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When Shall I Estimate Your Intent?
Costs and Benefits of Intent Inference in Multi-Agent Interactions
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Abstract— This paper addresses incomplete-information dy-
namic games, where reward parameters of agents are private.
Previous studies have shown that online belief update is neces-
sary for deriving equilibrial policies of such games, especially
for high-risk games such as vehicle interactions. However,
updating beliefs in real time is computationally expensive as
it requires continuous computation of Nash equilibria of the
sub-games starting from the current states. In this paper,
we consider the triggering mechanism of belief update as a
policy defined on the agents’ physical and belief states, and
propose learning this policy through reinforcement learning
(RL). Using a two-vehicle uncontrolled intersection case, we
show that intermittent belief update via RL is sufficient for
safe interactions, reducing the computation cost of updates
by 59% when agents have full observations of physical states.
Simulation results also show that the belief update frequency
will increase as noise becomes more significant in measurements
of the vehicle positions.

I. INTRODUCTION

Humans and robots have been increasingly interacting
with each other in sophisticated tasks such as manufacturing,
personal care, and autonomous driving. For such interactions
to be safe and efficient, understanding the intents of other
agents is critical. For example, failure to understand and
anticipate the intent of a human driver (H) can result in
unexpected behaviors of the autonomous vehicle (AV), which
contributes to distrust and disuse of the technology [1]. To
this end, game-theoretic approaches become necessary to
design policies for human-robot interactions (HRI) [2].

Game-theoretic modeling has primarily been applied to
HRI tasks in two ways. The first idea is to simplify the
motion planning problem as an optimal control problem or
model the interaction as a complete-information game [3].
Taking this approach, researchers have used belief updates
to adjust the planned motion [4]. However, this idea may
not work for autonomous driving, as often times a human
driver also needs to infer the AV’s intent online. Here, intent
is defined as a non-observable goal-directed parameter [5].
The second approach is to explicitly consider mutual intent
inference, and enable the AV to build a Theory of Mind
(ToM) of the human, so the AV will infer both what your
intent is and what you think my intent is. ToM models
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Fig. 1. (a) (left) Schematics of the two-agent intermittent intent inference,
and collision occurs when both AV and H are in interaction zone at the same
time. (right) The AV performs intent inference until it is able to identify
H’s intent. (b) A motivating example of AV performing intent inference
at different intervals: (top left) Intermittent intent inference leads to safer
interaction, (top right) no intent inference leads to a collision, (bottom left)
performing intent inference randomly leads to the AV stopping closer to
the intersection. (c) Paths of the two vehicles with different intent inference
algorithms. The intermittent empathetic (int-emp) agent is further from the
interaction zone compared to random and no intent inference.

describe how humans update their beliefs and make decisions
when interacting with other agents allowing an agent to
reason about herself and others as rational entities [6] [7].
In [8], this empathetic intent inference approach allows an
AV to correctly infer the human’s intent and gracefully
negotiate with the human driver to resolve potential conflicts
in uncontrolled intersections.

Despite progress in game-theoretic modeling of HRI, it
remains computationally challenging to execute belief update
algorithms in real-time HRI tasks. On one hand, due to the
mutual intent inference, a robot has to run intent inference at
a higher level than the human, i.e., what your intent is and
what you think my intent is, in order to efficiently coordinate
with the human. As a response, a human can infer intent at
the same level, demanding the robot to go a higher level,
and this process to go ad infinitum [9]. On the other hand,
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the states and actions in many HRI tasks are continuous.
The ToM framework of observing the ego and other agents’
behaviors for belief updates becomes computationally expen-
sive and even intractable in this case [10]. These challenges
have motivated researchers to explore other representations
of intents. For example, machine learning has been used
to learn latent representation of the human’s policy, which
allows the robot to reason about and potentially influence the
human’s actions [11].

In this paper, we will address the computational challenges
of belief update by taking inspiration from humans [12].
Studies have shown that humans employ intermittent control
for many motor tasks, such as balancing [13], walking [14],
and even driving [15]. They only adjust their motor control
inputs as required for safety or stability, similar to the event-
triggered control scheme for physical systems [16]. Existing
work on intermittent and/or event-triggered control focuses
on single-agent systems. In this paper, we extend this concept
to intent inference in multi-agent systems (i.e., HRI). Our
hypothesis is that a robot may not need to update its belief
at each sampling time, especially when the system is in
an equilibrium state where there is a consensus of intent
estimate. In contrast, a robot only needs to conduct belief
update when its current estimate cannot explain the behavior
of other agent, or when it can improve the team performance
by updating its policy, which depends on intent estimate. As
a result, the key question to be answered in this paper is:

When should a robot infer other agents’ intent?

