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Soft robots have shown great potential to enable safe interactions with
unknown environments due to their inherent compliance and variable
stiffness. However, without knowledge of potential contacts, a soft robot
could exhibit rigid behaviors in a goal-reaching task and collide into
obstacles. In this paper, we introduce a Sliding Mode Augmented by
Reactive Transitioning (SMART) controller to detect the contact events,
adjust the robot's desired trajectory, and reject estimated disturbances in a
goal reaching task. We employ a sliding mode controller to track the desired
trajectory with a nonlinear disturbance observer (NDOB) to estimate the
lumped disturbance, and a switching algorithm to adjust the desired robot
trajectories. The proposed controller is validated on a pneumatic-driven fabric
soft robot whose dynamics is described by a new extended rigid-arm model to
fit the actuator design. A stability analysis of the proposed controller is also
presented. Experimental results show that, despite modeling uncertainties, the
robot can detect obstacles, adjust the reference trajectories to maintain
compliance, and recover to track the original desired path once the obstacle
is removed. Without force sensors, the proposed model-based controller can
adjust the robot’s stiffness based on the estimated disturbance to achieve goal
reaching and compliant interaction with unknown obstacles.

KEYWORDS

soft robotics, control of soft robots, soft robotics applications, nonlinear disturbance
observer, sliding mode control

1 Introduction

There has been a growing interest in using pneumatic actuators and fabric materials to
design soft robots over the recent years Nguyen et al. (2019); Best et al. (2016); Hofer and
D’Andrea (2020). Pneumatic-actuated fabric-based robots have shown desirable
characteristics such as being lightweight, customizable, robust, and highly compliant.
By changing the internal pressure, these fabric-based soft robots can vary their stiffness
from almost zero to a substantial value. Both linear and nonlinear model-based
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controllers have been designed to drive these robots to their
desired trajectories, such as iterative learning control Hofer and
D’Andrea (2020), model predictive control and sliding mode
control Best et al. (2021), robust backstepping control Wang et al.
(2019), and adaptive control Trumic et al. (2021), just name a
few. Different designs of model-based controllers and their
associated challenges are detailed in a recent review paper
(2021).
nonlinear control approaches need to increase the soft robot’s

Della Santina et al. However, both linear and
stiffness to be responsive to tracking errors. This increased
stiffness requirement makes the soft robot behaves more like
its rigid counterparts. Once the soft robot reaches a high stiffness
value, it could also lead to hard collisions and loss of safety when
humans and unknown obstacles are on its path. However, it is
still an open challenge for a soft robot to detect possible contacts
with the environment, stay compliant with obstacles, and adjust
the robot’s path if needed.

For soft robots, both body-integrated soft sensors and
observer-based approaches have been explored to detect
contact events. Based on the existence and properties of the
obstacles, a soft robot can switch between different control
strategies. Capacitive and resistive sensors are commonly
integrated with soft robots. Capacitive sensors Frutiger et al.
(2015); Totaro et al. (2020); Navarro et al. (2020) are compliant,
but they have a proximity effect to conductive objects, limiting
their real-world application. Resistive sensors Elgeneidy et al.
(2018); Thuruthel et al. (2019); Rosle et al. (2022) often exhibit
nonlinear time-variant behaviors, making it challenging to
although body-
integrated soft sensors provide direct contact force estimation

calibrate and model them. Moreover,
Wang et al. (2018), they need to be placed in the contact area of
the robot body, which may be unknown when the robot operates
in cluttered environments. In contrast, observer-based
approaches leverage dynamic models of the robots for contact
force/torque estimation using more accessible input/output
measurements. In Bui and Schultz (2021), a disc-thread-based
linear parameter varying model was proposed for a fabric-
reinforced actuator. Each disc was modeled as a sub-system,
and a third-order sliding mode observer was created for each
sub-system to estimate the contact force. However, the
computational cost increases with the growing number of
discs used in the model, and applying this method to large-
scale robots is still challenging. In Navarro et al. (2020), both
force intensity and deformation were estimated by integrating a
FEM-based numerical model with capacitive and pneumatic
sensor feedback. The capacitive sensor estimated the contact
location, while the pneumatic sensor quantified the deformation.
The FEM model mediated measurements from both sensors to
estimate the contact force and the robot’s deformation. However,
finding the FEM model for the fabric-based soft robot is difficult
due to the high uncertainties and compliance.

