


the assumption of the bounded rational behavior in the pHRI

scenarios.

Prior studies on human-human cooperative motion con-

ducted through haptic interfaces showed the capability

of capturing the haptic behavior of human collabora-

tion [16], [17]. The fact that the data sets from these exper-

iments are rarely used for constructing a dynamic model of

human collaborative motion generation inspired us to explore

feasible methods to construct dynamic models describing

cooperative pHRI scenarios.

A dynamic model that predicts human motion in a coop-

erative task would vastly help the robot to achieve safe and

efficient collaboration with human partners in pHRI scenar-

ios. The main contribution of this paper is threefold. First, we

propose a novel human collaborative dynamic model based

on game theory and bounded rationality, which is the first

model to describe human dyadic behavior with the bounded

rational theory. Second, we design a haptic interface with

a virtual environment and conduct experiments with human

subjects. The collected human data are used to construct the

proposed models and verify their performance of predicting

human cooperative behaviors. The third contribution is to

observe and report evidence of human cooperative nature,

such as the learning process between the human dyads. An

interesting relationship between the leadership of the dyads

and task performance is also reported in the paper, which

asserts that clear role assignment during the collaboration

could significantly improve the performance of dyads.

The rest of the paper is organized as follows. In Section

II, the bounded rational game theoretical human cooperative

model is introduced. The IOC method we adopt to learn the

parameters of the reward function and probability distribution

of trajectory is discussed. The design of the haptic virtual

environment and the setup of the experiment are presented

in Section III. The comparative results between our proposed

game theoretic bounded rational human model and fully

rational model with ground truth are presented in Section

IV. Section V contains our conclusion and future plans.

II. GAME-THEORETIC AND BOUNDED

RATIONAL HUMAN COLLABORATION MODEL

Figure 1 generally demonstrates the difference between

bounded rationality, complete rationality, and irrational be-

havior. In this section, we start by defining the different

strategies of a human agent before introducing our game-

theoretic and bounded-rational human model. A human agent

with complete rationality always chooses the optimal action,

which is described as rational thinking in Fig. 1.

In this section, we describe the dynamic human coopera-

tive model as a two-player non-zero-sum game. The optimal

solution with complete information is discussed, based on

the Nash Equilibrium of the game under the assumption of

complete rationality. Then we propose the bounded rational

game-theoretic human model, accommodating the rationality

assumption of the opponents. The nature of human incom-

plete information in physical interaction is also discussed

in this section. Lastly, we will introduce the IOC method

to learn the reward and rationality parameters of our model

based on observed data collected through the experiment.

A. Two-player joint object manipulation game
We set up a game to simulate a human-human cooperative

task, where two human players are trying to move a heavy

object, such as a couch, to the desired position as shown in

Fig. 2. Each player is positioned at one end of the large long

object which represents the couch in our setup. The grasping

points on the object for both the participants are displayed as

blue and yellow handles. The direction of the force is limited

to be perpendicular to the object. This constraint demands

collaboration of two players to complete the game.

As Fig. 2 shows, the position of the object’s center of

mass is presented as a vector p = [px, py]
T . Velocity vector

is denoted as v = [vx, vy]
T . The orientation of the object is

denoted as θ. Then we can define the state vector x ∈ R
6 of

the system as follows,

x = [p, v, θ, θ̇]T . (1)

The system dynamics of the non-cooperative two-player non-

zero-sum game in the discrete-time domain is presented as

x(k + 1) = f(x(k), u1(k), u2(k)), (2)

where x(k+1) ∈ R
6 is the system state at time step k+1.The

shared states are observable for both agents, which indicates

the game has complete information setup.

B. Rational solution of human collaboration: A Nash equi-

librium approach
1) Cost functions: A cost function for each player should

capture these factors: the cumulative sum of the payoff of

approaching the goal and the cost of actions. We denote the

cost function of agent i ∈ {1, 2} in a finite horizon quadratic

form as follows,

C1(x(k), ξ1(k), ξ2(k)) =

H−1
∑

n=0

ϕT
1 (k + n)W1ϕ1(k + n),

C2(x(k), ξ1(k), ξ2(k)) =

H−1
∑

n=0

ϕT
2 (k + n)W2ϕ2(k + n),

(3)

where we define the trajectory of ui as ξi(k) =
{ui(k), ui(k + 1), ..., ui(k +H − 1)}. H ∈ N

+ denotes the

control horizon of the system. Wi ∈ R
N×N is a constant

weighting matrix, which represents the preference for each

feature.