This paper makes the following contributions towards
answering this question (see summary in Fig. 1): 1) We
consider the triggering of intent inference as a high-level
controller, which is learned through reinforcement learning
(RL); 2) For a two-vehicle uncontrolled intersection case,
we show that a learned intent inference policy decreases
the average computation time from 4.87 to 2.85 seconds
per sampling period, while maintaining safety performance;
3) We test the performance of the proposed algorithm in a
high-risk zone of collisions in the presence of measurement
noises, and show that the proposed algorithm performs more
frequent belief updates when the noise level is higher, which
aids in reducing the chance of collision.

II. RELATED WORK

Intent representation and inference: Some earlier works of
intent recognition in collaborative robotics required inference
of the goal as well as the latent parameters in pursuit of the
goal [17]. As all agents in multi-agent interaction depend
upon each other for task completion, intent inference enables
the agents to determine the intent as well as the possible
trajectories of the other agent which aids in faster mutual
adaptation. The notion of driving style or attention level as an
intent inference parameter has been used in two-agent games
[18]. Social value orientation has been used as a marker
of driver intent for reformulating the interdependent opti-
mization problems as a local single-level optimization using
Karush-Khun-Tucker conditions [3]. The notion of double
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blindness in intent inference was developed by [19], and
an empathetic intent inference method was further explored
for autonomous vehicles in [8], [20]. These further layers
of computation of intent makes intent inference algorithms
generally expensive to compute in real time.
Event-triggered and intermittent control: Intermittent con-
trol implies a discontinuous control with active and passive
phases compared to a continuous active control [16]. Hu-
man motor control has been modeled with event-triggered
intermittent control activated via noise or input threshold
and is used for a variety of balancing task ranging from
stick balancing to postural balancing [13], [14]. Intermittent
control behaviors have also been observed in various driving
task such as car following [15] and ground vehicle steering
[21]. Assuming that the same form of control can be used
in intent inference for decision making in a driving task, it
is important to observe how event-triggered intent inference
performs compared to continuous inference, and which state
parameters should be used to trigger the event.
Game-based models for multi-agent interactions: One
early application of game-theoretic approaches for multi-
agent interaction is the pursuit-evasion game, in which two
players have opposing goals [2]. Depending on the state
of the system (discrete vs. continuous), the methodology
for solving the game can vary from computing minimum
cost in the search tree [22] to computing solution for
Hamilton-Jacobi-Issac (HJI) equations [8]. For interactions
where not all information about each agent is publicly
available (incomplete- or imperfect-information games), they
were modeled as partially observable stochastic games [18].
Hence, an agent has to use the other agent’s actions as
observations of the other agent’s underlying utility function
parameters. Modeling agents with incomplete information
and reasoning over other agent’s intent, function parameter,
or policy is an iterative process which can become computa-
tionally intractable [11]. At the same time, such parameter es-
timation does not necessarily lead to continuously changing
policies as seen in [22], where the agents do not often change
their policy and maintain a motion planning strategy for
significant amount of time throughout the interaction. This
motivates us to perform computationally expensive belief
update only when it is necessary.

III. METHODS

In this section, we define the Markov Decision Process
(MDP) for the RL formulation of our intermittent intent
inference algorithm. With this formulation, the RL agent
(AV) learns to perform intent inference (essentially update
its beliefs) whenever deemed necessary. In this paper, we
demonstrate a high-level strategy that can be applied to any
intent inference algorithm of the developer’s choice. Here, we
adopt a belief update approach based on empathetic intent
inference, whose benefits have been highlighted in our past
work [20], [23]. We combine the empathetic belief update
with the proposed high-level RL-based controller, and further
show its performance compared to non-empathetic algorithm
which is widely used in existing HRI literature.
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TABLE I

