


study we aim at encoder- and magnetometer-free sensor configura-
tions. We utilize Hall effect sensors and gyroscopes as these sensors
are lightweight, compact, and do not affect the flexibility of the
joints. This introduces additional challenges such as noisy measure-
ments from the Hall sensor and drift due to gyroscope bias.
To mitigate the limitations of each individual sensor, we design a

KF for sensor fusion of the gyroscopes and Hall effect sensors, to
attenuate Hall effect sensor noise and compensate for drift due to
gyroscope bias, which are the primary limitations of these
sensors. The KF design is tailored toward our specific application:
to estimate the human’s torso and robot joint angles with a wearable
serial link robot (with no fixed base frame). To compensate for drift,
the bias related to the kinematics of each joint was included as a
state estimate. Introducing these additional state estimates leads to
the unobservability of the KF, specifically of the bias related to
the torso kinematics. To handle this issue, we incorporate the
forward kinematics of the robot into the KF as state constraints. Pre-
vious theoretical studies have noted the possibility of utilizing the
state constraints to increase the observability of the KF [12], and
through this work, we demonstrate this approach for improving esti-
mation performance with a wearable serial link robot. The proposed
algorithm was evaluated on the origami exoshell through bench
tests and with human participants wearing the device. Our formula-
tion is a general approach that can be applicable to many wearable
robots that contain a kinematic chain, such as lower-limb exoskel-
etons [13–15], back spine robots [16–18], and many other devices
similar to our origami exoshell.
The remainder of the paper is organized as follows. Section 2 dis-

cusses the exoshell robot design and sensor hardware, and Sec. 3
presents the formulation of our proposed algorithm: the Kinemati-
cally constrained Kalman filter (KCKF). Section 4 describes the
experiments to evaluate the algorithm and presents the results
along with a discussion. Finally, the conclusions and future work
are discussed in Sec. 5.

2 System Hardware

The system consists of an origami exoshell robot with
embedded sensors throughout the structure of the robot. The
origami robot design and the sensors will be described in the follow-
ing sections.

2.1 Origami Robot Design. The basic building module of the
origami exoshell is a triangular origami link that enables one
degree-of-freedom (DOF) rotational motion with a 60 deg range

of motion (ROM). The triangular modules are connected next to
each other to form a serial link robot, as depicted in Fig. 2. The mod-
ularity of this design allows the assembly of wearable serial link
robots with multiple DOF that are capable of achieving rotational
orientation in three dimensions (3D). The origami exoshell was
designed to be worn on the back of the human, as shown in
Fig. 1, in order to estimate and assist the user’s torso motion.
More details on the origami exoshell design can be found in
Ref. [1].
The triangular modules are fabricated with two outer rigid

layers of cardboard and a middle flexible polyester layer that
forms a living hinge. The flexibility of the layer is the fundamental
mechanism that allows 1DOF rotational motion of the origami.
The selected materials are lightweight and have inherent compli-
ance, ideal for wearable devices. As shown, the origami exoshell
design avoids the use of heavy and rigid metal elements that could
compromise the robot’s lightweight and compliant characteristics.
Rotary encoders are typically rigid and bulky metal devices.
Therefore, embedding rotary encoders within the origami exoshell
is not possible as it adds considerable weight and because there is
limited area for mounting. Furthermore, the rigidness of typical
encoders affects the robot’s structural compliance, compromising
the flexibility of the layer and therefore the mobility of the joint.
As a solution, the origami robot was embedded with Hall effect
sensors as an alternative to rotary encoders. Gyroscopes were
also mounted at each module to obtain angular rate measurements
of each link.

2.2 Hall Effect Sensors. Hall effect sensors (DRV5053, Texas
Instrument, Dallas, TX) were used on the origami robot to measure
the relative angle of the joint. These sensors do not compromise the
exoshell design as they are compact and lightweight, with a size of
4 mm by 3 mm and a weight of 0.1 g. In contrast, a typical rotary
encoder weighs approximately 100 g, demonstrating that a Hall
effect sensor is more lightweight than an encoder by multiple
orders of magnitude.

Fig. 2 (a) Origami exoshell design; arrows indicate the direction
of rotation. (b) Hall effect sensors are mounted at each joint, and
gyroscopes are mounted within each link. (c) The exoshell con-
sists of triangular origami modules that when connected form
a serial link robot with discrete joints.

