


the states and actions in many HRI tasks are continuous.

The ToM framework of observing the ego and other agents’

behaviors for belief updates becomes computationally expen-

sive and even intractable in this case [10]. These challenges

have motivated researchers to explore other representations

of intents. For example, machine learning has been used

to learn latent representation of the human’s policy, which

allows the robot to reason about and potentially influence the

human’s actions [11].

In this paper, we will address the computational challenges

of belief update by taking inspiration from humans [12].

Studies have shown that humans employ intermittent control

for many motor tasks, such as balancing [13], walking [14],

and even driving [15]. They only adjust their motor control

inputs as required for safety or stability, similar to the event-

triggered control scheme for physical systems [16]. Existing

work on intermittent and/or event-triggered control focuses

on single-agent systems. In this paper, we extend this concept

to intent inference in multi-agent systems (i.e., HRI). Our

hypothesis is that a robot may not need to update its belief

at each sampling time, especially when the system is in

an equilibrium state where there is a consensus of intent

estimate. In contrast, a robot only needs to conduct belief

update when its current estimate cannot explain the behavior

of other agent, or when it can improve the team performance

by updating its policy, which depends on intent estimate. As

a result, the key question to be answered in this paper is:

When should a robot infer other agents’ intent?

This paper makes the following contributions towards

answering this question (see summary in Fig. 1): 1) We

consider the triggering of intent inference as a high-level

controller, which is learned through reinforcement learning

(RL); 2) For a two-vehicle uncontrolled intersection case,

we show that a learned intent inference policy decreases

the average computation time from 4.87 to 2.85 seconds

per sampling period, while maintaining safety performance;

3) We test the performance of the proposed algorithm in a

high-risk zone of collisions in the presence of measurement

noises, and show that the proposed algorithm performs more

frequent belief updates when the noise level is higher, which

aids in reducing the chance of collision.

II. RELATED WORK

Intent representation and inference: Some earlier works of

intent recognition in collaborative robotics required inference

of the goal as well as the latent parameters in pursuit of the

goal [17]. As all agents in multi-agent interaction depend

upon each other for task completion, intent inference enables

the agents to determine the intent as well as the possible

trajectories of the other agent which aids in faster mutual

adaptation. The notion of driving style or attention level as an

intent inference parameter has been used in two-agent games

[18]. Social value orientation has been used as a marker

of driver intent for reformulating the interdependent opti-

mization problems as a local single-level optimization using

Karush-Khun-Tucker conditions [3]. The notion of double

blindness in intent inference was developed by [19], and

an empathetic intent inference method was further explored

for autonomous vehicles in [8], [20]. These further layers

of computation of intent makes intent inference algorithms

generally expensive to compute in real time.

Event-triggered and intermittent control: Intermittent con-

trol implies a discontinuous control with active and passive

phases compared to a continuous active control [16]. Hu-

man motor control has been modeled with event-triggered

intermittent control activated via noise or input threshold

and is used for a variety of balancing task ranging from

stick balancing to postural balancing [13], [14]. Intermittent

control behaviors have also been observed in various driving

task such as car following [15] and ground vehicle steering

[21]. Assuming that the same form of control can be used

in intent inference for decision making in a driving task, it

is important to observe how event-triggered intent inference

performs compared to continuous inference, and which state

parameters should be used to trigger the event.

Game-based models for multi-agent interactions: One

early application of game-theoretic approaches for multi-

agent interaction is the pursuit-evasion game, in which two

players have opposing goals [2]. Depending on the state

of the system (discrete vs. continuous), the methodology

for solving the game can vary from computing minimum

cost in the search tree [22] to computing solution for

Hamilton-Jacobi-Issac (HJI) equations [8]. For interactions

where not all information about each agent is publicly

available (incomplete- or imperfect-information games), they

were modeled as partially observable stochastic games [18].

Hence, an agent has to use the other agent’s actions as

observations of the other agent’s underlying utility function

parameters. Modeling agents with incomplete information

and reasoning over other agent’s intent, function parameter,

or policy is an iterative process which can become computa-

tionally intractable [11]. At the same time, such parameter es-

timation does not necessarily lead to continuously changing

policies as seen in [22], where the agents do not often change

their policy and maintain a motion planning strategy for

significant amount of time throughout the interaction. This

motivates us to perform computationally expensive belief

update only when it is necessary.

