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Abstract— As humans and robots start to collaborate in close
proximity, robots are tasked to perceive, comprehend, and
anticipate human partners’ actions, which demands a predictive
model to describe how humans collaborate with each other in
joint actions. Previous studies either simplify the collaborative
task as an optimal control problem between two agents or do
not consider the learning process of humans during repeated
interaction. This idyllic representation is thus not able to model
human rationality and the learning process. In this paper,
a bounded-rational and game-theoretical human cooperative
model is developed to describe the cooperative behaviors of
the human dyad. An experiment of a joint object pushing
collaborative task was conducted with 30 human subjects
using haptic interfaces in a virtual environment. The proposed
model uses inverse optimal control (IOC) to model the reward
parameters in the collaborative task. The collected data verified
the accuracy of the predicted human trajectory generated
from the bounded rational model excels the one with a fully
rational model. We further provide insight from the conducted
experiments about the effects of leadership on the performance
of human collaboration.

I. INTRODUCTION

Physical human-robot interaction (pHRI) has become
ubiquitous in robot-assisted rehabilitation, robotic surgery,
and collaborative manufacturing [1]. In these applications,
an intelligent robot needs to build a human model (often
referred to as theory of mind) to anticipate human actions
for proactive planning of its own actions [2]. Modeling
humans is a challenging task not only because of the inherent
uncertainties of human decision-making [3] but also due
to the human learning and adaptation of robots mediated
by physical interactions [4]. In order to investigate human
uncertainty and adaptation mechanisms during the physical
collaboration between humans and robots, it is critical to
study of how humans collaborate with each other.

Inverse optimal control (IOC) methods, which assume
human motor behavior follows an optimal control law, are
promising approaches to describing human physical actions
[5]. The oversimplification of human collaboration behavior
limited the variety of human motion this model can describe.
Inverse reinforcement learning (IRL) emphasizes the need to
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Fig. 1: Illustration of comparison between different ratio-
nality models. An irrational agent will choose an action at
random. A rational thinker will choose an action with the
best outcome. A bounded rational agent will build the theory
of mind of the other agent and use bounded rationality to
generate action.

address the value alignment problem in the human decision-
making process, which is trying to identify how humans
allocate preferences on the elements of a multi-attribute cost
function [6]. Previous work implemented IRL algorithms to
model general human-human interaction or collaboration by
adding the features that were related to the other human
agents in the system to the cost function [7]. Although these
studies demonstrated competent results of modeling human
collaboration with IRL methods, none of these approaches
considered the human prediction and adaptation of their
partners when executing collaborative tasks.

Game-theoretic models have been widely adopted to de-
scribe interactive behaviors of humans [8]. Due to the nature
of incomplete information of human-involved interactions,
modeling how individuals predict their partners is important.
In [9], the mutual adaption behavior was modeled with a
multi-agent recursive least square learning model, and a em-
pathetic intent inference framework was proposed to consider
the mutual learning process of intelligent agents [10]. Li et al.
proposed a differential game model for improving the robot
controller by understanding the control strategy of human
users in pHRI tasks [11].

Another key aspect in modeling human behavior is to
understand its nature of randomness. Our previous research
showed that human participants did not strictly follow the
optimal strategies to complete the task [12]. Recent research
adopted the idea of suboptimal behavior to describe human
motor behavior [13]. The authors of [14] and [15] employed
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the assumption of the bounded rational behavior in the pHRI
scenarios.

Prior studies on human-human cooperative motion con-
ducted through haptic interfaces showed the capability
of capturing the haptic behavior of human collabora-
tion [16], [17]. The fact that the data sets from these exper-
iments are rarely used for constructing a dynamic model of
human collaborative motion generation inspired us to explore
feasible methods to construct dynamic models describing
cooperative pHRI scenarios.

A dynamic model that predicts human motion in a coop-
erative task would vastly help the robot to achieve safe and
efficient collaboration with human partners in pHRI scenar-
i0s. The main contribution of this paper is threefold. First, we
propose a novel human collaborative dynamic model based
on game theory and bounded rationality, which is the first
model to describe human dyadic behavior with the bounded
rational theory. Second, we design a haptic interface with
a virtual environment and conduct experiments with human
subjects. The collected human data are used to construct the
proposed models and verify their performance of predicting
human cooperative behaviors. The third contribution is to
observe and report evidence of human cooperative nature,
such as the learning process between the human dyads. An
interesting relationship between the leadership of the dyads
and task performance is also reported in the paper, which
asserts that clear role assignment during the collaboration
could significantly improve the performance of dyads.

