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Soft robots have shown great potential to enable safe interactions with

unknown environments due to their inherent compliance and variable

stiffness. However, without knowledge of potential contacts, a soft robot

could exhibit rigid behaviors in a goal-reaching task and collide into

obstacles. In this paper, we introduce a Sliding Mode Augmented by

Reactive Transitioning (SMART) controller to detect the contact events,

adjust the robot’s desired trajectory, and reject estimated disturbances in a

goal reaching task. We employ a sliding mode controller to track the desired

trajectory with a nonlinear disturbance observer (NDOB) to estimate the

lumped disturbance, and a switching algorithm to adjust the desired robot

trajectories. The proposed controller is validated on a pneumatic-driven fabric

soft robot whose dynamics is described by a new extended rigid-arm model to

fit the actuator design. A stability analysis of the proposed controller is also

presented. Experimental results show that, despite modeling uncertainties, the

robot can detect obstacles, adjust the reference trajectories to maintain

compliance, and recover to track the original desired path once the obstacle

is removed. Without force sensors, the proposed model-based controller can

adjust the robot’s stiffness based on the estimated disturbance to achieve goal

reaching and compliant interaction with unknown obstacles.
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1 Introduction

There has been a growing interest in using pneumatic actuators and fabric materials to

design soft robots over the recent years Nguyen et al. (2019); Best et al. (2016); Hofer and

D’Andrea (2020). Pneumatic-actuated fabric-based robots have shown desirable

characteristics such as being lightweight, customizable, robust, and highly compliant.

By changing the internal pressure, these fabric-based soft robots can vary their stiffness

from almost zero to a substantial value. Both linear and nonlinear model-based
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controllers have been designed to drive these robots to their

desired trajectories, such as iterative learning control Hofer and

D’Andrea (2020), model predictive control and sliding mode

control Best et al. (2021), robust backstepping controlWang et al.

(2019), and adaptive control Trumić et al. (2021), just name a

few. Different designs of model-based controllers and their

associated challenges are detailed in a recent review paper

Della Santina et al. (2021). However, both linear and

nonlinear control approaches need to increase the soft robot’s

stiffness to be responsive to tracking errors. This increased

stiffness requirement makes the soft robot behaves more like

its rigid counterparts. Once the soft robot reaches a high stiffness

value, it could also lead to hard collisions and loss of safety when

humans and unknown obstacles are on its path. However, it is

still an open challenge for a soft robot to detect possible contacts

with the environment, stay compliant with obstacles, and adjust

the robot’s path if needed.

For soft robots, both body-integrated soft sensors and

observer-based approaches have been explored to detect

contact events. Based on the existence and properties of the

obstacles, a soft robot can switch between different control

strategies. Capacitive and resistive sensors are commonly

integrated with soft robots. Capacitive sensors Frutiger et al.

(2015); Totaro et al. (2020); Navarro et al. (2020) are compliant,

but they have a proximity effect to conductive objects, limiting

their real-world application. Resistive sensors Elgeneidy et al.

(2018); Thuruthel et al. (2019); Rosle et al. (2022) often exhibit

nonlinear time-variant behaviors, making it challenging to

calibrate and model them. Moreover, although body-

integrated soft sensors provide direct contact force estimation

Wang et al. (2018), they need to be placed in the contact area of

the robot body, which may be unknown when the robot operates

in cluttered environments. In contrast, observer-based

approaches leverage dynamic models of the robots for contact

force/torque estimation using more accessible input/output

measurements. In Bui and Schultz (2021), a disc-thread-based

linear parameter varying model was proposed for a fabric-

reinforced actuator. Each disc was modeled as a sub-system,

and a third-order sliding mode observer was created for each

sub-system to estimate the contact force. However, the

computational cost increases with the growing number of

discs used in the model, and applying this method to large-

scale robots is still challenging. In Navarro et al. (2020), both

force intensity and deformation were estimated by integrating a

FEM-based numerical model with capacitive and pneumatic

sensor feedback. The capacitive sensor estimated the contact

location, while the pneumatic sensor quantified the deformation.

The FEM model mediated measurements from both sensors to

estimate the contact force and the robot’s deformation. However,

finding the FEM model for the fabric-based soft robot is difficult

due to the high uncertainties and compliance.

In this article, we present a Sliding Mode Augmented by

Reactive Transitioning (SMART) controller, which switches the

position reference for the baseline sliding mode controller (SMC)

based on the contact events detected by a nonlinear disturbance

observer (NDOB). The NDOB utilizes the kinematic and

pressure measurements to estimate the lumped disturbance,

including modeling uncertainties and unknown external

torque applied on the actuator’s tip during contact with the

environment. The switching algorithm utilizes the tracking error

and estimated disturbance to detect the contact and accordingly

switch among three modes (tracking, compliance, and recovery).