2) Nash equilibrium sets: According to its definition, a

Nash equilibrium solution is defined as a pair of action

trajectories from both agents < ξ∗1 , ξ
∗

2 >, which satisfies the

following conditions [18],

ξ∗1(k) = argmin
ξ1(k)∈Ξ

C1(ξ1(k), ξ
∗

2(k), x(k)) (4)

ξ∗2(k) = argmin
ξ2(k)∈Ξ

C2(ξ
∗

1(k), ξ2(k), x(k)). (5)

where Ξ is the permissible action trajectory sets for the two

agents. We define a set Ξ∗(k) that contains all the Nash

equilibrium pairs at time k. Then they pick a solution that
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minimizes its own cost from Ξ∗(k). This optimal solution

ξoi (k) is denoted as follows,

ξo1(k) = argmin
ξ1(k),<ξ1(k),ξ2(k)>∈Ξ∗(k)

C1(ξ1(k), ξ2(k), x(k))

(6)

ξo2(k) = argmin
ξ1(k),<ξ1(k),ξ2(k)>∈Ξ∗(k)

C2(ξ1(k), ξ2(k), x(k))

(7)

By solving (6) and (7), we can obtain the optimal control

trajectories. Then we choose the first element from each

trajectory as their control input for current time step, hence

uo
1(k) = ξo1(k)[0] and uo

2(k) = ξo2(k)[0]. ·[0] denotes the first

element of the set.

C. Imperfect collaboration: rational solution under incom-

plete information
In practice, the human players are unaware of the other

player’s decision-making and motion generation process,

which makes the Nash equilibrium solution provided in the

prior subsection inaccessible. Thus, the human subjects need

to estimate other players’ decision-making processes. For this

reason, from the perspective of agent 1, the optimal solution

ξoi (k) in Eq. (6) and (7) becomes,

ξ̂o1 = argmin
ξ1,<ξ̂

(1)
1 ,ξ̂

(1)
2 >∈Ξ̂∗(1)

C1(ξ1, ξ̂
(1)
2 , x(k)) (8)

ξ̂o2 = argmin
ξ2,<ξ̂

(1)
1 ,ξ̂

(1)
2 >∈Ξ̂∗(1)

Ĉ2(ξ̂
(1)
1 , ξ2, x(k)) (9)

where ·̂(1) denotes the estimated values from agent 1’s

perspective. The estimated Nash equilibrium set is presented

as Ξ̂∗(1) = {< ξ
∗(1)
1 , ξ

∗(1)
2 >} where < ξ

∗(1)
1 , ξ

∗(1)
2 >

satisfies,

ξ
∗(1)
1 = argmin

ξ1∈Ξ
C1(ξ1, ξ

∗(1)
2 , x(k)) (10)

ξ
∗(1)
2 = argmin

ξ2∈Ξ
Ĉ

(1)
2 (ξ

∗(1)
1 , ξ2, x(k)). (11)

Essentially, agent 1 should estimate the parameter vector,

which is denoted as Ŵ
(1)
2 , of agent 2’s cost function Ĉ

(1)
2 .

In the meanwhile, agent 2 would conduct similar process

to estimate Ŵ
(2)
1 to generate its estimated optimal control

sequence ξ̂o2 .

D. Bounded rationality
The previous sections provided an overview of the game-

theoretic model of the human motion generation process with

complete rationality under incomplete information scenarios.