In this article, we present a Sliding Mode Augmented by

Reactive Transitioning (SMART) controller, which switches the
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position reference for the baseline sliding mode controller (SMC)
based on the contact events detected by a nonlinear disturbance
observer (NDOB). The NDOB utilizes the kinematic and
pressure measurements to estimate the lumped disturbance,
including modeling uncertainties and unknown external
torque applied on the actuator’s tip during contact with the
environment. The switching algorithm utilizes the tracking error
and estimated disturbance to detect the contact and accordingly
switch among three modes (tracking, compliance, and recovery).
We proved that the proposed controller ensures that the tracking
error between the current position and the switched position
reference is ultimately bounded under the effect of the lumped
disturbance. Experimental results show that the SMART
controller can successfully detect obstacles, become compliant
at its current position, and return to the desired trajectory when
the obstacle is removed, even with the presence of modeling
uncertainties.

This article is inspired by the work in Santina et al. (2020),
where a machine learning-based disturbance observer was
designed to estimate the contact force between a silicone-
based soft arm and the external environment. In Santina et al.
(2020), a piecewise constant curvature (PCC) model, assuming
the existence of a backbone, was utilized to describe the dynamics
of the silicone-based soft arm, and the modeling errors were
learned from experimental data through Gaussian process
regression. In this article, a new parameter is introduced to
extend the PCC model to fabric-based actuators with a design
of a hollow center and no backbone. Instead of utilizing a
machine learning approach to compensate for the modeling
uncertainties, those uncertainties are handled successfully by a
model-based NDOB and SMC. The training data set is not
required for the proposed method compared with the
machine learning approach. In addition, the proposed method
also closes the position control loop using the estimation results.

In summary, this work contributes to.

o A novel dynamic model for a hollow-centered fabric

actuator with parameter identification and model
validation.

e An NDOB that estimates the lumped disturbance,
including model uncertainties and contact torque.

o A SMART controller utilizes the estimated disturbance to
adjust the desired trajectory with the ultimate boundness

proof of the tracking error.

The remainder of the paper is organized as follows: Section 2
introduces the design and dynamic model of the fabric-based
robot. Section 3 presents the design of the baseline SMC
approach and the proposed SMART controller. Section 4
presents the hardware setup and the evaluation experiments’
design. Section 5 presents the evaluation results of the dynamic
model accuracy, the performance comparison between the

baseline SMC and the proposed approaches, and the
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FIGURE 1
Modified augmented rigid arm model for the fabric-based actuator. (A) Isometric view of the actuator. (B) Curvature plane with rotation angle

y = 0deg. (C) The modified model with the addition of parameter r on the curvature plane. The green and red lines indicate the inextensible layer and
the axial line, respectively. (D) Top view of bottom plate when y = 30deg. (E) Augmented rigid arm (RPPR).

evaluation of the parameter for the SMART controller design.
Section 6 concludes this paper and discusses future directions.

2 Actuator design and dynamic model
2.1 Design of the fabric soft robot

The fabric-based soft robot used in this paper was introduced
in our previous work Nguyen et al. (2019).In a single segment, the
robot contains two parts: rectangular-shaped air pillows and an
inextensible fabric layer with three lines of pouches, as presented
in Figure 1A. Each pouch holds one air pillow, and three
individual chambers are created by serially connecting all the
pillows on the same line. When the actuator is inflated, the
pillows in the pouch push each other and create a bending
motion. With three segments, the soft robot can lift a load ten
times heavier than its body weight (1.1 kg) by wrapping around
the object, and it can also be compressed to half of its original
length when the chambers are not inflated. However, material
compliance, fabrication errors, and inconsistent interaction
between pillows introduce significant actuator modeling and
control challenges.

2.2 Dynamic modeling of fabric bending
actuators

The augmented rigid-arm model for soft robotics was first
proposed for an elastomeric-based actuator in Della Santina et al.
(2018). The proposed approach follows the PCC assumption
with the inextensible arc (also known as the virtual backbone)
located at the axial line of the actuator Marchese et al. (2015).
However, the inextensible arc for our fabric-based robot is
designed in a triangular shape, shown in Figure 1A. When
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inflated to different pressure values, the inextensible arc will
move along the edge of the triangle. And the offset between the
axial line and the inextensible layer of the actuator will make the
existing models inaccurate.