Fig. 1 Origami exoshell and experimental setup to evaluate the
kinematic estimation of the fusion algorithm: (a) bench test setup
and (b) test with the human user wearing the origami exoshell
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Hall effect sensors have the capability to sense the magnetic flux
density. A pair of magnets and a Hall effect sensor were mounted on
the joints of the origami robot, as depicted in Fig 2. In this scenario,
changes in the joint angle lead to changes in the magnetic flux
density measured by the Hall effect sensor, due to changes in align-
ment and proximity between the magnetic field and the sensor. As
such, the Hall effect sensor exhibits a response to the joint angle
state. This working principle allows using a Hall effect sensor for
1DOF joint angle estimation.
A sensor characterization was performed to analyze the sensor

response to joint angle state. A cyclic motion was performed on a
single origami hinge while recording Hall effect sensor measure-
ments and ground truth measurements of the origami’s joint angle
obtained from a Motion Capture system (T40s, VICON Inc., Los
Angeles, CA). The sensor response is presented in Fig. 3. An expo-
nential curve fitting was performed over the Hall effect sensor char-
acterization data to obtain a mathematical model that allows
estimating the origami’s joint angle. The model for one sensor is
summarized in Eq. (1) in which V is the voltage measured from
the sensor and θh is the estimated angle measurement of the Hall
effect sensor.

θh(V) = 0.07e2.87V − (2.22 × 105)e−8.43V (1)

The sensor characterization in Fig. 3 demonstrates a significant
saturation for one side of the origami’s joint angle (e.g., θ> 0)
which considerably affects the estimation performance for this
region. As such, two Hall effect sensors were mounted on opposite
sides of each joint in order to measure the complete ROM by oper-
ating simultaneously, as illustrated in Fig. 3.

2.3 Gyroscope Sensor. Gyroscope sensors (LSM6DSO,
STMicroelectronics, Geneva, Switzerland) were used on the
origami robot to measure the angular rate of the links and estimate
the joint angular position. The gyroscopes were mounted on each
link of the origami exoshell robot as demonstrated in Fig. 2. The rel-
ative orientation between each gyroscope was physically aligned to
one another by means of design constraints and as such allowed the
assumption that in the neutral position, the inertial frames of the
gyroscopes are aligned. With this assumption, the angular rate of
each joint can be computed by measuring the neighboring gyro-
scopes as follows:

θ̇i =ωi − ωi−1 (2)

where θ̇i = θ̇x θ̇y θ̇z
[ ]

i
is the 3D angular speed of joint i with

respect to the x-, y- and z-axes, and ωi = ωx ωy ωz

[ ]

i
is the

gyroscope 3D angular rate measurement of link li with respect to
the x-, y- and z-axes.
The joint angle can be estimated by integration of the joint’s

angular rate Eq. (2) obtained through the gyroscope measurements.
However, a major disadvantage is that integration of the gyroscope
signal leads to a drift in the joint angle estimate that decays perfor-
mance over extended use.

3 Sensor Fusion With Kalman Filter

The origami robot was integrated with two different types of
sensors: gyroscopes and Hall effect sensors. Both types of sensors
have different sensing capabilities but complementary qualities
for joint angle estimation. The Hall effect sensors are able to directly
measure the joint angle state but provide a significantly noisier mea-
surement. In contrast, gyroscopes provide a less noisy estimate of
the joint angle but they suffer from bias which significantly
affects the estimation performance over time. The limitations and
advantages of each sensor have complementary properties to one
another, as the Hall effect sensor can be used to compensate for
the drift in the gyroscopes measurements, and the gyroscope

provides a significantly less noisy measurement input. These com-
plementary properties make sensor fusion an ideal method to over-
come the individual limitations of each sensor and improve joint
angle estimation performance.

