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tornado at the census tract level
in Louisiana

Rubayet Bin Mostafiz%**, Robert V. Rohli*?, Carol J. Friedland?,
Melanie Gall* and Nazla Bushra*

‘Department of Oceanography & Coastal Sciences, Louisiana State University, Baton Rouge, LA,
United States, ?Coastal Studies Institute, Louisiana State University, Baton Rouge, LA, United States,
SLaHouse Resource Center, Department of Biological and Agricultural Engineering, Louisiana State
University Agricultural Center, Baton Rouge, LA, United States, “Center for Emergency Management
and Homeland Security, Arizona State University, Phoenix, AZ, United States

Louisiana is one of the most hazard-prone states in the U.S., and many of its
people are engaged directly or indirectly in agricultural activities that are
impacted by an array of weather hazards. However, most hazard impact
research on agriculture to date, for Louisiana and elsewhere, has focused on
floods and hurricanes. This research develops a method of future crop loss risk
assessment due to droughts, extreme low and high temperatures, hail,
lightning, and tornadoes, using Louisiana as a case study. This approach
improves future crop risk assessment by incorporating historical crop loss,
historical and modeled future hazard intensity, cropland extent, population,
consumer demand, cropping intensity, and technological development as
predictors of future risk. The majority of crop activities occurred and will
continue to occur in south-central and northeastern Louisiana along the
river basins. Despite the fact that cropland is decreasing across most of the
state, weather impacts to cropland are anticipated to increase substantially by
2050. Drought is by far the costliest among the six hazards, accounting for
$56.1 million of $59.2 million (~95%) in 2050-projected crop loss, followed by
extreme cold ($1.4 million), extreme heat ($1.0 million), tornadoes ($0.4 million),
hail (50.2 million), and lightning ($0.05 million), respectively. These findings will
assist decision-makers to minimize risk and enhance agricultural resilience to
future weather hazards, thereby strengthening this economically-important
industry in Louisiana and enhancing food security.
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Introduction

Increases in population and development bring a sharp
increase in the risk (i.e., the product of the probability of a
hazardous event and the consequences of that event) associated
with weather hazards (Bushra et al, 2021). This risk is
exacerbated by policy that incentivizes development without
considering the additional complications in mitigating risk to
the increasing hazard exposure. The encouragement of
additional development only further increases vulnerability
and reduces resilience to the hazard in a positive feedback
mechanism. Ultimately, environmental, social, and economic
sustainability become impractical unless compensating action
is taken.

While loss and risk occur in a wide range of ways, much
weather hazard research focuses on property damage (e.g.,
Mostafiz et al., 2020a; 2021a; 2021b; 2021¢; 2021d; 2022a) and
casualties (e.g., Jonkman 2005). Although such research is
beneficial, the risk posed to agriculture is often ignored.
Moreover, the risk to agriculture posed by less-catastrophic
weather hazards such as those due to lightning (e.g., Zhang
et al, 2011), hail (e.g, Changnon 1972), mid-latitude wave
cyclones (e.g., Mukherjee et al, 2018), and other weather
hazards is also important and understudied, even as
underutilized data sources, including comprehensive historical
loss databases and sophisticated model output to estimate the
changing hazard intensities, exist to improve such future risk
assessments (Mostafiz 2022c). Assessing weather hazard risk to
agriculture precisely and accurately, especially in spatially
heterogeneous areas, is also often problematic due to a coarse
scale of analysis. Another complication is that future population
and/or land cover changes confound projection of the future risk
to agriculture.

The purpose of this research is to address these gaps by
developing a geospatially-based risk assessment method for
census-tract-level future crop loss due to drought, extreme
cold and hot temperatures, hail, lightning, and tornadoes,
using Louisiana, one of the most weather-vulnerable U.S.

states, as a case study.