NOMENCLATURE
H human-driven vehicle
AV autonomous vehicle
€] intent set, (© = [1, 1000])
S state space
U discrete input space (U = [-2,—1,0,1, 2, 3])
A action space for the RL Agent (A = [0, 1])
SAV,SH position and velocity state of the AV and H
UAV, W AV and human control actions
L predefined finitie time horizon
Eav,€l sequence of control actions (§; = [u;(t), u;(t+1),--
wi(t + L — 1))
&* Nash equilibrium solution of the action
Cav,Cqy objective function of interaction game
Oav,0m intent parameter of AV and H
éH, éAV AV’s estimate of H’s intent, H’s estimate of AV’s intent
0 Av,éH AV’s inference of H’s inference of AV’s intent, H’s
inference of AV’s inference of H’s intent
Csafetys Ctask | safety loss, task loss
p(0;,0_s;t) | empirical joint probability distribution of intent
p(0_;,t) marginal probability distribution of other’s intent
p(0;,1) marginal probability of self’s intent
P(0;,6_4;t) | updated joint probability distribution after bayes update
p(€—i;t) inferred motion of agent —i based on baseline policy
Nash equilibrium set
p(E_i;t) updated inferred motion of agent —i after bayes update

A. RL-based Intent Estimation

Following [23], our setup considers a two agent game ¢ €
{H, AV}, where both agents share the same input set U,
state space S and intent set ©. A standard MDP is defined
by a tuple < S, A, T, R >, which consists a set of states
S = Sp(t — 1) x Up(t — 1) x By(t) where Sp(t — 1) >
(sav(t—1),sm(t—1)) contains the physical states (position
and velocity) of the agents at time t—1, Up(t—1) 3 (uay (t—
1),um (t—1)) is the acceleration used by the agents in time
t—1, By 3 (p(0av,0p,t), p(05,0v,t)) are the joint belief
over intent parameter 6 of the agents. The RL problem is,
whether, at a given time step, to perform belief update or not.
The RL agent in our simulation is the AV. The RL agent’s
action set is defined as A = {0, 1}, where 1 means that the
AV will update its belief at the current step and 0 otherwise.

We assume that both the H and AV are optimal planners
with the goal of minimizing cumulative loss over the horizon
L. The loss functions of the AV and human are defined as:

t+L—1

Z c(gi;gflﬁ 91'7 Siy S*iut)a

t

(D

Ci(6av,&m,0:)

where i € {H, AV}. At time ¢, the instantaneous loss of an
agent i, c;, is modeled as the weighted sum of the safety
1088 Cgafety and the task loss ciqen:

Ci(gi; gfiy 91’7 Siy S—iy t) = Csafety (gi; 572'7 SiyS—iy t)+
eictask (gza Si, t) (2)

The reward, R, of the MDP is a function of the cumulative
sum of instantaneous loss, C;, of both agents as defined in
(1) and effort of belief update, e,, where R = — > C; — e,

The state transition function for the MDP, T, consists of
two parts: 1) Physical state transition: 7'(S),| Sy, Up) updates
the physical states of the agents based on the applied action
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Up(t) according to the vehicle dynamics; 2) Belief update
transition: 7T'(Bj|By, A) updates the joint belief over the
intent parameter. The belief update is described in Section
III-B.1. Note that the motion planning is carried out at every
timestep in this work.

B. Belief Update and Motion Planning

As mentioned above, the proposed RL formulation allows
us to use any belief update algorithm and motion planner.
Here, we highlight the non-empathetic and empathetic intent
inference algorithms used for the belief update and the
motion planner for physical state transition.

1) Belief update: In this section we discuss different
aspects that are required for the agents to update their belief.
The empathetic agents compute the joint belief distribution
over both their and the other agent’s intent while the non-
empathetic agents compute only belief of the other agent.
Non-empathetic agent: A non-empathetic agent, ¢ believes
the other agent, —¢, knows its true intent. Hence, it com-
putes the Nash equilibrium solution of the game such that,
Q(0;,0_;,t) = {(&F,€*,)} where each element in Q satisfies

§ = argmin C(§;;€%,,0:),
£, = argmin C(E_5; &, 60-))

Empathetic agent: An empathetic agent, ¢, puts itself in the
other agent’s, —¢, shoes and tries to see the other agent’s
perspective. As ¢ estimates —¢’s intent with 0:,1», it generates
an estimate of —i’s estimate of itself with #; and finds the
Nash equilibrium based on Q(6;,0_;,t) = {(£7,£,)}
Baseline policy: Agent ¢ believes that the agent —¢ plans its
motion choosing uniformly from the Nash equilibrium set.
Hence for the agent i, the probability mass function of —:’s
motion is given by:

{Ei (620 &) € Q(O_3,0;,1)},
if i is empathetic

i3 (€25,&) € Q(O_4,0;, 1)},

if i is non-empathetic

3)

p(€—i) “4)

where |-| is the cardinality of a set.