3.1 Kalman Filter Algorithm Formulation. The KF was
selected as the method to fuse the sensor information from the gyro-
scopes and the Hall effect sensors. The formulation of our KF will
consider the general case of a serial link origami robot with n joints
and 3DOFs at each joint. This formulation aims to estimate the 3D
kinematics of the robot and the human.
The standard form of the KF for the discrete domain in state space

system consists of the state transition Eq. (3) and the measurement
Eq. (4)

x(k + 1) = Ax(k) + Bu(k) + ν(k) (3)

y(k) = Cx(k) + υ(k) (4)

where x(k)∈ℝ
(6n+6) × 1 and y(k)∈ℝ

(6n+3) × 1 are the system state
and measurement vector at time k; ν(k), and υ(k) are the process
noise and measurement noise with covariances Q∈ℝ

(6n+6) × (6n+6)

and R∈ℝ
(6n+3) × (6n+3).

Considering a serial link robot with n joints, and two Hall effect
sensors per joint, the system measurement is given by (5)

y(k) = θlh1 (k) θrh1 (k) · · · θlhn (k) θrhn (k)
[ ]T

(5)

where θlhi = θlhx θlhy θlhz

[ ]

i
and θrhi =

θrhx θrhy θrhz
[ ]

i
are the

left side (θlhi ) and right side (θrhi ) Hall effect sensor angle measure-

ments of joint i with respect to the x-, y-, and z-axes.
The input to the system is the angular rate, as it is imposed by the

human’s movement.

u(k) = ω1(k) ω2(k) · · · ωn+1(k)
[ ]T

(6)

The system states x(k) include the robot joint angles θi =
θx θy θz

[ ]

i
and the human torso angles ϕi = ϕx ϕy ϕz

[ ]

i
with respect to the x-, y- and z-axes, as depicted in Fig. 4. The
human torso angle ϕ corresponds to the robot’s end-effector
orientation with respect to the base frame, as shown in Fig. 4(b).
To compensate for gyroscope drift, the system state of the standard
KF was augmented to include an estimation of the gyroscope sen-
sor bias bi. The system states are given by Eq. (7), where bi =
bx by bz

[ ]

i
are the gyroscope bias corresponding to joint i,

Fig. 3 Hall effect sensors characterization plot. Two Hall effect
sensors are placed on opposite sides of the origami joint,
depicted as colored boxes in the illustration.
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and bϕ = bx by bz
[ ]

ϕ
is the bias corresponding to ϕ.

x(k) = [ θ1(k) θ2(k) · · · θn(k) ϕ(k) b1(k) b2(k) · · · bn(k) bϕ(k) ]
T

(7)

With this formulation, the measurement matrix C is

C =

I3 03 · · · 03 03 · · · 03
I3 03 · · · 03 03 · · · 03
03 I3 · · · 03 03 · · · 03
03 I3 · · · 03 03 · · · 03

.

.

.
.
.
.

.
.

.
.
.
.

.

.

.
.
.

.
.
.
.

03 03 · · · I3 03 · · · 03
03 03 · · · I3 03 · · · 03

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(8)

where In is an n× n identity matrix, and 0n represents a n× n matrix
with all elements being zero. The structure of the measurement
matrix C shows that for each joint two Hall effect sensors
measure simultaneously the angle state to avoid loss of information
due to sensor saturation.
For the process model of the system, we assume the following

discrete first-order dynamic model

θi(k + 1) = θi(k) + (ωi+1(k) −ωi(k) − bi(k))ts (9)

where ts is the time between sampled measurements. The process
model in Eq. (9) describes the evolution of the joint angle state
and incorporates the gyroscope measurement and its related drift
due to sensor bias.
Similarly, the process model for the human’s torso angle is given

by Eq. (10). The human torso angle ϕ corresponds to the robot’s
end-effector orientation with respect to the base, as depicted in
Fig. 4, and therefore utilizes the gyroscope measurements of the
base (ω1) and the end-effector link (ωn+1) to simulate a virtual
joint. To compensate for the combined bias effect of the two

gyroscopes at the distal ends of the robot, a bias of the virtual
joint bϕ is incorporated into the process model

ϕ(k + 1) = ϕi(k) + (ωn+1(k) −ω1(k) − bϕ(k))ts (10)

According to this process model, the transition matrix A is given
by Eq. (11)

A =

I3 03 · · · 03 03 −I3ts 03 · · · 03 03
03 I3 · · · 03 03 03 −I3ts · · · 03 03

.

.

.
.
.
.

.
.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.

.
.
.
.

.

.

.

03 03 · · · I3 03 03 03 · · · −I3ts 03
03 03 · · · 03 I3 03 03 · · · 03 −I3ts
03 03 · · · 03 03 I3 03 · · · 03 03
03 03 · · · 03 03 03 I3 · · · 03 03

.