The rest of the paper is organized as follows. In Section
II, the bounded rational game theoretical human cooperative
model is introduced. The IOC method we adopt to learn the
parameters of the reward function and probability distribution
of trajectory is discussed. The design of the haptic virtual
environment and the setup of the experiment are presented
in Section III. The comparative results between our proposed
game theoretic bounded rational human model and fully
rational model with ground truth are presented in Section
IV. Section V contains our conclusion and future plans.

II. GAME-THEORETIC AND BOUNDED
RATIONAL HUMAN COLLABORATION MODEL

Figure 1 generally demonstrates the difference between
bounded rationality, complete rationality, and irrational be-
havior. In this section, we start by defining the different
strategies of a human agent before introducing our game-
theoretic and bounded-rational human model. A human agent
with complete rationality always chooses the optimal action,
which is described as rational thinking in Fig. 1.

In this section, we describe the dynamic human coopera-
tive model as a two-player non-zero-sum game. The optimal
solution with complete information is discussed, based on
the Nash Equilibrium of the game under the assumption of
complete rationality. Then we propose the bounded rational
game-theoretic human model, accommodating the rationality
assumption of the opponents. The nature of human incom-
plete information in physical interaction is also discussed
in this section. Lastly, we will introduce the IOC method

to learn the reward and rationality parameters of our model
based on observed data collected through the experiment.
A. Two-player joint object manipulation game

We set up a game to simulate a human-human cooperative
task, where two human players are trying to move a heavy
object, such as a couch, to the desired position as shown in
Fig. 2. Each player is positioned at one end of the large long
object which represents the couch in our setup. The grasping
points on the object for both the participants are displayed as
blue and yellow handles. The direction of the force is limited
to be perpendicular to the object. This constraint demands
collaboration of two players to complete the game.

As Fig. 2 shows, the position of the object’s center of
mass is presented as a vector p = [p,, py]T. Velocity vector
is denoted as v = [v,,v,]T. The orientation of the object is
denoted as 0. Then we can define the state vector 2 € RS of
the system as follows,

z=[p,v,0,0]T. (1)

The system dynamics of the non-cooperative two-player non-
zero-sum game in the discrete-time domain is presented as

w(k+1) = f(z(k), ui(k), uz(k)), 2

where z(k+1) € RS is the system state at time step k+1.The
shared states are observable for both agents, which indicates
the game has complete information setup.
B. Rational solution of human collaboration: A Nash equi-
librium approach

1) Cost functions: A cost function for each player should
capture these factors: the cumulative sum of the payoff of
approaching the goal and the cost of actions. We denote the
cost function of agent ¢ € {1, 2} in a finite horizon quadratic
form as follows,

H—
Z¢ (k +n)Wigy (k +n),

n=0

Cala(k), &1 (k), Ea(k)) = Z_ 67 (k + 1) Wads(k + n),
n=0
3)

where we define the trajectory of wu; as &(k) =
{ui(k),ui(k+1),...,u;(k+ H — 1)}. H € Nt denotes the
control horizon of the system. W; € R¥*¥ is a constant
weighting matrix, which represents the preference for each
feature.

2) Nash equilibrium sets: According to its definition, a
Nash equilibrium solution is defined as a pair of action
trajectories from both agents < &7, &5 >, which satisfies the
following conditions [18],

Cr(z(k), & (k

&1 (k) = argmin C1 (&1 (k), &5 (k), z(k)) (4)
&1(k)EE

&5 (k) = argmin Co(&7 (k), E2(k), z(k)). ©)
§2(k)€E

where = is the permissible action trajectory sets for the two
agents. We define a set =*(k) that contains all the Nash
equilibrium pairs at time k. Then they pick a solution that
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minimizes its own cost from =*(k). This optimal solution

&2(k) is denoted as follows,

§l(k) = arg min C1(&1(k), &2(k), (k)
&1(k),<€1(k),E2(k)>€E* (k) ©)

&5(k) = arg min Ca(&1(k), &2(k), x(k))
&1(k),<€1(k),E2(k)>€E* (k) )

By solving (6) and (7), we can obtain the optimal control
trajectories. Then we choose the first element from each
trajectory as their control input for current time step, hence
ug (k) = £9(k)[0] and ug(k) = £39(k)[0]. -[0] denotes the first
element of the set.