III. METHODS

In this section, we define the Markov Decision Process

(MDP) for the RL formulation of our intermittent intent

inference algorithm. With this formulation, the RL agent

(AV) learns to perform intent inference (essentially update

its beliefs) whenever deemed necessary. In this paper, we

demonstrate a high-level strategy that can be applied to any

intent inference algorithm of the developer’s choice. Here, we

adopt a belief update approach based on empathetic intent

inference, whose benefits have been highlighted in our past

work [20], [23]. We combine the empathetic belief update

with the proposed high-level RL-based controller, and further

show its performance compared to non-empathetic algorithm

which is widely used in existing HRI literature.
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TABLE I

NOMENCLATURE

H human-driven vehicle
AV autonomous vehicle
Θ intent set, (Θ = [1, 1000])
S state space
U discrete input space (U = [−2,−1, 0, 1, 2, 3])
A action space for the RL Agent (A = [0, 1])

sAV , sH position and velocity state of the AV and H
uAV , uH AV and human control actions

L predefined finitie time horizon
ξAV , ξH sequence of control actions (ξi = [ui(t), ui(t+1), · ·

ui(t+ L− 1)])
ξ∗ Nash equilibrium solution of the action

CAV , CH objective function of interaction game
θAV , θH intent parameter of AV and H

θ̂H , θ̂AV AV’s estimate of H’s intent, H’s estimate of AV’s intent

θ̃AV , θ̃H AV’s inference of H’s inference of AV’s intent, H’s
inference of AV’s inference of H’s intent

csafety , ctask safety loss, task loss

p(θ̃i, θ̂−i; t) empirical joint probability distribution of intent

p(θ̂−i, t) marginal probability distribution of other’s intent

p(θ̃i, t) marginal probability of self’s intent

p̄(θ̃i, θ̂−i; t) updated joint probability distribution after bayes update
p(ξ−i; t) inferred motion of agent −i based on baseline policy

Nash equilibrium set
p̄(ξ−i; t) updated inferred motion of agent −i after bayes update

A. RL-based Intent Estimation

Following [23], our setup considers a two agent game i ∈
{H,AV }, where both agents share the same input set U ,

state space S and intent set Θ. A standard MDP is defined

by a tuple < S,A, T,R >, which consists a set of states

S = Sp(t − 1) × Up(t − 1) × Bθ(t) where Sp(t − 1) ∋
(sAV (t−1), sH(t−1)) contains the physical states (position

and velocity) of the agents at time t−1, Up(t−1) ∋ (uAV (t−
1), uH(t− 1)) is the acceleration used by the agents in time

t−1, Bθ ∋ (p̄(θ̃AV , θ̂H , t), p̄(θ̃H , θ̂AV , t)) are the joint belief

over intent parameter θ of the agents. The RL problem is,

whether, at a given time step, to perform belief update or not.

The RL agent in our simulation is the AV. The RL agent’s

action set is defined as A = {0, 1}, where 1 means that the

AV will update its belief at the current step and 0 otherwise.

We assume that both the H and AV are optimal planners

with the goal of minimizing cumulative loss over the horizon

L. The loss functions of the AV and human are defined as:

Ci(ξAV , ξH , θi) =

t+L−1
∑

t

c(ξi; ξ−i, θi, si, s−i, t), (1)

where i ∈ {H,AV }. At time t, the instantaneous loss of an

agent i, ci, is modeled as the weighted sum of the safety

loss csafety and the task loss ctask :

ci(ξi; ξ−i, θi, si, s−i, t) = csafety(ξi; ξ−i, si, s−i, t)+

θictask (ξi; si, t). (2)

The reward, R, of the MDP is a function of the cumulative

sum of instantaneous loss, Ci, of both agents as defined in

(1) and effort of belief update, eb, where R = −
∑

Ci − eb.

The state transition function for the MDP, T , consists of

two parts: 1) Physical state transition: T (S′
p|Sp, Up) updates

the physical states of the agents based on the applied action

Up(t) according to the vehicle dynamics; 2) Belief update

transition: T (B′
θ|Bθ, A) updates the joint belief over the

intent parameter. The belief update is described in Section

III-B.1. Note that the motion planning is carried out at every

timestep in this work.

B. Belief Update and Motion Planning

As mentioned above, the proposed RL formulation allows

us to use any belief update algorithm and motion planner.

Here, we highlight the non-empathetic and empathetic intent

inference algorithms used for the belief update and the

motion planner for physical state transition.

1) Belief update: In this section we discuss different

aspects that are required for the agents to update their belief.