.

.
.
.
.

.
.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.

.
.
.
.

.

.

.

03 03 · · · 03 03 03 03 · · · I3 03
03 03 · · · 03 03 03 03 · · · 03 I3

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(11)

The input model is given by the matrix in Eq. (12) according to
the process model

B =

−I3ts I3ts 03 · · · 03 03
03 −I3ts I3ts · · · 03 03
03 03 −I3ts · · · 03 03

.

.

.
.
.
.

.

.

.
.
.

.
.
.
.

.

.

.

03 03 03 · · · −I3ts I3ts
−I3ts 03 03 · · · 03 −I3ts

03n+3

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(12)

Then, the process noise covariance for this model is

Q =

t4s
4
I(3n+3)

t3s
2
I(3n+3)

t3s
2
I(3n+3) t2s I(3n+3)

⎡

⎢

⎢

⎣

⎤

⎥

⎥

⎦

(13)

In Sec. 3.2, the standard formulation of the KF will be augmented
to incorporate state constraints over the joint kinematics.

3.2 State Constraints in the Kalman Filter. Since the
origami robot consists of a series of interconnected links, there
exists a kinematic chain that imposes state dependencies between
a particular joint and the subsequent joints. Examining the illustra-
tion in Fig. 4, we can identify that the human torso angle corre-
sponds to the end-effector orientation, which can also be obtained
through the forward kinematics of the robot. For a serial link
robot, the equation of the forward kinematics F depends on the
states of all the robot joints. In our case, the forward kinematics
that relates to the human torso angle are given by Eq. (14)

ϕ = F(θ) = Σθi = θ1 + θ2 + · · · + θn (14)

The forward kinematics equation provides an equality state con-
straint in the form of Eq. (15), which can be implemented into the
KF

Dx(k) = d (15)

The KF measurement equation can be augmented to include
equality state constraints by treating it as a perfect measurement
as shown in Eq. (16), where 03,1 represents a 3 × 1 vector with all
elements being zero

y(k)

d

[ ]

=
C

D

[ ]

x(k) +
v(k)

03,1

[ ]

(16)

Fig. 4 (a) Human wearing the origami exoshell robot; torso
angles ϕ correspond to the relative orientation between the coor-
dinate frames of the top and bottom body segments. (b) Illustra-
tion of the origami exoshell robot with state variables; the torso
angles ϕ correspond to the relative orientation between the coor-
dinate frames of the base and the end-effector links of the
origami robot.
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In this context, the corresponding values for the variables of the
state constraints are d = 0 0 0

[ ]T
, and

D = I3 I3 · · · I3 −I3 03 03 03 · · · 03 03
[ ]

(17)

To incorporate the kinematic state constraints into the KF formu-
lation, the measurement vector and the measurement matrix were
augmented as shown below

y(k)KCKF = θlh1 (k) θrh1 (k) · · · θlhn (k) θrhn (k) 01,3

[ ]T

(18)

CKCKF =

I3 03 · · · 03 03 03 03 · · · 03 03
I3 03 · · · 03 03 03 03 · · · 03 03
03 I3 · · · 03 03 03 03 · · · 03 03
03 I3 · · · 03 03 03 03 · · · 03 03

.

.

.
.
.
.

.
.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.

.
.
.
.

.

.

.

03 03 · · · I3 03 03 03 · · · 03 03
03 03 · · · I3 03 03 03 · · · 03 03
I3 I3 · · · I3 −I3 03 03 · · · 03 03

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(19)

Now, according to the modified measurement equation, the mea-
surement noise covariance R is given by

R =
σ2hallI6n 06n×3

03×(6n+3)

[ ]

(20)

where 0n×m represents an n×m matrix with all elements being zero,
and σhall is the standard deviation of the Hall effect sensor noise
which was obtained experimentally (σhall= 3.2 deg).

3.3 Observability of the Kalman Filter. A KF with a system
of unobservable states will not converge to a meaningful solution,
since by definition, an unobservable state is one in which no infor-
mation may be obtained through the measurement equations [19].
The observability of the KCKF was analyzed, which takes into
account the process model (3) and measurement Eq. (4). A
system with a state vector x(k) of dimension N is observable if
the observability matrix O defined in Eq. (21) has a row rank N

O =

C

CA

.