Background

Geospatial approaches to understanding the changing
weather hazard risk have proliferated in recent years. For
example, Kebede and Nicholls (2012) showed that flood
exposure increases are a function of the spatial distribution of
socio-economic  variables (i.e, economic development,
urbanization, and population growth). In an analysis of socio-
economic factors contributing to natural hazard exposure at the
U.S. county-scale, Preston (2013) found that despite disaster risk
the U.S.

consequences of increasing economic losses due to extreme

management —successes, continues to face dire
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weather events. The first Intergovernmental Panel on Climate
Change (IPCC) report (Cutter et al, 2012) confirmed these
assertions by reporting that societal exposure (and therefore
risk as defined here) is a product of development processes on
hazardous landscapes and also is an anticipated key driving force
contributing to future vulnerability to extreme weather events
(Pielke Sr et al., 2007; Hinkel et al., 2010). There remains a
paucity of risk assessment work at a scale more local than county-
level, especially while also considering changing hazard
intensities (Gnan et al., 2022a, 2022b; Mostafiz et al., 2022b,
Mostafiz et al., 2022 R. B.; Rahim et al., 2022).

Several recent studies have focused on risk assessment and/or
exposure/loss due to drought (e.g., Bushra et al., 2019). Wilhite
(2000) noted that drought and agricultural losses in general stand
out among weather hazards in terms of risk and exposure, and
both are increasing sharply, and lamented the long-problematic
lack of reliable, accurate, and accessible historic loss data. More
recently, drought monitoring and crop loss prediction has
improved with the Visible Infrared Imaging Radiometer Suite
(VIIRS) sensor in the National Oceanic and Atmospheric
Administration (NOAA) Suomi National Polar-Orbiting
Partnership (S-NPP) satellite, which was launched in 2011
(Kogan et al, 2015). Numerous studies suggest that crop
growing cycle exposure to drought and other hazards,
including extreme temperatures and hail, is increasing with
time (Potopova et al, 2016) and is likely to continue
increasing, resulting in decreasing crop yields (Guo et al,
2017; 2019), though benefits of CO,
fertilization and adaptations may be underestimated. Analyses

Leng and Hall

at shorter time scales improve efforts to identify drought impacts
on crop yields (Pena-Gallardo et al., 2019). Many of these themes
are echoed in the fourth (U.S.) National Climate Assessment
(NCA4) from the U.S. Global Change Research Program
(USGCRP; Gowda et al., 2018).

Similarly, several recent studies have focused on projecting
future risk due to extreme temperatures. Forzieri et al. (2017)
concluded that European weather-related risk in 2100 due to
cold, heat waves, and other hazards has increased 50-fold over
the 1981-2010 period due to the increase in population exposed
amid global warming. Zhang and Hu (2018) studied risk
assessment of extreme cold temperature events in China using
a copula distribution model based on intensity and duration of
the hazard. In a crop-focused extreme temperature risk
assessment, Annan and Schlenker (2015) found that in the
U.S., insured soybeans and corn have 43 and 67 percent more
sensitivity, respectively, to extreme heat than uninsured crops,
and extreme heat is well-understood to decrease crop yields in
Georgia and the Carolinas (Eck et al., 2020). Some (e.g., Lesk
et al,, 2016) have explained that extreme cold is less impactful
than extreme heat, because cold temperatures usually occur
outside of the normal growing season. In addition, if the
warming temperatures occur uniformly across the seasonal
cycle, extreme low temperatures will become less frequent.
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However, others (e.g., Gu et al., 2008) have suggested that the
opposite net effect may occur—that rising temperatures may
cause increased vulnerability to cold by inducing premature
budding and growth before a subsequent unseasonable cold
outbreak.

Overall future crop loss due to hail has not been considered
comprehensively, yet improved understanding of such losses is
economically important, as crop loss due to hail averages
approximately 1 percent of the U.S. national annual crop
output (Changnon 1972). Leigh and Kuhnel (2001) modeled
loss and risk assessment associated with hail for the Sydney,
Australia, region, for insurance purposes. Zhou et al. (2016)
assessed the hail damage to potatoes in Washington using aerial
multispectral imagery at different growth stages and seasons.
Wang et al. (2016) found that hail risk increased (1950-2009) in
China at different growing stages of cotton in their county-level
GIS-based spatiotemporal study. Pucik et al. (2019) noted that
crop loss probability increases when the hail size exceeds 2-3 c¢m,
for central Europe.