Previous studies investigated human bounded rational be-

havior under circumstances where the time and information

were limited [19], [13]. Under this assumption, the human

decision-making process is no longer deterministic as Eq. (8)

shows. For agent 1, the decision is made according to the

following probability density function,

Pr(ξ1) =
exp(−α1C1(ξ1, ξ̂

o(1)
2 , x(k)))

∑

ξi1∈Ξ exp(−α1C1(ξi1, ξ̂
o(1)
2 , x(k)))

(12)

α1 ∈ R
+ is the rational coefficient, which quantifies the

level of agent’s rationality. A higher α value makes the agent

better at maximizing his reward making it highly rational, on

the other hand when α = 0, the agent is simply choosing

actions uniformly at random. The prediction of other agent’s

behavior from agent 1’s perspective is denoted as ξ̂
o(1)
2 .

Compare to [14], [15], where the human agents’ cost

functions are merely dependent on their own actions and

states, the cost functions in our system rely on both agents’

actions and the shared system states. This tangle of interests

of both agents creates challenges for the human agent to

evaluate its future actions, which also depend on its partner’s

actions. To tackle this difficulty, the human agent needs to

develop a mechanism to make a reasonable prediction of its

partner. Hence, we propose that the human agent assumes its

partner as a complete rational agent, who behaves following

the best action in the Nash equilibrium set of the game.

Then, we combined the bounded rationality decision-making

process that is shown above, with the game-theoretical model

that provides a reasonable prediction of the partner’s future

actions. The novelty of our model is to reproduce human

subjects’ adaptation by considering the equilibrium solution

of the game instead of each individual’s optimality, which is

akin to the human’s decision-making process.

E. Inverse optimal control

The inverse optimal control (IOC) problem was formed

to learn the parameters in the cost functions and probability

distributions from the observation data we collected for each

pair of participants. In the previous subsections, we have

described how human behavior is governed by the bounded

rational game-theoretic model. We can generate a series of

states that describe the cooperative process of an experiment

trial with a bounded rational action human model. We denote

the series of states as X = [x(0), x(1), ..., x(T )], where T

presents the final time step of a trial.

According to the bounded rational game-theoretic model,

if a set of parameters Ψ = [W1, Ŵ1,W2, Ŵ2, α1, α2] and a

proper initial condition x(0) are given, a corresponding state

trajectory of a trial, which can be denoted as Xs(Ψ, x(0)) =
[xs(0), xs(1), ..., xs(T )], can be simulated by applying the

proposed model.

Consider the observed system states of a trial in the

experiment, to be X0 = [x0(0), x0(1), x0(2), ..., x0(T )],
where T is the last time step of the collected data. The fitness

function (the objective function) is defined as the square of

the frobenius norm (∥·∥
2
F ) of difference between the observed

and simulated trajectory, g(Ψ) =
∥

∥X0 −Xs(Ψ, x(0))
∥

∥

2

F
.

In our experiment, we constrained all the trails to have

the same initial condition x(0), which made Xs a function

of Ψ. The IOC problem is formulated to be an optimization

problem, which is to find the Ψ that makes the fitness

function minimum, Ψ∗ = argminΨ g(Ψ).

Prior work suggests using Genetic Algorithm (GA) to

solve similar problems [5], [20]. By applying the GA al-

gorithm to search for the optimal value of Ψ, eventually,

we could learn a set of parameters that contains all the

parameters of the bounded rational game-theoretical models

for the human dyads.

10722

Authorized licensed use limited to: ASU Library. Downloaded on July 14,2023 at 01:00:39 UTC from IEEE Xplore.  Restrictions apply. 





(a) Comparison of the x-direction displace-
ment over time within trials of pair 9.

(b) Comparison of the y-direction displace-
ment over time within trials of pair 9.

(c) Comparison of the object orientation over
time within trials of pair 9.

Fig. 3: Comparison of the trajectories of the data sets generated with bounded rationality and complete rationality for pair

9. The bounded Rational model is able to generate a trajectory similar to ground truth data in the y direction.

The main reason why complete rational models had larger

steady-state errors than the bounded rational ones is the

assumption of human optimal behavior. The complete ra-

tionality assumption of human, which expected that human

always chooses the optimal actions, would attribute the

suboptimal actions of human participants to their lack of

motivation, which diminishes the weighting factor on goal

tracking in the learned human models. In the last subsection,

we discussed the human suboptimal behavior, which is ubiq-

uitous despite the human participants’ strong desires. From

the comparison of the simulated game playing under different

assumptions of human mode, we could draw a conclusion

that the bounded rational model can better describe human

suboptimal behaviors when they interact with someone they

are not familiar with.