Inference problem: The inference problem is solved by
finding the resulting motion of the other agent §T_i(t -1
with the highest probability mass at time ¢ — 1.

[ st 1) — st~ 1)

min )
0:,0; 2

s.t. fii(t —-1)= arfgen_laxp(f_i)
JE€E;

Each solution of (5) is in set S(¢) and assigned equal
probability mass (1/K). The resulting joint probability dis-
tribution is provided by

1/K, if (0;,0_;) € S(t)

0, otherwise

p(é“ é,i; t) X {

and p(0_s;t) = g co (0i,0_i1).
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Y

Block diagram of the RL-based intermittent empathetic intent inference. The RL agent takes the states from the environment and provides ACTION

[0,1]. Vehicle in green box represents H which gives a constant signal 1 to do belief update at every timestep. Current physical states, Sy, input states,
Up, and the current joint probability matrix, By, are input for the intent inference block, which returns the distribution of the probability of the other
agent and the marginal probability of the trajectory. The reactive motion provides action for the AV which incorporates the inferred motion and intent of

the agents (see Section III 2-3 for details).

After calculating p(6_;;t), following Bayes rules, we
update the marginal probability distribution as, p(A_;;t) o
p(0_i;t—1)p(A_;;t) [23]. In a similar manner, the posterior
for the joint probability distribution and marginal probability
of the estimated trajectory is updated as:

P(0:,0_i:t) = p(0;, é,i;t)w

p(0—it)
ﬁ(éilvt) = Z p(gf’i,éia é,“t)]j(é“é,“t) (7)
(éi,é_i)eex@

(6)

2) Motion planning: We use the reactive planning strat-
egy [23] that incorporates the inferred motion and intent of
the agents. Given the distribution of —¢’s future motions,
p(€_s;t), a reactive agent plans its motion by minimizing
the expected loss given as:

{Hlelll C;‘ea(:twe (EZ) = Eé—iNﬁ(é—ﬁt) [C(fl’ 5—1’; 01)]

A=t

®)

In our reactive motion planner, the agents react to the
inferred intent and motion to highlight the impacts of the
proposed intermittent intent inference strategy.

IV. CASE STUDY

The goals of the case study are to: 1) explore costs and
benefits of running intent inference at a lower frequency
compared to the sampling rate; 2) compare the performance
of the proposed algorithm with the baseline intent inference
algorithms; 3) test the algorithm with measurement noise.

A. Simulation Setup

1) Simulated RL interactions: We use the OpenAl Gym
[24] library to configure the RL settings. We solve the RL
problem using the Soft Actor Critic for Discrete action (SAC-
Discrete) [25] setup. It was chosen due to the low number of
hyperparameters to be tuned and its demonstrated robustness
to different RL environments.

We use a fixed configuration for RL environment which
generates a set of 1000 random initial states using uniform

sampling for the physical and belief states of the agents. We
use the first 750 data sets for training and the remaining
250 for testing. We parameterize each of the 750 data sets
using the initial states S(0), which consisted of the physical
states Sp(0) and the prior belief Bg(0). The simulation
ran k steps until the end conditions were met (i.e. when
one of the vehicles passed the intersection). Each k' step
of the simulation provided the trajectories of states s(k),
actions u(k), updated belief By (k), and reward R(k). During
training, the policy was updated based on the reward received
by the agent as a result of the chosen action A for whether
or not to perform belief update.

We perform an ablation study by varying e in the reward,
R, primarily to determine the optimum penalty weight when
the agent decides to update its belief. During the testing of
the RL agent, we store the amount of memory used and time
taken in each simulation.

2) Environment definition: We simulate the H-AV inter-
actions at an uncontrolled intersection shown in Fig. 1a. The
state of the agent 7 is defined by the agent’s position z; and
its velocity v;: s; = (x;,v;). The action of the agent i is
defined as its representative acceleration rate.