Lightning impacts are generally considered to be decreasing
vis-a-vis death rate (Mills 2020), but this trend is presumably
driven by increased awareness facilitated by technological
development, with the risk of injuries and crop and property
loss still present. While much research has been invested in
identifying lightning risk and its impact on property loss (e.g.,
Villamil et al., 2015; Mostafiz et al., 2020b; Brooks et al., 2020; He
et al,, 2020), little research focuses on the lightning-induced risk
to crop loss. Kocur-Bera (2018) identified the most sensitive
places in Poland to damage from lightning, in addition to
drought, cold temperatures, hail, and other hazards, but the
short (2010-2014) period of record limits conclusions.

Changnon et al. (2001) suggested that from 1950 to 1997,
normalized tornado crop losses in the U.S. displayed no temporal
trend. Subsequent work on tornado-driven risk assessments has
been conducted for losses to nuclear plants (Reinhold &
Ellingwood 1982) and property (Mostafiz et al., 2020b; Refan
et al., 2020), and generalized tornado-induced losses have been
conducted at the community (Masoomi & van de Lindt 2018),
and local scales. While not tornadic in nature, the 2020 Iowa
derecho (Hosseini et al, 2020) poignantly demonstrates the
tremendous crop damage that can result from severe weather
in general. However, a need remains for comprehensive analysis
of future tornado risk focused on crop loss.

Regardless of whether the hazard examined is drought,
extreme temperatures, hail, lightning, or tornadoes, increasing
evidence (e.g, Rahman & Rahman 2015) suggests that a
comprehensive management plan in at-risk areas, guided by
both traditional and scientific considerations, is vital for
assessing risk, enhancing resilience, and progressing toward
sustainability. Climate change complicates efforts to improve
management strategies and makes the future risk due to these
hazards even more uncertain. In projecting the probable
economic risk for extreme weather events at various return
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TABLE 1 Total cropland in Louisiana (Source: U.S. Department of
Agriculture (USDA) National Agricultural Statistics Service (NASS)
2020).

Year Total cropland (Acres)
1997 5,567,627
2002 5,071,537
2007 4,691,344
2012 4,275,637
2017 4,345,843

periods under IPCC scenarios, Franzke and Czupryna (2020)
found that the risks can be increased by 3-to-5.4-fold for the U.S.
by 2060. Such future risk assessments must incorporate methods
for projecting population growth accurately (Wu et al., 2018).

Some attempts have been made to quantify resilience that
would be useful for agriculture, such as Lam et al. (2016, 2018),
who introduced the resilience inference measurement (RIM)
approach. While methods such as the RIM model are useful
for quantifying resilience, a similarly appropriate means of
assessing the risk remains elusive. This is problematic because
risk must be evaluated accurately and precisely at the planning
stage for development.

In this study, it is hypothesized that, despite a temporally
decreasing land cover in crops in Louisiana (Table 1), crop loss
from these hazards will increase by 2050 (Gowda et al., 2018) as
additional crop yield (Table 2) and production (Table 3) escalate
the risk, primarily driven by the increasing population, consumer
demand, and exposure to the hazards due to climate change.
Enhanced data and methodological techniques are employed to
improve the estimation of crop loss risk to these hazards and
thereby enhance the likelihood of improved planning for
mitigation, adaptation, and resilience.

Drought, extreme cold, extreme heat, hail, lightning, and
tornadoes are selected for analysis here because, with some
notable exceptions (e.g., Smith and Katz 2013; Smith and
Matthews, 2015) they are understudied, significant, crop-
damage-producers  statewide, and for
Louisiana’s State Hazard Mitigation Plan (SHMP). Moreover,
with the exception of drought, crop losses due to these hazards

are  important

can be assessed relatively easily using existing data sources, in
contrast to more catastrophic hazards (e.g, floods and
hurricanes) in which crop damage occurs from multiple
sources (i.e., wind, lightning, tornadoes, etc.) simultaneously
but is not partitioned by hazard.

Study area
The U.S. state of Louisiana is highly vulnerable to extreme

weather events both in terms of physical exposure as well as in
terms of economic and human impacts, given the concentration
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TABLE 2 Yields of the top five Louisiana crops by value (source: USDA NASS 2020).

Rice (pounds/acre)

Year Soybeans Corn (bushels/acre)
(bushels/acre)

1949 15 20 1,825
1959 235 31 2,850
1969 205 37 3,500
1979 28 54 3,910
1989 22 95 4,430
1999 27 121 5,000
2009 39 132 6,300
2019 48 165 6,380

TABLE 3 As in Table 2, but for total production (source: USDA NASS 2020).