As a preliminary study, only one segment is utilized in this
work. As shown in Figure 1A, axis z is perpendicular to its local
plate, and axis x positive direction goes through the connection
point between chambers 2 and 3 on its local plate. The
orientation of the actuator is described by two parameters
v e [0,2m) 0 ¢ [-5+3], \ the
counterclockwise rotation angle between the plane z, — x;, and

and represents
the PlaneA where the curvature happens, as shown in Figure 1B.
0 represents the angle between the reference frame x;' and x,
expressed on the curvature plane, presented in Figure 1C. Since
the actuator was designed to reach a high elevation angle and the
rotation motion on the azimuth direction was less regulated, we
only control the pressure in chamber 1 and focus on tracking the
bending angle 0 of in this paper.
To match the actuator design, we introduce a new parameter
r into the augmented robot model, as shown in Figures 1C,D.
Solid green dot is the intersection point between the constant
curvature arc and the bottom plate while solid red dot is the
origin of Plane A. r represents the distance between the
aforementioned green and read dot and is calculated as follows:
t
v = atun(%),
Liyi cos (1/3)

TV cos(((y + ) mod 27/3) - /3)’

1)

Where point (x}, ;) is the projection of the top plate’s center

point on the bottom plate, 1,; is the length of the edge of the

equilateral triangle and marked as the green line in Figures 1A,D.
(m/3)

ot V’fm). The base

function represents a line goes through two points: (1, 0) and (cos

(2m/3), sin (211/3)). If y is restricted within [0, 27/3], the drawing

Eq.1 is originated from a base function: r =
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TABLE 1 Classic DH parameters 0, d, a, « and mass m for one actuator.

Link (0] d a a m
1 8 0 0 -z 0
2 0 1(0) 0 0 m
3 0 10) 0 x 0
4 0 0 0 - 0

of one edge of the triangle shape is complete. The modulus
function y mod 2m/3 is used to draw the other two edges and
complete the triangle shape. % enlarge the unit triangle to match
the actuator’s design while changing the denominator to cos (((y
+ m) mod 2m/3) — m/3) rotates the triangle shape to match
coordinate of the soft arm.

The (DH) the
augmented rigid robot are presented in Table 1. Two

Denavit-Hartenberg parameters for
prismatic joints and two revolutionary joints (RPPR) are used
to describe the dynamics of the augmented rigid robot, as shown
in Figure 1E. The configuration is described by joint space vector

r=121(6),1(0), g]T where 1(0) is calculated as follows:

1(0) = (% - sign(@)r)sin(%).

Following the derivation presented in Della Santina et al.

2

(2018), the partial derivative of the joint space vector I' with
respect to the bending variable 0 is presented as

T
1@ =% =[5 h@h6).1] 3)

20 12

where h(6) = § (5= ) cos(§) = ksin(9).

We introduce the stiffness and damping terms to complete
the dynamic model of the soft arm as:

M(6)0+C(6,0)0+G(6) + KO+ DO = aR(y)p + Tex  (4)
Where
M(6) = m(i . (“"(g)gr -8, “Zz(?)y N Si"(g) 4(' -5) ]
oD ) ) )
’ 2 & 4 ¢ 7
g f—E sin| 9
iy 278
! 7 ).
G(0) = -mg LSO * 6" cos (6) — Locos (6)

-y

M, C, and G are the inertia term, centrifugal and Coriolis term,

Test = J (6) fexts

R(y) = [siny —cosw][

and gravity term, respectively. J"(q) maps the unknown external
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wrenches f.y, to the actuator’s joint torque while R(y) maps the
pneumatic forces to the joint torque on the bending direction.

P = [P P> ]
damping and amplifying coefficients K, D and a are

is the chamber pressure vector. Stiffness,

experimentally identified and detailed in Section 5.

3 Design of the sliding mode
augmented by reactive transitioning
controller

In this article, we will design a nonlinear disturbance
observer (NDOB) to estimate the lumped disturbance in real-
time. We also focus on slowly changing disturbances (A) between
the actuator tip and the environment. Therefore, we assume
|A] <y, where y denotes the upper bound of the time derivative of
the disturbance. The conventional algorithm that only integrates
SMC with NDOB is designed to reject the lumped disturbance
entirely. Such rejection also leads to a high actuator stiffness
during contact with an obstacle. To resolve this issue, we
introduce a three-mode switching algorithm to detect the
contact events and adjust the robot’s desired trajectory if needed.

