the KCKF will estimate
the robot’s and the human’s 2D joint kinematics.

4.1.1 Results of Sensor Fusion and Individual Sensors. The
results of the sensor fusion estimation and the individual’s sensor
estimation through the experiment for two robot joints (65, and
04,) are presented in Fig. 5. This figure compares the kinematics
estimation obtained from each individual sensor and the estimation
from the proposed KCKEF. In this figure, it can be observed that the
Hall effect sensor produces noisy estimates that deviate from the
true value, especially at high joint angles. In addition, the angle esti-
mation obtained from the gyroscope integration demonstrates sig-
nificant drift, which can be easily visualized at the end of the
experiment, approximately after 90 s. The proposed KCKF sensor
fusion algorithm provided a smooth and drift-free joint angle esti-
mate, compared to Hall sensor measurements and gyroscope inte-
gration, respectively.

The root-mean-square errors (RMSE) for the complete trial were
computed using the motion capture data as ground truth. The joint
angle RMSE of the individual sensors and the fusion algorithm are

Mocap |

(a) [ Hall Gyro == == KCKF

55 60 65 70 75 80 85 90 95
Time (sec)

100° 1 L L L . L L )
55 60 65 70 75 80 85 90 95

Time (sec)

Fig. 5 Joint kinematic estimation of individual sensors and the
KCKF sensor fusion algorithm. Included are the robot kinematics
of (a) @5 (x-axis rotation), and (b) 0, (y-axis rotation).
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Table 1 RMSE (deg) of kinematic estimation
Joint Gyro Hall 1 Hall 2 Std KF KCKF
0, 31.66 20.96 14.33 5.29 5.07
05, 9.78 14.74 10.06 6.12 6.11
03, 3.70 6.62 6.04 341 3.46
Osy 20.25 12.13 7.44 6.11 6.00
by 1141 - - 50.27 5.14
by 44.01 - - 17.98 5.94

summarized in Table 1. The overall results reveal that the sensor
fusion algorithm is capable of significantly reducing the RMSE
compared to the estimates obtained from individual sensors. Our
proposed fusion algorithm achieves a maximum RMSE reduction
of approximately 87% compared to the estimate of the lowest per-
forming sensor. Furthermore, the fusion algorithm was consistent in
improving the kinematic estimate for each joint of the complete
robot with overall better performance than the baseline sensor
estimation.

The results of this experiment demonstrated that the proposed
KCKEF has the capability to overcome individual sensor limitations,
as the fusion estimate attenuated noise-related error from the Hall
sensor and compensated drift due to gyroscope sensor bias. Com-
pared to the estimation from each individual sensor, our proposed
algorithm provides a joint angle estimate that is closer to ground
truth.

4.1.2  Results of Kinematic State Constraints in Kalman Filter.
The results of the torso kinematic estimation from the fusion algo-
rithm and the motion capture are presented in Fig. 6. This figure
includes a comparison of the KCKF and the standard KF without
state constraints. The RMSE for the KCKF and the standard KF
are summarized in Table 1. The results reveal that incorporating
state constraints improves the overall estimation performance com-
pared to the standard KF, with a maximum RMSE reduction of
approximately 90% for the torso angle (¢b) estimation. The differ-
ence in performance is due to the fact that the state constraints con-
tribute to having full observability of the system and enable
estimating the state of the torso angle and its related bias, as dis-
cussed in Sec. 3.3. Without the state constraints, it is challenging
to achieve acceptable performance with the standard KF as it is
unable to compensate for the sensor bias that leads to drift. This
result demonstrates the implications of incorporating the robot’s
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Fig. 6 Comparison of the KCKF and the standard KF. The
results include the torso angle: (a) in the sagittal plane (x-axis)
and (b) in the lateral plane (y-axis).
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Fig. 7 Drift of kinematic estimation over 1 h

forward kinematics into the KF as state constraints on the estimation
performance of unobservable states.

4.2 Extended Use Test. As a wearable device, one require-
ment for the algorithm is that it is robust through the use of a com-
plete day. Long-duration tests were performed to verify that the
algorithm’s performance does not decay significantly through
extended use. The test protocol consisted of introducing an initial
movement on the origami robot and then fixing the position for
an extended period of time to analyze the drift. To verify extended
performance, the KCKF was tested on the origami robot for a dura-
tion of 1 h and the drift was compared with the standard KF. The
drift of the kinematic estimate for one joint throughout the experi-
ment is plotted in Fig. 7. Over the extension of 1 h, it is visible
that the proposed KCKF is capable of accurately estimating joint
kinematics and compensates for the significant drift that the gyro-
scope bias induces. By the end of the 1-h trial, the standard KF
had drifted by approximately 550 deg, while our proposed KCKF
algorithm was still within 7 deg of the true value. The results
demonstrate that the KCKF maintains estimation performance
through extended use and that our proposed formulation exceeds
the standard KF performance.

4.3 Testing with Human Subject. The performance of the
KCKF was evaluated with a human user for estimating the torso
kinematics while performing activities of daily living. One
healthy participant (28 years, 86 kg, 1.7 m) was recruited for this
study. The experimental setup with the human user wearing the
origami robot can be seen in Fig. 1(b). In this experiment, the
subject performed a bending and extension motion (with 30 deg
ROM) of the upper torso that mimics the cyclic movement in activ-
ities such as walking or repetitive lifting.

The human torso kinematics estimated by the KCKF is presented
in Fig. 8. The results reveal that when the exoshell is worn, the
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Fig. 8 Kinematic estimation while wearing the origami exoshell

robot. The plots include (a) the robot kinematics for 6, and (b) the
human’s torso kinematics ¢.
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KCKF can accurately estimate the torso joint angle, with 4.85-deg
RMSE. Figure 8(b) shows that the kinematic estimation captures the
cyclic profile of the torso’s movement, which is required for the
control of the origami robot. This experiment revealed the existence
of interaction forces between the robot and the user that cause
sensor misalignment. We observed that sensor placement shifted
when there was compression and over-extension of the robot.
Compression occurred when the torso was straight (i.e., when ¢
is close to 0 deg) and over-extension when the torso was bending
(i.e., when ¢ reaches its maximum), both of which cause estimation
error during those instances, as seen in Fig. 8(b).

5 Conclusions

In this work, we presented the formulation of the KCKF, a sensor
fusion algorithm tailored for a wearable origami serial link robot.
Our unique origami exoshell design has inherent constraints that
require an encoder- and magnetometer-free sensor configuration.
We developed a sensor fusion algorithm that uses gyroscopes and
Hall effect sensors, as they are compatible sensors, but are affected
by noise and sensor bias. Building upon the early theory in KF, this
work demonstrates through experiments the benefits of incorporat-
ing the robot’s forward kinematics as state constraints in order to
address the unobservability of the system. The results demonstrate
that our proposed KCKF improves state estimation performance,
compared to the individual sensor measurements and the standard
KF. Future work includes implementing the KCKF for real-time
control of the origami exoshell robot. We plan to expand the formu-
lation of our KCKF algorithm to incorporate dynamics of the exo-
shell to estimate interaction forces between the robot and the user
for more precise control of the robot.
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