We proved that the proposed controller ensures that the tracking

error between the current position and the switched position

reference is ultimately bounded under the effect of the lumped

disturbance. Experimental results show that the SMART

controller can successfully detect obstacles, become compliant

at its current position, and return to the desired trajectory when

the obstacle is removed, even with the presence of modeling

uncertainties.

This article is inspired by the work in Santina et al. (2020),

where a machine learning-based disturbance observer was

designed to estimate the contact force between a silicone-

based soft arm and the external environment. In Santina et al.

(2020), a piecewise constant curvature (PCC) model, assuming

the existence of a backbone, was utilized to describe the dynamics

of the silicone-based soft arm, and the modeling errors were

learned from experimental data through Gaussian process

regression. In this article, a new parameter is introduced to

extend the PCC model to fabric-based actuators with a design

of a hollow center and no backbone. Instead of utilizing a

machine learning approach to compensate for the modeling

uncertainties, those uncertainties are handled successfully by a

model-based NDOB and SMC. The training data set is not

required for the proposed method compared with the

machine learning approach. In addition, the proposed method

also closes the position control loop using the estimation results.

In summary, this work contributes to.

• A novel dynamic model for a hollow-centered fabric

actuator with parameter identification and model

validation.

• An NDOB that estimates the lumped disturbance,

including model uncertainties and contact torque.

• A SMART controller utilizes the estimated disturbance to

adjust the desired trajectory with the ultimate boundness

proof of the tracking error.

The remainder of the paper is organized as follows: Section 2

introduces the design and dynamic model of the fabric-based

robot. Section 3 presents the design of the baseline SMC

approach and the proposed SMART controller. Section 4

presents the hardware setup and the evaluation experiments’

design. Section 5 presents the evaluation results of the dynamic

model accuracy, the performance comparison between the

baseline SMC and the proposed approaches, and the
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evaluation of the parameter for the SMART controller design.

Section 6 concludes this paper and discusses future directions.

2 Actuator design and dynamicmodel

2.1 Design of the fabric soft robot

The fabric-based soft robot used in this paper was introduced

in our previous work Nguyen et al. (2019).In a single segment, the

robot contains two parts: rectangular-shaped air pillows and an

inextensible fabric layer with three lines of pouches, as presented

in Figure 1A. Each pouch holds one air pillow, and three

individual chambers are created by serially connecting all the

pillows on the same line. When the actuator is inflated, the

pillows in the pouch push each other and create a bending

motion. With three segments, the soft robot can lift a load ten

times heavier than its body weight (1.1 kg) by wrapping around

the object, and it can also be compressed to half of its original

length when the chambers are not inflated. However, material

compliance, fabrication errors, and inconsistent interaction

between pillows introduce significant actuator modeling and

control challenges.

2.2 Dynamic modeling of fabric bending
actuators

The augmented rigid-arm model for soft robotics was first

proposed for an elastomeric-based actuator in Della Santina et al.

(2018). The proposed approach follows the PCC assumption

with the inextensible arc (also known as the virtual backbone)

located at the axial line of the actuator Marchese et al. (2015).

However, the inextensible arc for our fabric-based robot is

designed in a triangular shape, shown in Figure 1A. When

inflated to different pressure values, the inextensible arc will

move along the edge of the triangle. And the offset between the

axial line and the inextensible layer of the actuator will make the

existing models inaccurate.

As a preliminary study, only one segment is utilized in this

work. As shown in Figure 1A, axis z is perpendicular to its local

plate, and axis x positive direction goes through the connection

point between chambers 2 and 3 on its local plate. The

orientation of the actuator is described by two parameters

ψ ∈ [0, 2π) and θ ∈ [−π
2,+π

2], ψ represents the

counterclockwise rotation angle between the plane zb − xb and

the PlaneA where the curvature happens, as shown in Figure 1B.

θ represents the angle between the reference frame x
A
b and xt

expressed on the curvature plane, presented in Figure 1C. Since

the actuator was designed to reach a high elevation angle and the

rotation motion on the azimuth direction was less regulated, we

only control the pressure in chamber 1 and focus on tracking the

bending angle θ of in this paper.

To match the actuator design, we introduce a new parameter

r into the augmented robot model, as shown in Figures 1C,D.