Rice (1,000 cwt)

Year Soybeans Corn (1,000 bushels)
(1,000 bushels)

1949 345 14,540 10,822
1959 4,536 12,183 12,910
1969 32,964 4,477 21,385
1979 93,800 2,214 20,643
1989 38,500 13,490 21,488
1999 26,730 39,930 30,825
2009 36,660 80,520 29,217
2019 41,280 89,925 26,408

of people and assets in high-risk areas, especially along the Gulf
of Mexico (Mostafiz et al, 2021a). Catastrophic loss events
causing more than $1 billion in damage are frequent. Since
1980 alone, Louisiana has been impacted by 25 severe storms,
19 tropical cyclones, 12 droughts, 9 floods, 7 winter storms, and
1 freeze—each causing over $1 billion (2020 Consumer Price
Index (CPI) adjustment) in economic damage (NOAA National
Centers for Environmental Information (NCEIL formerly known
as the National Climatic Data Center (NCDC), 2020). The
Southern Plains/Southwest drought and heat wave of spring-
summer 2011 cost $14.2 billion (2020 CPI adjusted) and caused
95 deaths in Arizona, Kansas, Louisiana, New Mexico,
Oklahoma, and Texas (NOAA NCEI 2020). This drought
spanned 107 consecutive weeks and is arguably the longest to
hit Louisiana, from 04/20/2010 to 05/01/2012, with
approximately 65 percent of Louisiana land cover suffering
from exceptional drought (D4) in late June 2011
(United States Drought Portal, 2020). The southeastern U.S.
winter storm of January 2000 caused four deaths and
$1.1 billion in damage over numerous states, including
Louisiana. Severe weather, including high winds, hail, and
tornadoes, caused $1.4 billion in damage across several
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Cotton (pounds/acre) Hay (tons/acre)

329 1.29
476 1.45
551 1.82
712 221
672 2.6
709 2.4
745 2.8
1,035 2.5

Cotton (1,000 bales) Hay (1,000 tons)

651 395
491 554
482 647
690 849
868 781
901 912
349 1,064
582 975

southern states including Louisiana in April 2020 (NOAA
NCEI 2020). With agriculture contributing over $3.1 billion,
or 2.9 percent of the state’s gross domestic product (University of
Arkansas Division of Agriculture 2021), the vulnerability of
Louisiana agriculture to weather hazards is substantial,
including to the leading crops featured in Tables 2 and 3.

Data

Crop loss data (1960-2019) at the parish level by hazard type
originates from the Spatial Hazards Events and Losses Database
for the United States (SHELDUS®; Center for Emergency
Management and Homeland Security (CEMHS) 2020), which
collects its data from the NCEI Storm Events reports. According
to NOAA NCEI (2018, p. 14), “crop damage information may be
obtained from reliable sources, such as the U.S. Department of
Agriculture (USDA), the county (i.e., parish in Louisiana)
agricultural extension agent, the state department of
agriculture, crop insurance agencies, or any other reliable
authority. Crop damage amounts may be obtained from the
USDA or other similar agencies.” It should be noted that for
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TABLE 4 Indicator of hazard severity, data source, and years analyzed, by hazard in Louisiana.

Hazard Indicator Data source Years analyzed
of hazard severity
Drought Weekly drought intensity U.S. Drought Monitor 2000-2017
Extreme Cold Annual frequency of days with temperatures <32°F National Centers for Environmental Information (NCEI) 19922017
Extreme Heat Annual frequency of days with temperatures >95°F NCEI 1992—2017
Hail Hail days per year National Severe Storms Laboratory (NSSL), University of Oklahoma 1982—2011
Lightning Lightning density per year NCEI 1986—2012
Tornado Tornado days per year Storm Prediction Center (SPC) 1950—2016

Louisiana, drought-induced crop damage was only reported and
available to SHELDUS beginning in 1996.

Because the intended purpose of vegetation determines
whether its loss is considered as crop damage or property
damage (NOAA 2018), this analysis excludes timber, as
forested land cover is assumed to be unharvested and/or
property rather than crop. By contrast, pasture is considered
as cropland because its intended purpose is assumed to be
consumed, although loss of the animals that consume the
pasture are not considered as crop loss here, but would
instead be considered as property loss. Moreover, because
SHELDUS does not itemize losses by crop, a “bulk” analysis
of all crops is undertaken here. Annual crop loss in SHELDUS are
adjusted to 2019$. The indicators of historical hazard severity
and their data sources are shown in Table 4.