Loss function: The instantaneous loss function is a weighted
sum of the safety and task loss. The task loss is modeled to
penalize when the agent fails to cross the intersection in the
given horizon, and it is defined as c¢qs, = exp(—z;(t + L —
1)+ 0.6) where x; is the position of the agent i. The safety
loss is a function of the distance between the two agents
and is defined as csqfety = exp(n(—D + ¢)), where D =
|z; — x]Hg Different from [23], 7 is empirically chosen to
be 3.0 and ¢ = 0.13w? where w = 4.5.

Constants and assumptions: We make an assumption that
the true intent 6 of both the AV and H do not change during
the interaction. Note that §; = 1 and 6; = 1000 indicate the
agent to be non-aggressive and aggressive, respectively. In
all our simulations we made our AV non-aggressive while
our H can be either aggressive or non-aggressive.

We also assume both AV and H keep their inference
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Fig. 3. (a) AV performs empathetic intent inference at every third interval

and is able to predict the H as aggressive so it brakes. (b) AV performs non-
empathetic intent inference at every third interval and is unable to predict
the H and maintains a constant velocity. (c) Empathetic intent inference with
a reduced update frequency shows AV taking significant time to predict the
true intent of H. (d) Non-empathetic intent inference with a reduced update
frequency shows AV being unable to predict the true intent of the H.

nature (empathetic or non-empathetic) constant during the
simulations, and H does intent inference at every time step.

3) Evaluation metrics: We measure the computation time
and memory used for the empathetic (E), non-empathetic
(NE), and the proposed intermittent empathetic intent in-
ference algorithm (I). We test the algorithm in 250 initial
conditions generated from the 1000 uniformly distributed
conditions mentioned in Sec. IV-A.1. We further examine the
value and distance between the vehicles for each algorithm.

We also test the intermittent algorithm in collision-prone
simulation by introducing Gaussian noise n ~ AN(0, 02) in
the physical state of the H as observed by the AV and making
the initial position of the AV closer to the intersection. We
test in these conditions, because a wrong estimate of the
other agent’s intent when they are in close proximity can
lead to a collision. We evaluate the AV’s behavior under
different noise levels using collision ratio and inference ratio.
Collision ratio is defined as the total number of collision
cases divided by the total number of test cases. Inference
ratio is defined as the average rate at which belief update
occurs during each noise level.

B. Analysis of Different Belief Update Frequencies

We first study the impact of different intent inference
frequencies by letting the AV perform intent inference once
in every three time steps. Here, the AV was non-aggressive
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and the H was aggressive. We perform two simulations with
both the AV and H as (1) empathetic, and (2) non-empathetic.
In this test, we set the initial positions of both the vehicles
2 meters away from the intersection. As seen in Fig. 3a-
b, the empathetic agent chooses to decelerate while the
non-empathetic agent chooses to maintain its velocity. The
frequency of intent inference affects the estimation of H’s
intent as seen in Fig. 3¢. Furthermore, when the AV uses non-
empathetic belief update, it is not able to correctly estimate
the H’s intent as seen in Fig. 3d. This provides preliminary
evidence to use empathetic intent inference intermittently.
We can see that by just choosing to increase the interval
between the belief updates, one can get the correct inference
of H’s intent but it takes more instances of belief updates.
This motivated us to model the intent inference algorithm
as an RL problem, where, instead of reducing the interval
between belief update, we let the RL agent decide whether
or not to perform belief update at a given time step.

C. Performance Comparison of Intermittent Empathetic In-
tent Inference with Baseline Algorithms

Experimental setup: The baseline empathetic and non-
empathetic intent inference algorithms are presented in Sec-
tion III-B.1, and they ran at each time step in our study.
Whereas, in the intermittent intent inference case, the AV
decides whether it needs to conduct empathetic intent in-
ference using the policy learned from the RL algorithm.
Using the evaluation metrics discussed in Section IV-A.3,
the baseline algorithms are compared with the intermittent
empathetic (I) intent inference algorithm. The initial position
xy is sampled randomly from zp € [2.5,1.5] and x4y is
sampled randomly from x4y € [—1.5, —2.5].

Observation: We find that intermittent intent inference has
several benefits in terms of computational load, as shown
in Table II. As expected, we see a decrease in the average
memory used for computation when AV performed belief
updates intermittently as opposed to the cases when it was
updated at every time step. As a result, the average time to
process one sample of measurement in the simulation also
decreases. The results are promising as they substantiate our
claim that updating beliefs intermittently, as necessary, is
able to maintain safe vehicle interaction as characterized by
the distance between the vehicles and the cumulative reward
collected by them. The value, in fact, is higher when the AV
updated beliefs intermittently.