Solid green dot is the intersection point between the constant

curvature arc and the bottom plate while solid red dot is the

origin of Plane A. r represents the distance between the

aforementioned green and read dot and is calculated as follows:

ψ � atan
yt
b

xt
b

( ),
r � ltri�

3
√ cos π/3( )

cos ψ + π( ) mod 2π/3( ) − π/3( ).
(1)

Where point (xt
b, y

t
b) is the projection of the top plate’s center

point on the bottom plate, ltri is the length of the edge of the

equilateral triangle and marked as the green line in Figures 1A,D.

Eq.1 is originated from a base function: r � cos(π/3)
cos(ψ−π/3). The base

function represents a line goes through two points: (1, 0) and (cos

(2π/3), sin (2π/3)). If ψ is restricted within [0, 2π/3], the drawing

FIGURE 1

Modified augmented rigid arm model for the fabric-based actuator. (A) Isometric view of the actuator. (B) Curvature plane with rotation angle

ψ = 0deg. (C) Themodifiedmodel with the addition of parameter r on the curvature plane. The green and red lines indicate the inextensible layer and

the axial line, respectively. (D) Top view of bottom plate when ψ = 30deg. (E) Augmented rigid arm (RPPR).
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of one edge of the triangle shape is complete. The modulus

function ψ mod 2π/3 is used to draw the other two edges and

complete the triangle shape. ltri�
3

√ enlarge the unit triangle to match

the actuator’s design while changing the denominator to cos (((ψ

+ π) mod 2π/3) − π/3) rotates the triangle shape to match

coordinate of the soft arm.

The Denavit-Hartenberg (DH) parameters for the

augmented rigid robot are presented in Table 1. Two

prismatic joints and two revolutionary joints (RPPR) are used

to describe the dynamics of the augmented rigid robot, as shown

in Figure 1E. The configuration is described by joint space vector

Γ � [θ2, l(θ), l(θ), θ2]
T where l(θ) is calculated as follows:

l θ( ) � L

θ
− sign θ( )r( )sin θ

2
( ). (2)

Following the derivation presented in Della Santina et al.

(2018), the partial derivative of the joint space vector Γ with

respect to the bending variable θ is presented as

JΓ θ( ) � zΓ

zθ
� 1

2
, h θ( ), h θ( ), 1

2
[ ]T. (3)

where h(θ) � 1
2 (Lθ − r) cos(θ2) − L

θ2
sin(θ2).

We introduce the stiffness and damping terms to complete

the dynamic model of the soft arm as:

M θ( )€θ + C θ, _θ( ) _θ + G θ( ) +Kθ +D _θ � αR ψ( )p + τext (4)

Where

M θ( ) � m
r2

4
+

cos θ
2( ) r − L

θ
( )
2

+
L sin θ

2( )
θ2

⎛⎝ ⎞⎠2

+
sin

θ

2
( )2

r − L

θ
( )2
4

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,

C θ, _θ( ) � −m(
cos

θ

2
( ) r − L

θ
( )
2

+
L sin

θ

2
( )
θ2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

_θ sin
θ

2
( ) r − L

θ
( )
4

−
L _θ cos

θ

2
( )

θ2
+
2L _θ sin

θ

2
( )

θ3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

_θ sin
θ

2
( ) r − L

θ
( ) cos

θ

2
( ) r − L

θ
( )
2

+
L sin

θ

2
( )
θ2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

4
),

G θ( ) � −mg
L sin θ( ) + rθ2 cos θ( ) − Lθ cos θ( )

2θ2
,

τext � J θ( )fext ,

R ψ( ) � sinψ − cosψ[ ] −sin π

6
( ) −sin π

6
( ) 1

cos
π

6
( ) −cos π

6
( ) 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.

M, C, and G are the inertia term, centrifugal and Coriolis term,

and gravity term, respectively. JT(q) maps the unknown external

wrenches fext to the actuator’s joint torque while R(ψ) maps the

pneumatic forces to the joint torque on the bending direction.

p � [pm1
, pm2

, pm3
]T is the chamber pressure vector. Stiffness,

damping and amplifying coefficients K, D and α are

experimentally identified and detailed in Section 5.

3 Design of the sliding mode
augmented by reactive transitioning
controller

In this article, we will design a nonlinear disturbance

observer (NDOB) to estimate the lumped disturbance in real-

time. We also focus on slowly changing disturbances (Δ) between

the actuator tip and the environment. Therefore, we assume

| _Δ|≤ γ, where γ denotes the upper bound of the time derivative of

the disturbance. The conventional algorithm that only integrates

SMC with NDOB is designed to reject the lumped disturbance

entirely. Such rejection also leads to a high actuator stiffness

during contact with an obstacle. To resolve this issue, we

introduce a three-mode switching algorithm to detect the

contact events and adjust the robot’s desired trajectory if needed.