3.1 Design of the baseline SMC

Considering the modeling uncertainties, we rewrite Eq.
(4) as:

0=£(6,6)+b(O)u+ A, ()

where

£(6,6) =-M(6)"'[(C(6,6) +do)6 + ke + G(6)],

"0 _M(O)’G 0
A= AkM(G) AdM(9)+A06M(9)+Texn
u=R(y)p.

|Ak| < K., |Ad| < Dy, |Ac| < ay and |Tong| < Tpe Ak, Ad, Aax, and

T, denote the parameter uncertainties and unknown
disturbance torque while K,,,, D,,, «,,, and 7,, represent their
upper bounds.

The tracking error, the sliding surface, and the derivative of

the sliding surface are defined as

e=6—9d,
o=¢é+Ae, 1>0,

C; ) (6)
G =264+ f(6,0) +b(O)u + A

With the reaching law ¢ = —#sign (o), the control input is
designed as

u=b" (6)(éd - lé— f(G, 9) - qsign(a)). (7)

where
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1 .. . K,.0 D,,0 T,
5 — B Ml IO | m_
ﬂ21+am<0{m|/\€ 6d+f(9,6)|,-|M(9)|+|M(6)|+|M(6)|+€>.

€ is a positive number. A larger n drives the system to the sliding
surface faster with more significant chattering in the control
input. The stability proof for the resultant closed-loop system is
straightforward and thus omitted here.

3.2 SMC with disturbance estimation

A modified disturbance observer is designed as follows Chen
(2003).

A=z+w(o). 8)
Where z and w(o) are the internal state and the customized
function to be designed for the NDOB, A is the estimate of the

lumped disturbance. In this paper, we choose w(o) = kyo, k,, > 0.
Differentiating (8) and plugging in (6) yields

A=2+k,(e -6+ £(6.0)+b(Ou+A). (9

The control input u is designed as
U= Ueg + U + Uy (10)
where

Ueg = —b(0)"((6,0) +Aé - %4 + ko),
-b(6)™'A,

U, =
us = -b(0) 'ysat (o),
sign(o) lol>u
sat(o) =4 0
@=10 ol
U

Ueq cancels the known dynamics, u, rejects the estimated
unknown dynamics, and ug drives the system to the sliding
surface, respectively. sat(o) is a saturation function to
replace the sign(o) function to mitigate the chattering
problem. kg, n, A and p are positive constants and

Mode Switching

84,64, 6a

Tracking

10.3389/frobt.2022.997366

selected by the user. redThe results of changing the
control parameter’s value are also presented in
Section 5.3.

Plugging in control input (10) into (6) yields the following
closed-loop dynamics of the sliding surface

6 = —ksro - ysat (o) + A. (11)

where A = A — A. It indicates the system tracking error will reach
zero if the disturbance estimation error A reaches zero.

Combining (10) and (9) leads to the following observer
dynamics

A =z +ky (koo +b(0) (u, + 1) + A). (12)
The update law for Z is selected as:
2 = —ky(—kepo + b(0) (1, + 1) + A). (13)

As a result, the closed-loop disturbance estimate and estimation
error dynamics are derived by plugging (13) into (12)

= kyA,

. (14)
=-k,A+A.

D> >

This suggests that the estimation error A is bounded, given the
upper bound for the rate of disturbance.

Theorem 1. Consider the closed loop system of (5),(8) and (10) under
the assumption that |Al < y. The dynamics of o and estimation error Ais

ultimately bounded.

Proof. The. Lyapunov candidate function is:

o+ =A’. (15)

1
V= -
2

|~

Taking the time derivative and plugging in (11) and 14 yields

V= —ksfa2 - nsat (0)o + Ao - kwﬁz +AA. (16)

Using Young’s inequality in Trench (2013) yields

Pressure Pm | Soft 0,
Control Actuator e
NDOB

FIGURE 2

Block diagrams of the SMART controller, which consists of a robust baseline controller (SMC), a disturbance estimator (NDOB), and mode
switching algorithm based on the estimated disturbance and position feedback.
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Experimental results for the proposed augmented model.