.

.

CAi

.

.

.

CAN−1

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(21)

We computed the observability matrix O and analyzed the
observability of each state variable by inspecting that the corre-
sponding column vector of O is linearly independent. The observ-
ability matrix of the KCKF, defined by Eqs. (11) and (19), has
row rank N, which implies that the system has full observability
of all the states. In contrast, the observability matrix of the standard
KF, defined by Eqs. (11) and (8), which does not incorporate the
kinematic state constraints, has a row rank N − 6, which reveals
that the system is unobservable. Specifically, the state variables
that are unobservable are the 3D torso angle ϕ and its related
bias bϕ.
The observability analysis reveals that incorporating forward

kinematics as state constraints contributes to achieving the observ-
ability of the system. This is because the KCKF treats the forward
kinematics of the robot as measurements and provides information
on the torso angle state ϕ in Eq. (10), which combined with Eq. (9)
permits observability of the related bias state bϕ.

4 Experiments, Results and Discussion of Fusion

Algorithm Performance

The estimation performance of the sensor fusion algorithm was
verified with the origami exoshell design presented in Fig. 1. The
joint kinematics of the origami robot was estimated with the
sensor fusion algorithm and compared to ground truth measure-
ments obtained from a motion capture system. Three types of exper-
iments were performed to evaluate the performance of the
algorithm: cyclic motion test, extended use test, and evaluation
with a human user. Through the experiments, we will demonstrate
the capability of our fusion algorithm to (1) attenuate sensor noise,
(2) compensate drift due to sensor bias, (3) be robust for extended
use, and (4) be capable of improving kinematic estimation
performance.

4.1 Cyclic Motion Experiments. The motion performed on
the origami robot was aimed to mimic the human’s motion during
gait. A cyclic motion, similar to the motion of the human’s torso
during walking, was manually induced on the origami robot.
The experimental setup can be seen in Fig. 1(a). For this

experiment, the origami robot consisted of five links and four
joints (n= 4). Two of the joints allowed rotation about the x-axis
(θ1 and θ3) and the other two about the y-axis (θ2 and θ4). With
this configuration, the origami robot can perform rotational
motion in two dimensions (2D). Therefore, the KCKF will estimate
the robot’s and the human’s 2D joint kinematics.

4.1.1 Results of Sensor Fusion and Individual Sensors. The
results of the sensor fusion estimation and the individual’s sensor
estimation through the experiment for two robot joints (θ3x and
θ4y) are presented in Fig. 5. This figure compares the kinematics
estimation obtained from each individual sensor and the estimation
from the proposed KCKF. In this figure, it can be observed that the
Hall effect sensor produces noisy estimates that deviate from the
true value, especially at high joint angles. In addition, the angle esti-
mation obtained from the gyroscope integration demonstrates sig-
nificant drift, which can be easily visualized at the end of the
experiment, approximately after 90 s. The proposed KCKF sensor
fusion algorithm provided a smooth and drift-free joint angle esti-
mate, compared to Hall sensor measurements and gyroscope inte-
gration, respectively.
The root-mean-square errors (RMSE) for the complete trial were

computed using the motion capture data as ground truth. The joint
angle RMSE of the individual sensors and the fusion algorithm are

Fig. 5 Joint kinematic estimation of individual sensors and the
KCKF sensor fusion algorithm. Included are the robot kinematics
of (a) θ3 (x-axis rotation), and (b) θ4 (y-axis rotation).
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summarized in Table 1. The overall results reveal that the sensor
fusion algorithm is capable of significantly reducing the RMSE
compared to the estimates obtained from individual sensors. Our
proposed fusion algorithm achieves a maximum RMSE reduction
of approximately 87% compared to the estimate of the lowest per-
forming sensor. Furthermore, the fusion algorithm was consistent in
improving the kinematic estimate for each joint of the complete
robot with overall better performance than the baseline sensor
estimation.
The results of this experiment demonstrated that the proposed

KCKF has the capability to overcome individual sensor limitations,
as the fusion estimate attenuated noise-related error from the Hall
sensor and compensated drift due to gyroscope sensor bias. Com-
pared to the estimation from each individual sensor, our proposed
algorithm provides a joint angle estimate that is closer to ground
truth.