Because risk is a product of the probability and consequence
of the hazard occurrence, and the latter is a function of the
cropland value, the hazard intensity data must be accompanied
by data on historical and future cropland extent, demand, and
population (which impacts demand). For this reason, Louisiana
historical land cover data for 2001, 2003, 2006, 2008, 2011, 2013,
and 2016 were downloaded from the National Land Cover
Database (NLCD) archived by U.S. Geological Survey (USGS,
2016). Rasters containing the only two categories for crops in the
NLCD classification system (pasture/hay (category 81) and
cultivated crops (category 82)) comprise the cropland cover
data, from the NCLD database. Louisiana crop market values
available every 5 years from 2002 to 2017 from U.S. Department
of Agriculture (USDA) National Agricultural Statistics Service
(NASS, 2020) and crop export values available annually
(2002—2017) from USDA Economic Research Service (2017)
were used as indicator of crop demand. Historical and 2050-
projected population data for the world and U.S. were acquired
from the U.S. Census Bureau (2020) to assess population growth
for projecting that demand to 2050. Louisiana census-tract
shapefiles were downloaded from the U.S. Census Bureau
(2016). The census tract is the best geographic scale to
represent the crop land cover and crop loss because census
blocks and block groups are too localized (e.g., <0.01 mi2),
while parishes and the state level are too coarse to provide an
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effective representation for cropland to represent individual
crops.

Methods

Because the methodology involves many steps, a flowchart
(Figure 1) is used to provide guidance on each step, described in
detail in the subsections below.

Historical hazard intensity

For each week, shapefiles of drought intensity from the
United States Drought Monitor, (2017), coded according to
the first two columns in Table 5, were rasterized using the
value in the second column of Table 5, with a pixel size of
0.0005 x 0.0005 decimal degrees. The drought value for each
raster cell was averaged across all weeks (2000—2017), providing
the mean weekly historical drought intensity by cell.

In the extreme cold and high temperature analysis, for
139 stations within and adjacent to Louisiana (1/1/1992 to 10/
14/2017), any daily data that were missing, erroneous (e.g.,
minimum temperature exceeds maximum temperature on that
day), or spurious (following Global Historical Climate Network-
Daily (NOAA, 2017a)) criteria, were discarded. Furthermore, any
station with discarded temperature data exceeding 10 percent of
days were removed, as were stations with less than 5 years of data.
These criteria narrowed the analysis to 102 stations. The mean
annual frequency of days having temperatures below 32°F, and in
a separate analysis, above 95°F, were mapped using “ordinary
kriging” with a spherical semivariogram, cell size of 0.0005 X
0.0005 degrees, and variable search radius of 12 points.

Methods for analyzing intensity of the other three hazards
were relatively straightforward. A map of mean annual
(1982—2011) frequency of days with hail of 0.75 + inches in
diameter within 25 miles (NOAA National Severe Storms
Laboratory 2014) was digitized. Then, a triangulated irregular
network (TIN), with these hail-day contour lines generated as
hard edge, was developed. This TIN was then rasterized using
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FIGURE 1

Methodological framework.

TABLE 5 Pixel values in drought intensity calculation.

Category Value for drought
intensity analysis

DO (Abnormally Dry) 0

D1 (Moderate Drought) 1

D2 (Severe Drought) 2

D3 (Extreme Drought) 3

D4 (Exceptional Drought) 4

Normal or Wet Conditions No value

linear interpolation at a cell size of 0.005 x 0.005 degrees. Mean
annual lightning strike data (1986—2012) were acquired in
netCDF format from NOAA, (2017b). These data were
rasterized to 4km x 4 km cells and converted using lightning
density in flashes mi-2 yr-1. Tornado touchdown point data
(1950—2016) were acquired from the U.S. Storm Prediction
Center (SPC; 2017). These data were then processed to
calculate the mean annual frequency of days having a
touchdown within 40 km, at a 100 m x 100 m cell size, using
a spatial probability density heat map derived from kernel density
estimation (Epanechnikov 1969) in QGIS®. Further details
regarding the methodology employed in assessing historical
hazard intensity for extreme cold, hail, lightning, and tornado
are described in Mostafiz et al. (2020b).