Xexpr Yexp @Nd Zeyp are the motion capture measurements,
respectively. Xm1, Ym1 and z; are the proposed model prediction
results. Xm2, Ymz and z,, are the conventional PCC model
(without r parameter) results.

oA < 0.5(02 + AZ),
V<- (ksf - 0.5)(72 - nsat ()0 — (k, — 0.5)&2 +y|Al, (17)
= lo|(~(ks = 0.5) = nlol) + |A|(~ (ky, - 0.5)|A] + y).
According to Theorem in Corless and Leitmann (1981), the
dynamics of o and estimation error A is ultimately bounded and
these two terms can be enforced into arbitrarily small regions.
The bounds on |A| and |o] are.

~ Y

Al<f=—"— 18

A1<p=—Tos (18)
L
sf

lo] < (19)

ﬁ—‘u |U|S‘u
kpu+n

3.3 Switching algorithm

A three-mode switching algorithm is introduced to the
SMART controller to detect the contact events and adjust the
robot’s desired trajectory if needed, as presented in Figure 2.
The three modes are defined as tracking, compliance, and
recovery. With the thresholds of tracking error measurement
(ew) and estimated disturbance (Ay,; and Ay,,), the desired
trajectory switches between the actuator’s original trajectory,
actuator’s current bending angle, and a ramp trajectory from
the current bending angle to the current set-point,
respectively.

We assume that the robot is not initially in contact with
the obstacle, so it is in tracking mode. The controller switches
from tracking to compliance mode when the magnitudes of
the estimated lumped disturbance and tracking error both go
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beyond the thresholds (Ay,; and ey,). The estimated lumped
disturbance reduces accordingly by adjusting the reference
from its original value to the current bending angle, so the
actuator will not be further pressurized to squeeze the
obstacle. When the estimated disturbance drops below the
threshold (A,,) in the compliance mode, it indicates that the
actuator may no longer be in contact with the obstacle, so the
controller will switch to the recovery mode to reach the
current set-point. The slope of the ramp signal is chosen as
2deg/s to avoid aggressive movement after the obstacle is
removed. When the lumped disturbance is above the
threshold (Ay,;) again in the recovery mode, the controller
will switch back to the compliance mode. Otherwise, the
controller stays in the recovery mode until the tracking
errors are below the threshold (ey,) and return to tracking
mode. The thresholds in the switching algorithm can be tuned
to adjust the actuator’s behaviors. Larger values of eth and Ay,
indicate that the controller is less sensitive to the possible
contact events. We identify the lower bound of Ay,; when
there is no obstacle in the original trajectory so that the
modeling uncertainties will not trigger the false detection.
It should be noted that the adjustment of reference
position in compliance mode means that the robot waits
for the obstacle to be moved out of the original trajectory.
The switching algorithm can be easily extended so that the
soft robot can explore motions in other directions to move
around the obstacles. Therefore, autonomous trajectory re-
planning and contact-based navigation Lu et al. (2021);
Dicker et al. (2018) is not the focus of this paper; instead,
we demonstrate that the soft robot, despite modeling
uncertainties, can use a model-based robust control and
disturbance observer to detect contact and adaptively
reject disturbance. Therefore, this letter proposes a simple
trajectory adjustment and evaluates

strategy simple

trajectory adjustment strategy.

4 Experimental setup
4.1 System setup

Two Raspberry Pi 3B were utilized for the system’s high-
level and low-level control loops. The high-level control loop
reads the position feedback from the motion capture system
(Optitrack, NaturalPoint, Inc., Corvallis, OR) with six
cameras sampling at 120Hz and generating desired
pressure profiles at 100Hz. Once the pressure profile is
received from the high-level controller, the low-level loop
three (ITV1050, SMC

Corporation, Tokyo, Japan) to adjust the air pressure

utilizes pressure regulators
within each chamber. Air pressure is also measured by
those regulators and sent back to the high-level controller.

The low-level loop also runs at 100Hz.
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FIGURE 4

System identification results and simulation. (A) Boundaries of
parameter uncertainties with nine trials of experimental data. Mean
values: kg = 0.4897, dg = 0.8616, ag = 1.2634, standard deviations:
Ak = 0.4345, Ad = 0.6600, Aa = 1.0183. (B) Simulated

response comparison of experimental result (solid blue) and
simulation result (solid black).