4.1.2 Results of Kinematic State Constraints in Kalman Filter.
The results of the torso kinematic estimation from the fusion algo-
rithm and the motion capture are presented in Fig. 6. This figure
includes a comparison of the KCKF and the standard KF without
state constraints. The RMSE for the KCKF and the standard KF
are summarized in Table 1. The results reveal that incorporating
state constraints improves the overall estimation performance com-
pared to the standard KF, with a maximum RMSE reduction of
approximately 90% for the torso angle (ϕ) estimation. The differ-
ence in performance is due to the fact that the state constraints con-
tribute to having full observability of the system and enable
estimating the state of the torso angle and its related bias, as dis-
cussed in Sec. 3.3. Without the state constraints, it is challenging
to achieve acceptable performance with the standard KF as it is
unable to compensate for the sensor bias that leads to drift. This
result demonstrates the implications of incorporating the robot’s

forward kinematics into the KF as state constraints on the estimation
performance of unobservable states.

4.2 Extended Use Test. As a wearable device, one require-
ment for the algorithm is that it is robust through the use of a com-
plete day. Long-duration tests were performed to verify that the
algorithm’s performance does not decay significantly through
extended use. The test protocol consisted of introducing an initial
movement on the origami robot and then fixing the position for
an extended period of time to analyze the drift. To verify extended
performance, the KCKF was tested on the origami robot for a dura-
tion of 1 h and the drift was compared with the standard KF. The
drift of the kinematic estimate for one joint throughout the experi-
ment is plotted in Fig. 7. Over the extension of 1 h, it is visible
that the proposed KCKF is capable of accurately estimating joint
kinematics and compensates for the significant drift that the gyro-
scope bias induces. By the end of the 1-h trial, the standard KF
had drifted by approximately 550 deg, while our proposed KCKF
algorithm was still within 7 deg of the true value. The results
demonstrate that the KCKF maintains estimation performance
through extended use and that our proposed formulation exceeds
the standard KF performance.

4.3 Testing with Human Subject. The performance of the
KCKF was evaluated with a human user for estimating the torso
kinematics while performing activities of daily living. One
healthy participant (28 years, 86 kg, 1.7 m) was recruited for this
study. The experimental setup with the human user wearing the
origami robot can be seen in Fig. 1(b). In this experiment, the
subject performed a bending and extension motion (with 30 deg
ROM) of the upper torso that mimics the cyclic movement in activ-
ities such as walking or repetitive lifting.
The human torso kinematics estimated by the KCKF is presented

in Fig. 8. The results reveal that when the exoshell is worn, the

Fig. 6 Comparison of the KCKF and the standard KF. The
results include the torso angle: (a) in the sagittal plane (x-axis)
and (b) in the lateral plane (y-axis).

Fig. 7 Drift of kinematic estimation over 1 h

Table 1 RMSE (deg) of kinematic estimation

Joint Gyro Hall 1 Hall 2 Std KF KCKF

θ1x 31.66 20.96 14.33 5.29 5.07
θ2y 9.78 14.74 10.06 6.12 6.11
θ3x 3.70 6.62 6.04 3.41 3.46
θ4y 20.25 12.13 7.44 6.11 6.00
ϕx 11.41 – – 50.27 5.14
ϕy 44.01 – – 17.98 5.94

Fig. 8 Kinematic estimation while wearing the origami exoshell
robot. The plots include (a) the robot kinematics for θ2 and (b) the
human’s torso kinematics ϕ.
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KCKF can accurately estimate the torso joint angle, with 4.85-deg
RMSE. Figure 8(b) shows that the kinematic estimation captures the
cyclic profile of the torso’s movement, which is required for the
control of the origami robot. This experiment revealed the existence
of interaction forces between the robot and the user that cause
sensor misalignment. We observed that sensor placement shifted
when there was compression and over-extension of the robot.
Compression occurred when the torso was straight (i.e., when ϕ
is close to 0 deg) and over-extension when the torso was bending
(i.e., when ϕ reaches its maximum), both of which cause estimation
error during those instances, as seen in Fig. 8(b).