C. Imperfect collaboration: rational solution under incom-

plete information
In practice, the human players are unaware of the other

player’s decision-making and motion generation process,
which makes the Nash equilibrium solution provided in the
prior subsection inaccessible. Thus, the human subjects need
to estimate other players’ decision-making processes. For this
reason, from the perspective of agent 1, the optimal solution
&2 (k) in Eq. (6) and (7) becomes,

&= arg min Cr(&, &Y a(k)) ®)

€1,<€M EV>eB

Agl)aEQVCB(k)) (9)

& = arg min Cy(&
a,<€M M >eE )

where ") denotes the estimated values from agent 1’s
perspective. The estimated Nash equilibrium set is presented
as =) = [< ﬂ(l), ;(1) >} where < 5;‘(1),55(” >

satisfies,
{f(l) = arg min C (&1, *(1), (k)) (10)
§1€EE
& —agmin (G oa(). D
2€E

Essentially, agent 1 should estimate the parameter vector,
which is denoted as Wz(l), of agent 2’s cost function C‘él)
In the meanwhlle agent 2 would conduct similar process
to estimate W to generate its estimated optimal control
sequence §2
D. Bounded rationality

The previous sections provided an overview of the game-
theoretic model of the human motion generation process with
complete rationality under incomplete information scenarios.
Previous studies investigated human bounded rational be-
havior under circumstances where the time and information
were limited [19], [13]. Under this assumption, the human
decision-making process is no longer deterministic as Eq. (8)
shows. For agent 1, the decision is made according to the
following probability density function,

exp(—onCi(€1, &, x(k)))
Sei ez exp(—onCa (€], 65, 2 (k)))

a; € RT is the rational coefficient, which quantifies the
level of agent’s rationality. A higher o value makes the agent

Pr(&) = 12)

better at maximizing his reward making it highly rational, on
the other hand when o = 0, the agent is simply choosing
actions uniformly at random. The prediction of other a%ent S
behavior from agent 1’s perspective is denoted as 52

Compare to [14], [15], where the human agents’ cost
functions are merely dependent on their own actions and
states, the cost functions in our system rely on both agents’
actions and the shared system states. This tangle of interests
of both agents creates challenges for the human agent to
evaluate its future actions, which also depend on its partner’s
actions. To tackle this difficulty, the human agent needs to
develop a mechanism to make a reasonable prediction of its
partner. Hence, we propose that the human agent assumes its
partner as a complete rational agent, who behaves following
the best action in the Nash equilibrium set of the game.
Then, we combined the bounded rationality decision-making
process that is shown above, with the game-theoretical model
that provides a reasonable prediction of the partner’s future
actions. The novelty of our model is to reproduce human
subjects’ adaptation by considering the equilibrium solution
of the game instead of each individual’s optimality, which is
akin to the human’s decision-making process.

E. Inverse optimal control

The inverse optimal control (IOC) problem was formed
to learn the parameters in the cost functions and probability
distributions from the observation data we collected for each
pair of participants. In the previous subsections, we have
described how human behavior is governed by the bounded
rational game-theoretic model. We can generate a series of
states that describe the cooperative process of an experiment
trial with a bounded rational action human model. We denote
the series of states as X = [x(0),z(1),...,2(T)], where T
presents the final time step of a trial.

According to the bounded rational game-theoretic model,
if a set of parameters ¥ = [, Wi, Wa, Wa, a1, as] and a
proper initial condition z(0) are given, a corresponding state
trajectory of a trial, which can be denoted as X (¥, 2(0)) =
[25(0), z5(1), ..., 25(T)], can be simulated by applying the
proposed model.

Consider the observed system states of a trial in the
experiment, to be X° = [29(0),2°(1),2°(2), ..., 2°(T)],
where T is the last time step of the collected data. The fitness
function (the objective function) is defined as the square of
the frobenius norm (||| 3,) of difference between the observed
and simulated trajectory, g(¥) = || X° — Xs(\I/,x(O))H?.

In our experiment, we constrained all the trails to have
the same initial condition x(0), which made X, a function
of U. The IOC problem is formulated to be an optimization
problem, which is to find the U that makes the fitness
function minimum, U* = arg miny g(v).

Prior work suggests using Genetic Algorithm (GA) to
solve similar problems [5], [20]. By applying the GA al-
gorithm to search for the optimal value of W, eventually,
we could learn a set of parameters that contains all the
parameters of the bounded rational game-theoretical models
for the human dyads.
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Fig. 2: Experiment setup during collaborative object pushing.
Each player observes the current position of the object on
the screen and inputs haptic action to move their end of the
object using NOVIT Falcon input device. In real-time, the
data is stored in a data log as well as updated through the
unity physics engine to create the unity scene.