4.2 Model validation and identification

4.2.1 Model validation

In order to validate the proposed augmented model’s
accuracy, the actuator was excited with a ramp signal
ranging from 0.006 MPa to 0.275 MPa. The bounds of the
input signal were selected to ensure they were within the
actuator’s operational range. The total duration for each trial
was 60 s, with three trials in total. The experimental data and

A B Cc

= -
= & £
= g z 0.4
\: @D 8
2 Z 502
2 Z K
< g i

A 2z

.E 2 0

Time (s) S0 0  Time (s) 50 0 Time(s) 50
FIGURE 5

Experiment results of bending angle tracking without an
obstacle. (A) Tracking results using the SMART and SMC
approaches where 04, Ospmart and Ospc are the desired (dash-
dotted red) and the measured bending angles of SMART
approach (solid black) and SMC approach (solid blue). (B)
Measured chamber pressures from SMC (solid blue) and SMART
(solid black) controller experiments. (C) Estimated lumped
disturbance.
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simulation results are compared to validate the proposed
augmented model’s accuracy.

4.2.2 |Identification of parameter
uncertainties

In order to identify the bounds of modeling uncertainties, the
actuator was excited with a sum of sinusoidal signals as follows:

10
Upa = ZAmp*sin(anjt + ¢]) + by (20)

=1

where Amp = 1.25 and b = 1.25 were selected to ensure input
Upq4 stayed within the operational range. Ten different frequency
components f; were uniformly selected from [0.001Hz, 0.1Hz]
and phase constant ¢; € [0, 2rr] was randomly selected. The time
interval for each trial was 60 s, and nine trials were collected in
total. The experimental data is utilized to identify the bounds of
modeling uncertainties.

4.3 Comparison of controller
performance

Three sets of experiments were designed to compare the
performance of the SMART controller and the benchmark
controller (SMC). In all three sets of experiments, all the
chambers were pre-inflated to 0.006 MPa, and we only
controlled the pressure of chamber 1 to follow a trapezoid
bending angle profile. In the first set of experiments, no obstacle
was placed in the middle of the robot’s desired trajectory. The
goal of the first experiment was to evaluate the bending angle
tracking performance. A stiff obstacle (wood plate) was first
placed at the marked position in the second set. After 22 s from
the start of the trial, the obstacle was moved out permanently.
The move-out timing was selected such that the robot was
moving to the goal location. An alarm was also utilized to
ensure consistency across all the trials. In the third experiment,
a compliant obstacle (green grape) was fixed at another marked
position, utilizing a trapezoid trajectory with a shorter duration
at the flat zone.

4 4 Evaluation of the SMART controller
design parameters

Four sets of experiments were designed to investigate how
ky, k¢ n and A impact the system performance. The
experiments for ki, ks are similar to the third experiment
in the previous subsection, where a 3D-printed stiff obstacle
was fixed permanently. A trapezoid bending angle profile was
assigned to the actuator. For each parameter, three different
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FIGURE 6

Experiment results of SMC approach tracking bending angle

with stiff obstacle where the obstacle is removed permanently at
22 s. (A) The screen shots of the experiment video. (B) Bending
angle tracking results where 6 and 64 are the measured (solid
black), and the original desired (dash-dotted red) bending angles,
respectively. (C) Air pressure measurements of chamber 1.

values (kg = 10, 50, 100 and k,, = 1, 5, 20) were selected. For n
and A parameters (n = 0.1, 10, 100 and A = 0.1, 10, 100), a
trapezoid bending angle profile was also assigned to the
actuator, but no obstacle was used.

5 Experimental results
5.1 Model validation and identification

5.1.1 Model validation

The result from one trial is presented in Figure 3 to
compare the forward kinematics prediction to the motion
capture measurement of the center point of the top plate. In
the presented trial, the proposed augmented model is shown
to be more accurate posture prediction than the conventional
PCC model in the z-direction, and the prediction error was
found to be less than 3% normalized error in all ranges of
motion.

5.1.2 Identification of parameters
uncertainties

All parameters were identified using the MATLAB grey-box
estimation toolbox with the Isqnonlin algorithm for each trial. The
mean value of all the trials is calculated and used as the identified
model (ko(Nm), dy(kg/s), and ap(m?)). The 95% confident interval of
the mean value was taken as the bounds of the modeling
uncertainties (Ak, Ad, and Aa). The results are presented in
Figure 4A where ko = 04897, dy = 0.8616, ay = 1.2634, and
Ak = 0.4345, Ad = 0.6600, Aa = 1.0183. The simulation result of
the model with mean parameter values is also compared with the
experimental data as shown in Figure 4B. It is noted that the model
with mean parameter values can capture the system dynamics
reasonably well, but noticeable modeling uncertainties remain in
the system model.
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5.2 Comparison of controller performance