The qualitative visualization of 10 random samples is
shown in Fig. 4. We show the values for three cases - E,
NE, and I, along with the intersection area marked as a green
box. We want the trajectories in the figure to be far from the

TABLE I
COMPARISON BETWEEN THREE INTENT INFERENCE SCHEMES

Metrics Emp (E) N-Emp (NE) Int (I)
Memory used (KB) 3.114+0.28 295 +£095 | 1.27 £0.34
Computation Time (s) | 4.8740.43 2.59 +0.23 2.85 +£0.24
Value -114088.72 -132688.88 -109208.23
+6582.32 + 6374.33 + 4176.26
Distance 1.4340.05 1.33 + 0.07 1.42+ 0.15
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Fig. 4. Color coding of the value for same 10 random simulations for intermittent, empathetic and non-empathetic intent inference. The trajectories for
Intermittent cases (a) have lower values compared to empathetic (b) and non-empathetic cases (c). The trajectories in (a) also converge further from each

other at the intersection and have higher variance compared to (b) and (c).

green region — the trajectory that passes through green box
corresponds to a collision. While there are no collisions in the
test case, we further observe that in NE cases the value of the
RL agent throughout the trajectory is prominently low and
converge around 1.5 meter at the intersection. Meanwhile, the
trajectories for E cases have improved values and converge
further away from each other at the intersection than in NE
cases. Compared to the NE and E cases, we find that that
I cases have significantly improved values denoted by the
lighter trajectory colors. They also have a wider range of
separation at the intersection than those from the NE and E
cases. The variance is also higher because, for belief updates
in I cases, the AV estimates the intent as well as the predicted
trajectory of H, and uses the last predicted trajectory for their
motion planner until a new prediction is needed.

These results indicate that performing intermittent intent
inference is safe and highly cost-effective. It should be noted
that the widely-adopted non-empathetic intent inference is
unable to estimate the other agent quickly; hence there
is a mean distance of 1.33 between the agents which is
significantly lower compared to empathetic agents. With
intermittent algorithm we are able to generate safety com-
parable to empathetic agents at similar computation time as
non-empathetic agents.

D. Intermittent Intent Inference with Measurement Noise

Experimental setup: Noise in measurement is a promi-
nent issue for autonomous driving especially in challenging
weather conditions. In this part of the study, we carry out in-
tent inference in presence of noise in the observation of phys-
ical states. In particular, we model the AV with measurements
of the H’s physical states. The initial positions of AV and
H were set as x4y € [—1.25,—1.0] and 2y € [1.35,1.6],
meaning both agents were closer to the intersection compared
to previous case study. For all the test cases we choose both
agents to be empathetic, based on the results of the previous
studies. A Gaussian white noise n ~ N(0, o) is introduced
into the AV’s observation of the H’s position, with standard
deviation of o = [0.0,0.00625, 0.0125, 0.025, 0.05].
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Fig. 5. (a) Different estimated intent of the H by the AV in presence of
various levels of noise. The AV is able to accurately predict the intent of
the H in presence of noise of o = 0.00625 which leads to safer maneuver.
(b) Based on the belief update and perceived states of H, AV collides with
the H in presence of noise with higher variance. (c) In presence of noise
with & = 0.05, AV is unable to estimate the H’s true intent which leads to
collision. (d) When the noise variance is reduced to o = 0.00625, the AV
is able to estimate H’s intent correctly and stop before collision.

Observation: In the case without noise, the AV infers the H
at every timestep as seen in Table III. This denotes the best
case policy for given scenario where the agents are closer to
the intersection and have higher probability of collision. As
we increase the noise, we see that the collision ratio increases
as expected since the AV is updating its belief with increasing
error. When there is zero noise in the observation (¢ = 0.0),
the AV performs intent inference at all steps to ensure safety
since both vehicles start close to the intersection in this
study. However, the inference ratio first decreases and then
increases as the noise gradually increases from 0.0 to 0.05,
with lowest inference ratio occurring at noise ¢ = 0.0125.
To further understand the “bowl-shape” inference ratio, we
visualize the estimated intent in the first few samples for each
noise level in Fig. 5a. It is seen that for o = 0.0125 the AV is
able to estimate the intent of the H accurately only after a few
timesteps compared to lower o values. While this does not
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