3.1 Design of the baseline SMC

Considering the modeling uncertainties, we rewrite Eq.

(4) as:

€θ � f θ, _θ( ) + b θ( )u + Δ, (5)

where

f θ, _θ( ) � −M θ( )−1 C θ, _θ( ) + d0( ) _θ + k0θ + G θ( )[ ],
b θ( ) � α0

M θ( ),

Δ � −Δk θ

M θ( ) − Δd
θ

M θ( ) + Δα
α0

M θ( ) + τext,

u � R ψ( )p.
|Δk| < Km, |Δd| < Dm, |Δα| < αm, and |τext| < τm. Δk, Δd, Δα, and

τext denote the parameter uncertainties and unknown

disturbance torque while Km, Dm, αm, and τm represent their

upper bounds.

The tracking error, the sliding surface, and the derivative of

the sliding surface are defined as

e � θ − θd,
σ � _e + λe, λ> 0,
_σ � λ _e − €θd + f θ, _θ( ) + b θ( )u + Δ.

(6)

With the reaching law _σ � −ηsign(σ), the control input is

designed as

u � b−1 θ( ) €θd − λ _e − f θ, _θ( ) − ηsign σ( )( ). (7)

where

TABLE 1 Classic DH parameters θ, d, a, α and mass m for one actuator.

Link Θ d a α m

1 θ
2

0 0 −π
2 0

2 0 l(θ) 0 0 mi

3 0 l(θ) 0 π
2 0

4 θ
2

0 0 −π
2 0
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η≥
1

1 + αm

αm|λ _e − €θd + f θ, _θ( )|,+| Kmθ

M θ( )| + | Dm
_θ

M θ( )| + | τm

M θ( )| + ϵ( ).
ϵ is a positive number. A larger η drives the system to the sliding

surface faster with more significant chattering in the control

input. The stability proof for the resultant closed-loop system is

straightforward and thus omitted here.

3.2 SMC with disturbance estimation

A modified disturbance observer is designed as follows Chen

(2003).

Δ̂ � ẑ + w σ( ). (8)

Where ẑ and w(σ) are the internal state and the customized

function to be designed for the NDOB, Δ̂ is the estimate of the

lumped disturbance. In this paper, we choose w(σ) = kwσ, kw > 0.

Differentiating (8) and plugging in (6) yields

_̂Δ � _̂z + kw λ _e − €θd + f θ, _θ( ) + b θ( )u + Δ( ). (9)

The control input u is designed as

u � ueq + us + un. (10)

where

ueq � −b θ( )−1 f θ, _θ( ) + λ _e − €xd + ksfσ( ),
un � −b θ( )−1Δ̂,
us � −b θ( )−1ηsat σ( ),

sat σ( ) �
sign σ( ) |σ|> μ
σ

μ
|σ|≤ μ

⎧⎪⎪⎨⎪⎪⎩
ueq cancels the known dynamics, un rejects the estimated

unknown dynamics, and us drives the system to the sliding

surface, respectively. sat(σ) is a saturation function to

replace the sign(σ) function to mitigate the chattering

problem. ksf, η, λ and μ are positive constants and

selected by the user. redThe results of changing the

control parameter’s value are also presented in

Section 5.3.

Plugging in control input (10) into (6) yields the following

closed-loop dynamics of the sliding surface

_σ � −ksfσ − ηsat σ( ) + ~Δ. (11)

where ~Δ � Δ − Δ̂. It indicates the system tracking error will reach

zero if the disturbance estimation error ~Δ reaches zero.

Combining (10) and (9) leads to the following observer

dynamics

_̂Δ � _̂z + kw −ksfσ + b θ( ) un + us( ) + Δ( ). (12)

The update law for _̂z is selected as:

_̂z � −kw −ksfσ + b θ( ) un + us( ) + Δ̂( ). (13)

As a result, the closed-loop disturbance estimate and estimation

error dynamics are derived by plugging (13) into (12)

_̂Δ � kw~Δ,
_~Δ � −kw~Δ + _Δ.

(14)

This suggests that the estimation error ~Δ is bounded, given the

upper bound for the rate of disturbance.

Theorem 1. Consider the closed loop system of (5),(8) and (10) under

the assumption that | _Δ|≤ γ. The dynamics of σ and estimation error ~Δ is

ultimately bounded.