5 Conclusions

In this work, we presented the formulation of the KCKF, a sensor
fusion algorithm tailored for a wearable origami serial link robot.
Our unique origami exoshell design has inherent constraints that
require an encoder- and magnetometer-free sensor configuration.
We developed a sensor fusion algorithm that uses gyroscopes and
Hall effect sensors, as they are compatible sensors, but are affected
by noise and sensor bias. Building upon the early theory in KF, this
work demonstrates through experiments the benefits of incorporat-
ing the robot’s forward kinematics as state constraints in order to
address the unobservability of the system. The results demonstrate
that our proposed KCKF improves state estimation performance,
compared to the individual sensor measurements and the standard
KF. Future work includes implementing the KCKF for real-time
control of the origami exoshell robot. We plan to expand the formu-
lation of our KCKF algorithm to incorporate dynamics of the exo-
shell to estimate interaction forces between the robot and the user
for more precise control of the robot.

Acknowledgment

The authors gratefully acknowledge the financial support from
“The Global KAITEKI Center” at Arizona State University
(ASU), a university–industry partnership between ASU and The
KAITEKI Institute of Mitsubishi Chemical Group Corporation.

Conflict of Interest

There are no conflicts of interest.

Data Availability Statement

The data sets generated and supporting the findings of this article
are obtainable from the corresponding author upon reasonable
request.

References
[1] Li, D., Yumbla, E. Q., Olivas, A., Sugar, T., Amor, H. B., Lee, H., Zhang, W., and

Aukes, D. M., 2022, “Origami-Inspired Wearable Robot for Trunk Support,”

IEEE/ASME Trans. Mechatron., pp. 1–11.

[2] Yumbla, E. Q., Qiao, Z., Tao, W., and Zhang, W., 2021, “Human Assistance and

Augmentation With Wearable Soft Robotics: A Literature Review and

Perspectives,” Curr. Robot. Rep., 2(12), pp. 399–413.

[3] Tiboni, M., Borboni, A., Vérité, F., Bregoli, C., and Amici, C., 2022,

“Sensors and Actuation Technologies in Exoskeletons: A Review,” Sensors,

22(3), p. 884.

[4] Yumbla, F., Yumbla, W., Yumbla, E. Q., and Moon, H., 2022, “Oobsoft Gripper:

A Reconfigurable Soft Gripper Using Oobleck for Versatile and Delicate

Grasping,” Proceedings of the 2022 IEEE 5th International Conference on Soft

Robotics (RoboSoft), Edinburgh, UK, Apr. 4–8, pp. 512–517.

[5] Filippeschi, A., Schmitz, N., Miezal, M., Bleser, G., Ruffaldi, E., and Stricker, D.,

2017, “Survey of Motion Tracking Methods Based on Inertial Sensors: A Focus

on Upper Limb Human Motion,” Sensors, 17(6), p. 1257.

[6] Wittmann, F., Lambercy, O., and Gassert, R., 2019, “Magnetometer-Based

Drift Correction During Rest in Imu Arm Motion Tracking,” Sensors, 19(6),

p. 1312.

[7] Ahmad, N., Ghazilla, R. A. R., Khairi, N. M., and Kasi, V., 2013, “Reviews on

Various Inertial Measurement Unit (IMU) Sensor Applications,” Int. J. Signal

Process. Syst., 1(2), pp. 256–262.

[8] Lee, J. K., and Choi, M. J., 2019, “Robust Inertial Measurement Unit-Based

Attitude Determination Kalman Filter for Kinematically Constrained Links,”

Sensors, 19(4), p. 768.

[9] Jeon, S., Tomizuka, M., and Katou, T., 2009, “Kinematic Kalman Filter (KKF)

for Robot end-Effector Sensing,” ASME J. Dyn. Syst. Meas. Control., 131(2),

p. 021010.

[10] Xu, C., He, J., Zhang, X., Yao, C., and Tseng, P.-H., 2018, “Geometrical

Kinematic Modeling on Human Motion Using Method of Multi-Sensor

Fusion,” Inf. Fusion, 41(1), pp. 243–254.

[11] Ponraj, G., and Ren, H., 2018, “Sensor Fusion of Leap Motion Controller and

Flex Sensors Using Kalman Filter for Human Finger Tracking,” IEEE Sens. J.,

18(3), pp. 2042–2049.