The experimental results for the first scenario are in Figure 5.
The angular position tracking performance for the SMC and the
SMART approach is presented in Figure 5A, where both controllers
can track the trapezoid signal. Since the SMC controller rejects the
lumped disturbances, including input signal uncertainties, it
presented more chattering in chamber pressure measurement,
presented in Figure 5B. The reduced oscillation of chamber
is also observed for the SMART
controller since the NDOB in the proposed controller can
adaptively The
disturbance during position tracking is presented in Figure 5C,

pressure measurements

reject the disturbance. estimated lumped
where the maximum value of the estimated lumped disturbance is
0.31Nm. To avoid false contact detection, Ag,; = 0.5 is selected for
the proposed SMART controller.

Experimental results for the second scenario are shown in
Figures 6, 7. The position tracking results for the SMC and
SMART approaches are depicted in Figures 6B, Figure 7A,
respectively. Note that both controllers can track the original
trajectory after the obstacle is moved out of the way. However,
the SMC approach shows a significant overshoot after the object
is moved away. The high chamber pressure during contact
contributes to this overshoot problem. As presented in
Figure 6C, the SMC approach saturates the fabric actuator
during the contact. On the other hand, the SMART controller
maintains the low chamber pressure during the contact, as shown
in Figure 6B. The low chamber pressure also indicates that the
actuator is compliant with the obstacle. It is also observed that the
disturbance estimation changes with a different desired trajectory
in each mode, as shown in Figure 7C.

The performance of the controllers for contacting with a stiff
obstacle is evaluated through two metrics: the normalized
chamber air pressure (NCAP) during the contact and the
absolute value of maximum position overshoot (MPO)
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FIGURE 7

Experimental results of the SMART approach tracking

bending angle with stiff obstacle. (A) Bending angle tracking results
where 6, 04, 0, are the measured (solid black), the original desired
(dash-dotted red), and the adjusted desired (dotted blue)
bending angles, respectively. (B) Air pressure measurements of
chamber 1. (C) Lumped disturbance estimation. Yellow, red and
blue indicate the tracking, compliance, and recovery modes.
Green indicates the autonomous switching between the
compliance and recovery modes.
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FIGURE 8

Experiment results of the SMART approach tracking bending
angle with compliant obstacle. (A) Experiment setup and images of
green grapes. (B) Bending angle tracking results where 84 is the
original desired bending angles (dash-dotted red) (C) Air
pressure measurements of chamber 1.

immediately after the contact. The NCAP reflects the level of
compliance during contact, and the chamber pressure is
normalized with respect to the maximum air pressure allowed
for the actuator. The MPO reflects the position tracking
performance after the contact. A smaller value of MPO
indicates higher precision in the goal-reaching task. The
metrics are computed over three trials, and the NCAP values
for SMC and SMART controllers are 0.9293 and 0.7538, while the
MPO (rad) values are 0.1511 and 0.0427, respectively. It is
observed that the SMART the
conventional SMC in both criteria.

controller outperforms
The experimental results for the third scenario are in
Figure 8. As presented in Figure 8A, the soft robot with the
conventional SMC approach crushes into the grape. On the other
hand, both controllers can track the set-point when it is far away
from the obstacle, as seen in Figure 8B. Similar to the stiff obstacle
case, the SMART controller can maintain low air pressure during
contact, as presented in Figure 8C. A video demonstrating all
three scenarios is available at https://youtu.be/3QqwjNVIfeo.

5.3 Evaluation of SMART design
parameters

Experimental results with varying kg are presented in
Figure 9. A larger ks value results in a higher oscillation in
bending angle tracking, chamber air pressures, and
estimated disturbance at the beginning and end of the
the switching algorithm utilizes

tracking error and estimated disturbance value to detect

experiments. Since
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FIGURE 9

Experiment results of tracking bending angle with obstacle

and changing k. (A) Bending angle tracking results where 6 is the
original desired (dash-dotted red), and ke are set to 10 (dotted
blue), 50 (dashed black), 100 (solid red), respectively. (B) Air
pressure measurements of chamber 1. (C) Lumped disturbance
estimation.