Proof. The. Lyapunov candidate function is:

V � 1

2
σ2 + 1

2
~Δ
2
. (15)

Taking the time derivative and plugging in (11) and 14 yields

_V � −ksfσ2 − ηsat σ( )σ + ~Δσ − kw~Δ
2 + ~Δ _Δ. (16)

Using Young’s inequality in Trench (2013) yields

FIGURE 2

Block diagrams of the SMART controller, which consists of a robust baseline controller (SMC), a disturbance estimator (NDOB), and mode

switching algorithm based on the estimated disturbance and position feedback.

Frontiers in Robotics and AI frontiersin.org05

Qiao et al. 10.3389/frobt.2022.997366



σ~Δ ≤ 0.5 σ2 + ~Δ
2( ),

_V ≤ − ksf − 0.5( )σ2 − ηsat σ( )σ − kw − 0.5( )~Δ2 + γ|~Δ|,
� |σ| − ksf − 0.5( ) − η|σ|( ) + |~Δ| − kw − 0.5( )|~Δ| + γ( ).

(17)

According to Theorem in Corless and Leitmann (1981), the

dynamics of σ and estimation error ~Δ is ultimately bounded and

these two terms can be enforced into arbitrarily small regions.

The bounds on |~Δ| and |σ| are.

|~Δ|≤ β � γ

kw − 0.5
(18)

|σ|≤

β − η

ksf
|σ|> μ

βμ

ksfμ + η
|σ|≤ μ

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ (19)

3.3 Switching algorithm

A three-mode switching algorithm is introduced to the

SMART controller to detect the contact events and adjust the

robot’s desired trajectory if needed, as presented in Figure 2.

The three modes are defined as tracking, compliance, and

recovery. With the thresholds of tracking error measurement

(eth) and estimated disturbance (Δth1 and Δth2), the desired

trajectory switches between the actuator’s original trajectory,

actuator’s current bending angle, and a ramp trajectory from

the current bending angle to the current set-point,

respectively.

We assume that the robot is not initially in contact with

the obstacle, so it is in tracking mode. The controller switches

from tracking to compliance mode when the magnitudes of

the estimated lumped disturbance and tracking error both go

beyond the thresholds (Δth1 and eth). The estimated lumped

disturbance reduces accordingly by adjusting the reference

from its original value to the current bending angle, so the

actuator will not be further pressurized to squeeze the

obstacle. When the estimated disturbance drops below the

threshold (Δth2) in the compliance mode, it indicates that the

actuator may no longer be in contact with the obstacle, so the

controller will switch to the recovery mode to reach the

current set-point. The slope of the ramp signal is chosen as

2deg /s to avoid aggressive movement after the obstacle is

removed. When the lumped disturbance is above the

threshold (Δth1) again in the recovery mode, the controller

will switch back to the compliance mode. Otherwise, the

controller stays in the recovery mode until the tracking

errors are below the threshold (eth) and return to tracking

mode. The thresholds in the switching algorithm can be tuned

to adjust the actuator’s behaviors. Larger values of eth and Δth1

indicate that the controller is less sensitive to the possible

contact events. We identify the lower bound of Δth1 when

there is no obstacle in the original trajectory so that the

modeling uncertainties will not trigger the false detection.

It should be noted that the adjustment of reference

position in compliance mode means that the robot waits

for the obstacle to be moved out of the original trajectory.

The switching algorithm can be easily extended so that the

soft robot can explore motions in other directions to move

around the obstacles. Therefore, autonomous trajectory re-

planning and contact-based navigation Lu et al. (2021);

Dicker et al. (2018) is not the focus of this paper; instead,

we demonstrate that the soft robot, despite modeling

uncertainties, can use a model-based robust control and

disturbance observer to detect contact and adaptively

reject disturbance. Therefore, this letter proposes a simple

trajectory adjustment strategy and evaluates simple

trajectory adjustment strategy.

4 Experimental setup

4.1 System setup

Two Raspberry Pi 3B were utilized for the system’s high-

level and low-level control loops. The high-level control loop

reads the position feedback from the motion capture system

(Optitrack, NaturalPoint, Inc., Corvallis, OR) with six

cameras sampling at 120Hz and generating desired

pressure profiles at 100Hz. Once the pressure profile is

received from the high-level controller, the low-level loop

utilizes three pressure regulators (ITV1050, SMC

Corporation, Tokyo, Japan) to adjust the air pressure

within each chamber. Air pressure is also measured by

those regulators and sent back to the high-level controller.

The low-level loop also runs at 100Hz.