Summary Figure 4b suggests that the bounded rationality

models are closer to the ground truth cooperative behavior

of the human dyads.

C. Leadership and performance of collaboration

In this subsection, we will report an important observation

between the difference in the effort each individual invested

in playing the game to the goal tracking errors, which

evaluate the performance of the game. Before demonstrating

the results, it is critical to define the roles in the game.

In this experiment, we observed that the participants never

started the game simultaneously; one participant, which we

define as the leader, initiated the game by pushing the

object first. Then the other participant, who was defined as

the follower, would start his or her motion to collaborate.

For a specific pair of participants, the roles assigned to

each individual during every trial could be different. Due

to the limited time, the roles were fixed within each trial,

which indicated that the leader’s actions would dominate the

collaboration between the participants. To evaluate the effort

each participant invested in each trial, we introduce the effort

metric Ei for agent i ∈ {“Leader”, “Follower”}. We define

Ei as follows,

Ei =

∫ tf

to

||ui(t)||dt (13)

where t0 and tg are the starting time and final time of the

trial. ui(t) is the control input of agent i at time t. The goal

tracking error of each trial was measured by calculating the

distance between the actual final states of the object and

the goal, which evaluated the quality of the collaboration. A

lower goal tracking error indicated better performance during

the specific trial. The difference in the effort metric between

the leader and follower, hence Ediff = ELeader−EFollower,

could reveal the style of leadership.

By examining the correlation between the effort differ-

ences and the goal tracking errors for all the participants,

we found a significant negative correlation between them

with p ≤ 0.003 (p = 0.0029), which is shown in Fig. 4c.

This observation strongly indicates that the performance of

the dyad highly depends on the effort of the leader. If the

leader took more responsibility for completing the game,

which was reflected by a larger effort difference between

the leader and the follower, a better result could be achieved

by the dyad. This observation also agrees with the results

reported in Messeri et al. [22].

Summary Figure 4c shows an inverse relationship be-

tween the tracking error and the difference in effort between

the agents.

D. Discussion: from bounded rationality to pHRI

The results of this study reveal the stochastic nature of

human cooperative behavior. As the ultimate objective is

to help the robot comprehend the human partner’s intent

better, we believe the proposed model has the following

contributions for the robot to befittingly collaborate with

human partners.

From the observation and verification, we have shown that

the human participants’ behavior follows bounded rationality

under cooperative tasks. Unlike some prior research where

the human manipulation was modeled as an optimization

process [23], [11], the human partners show suboptimal

behavior when they acknowledged that their partners were

also human participants. When we design the cooperative

algorithm for the robot in pHRI scenarios, this study suggests

that it is critical for the robot to determine its role during

the collaboration. As a leader, the robot should be more
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(a) Comparison of steady-state errors of the
first two trials and the remaining trails for all
participants.

(b) Comparison of the fitting errors of com-
plete rationality and bounded rationality for
all pairs of participants.

(c) The goal tracking errors compared with
the effort difference between leader and fol-
lower.

Fig. 4: Summary results for all the participants

active during the interaction, because stronger leadership

could result in better performance.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we explored novelty methods to model

human-human cooperative behaviors in joint actions. We

designed a virtual joint object translation game, which re-

quired collaboration between human participants. A bounded

rationality game-theoretical model was introduced to model

human behavior during the game. By comparing results

with bounded rational and complete rational assumptions of

human actions, we found that the bounded rationality model

fits the experimental data better, which suggested that the

robots should be aware of suboptimal human behaviors while

working with human partners. Another test demonstrated that

if the leader paid less effort during the game, the performance

of the pair could be worse. This observation highlighted the

importance of leadership during collaboration.

We plan to extend our work to investigate how bounded

rationality affects the pHRI scenarios with different goal

positions. We plan to test how the bounded rationality game-

theoretical human model could help the robot improve its

performance while working with human partners.
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