The empathetic agents compute the joint belief distribution

over both their and the other agent’s intent while the non-

empathetic agents compute only belief of the other agent.

Non-empathetic agent: A non-empathetic agent, i believes

the other agent, −i, knows its true intent. Hence, it com-

putes the Nash equilibrium solution of the game such that,

Q(θi, θ̂−i, t) = {(ξ∗i , ξ̂
∗
−i)} where each element in Q satisfies

ξ∗i = argminC(ξi; ξ̂
∗
−i, θi),

ξ̂∗−i = argminC(ξ−i; ξ
∗
i , θ̂−i)

(3)

Empathetic agent: An empathetic agent, i, puts itself in the

other agent’s, −i, shoes and tries to see the other agent’s

perspective. As i estimates −i’s intent with θ̂−i, it generates

an estimate of −i’s estimate of itself with θ̃i and finds the

Nash equilibrium based on Q(θ̃i, θ̂−i, t) = {(ξ̃∗i , ξ̂
∗
−i)}

Baseline policy: Agent i believes that the agent −i plans its

motion choosing uniformly from the Nash equilibrium set.

Hence for the agent i, the probability mass function of −i’s
motion is given by:

p(ξ−i) ∝



















|{ξ−i; (ξ−i, ξi) ∈ Q(θ̂−i, θ̃i, t)}|,

if i is empathetic

|{ξ−i; (ξ−i, ξi) ∈ Q(θ̂−i, θi, t)}|,

if i is non-empathetic

(4)

where |·| is the cardinality of a set.

Inference problem: The inference problem is solved by

finding the resulting motion of the other agent ξ†−i(t − 1)
with the highest probability mass at time t− 1.

min
θ̃i,θ̂j

∥

∥

∥
u†
−i(t− 1)− u−i(t− 1))

∥

∥

∥

2

2
(5)

s.t. ξ†−i(t− 1) = argmax
ξj∈Ξj

p(ξ−i)

Each solution of (5) is in set S(t) and assigned equal

probability mass (1/K). The resulting joint probability dis-

tribution is provided by

p(θ̃i, θ̂−i; t) ∝

{

1/K, if (θ̃i, θ̂−i) ∈ S(t)

0, otherwise

and p(θ̂−i; t) =
∑

θi∈Θ
p(θ̃i, θ̂−i; t).
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TABLE III

COMPARISON BETWEEN DIFFERENT LEVELS OF MEASUREMENT NOISE

Noise standard deviation (σ) Collision ratio Inference ratio

0.0 0.100 1.0±0.0
0.00625 0.129 0.847±0.035
0.0125 0.133 0.155±0.089
0.025 0.145 0.562±0.064
0.05 0.140 0.810±0.051

aid in avoiding the collision, the AV does realize that further

belief update is not necessary, which causes the inference

ratio to drop significantly. We also see that for higher σ
values, the AV is not able to estimate the intent of H, leading

to higher inference ratios. We further plot the paths of the

two vehicles with different noise levels in Fig. 5b. Here we

can see that the AV’s inability to estimate H’s intent results

in a collision in the high noise case (σ = 0.05).

Figs. 5c-d show the same case with varying noise levels

where there is a collision due to a higher σ (c) while no

collision is observed with a lower σ = 0.00625 in (d). The

results indicate that in collision-prone area when AV and

H are closer to the intersection, performing belief update

over the other agent frequently led to less collisions. These

collisions often occur when the AV is not able to identify

the true intent of H in a timely manner.

V. CONCLUSION

In this paper, we develop an RL-based intermittent empa-

thetic intent inference algorithm. In an uncontrolled intersec-

tion case, we study the use of intermittent empathetic intent

inference for belief updates. We first show that decreasing the

frequency of intent inference degrades the accuracy of intent

prediction, proving the necessity of an intelligent intent infer-

ence algorithm. We show that when the vehicles were farther

away from the intersection, with intermittent empathetic

intent inference, fewer belief updates were needed without

compromising the safety. We find that as the noise increases,

the collision ratio of the AV also increases. However, the

inference ratio first decreases and then increases.

The proposed algorithm can be extended to include belief

over H’s trajectories. This can aid in generating trajectories

from intermittent agents resembling empathetic agents. The

algorithm can further be tested in more complex driving

scenarios, such as roundabouts and lane changing. As this

work only considers AV as the intermittent agent, we can

further model both H and AV as intermittent agents. The

generalizability of the proposed algorithm can also be tested

using various belief update algorithms and further be com-

pared with traditional style controller for performance.
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