FIGURE 3

Experimental results for the proposed augmented model.

xexp, yexp and zexp are the motion capture measurements,

respectively. xm1, ym1 and zm1 are the proposed model prediction

results. xm2, ym2 and zm2 are the conventional PCC model

(without r parameter) results.
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4.2 Model validation and identification

4.2.1 Model validation
In order to validate the proposed augmented model’s

accuracy, the actuator was excited with a ramp signal

ranging from 0.006 MPa to 0.275 MPa. The bounds of the

input signal were selected to ensure they were within the

actuator’s operational range. The total duration for each trial

was 60 s, with three trials in total. The experimental data and

simulation results are compared to validate the proposed

augmented model’s accuracy.

4.2.2 Identification of parameter
uncertainties

In order to identify the bounds of modeling uncertainties, the

actuator was excited with a sum of sinusoidal signals as follows:

upd �∑10
j�1

Amp p sin 2πfjt + ϕj( ) + boff. (20)

where Amp = 1.25 and boff = 1.25 were selected to ensure input

upd stayed within the operational range. Ten different frequency

components fj were uniformly selected from [0.001Hz, 0.1Hz]

and phase constant ϕj ∈ [0, 2π] was randomly selected. The time

interval for each trial was 60 s, and nine trials were collected in

total. The experimental data is utilized to identify the bounds of

modeling uncertainties.

4.3 Comparison of controller
performance

Three sets of experiments were designed to compare the

performance of the SMART controller and the benchmark

controller (SMC). In all three sets of experiments, all the

chambers were pre-inflated to 0.006 MPa, and we only

controlled the pressure of chamber 1 to follow a trapezoid

bending angle profile. In the first set of experiments, no obstacle

was placed in the middle of the robot’s desired trajectory. The

goal of the first experiment was to evaluate the bending angle

tracking performance. A stiff obstacle (wood plate) was first

placed at the marked position in the second set. After 22 s from

the start of the trial, the obstacle was moved out permanently.

The move-out timing was selected such that the robot was

moving to the goal location. An alarm was also utilized to

ensure consistency across all the trials. In the third experiment,

a compliant obstacle (green grape) was fixed at another marked

position, utilizing a trapezoid trajectory with a shorter duration

at the flat zone.

4.4 Evaluation of the SMART controller
design parameters

Four sets of experiments were designed to investigate how

kw, ksf, η and λ impact the system performance. The

experiments for kw, ksf are similar to the third experiment

in the previous subsection, where a 3D-printed stiff obstacle

was fixed permanently. A trapezoid bending angle profile was

assigned to the actuator. For each parameter, three different

FIGURE 4

System identification results and simulation. (A)Boundaries of

parameter uncertainties with nine trials of experimental data. Mean

values: k0 = 0.4897, d0 = 0.8616, α0 = 1.2634, standard deviations:

Δk = 0.4345, Δd = 0.6600, Δα = 1.0183. (B) Simulated

response comparison of experimental result (solid blue) and

simulation result (solid black).

FIGURE 5

Experiment results of bending angle tracking without an

obstacle. (A) Tracking results using the SMART and SMC

approaches where θd, θSMART and θSMC are the desired (dash-

dotted red) and the measured bending angles of SMART

approach (solid black) and SMC approach (solid blue). (B)

Measured chamber pressures from SMC (solid blue) and SMART

(solid black) controller experiments. (C) Estimated lumped

disturbance.
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values (ksf = 10, 50, 100 and kw = 1, 5, 20) were selected. For η

and λ parameters (η = 0.1, 10, 100 and λ = 0.1, 10, 100), a

trapezoid bending angle profile was also assigned to the

actuator, but no obstacle was used.

5 Experimental results

5.1 Model validation and identification

5.1.1 Model validation
The result from one trial is presented in Figure 3 to

compare the forward kinematics prediction to the motion

capture measurement of the center point of the top plate. In

the presented trial, the proposed augmented model is shown

to be more accurate posture prediction than the conventional

PCC model in the z-direction, and the prediction error was

found to be less than 3% normalized error in all ranges of

motion.

5.1.2 Identification of parameters
uncertainties

All parameters were identified using the MATLAB grey-box

estimation toolbox with the lsqnonlin algorithm for each trial. The

mean value of all the trials is calculated and used as the identified

model (k0(Nm), d0(kg/s), and α0(m
2)). The 95% confident interval of

the mean value was taken as the bounds of the modeling

uncertainties (Δk, Δd, and Δα). The results are presented in

Figure 4A where k0 = 0.4897, d0 = 0.8616, α0 = 1.2634, and

Δk = 0.4345, Δd = 0.6600, Δα = 1.0183. The simulation result of

the model with mean parameter values is also compared with the

experimental data as shown in Figure 4B. It is noted that the model

with mean parameter values can capture the system dynamics

reasonably well, but noticeable modeling uncertainties remain in

the system model.