III. EXPERIMENT SETUP
In this section, we introduce an experimental study to
analyze human behavior in a haptic virtual interface. The
hardware setup for the aforementioned virtual interface is
described. We further explain the participant recruitment
detail and the instructions for the experiment.

Unity Physics
Engine

Player 2 action
lsyslem States

A. Hardware configuration

The hardware setup is shown in Fig. 2. We used two
NOVINT Falcon haptic controllers as the human input de-
vices, which were connected to two PCs via USB connection.
A C++ script was running on each PC to collect the raw data
from NOVINT Falcon and convert them to the control input
of each player in the system. The simulation of the dynamic
system was implemented using the UNITY Physics Engine,
which receives human inputs from haptic devices.
B. PFarticipation recruitment and experiment process

The study was approved by the Institutional Review Board
(IRB) of Arizona State University (STUDY00011502). A
total of 30 participants (randomly assigned to 15 dyads)
volunteered to participate in the experiment. None of the
participants had experience with haptic devices before. The
participants were brought to a quiet room and were asked to
sit in front of two isolated PC, each of which connected to a
haptic device. The two participants were facing the opposite
direction with a makeshift curtain in between. Because they
were not able to see or talk to each other during the entire
study, they could only communicate with their actions. The
participants were briefed about the hardware and joint object
manipulation task and a consent form was signed. The
participants were asked to move the object with the handle
of the haptic device and try to reach the goal position of the
object within 10 seconds. After each trial, the participants
were given a 30-second break while the system was reset.
Each pair were asked to repeat the same task 10 times, which
counted as 10 trials of data. Since none of the participants
had operated a haptic device before, we set the first two trials
as the learning phase, and the data were not used to build
human models.

IV. RESULTS AND DISCUSSION

A. General observation: human adaptation

We start the discussion of results by highlighting two main
observations from human data. The first one is the learning
process of the human participants, which is indicated by
the improvement of goal tracking performance in the first
two trials. To check our hypothesis on the learning process,
we compared the steady-state goal tracking errors, which
contain translation and rotation errors, of the first two trials
and the rest of all participants. The mean steady-state error
of the first two trials is 0.3834, while the error of the rest
trials is 0.1350. The t-test between the two means also
suggests a significant difference (p = 0.0049). According
to Fig. 4a, the participants were accustomed to the task after
the second trial, which motivated us to mark the first two
trials of the experiment as the learning phase as discussed
in Sec. III. The human participants could not accomplish the
task within the 10-second time limit in the first trial, while
they could maintain acceptable performance to accomplish
the task in trials 3 to 10. This observation agrees with
the collaboration learning phenomenon between the dyads
during haptic interactions with incomplete information [21].

Summary From Fig 4a, we can observe the task comple-
tion performance of the first two trials is longer than the rest
of the trial and is termed as the learning phase.

B. The effect of bounded rationality

To justify the advantage of the bounded rational model, we
applied the IOC method in Sec. II-D on the observed data
to generate the bounded rational game-theoretical model for
each of the participants. For each experiment, we combined
their trial 3 to 10 data into a data set. Then we learned
two bounded rational models, each of which is associated
with one of the participants. We simulate the game with the
two bounded rational human cooperative models to generate
another data set, which contains the states’ trajectories of 100
trials of the game. The difference between each generated
trajectory to the corresponding participant’s mean trajectory
is defined as the fitting error.

In the meanwhile, we adopted a similar IOC process to
learn two complete rational game-theoretic models, which
we discussed in Sec. II-B. An example of the comparison
of the model fitting results is presented in Fig. 3. In this
figure, we choose pair 9 to demonstrate the advantage of the
bounded rational model. The sub-figures of Fig. 3 represent
the displacement of x and y directions and orientation of
the object during an experimental trial, where the colored
regions represent the mean and variance of the trajectories
for all the trials. As Fig. 3 shows, the trajectory band for the
bounded rational models is closer to the original data than the
one of complete rational models, especially in the y-direction
where the majority of the motion happened. We ran a t-test
for the comparison of the mean steady-state errors between
the complete rational model and the bounded rational model.
As a result of the one-tailed student t-test, the fitting error of
the bounded rational model was significantly lower than the
complete rational model with p < 0.003 (p = 4.6636e — 6).
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Fig. 3: Comparison of the trajectories of the data sets generated with bounded rationality and complete rationality for pair
9. The bounded Rational model is able to generate a trajectory similar to ground truth data in the y direction.