[12] Alouani, A., Blair, W., and Watson, G., 1991, “Bias and Observability Analysis

of Target Tracking Filters Using a Kinematic Constraint,” Proceedings of the

Twenty-Third Southeastern Symposium on System Theory, Columbia, SC,

Mar. 10–12, IEEE Computer Society Press, pp. 229–232.

[13] Esquenazi, A., Talaty, M., Packel, A., and Saulino, M., 2012, “The Rewalk

Powered Exoskeleton to Restore Ambulatory Function to Individuals With

Thoracic-Level Motor-Complete Spinal Cord Injury,” Am. J. Phys. Med.

Rehabil., 91(11), pp. 911–921.

[14] Zoss, A., Kazerooni, H., and Chu, A., 2006, “Biomechanical Design of the

Berkeley Lower Extremity Exoskeleton (Bleex),” IEEE/ASME Trans.

Mechatron., 11(4), pp. 128–138.

[15] Tsukahara, A., Kawanishi, R., Hasegawa, Y., and Sankai, Y., 2010, “Sit-to-Stand

and Stand-to-Sit Transfer Support for Complete Paraplegic Patients With Robot

Suit HAL,” Adv. Rob., 24(1), pp. 1615–1638.

[16] Yang, X., Huang, T.-H., Hu, H., Yu, S., Zhang, S., Zhou, X., Carriero, A., Yue,

G., and Su, H., 2019, “Spine- Inspired Continuum Soft Exoskeleton for Stoop

Lifting Assistance,” IEEE Robot. Autom. Lett., 4(10), pp. 4547–4554.

[17] Song, J., Zhu, A., Tu, Y., and Zou, J., 2021, “Multijoint Passive Elastic Spine

Exoskeleton for Stoop Lifting Assistance,” Int. J. Adv. Rob. Syst., 18(6),

p. 172988142110620.

[18] Roveda, L., Savani, L., Arlati, S., Dinon, T., Legnani, G., and Molinari Tosatti,

L., 2020, “Design Methodology of an Active Back-Support Exoskeleton with

Adaptable Backbone-Based Kinematics,” Int. J. Ind. Ergon., 79(1), p. 102991.

[19] Southall, B., Buxton, B. F., and Marchant, J. A., 1998, “Controllability and

Observability: Tools for Kalman Filter Design,” British Machine Vision

Conference, Southampton, UK, Sept. 14–17, BMVA Press, pp. 17.1–17.10.

ASME Letters in Dynamic Systems and Control JANUARY 2023, Vol. 3 / 011005-7

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
://a

s
m

e
d
ig

ita
lc

o
lle

c
tio

n
.a

s
m

e
.o

rg
/le

tte
rs

d
y
n
s
y
s
/a

rtic
le

-p
d
f/3

/1
/0

1
1
0
0
5
/6

9
9
5
1
2
4
/a

ld
s
c
_
3
_
1
_
0
1
1
0
0
5
.p

d
f?

c
a
s
a
_
to

k
e
n
=

L
h
J
H

iU
s
u
N

Q
IA

A
A

A
A

:2
a
P

d
P

z
m

Z
Y

N
ld

H
c
S

6
Q

X
c
5
b
4
N

t1
L
jm

A
w

fb
e

A
J
q
M

8
c
C

2
6
C

6
b
B

n
P

V
F

D
q
_
d
M

L
B

V
fjq

U
P

d
y
h
7
S

X
o
o
K

 b
y
 A

riz
o

n
a

 S
ta

te
 U

n
iv

e
rs

ity
 u

s
e
r o

n
 1

4
 J

u
ly

 2
0
2
3


	1  Introduction
	2  System Hardware
	2.1  Origami Robot Design
	2.2  Hall Effect Sensors
	2.3  Gyroscope Sensor

	3  Sensor Fusion With Kalman Filter
	3.1  Kalman Filter Algorithm Formulation
	3.2  State Constraints in the Kalman Filter
	3.3  Observability of the Kalman Filter

	4  Experiments, Results and Discussion of Fusion Algorithm Performance
	4.1  Cyclic Motion Experiments
	4.1.1  Results of Sensor Fusion and Individual Sensors
	4.1.2  Results of Kinematic State Constraints in Kalman Filter

	4.2  Extended Use Test
	4.3  Testing with Human Subject

	5  Conclusions
	 Acknowledgment
	 Conflict of Interest
	 Data Availability Statement
	 References