5.2 Comparison of controller performance

The experimental results for the first scenario are in Figure 5.

The angular position tracking performance for the SMC and the

SMART approach is presented in Figure 5A, where both controllers

can track the trapezoid signal. Since the SMC controller rejects the

lumped disturbances, including input signal uncertainties, it

presented more chattering in chamber pressure measurement,

presented in Figure 5B. The reduced oscillation of chamber

pressure measurements is also observed for the SMART

controller since the NDOB in the proposed controller can

adaptively reject the disturbance. The estimated lumped

disturbance during position tracking is presented in Figure 5C,

where the maximum value of the estimated lumped disturbance is

0.31Nm. To avoid false contact detection, Δth1 = 0.5 is selected for

the proposed SMART controller.

Experimental results for the second scenario are shown in

Figures 6, 7. The position tracking results for the SMC and

SMART approaches are depicted in Figures 6B, Figure 7A,

respectively. Note that both controllers can track the original

trajectory after the obstacle is moved out of the way. However,

the SMC approach shows a significant overshoot after the object

is moved away. The high chamber pressure during contact

contributes to this overshoot problem. As presented in

Figure 6C, the SMC approach saturates the fabric actuator

during the contact. On the other hand, the SMART controller

maintains the low chamber pressure during the contact, as shown

in Figure 6B. The low chamber pressure also indicates that the

actuator is compliant with the obstacle. It is also observed that the

disturbance estimation changes with a different desired trajectory

in each mode, as shown in Figure 7C.

The performance of the controllers for contacting with a stiff

obstacle is evaluated through two metrics: the normalized

chamber air pressure (NCAP) during the contact and the

absolute value of maximum position overshoot (MPO)

FIGURE 7

Experimental results of the SMART approach tracking

bending angle with stiff obstacle. (A) Bending angle tracking results

where θ, θd, θa are the measured (solid black), the original desired

(dash-dotted red), and the adjusted desired (dotted blue)

bending angles, respectively. (B) Air pressure measurements of

chamber 1. (C) Lumped disturbance estimation. Yellow, red and

blue indicate the tracking, compliance, and recovery modes.

Green indicates the autonomous switching between the

compliance and recovery modes.

FIGURE 6

Experiment results of SMC approach tracking bending angle

with stiff obstacle where the obstacle is removed permanently at

22 s. (A) The screen shots of the experiment video. (B) Bending

angle tracking results where θ and θd are the measured (solid

black), and the original desired (dash-dotted red) bending angles,

respectively. (C) Air pressure measurements of chamber 1.
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immediately after the contact. The NCAP reflects the level of

compliance during contact, and the chamber pressure is

normalized with respect to the maximum air pressure allowed

for the actuator. The MPO reflects the position tracking

performance after the contact. A smaller value of MPO

indicates higher precision in the goal-reaching task. The

metrics are computed over three trials, and the NCAP values

for SMC and SMART controllers are 0.9293 and 0.7538, while the

MPO (rad) values are 0.1511 and 0.0427, respectively. It is

observed that the SMART controller outperforms the

conventional SMC in both criteria.

The experimental results for the third scenario are in

Figure 8. As presented in Figure 8A, the soft robot with the

conventional SMC approach crushes into the grape. On the other

hand, both controllers can track the set-point when it is far away

from the obstacle, as seen in Figure 8B. Similar to the stiff obstacle

case, the SMART controller can maintain low air pressure during

contact, as presented in Figure 8C. A video demonstrating all

three scenarios is available at https://youtu.be/3QqwjNVIfeo.

5.3 Evaluation of SMART design
parameters

Experimental results with varying ksf are presented in

Figure 9. A larger ksf value results in a higher oscillation in

bending angle tracking, chamber air pressures, and

estimated disturbance at the beginning and end of the

experiments. Since the switching algorithm utilizes

tracking error and estimated disturbance value to detect

possible contacts, the oscillation could lead to false contact

detection during the tracking or recovery mode. On the

other hand, the SMART controller is more sensitive to the

possible contact with larger ksf. As shown in Figure 9C, the

estimated disturbance grows faster with the increase of ksf
when the actuator is initially in contact with the obstacle

around 20 s. While the desired bending angle varies in

different modes, the controller with a smaller ksf
converges slower to the new desired angle, which is

depicted in 20–40 s time interval in Figure 9C. The slow

convergence speed could make the controller unaware of the

detachment between the obstacle and the actuator.