possible contacts, the oscillation could lead to false contact
detection during the tracking or recovery mode. On the
other hand, the SMART controller is more sensitive to the
possible contact with larger ky. As shown in Figure 9C, the
estimated disturbance grows faster with the increase of kg
when the actuator is initially in contact with the obstacle
around 20s. While the desired bending angle varies in
different ket
converges slower to the new desired angle, which is

modes, the controller with a smaller
depicted in 20-40 s time interval in Figure 9C. The slow
convergence speed could make the controller unaware of the

detachment between the obstacle and the actuator.
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FIGURE 10

Experiment results of tracking bending angle with obstacle
and changing k. (A) Bending angle tracking results where 6 is the
original desired (dash-dotted red), and k,, are set to 1 (dotted blue),
5 (dashed black), 20 (solid red), respectively. (B) Air pressure
measurements of chamber 1. (C) Lumped disturbance estimation.
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Experiment results of tracking bending angle without

obstacle and changing n. (A) Bending angle tracking results where
6 is the original desired (dash-dotted red), and n are set to 0.1
(dotted blue), 10 (dashed black), 100 (solid red), respectively.

(B) Air pressure measurements of chamber 1. (C) Lumped
disturbance estimation.

Experimental results with varying k, are presented in
Figure 10. A small k, value requires a longer time to
converge to the new desired trajectory and fails to track the
bending angle reference at the end of the experiment, as shown in
Figure 10A. Similar to the kg case, a larger ki, value results in a
more significant oscillation in bending angle tracking, chamber
air pressures, and estimated disturbance at the beginning and the
end of the experiment. Although the SMART controller with a
large k,, value is more sensitive to the contact event, a higher peak
value of disturbance estimation is also observed at 20s, and a
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FIGURE 12

Experiment results of tracking bending angle with obstacle

and changing \. (A) Bending angle tracking results where 6 is the
original desired (dash-dotted red), and X are set to 0.1 (dotted
blue), 10 (dashed black), 100 (solid red), respectively. (B) Air
pressure measurements of chamber 1. (C) Lumped disturbance
estimation.
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more dense zigzag pattern is also observed between 20 to 50 s, as
shown in Figure 10C.

Experimental results with varying n and A are presented in
Figures 11, 12,respectively. Controller with a small n value
uses a longer time to reach the desired trajectory. The
controller with small A fails to track the desired trajectory.
A large value of n or A results in significant oscillation in the
bending angle tracking and false contact detection when no
obstacle is on the path.

6 Conclusion

This paper presents a SMART controller for a fabric-
based soft actuator. The controller aims to autonomously
adjust the actuator’s desired trajectory and maintain
compliance with the obstacle during a goal reaching task.
A new model parameter was introduced to reflect the
distance between the center line and the inextensible arc
to improve the model accuracy. The proposed controller contains
three main parts: an NDOB, a three-mode switching algorithm, and an
SMC approach. The NDOB was designed to estimate the lumped
disturbance, which included modeling uncertainties and external load.
The three-mode switching algorithm was integrated with the baseline
SMC and NDOB to detect contacts and adjust the actuator’s desired
trajectory. Experimental results indicated that the SMART controller
was more compliant during the contact and more precise in the goal-
reaching task after the contact than the baseline SMC. The
convergence speed of the NDOB in the SMART controller
increases with a larger kg and k,, value with a cost of oscillations
in position tracking. A small kg could miss the detachment between
the actuator and the obstacle, and a small k,, value failed to track the
set-point. The controller with a small value of 1) or A requires a longer
time to reach the desired path or even fails to track the path. A large n
or A value results in false contact detection and generates significant
oscillation in the bending angle tracking.

Future studies include optimizing the design parameter to
minimize the total control energy, and implementing other
switching logic for autonomously detaching from the obstacle and
re-planning the trajectory. An extended dynamic model which
includes the current model and the model of the low-level
pressure dynamics will also be studied to improve the performance
of the proposed controller in more dynamic tasks. We will also expand
the dynamic model and SMART controller to the two bending angles
of one actuator and a soft arm with three serially connected actuators
for more complex tasks. In addition, we are interested in incorporating
embodied kinematic sensors such as wire encoders to estimate the
lumped disturbance and exploring the intelligent interaction
controller between the soft arm and other objects, such as human
users.

We will also expand the dynamic model and SMART
controller to the two bending angles of one actuator and a
soft arm with three serially connected actuators for more
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complex tasks. In addition, we are interested in incorporating
embodied kinematic sensors such as wire encoders to estimate
the lumped disturbance and exploring the intelligent
interaction controller between the soft arm and other
objects, such as human users.
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