The main reason why complete rational models had larger
steady-state errors than the bounded rational ones is the
assumption of human optimal behavior. The complete ra-
tionality assumption of human, which expected that human
always chooses the optimal actions, would attribute the
suboptimal actions of human participants to their lack of
motivation, which diminishes the weighting factor on goal
tracking in the learned human models. In the last subsection,
we discussed the human suboptimal behavior, which is ubig-
uitous despite the human participants’ strong desires. From
the comparison of the simulated game playing under different
assumptions of human mode, we could draw a conclusion
that the bounded rational model can better describe human
suboptimal behaviors when they interact with someone they
are not familiar with.

Summary Figure 4b suggests that the bounded rationality
models are closer to the ground truth cooperative behavior
of the human dyads.

C. Leadership and performance of collaboration

In this subsection, we will report an important observation
between the difference in the effort each individual invested
in playing the game to the goal tracking errors, which
evaluate the performance of the game. Before demonstrating
the results, it is critical to define the roles in the game.
In this experiment, we observed that the participants never
started the game simultaneously; one participant, which we
define as the leader, initiated the game by pushing the
object first. Then the other participant, who was defined as
the follower, would start his or her motion to collaborate.
For a specific pair of participants, the roles assigned to
each individual during every trial could be different. Due
to the limited time, the roles were fixed within each trial,
which indicated that the leader’s actions would dominate the
collaboration between the participants. To evaluate the effort
each participant invested in each trial, we introduce the effort
metric E; for agent i € {“Leader”, “Follower” }. We define
E; as follows,

where ?y and ?, are the starting time and final time of the
trial. w;(¢) is the control input of agent ¢ at time ¢. The goal
tracking error of each trial was measured by calculating the
distance between the actual final states of the object and
the goal, which evaluated the quality of the collaboration. A
lower goal tracking error indicated better performance during
the specific trial. The difference in the effort metric between
the leader and follower, hence Ey; ¢ = Ercader —EFoliowers
could reveal the style of leadership.

By examining the correlation between the effort differ-
ences and the goal tracking errors for all the participants,
we found a significant negative correlation between them
with p < 0.003 (p = 0.0029), which is shown in Fig. 4c.
This observation strongly indicates that the performance of
the dyad highly depends on the effort of the leader. If the
leader took more responsibility for completing the game,
which was reflected by a larger effort difference between
the leader and the follower, a better result could be achieved
by the dyad. This observation also agrees with the results
reported in Messeri et al. [22].

Summary Figure 4c shows an inverse relationship be-
tween the tracking error and the difference in effort between
the agents.

D. Discussion: from bounded rationality to pHRI

The results of this study reveal the stochastic nature of
human cooperative behavior. As the ultimate objective is
to help the robot comprehend the human partner’s intent
better, we believe the proposed model has the following
contributions for the robot to befittingly collaborate with
human partners.

From the observation and verification, we have shown that
the human participants’ behavior follows bounded rationality
under cooperative tasks. Unlike some prior research where
the human manipulation was modeled as an optimization
process [23], [11], the human partners show suboptimal
behavior when they acknowledged that their partners were
also human participants. When we design the cooperative
algorithm for the robot in pHRI scenarios, this study suggests

B — b s (0)||dt (13) that it is critical for the robot to determine its role during
v t ‘ the collaboration. As a leader, the robot should be more
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active during the interaction, because stronger leadership
could result in better performance.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we explored novelty methods to model
human-human cooperative behaviors in joint actions. We
designed a virtual joint object translation game, which re-
quired collaboration between human participants. A bounded
rationality game-theoretical model was introduced to model
human behavior during the game. By comparing results
with bounded rational and complete rational assumptions of
human actions, we found that the bounded rationality model
fits the experimental data better, which suggested that the
robots should be aware of suboptimal human behaviors while
working with human partners. Another test demonstrated that
if the leader paid less effort during the game, the performance
of the pair could be worse. This observation highlighted the
importance of leadership during collaboration.

We plan to extend our work to investigate how bounded
rationality affects the pHRI scenarios with different goal
positions. We plan to test how the bounded rationality game-
theoretical human model could help the robot improve its
performance while working with human partners.
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