FIGURE 9

Experiment results of tracking bending angle with obstacle

and changing ksf. (A) Bending angle tracking results where θ is the

original desired (dash-dotted red), and ksf are set to 10 (dotted

blue), 50 (dashed black), 100 (solid red), respectively. (B) Air

pressure measurements of chamber 1. (C) Lumped disturbance

estimation.

FIGURE 8

Experiment results of the SMART approach tracking bending

angle with compliant obstacle. (A) Experiment setup and images of

green grapes. (B) Bending angle tracking results where θd is the

original desired bending angles (dash-dotted red) (C) Air

pressure measurements of chamber 1.

FIGURE 10

Experiment results of tracking bending angle with obstacle

and changing kw. (A) Bending angle tracking results where θ is the

original desired (dash-dotted red), and kw are set to 1 (dotted blue),

5 (dashed black), 20 (solid red), respectively. (B) Air pressure

measurements of chamber 1. (C) Lumped disturbance estimation.
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Experimental results with varying kw are presented in

Figure 10. A small kw value requires a longer time to

converge to the new desired trajectory and fails to track the

bending angle reference at the end of the experiment, as shown in

Figure 10A. Similar to the ksf case, a larger kw value results in a

more significant oscillation in bending angle tracking, chamber

air pressures, and estimated disturbance at the beginning and the

end of the experiment. Although the SMART controller with a

large kw value is more sensitive to the contact event, a higher peak

value of disturbance estimation is also observed at 20 s, and a

more dense zigzag pattern is also observed between 20 to 50 s, as

shown in Figure 10C.

Experimental results with varying η and λ are presented in

Figures 11, 12,respectively. Controller with a small η value

uses a longer time to reach the desired trajectory. The

controller with small λ fails to track the desired trajectory.

A large value of η or λ results in significant oscillation in the

bending angle tracking and false contact detection when no

obstacle is on the path.

6 Conclusion

This paper presents a SMART controller for a fabric-

based soft actuator. The controller aims to autonomously

adjust the actuator’s desired trajectory and maintain

compliance with the obstacle during a goal reaching task.

A new model parameter was introduced to reflect the

distance between the center line and the inextensible arc

to improve the model accuracy. The proposed controller contains

threemain parts: anNDOB, a three-mode switching algorithm, and an

SMC approach. The NDOB was designed to estimate the lumped

disturbance, which includedmodeling uncertainties and external load.

The three-mode switching algorithm was integrated with the baseline

SMC and NDOB to detect contacts and adjust the actuator’s desired

trajectory. Experimental results indicated that the SMART controller

was more compliant during the contact and more precise in the goal-

reaching task after the contact than the baseline SMC. The

convergence speed of the NDOB in the SMART controller

increases with a larger ksf and kw value with a cost of oscillations

in position tracking. A small ksf could miss the detachment between

the actuator and the obstacle, and a small kw value failed to track the

set-point. The controller with a small value of η or λ requires a longer

time to reach the desired path or even fails to track the path. A large η

or λ value results in false contact detection and generates significant

oscillation in the bending angle tracking.

Future studies include optimizing the design parameter to

minimize the total control energy, and implementing other

switching logic for autonomously detaching from the obstacle and

re-planning the trajectory. An extended dynamic model which

includes the current model and the model of the low-level

pressure dynamics will also be studied to improve the performance

of the proposed controller inmore dynamic tasks.Wewill also expand

the dynamic model and SMART controller to the two bending angles

of one actuator and a soft arm with three serially connected actuators

formore complex tasks. In addition, we are interested in incorporating

embodied kinematic sensors such as wire encoders to estimate the

lumped disturbance and exploring the intelligent interaction

controller between the soft arm and other objects, such as human

users.

We will also expand the dynamic model and SMART

controller to the two bending angles of one actuator and a

soft arm with three serially connected actuators for more

FIGURE 11

Experiment results of tracking bending angle without

obstacle and changing η. (A) Bending angle tracking results where

θ is the original desired (dash-dotted red), and η are set to 0.1

(dotted blue), 10 (dashed black), 100 (solid red), respectively.

(B) Air pressure measurements of chamber 1. (C) Lumped

disturbance estimation.

FIGURE 12

Experiment results of tracking bending angle with obstacle

and changing λ. (A) Bending angle tracking results where θ is the

original desired (dash-dotted red), and λ are set to 0.1 (dotted

blue), 10 (dashed black), 100 (solid red), respectively. (B) Air

pressure measurements of chamber 1. (C) Lumped disturbance

estimation.
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complex tasks. In addition, we are interested in incorporating

embodied kinematic sensors such as wire encoders to estimate

the lumped disturbance and exploring the intelligent

interaction controller between the soft arm and other

objects, such as human users.
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