Frontiers in Environmental Science

For each hazard j, where j is 1 through 6, the mean historical
hazard intensity by census tract k, where k is 1 through 1148
(Hjx), was calculated. Hj, is one of the key factors used for
calculating projected crop loss by 2050.

Future hazard intensity

A distinctive feature of our method is the use of statewide
adjustment coefficients to represent hazard intensity in future
year x; this produced H;, of all six hazards taken individually.
Because hazard frequencies and/or magnitudes may change in
the future, statewide adjustment coefficients for hazard j in future
year x (Fjx) were computed considering NCA4-projected
(USGCRP 2017) changes to the hazard. Future hazard
intensity was then projected in each census tract k (H ) by
modifying historical hazard intensities H, x using the statewide
adjustment coefficients F;, (Eq. 1).

Hjp.=Hj X Fj, (1)

It was then necessary to determine the values of F;,. For
drought, although Louisiana precipitation is expected to change
little by 2100 (Easterling et al., 2017, their Figure 7.5), enhanced
evapotranspiration caused by increased temperatures may result
in drying soils by 2100 over much of the continental U.S,,
including Louisiana, at least under the higher radiative forcing
and emissions scenario (Wehner et al., 2017; their Figure 8.1).
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TABLE 6 Examples regression-based projection of crop land cover area (km?) by 2050 by census tract (CLCy 2050)-

Census 2001 2004 2006 2008
tract

22001960300 124.1 123.9 123.3 1233
22003950400 129.3 126.9 124.6 121.5
22005030102 6.1 6.1 5.8 5.8

Projecting Consumer Demand for Louisiana Crops.

These changes will impact soil moisture availability in Louisiana.
Specifically, in Louisiana, winter, spring, and summer soil
moisture decreases, made with a “medium” degree of
confidence, are projected to be large relative to natural
variability (Wehner et al, 2017). For these reasons, an
increase in drought hazard of 25 percent was assumed for the
state by 2050, or Farought,2050 = 1.25.

Similarly, F; . for extreme heat was considered to increase by
20 percent (Fextreme heat,2050 = 1.20), based on data in NCA4 by
Vose et al. (2017; their Figure 6.9), although their figure used 90°F
as the threshold rather than the 95°F used in the historical
analysis here. As described in Mostafiz et al. (2020b), changes
to the extreme cold temperature hazard were assumed to parallel
the projected changes to the annual mean frequency of sub-
0°C days. Vose et al. (2017; their Figure 6.9) also estimated such
changes. Thus, F; , for extreme cold temperature was assumed to
decrease by 20 percent by 2050 (Fextreme cold,2050 = 0.80).

An analogous method of representing the severe storm (hail,
lightning, and tornado) hazards as that presented in Mostafiz
et al. (2020b) was employed here. Specifically, the method of
assigning F ;. was determined by weighing the results of current
modeling-based literature. One line of theoretical consideration
suggests that the frequency and/or intensity of severe
thunderstorms in Louisiana capable of producing hail and
This
increasing temperatures through at least 2050 would shift the

lightning may decrease. is because the expected
cold/warm air mass interface and associated polar front jet
stream poleward, leaving Louisiana less frequently near the
peak area for tornadic development (i.e., along vigorous cold
fronts trailing from mid-latitude wave cyclones). The increasing
temperatures would also decrease the frequency/intensity of hail
events because the percentage of time and vertical extent that
subfreezing temperatures exist in the cumulonimbus clouds that
produce hail would decrease with increasing temperatures. The
seasonality of the magnitudes of projected warming is likely to be
less important for this analysis than it might be for most other
locations, because severe thunderstorms and tornadoes show less
seasonality in Louisiana than in most other places.

However, other factors suggest increasing frequency/
of hail-
thunderstorms and tornadoes. Thunderstorm and tornadic

intensity future and  lightning-producing
activity is most likely when energetic, near-surface air

underlies much colder air, so the continued surface warming
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119.9
5.8
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2013 2016 Intercept Slope 2050
122.9 122.7 318.8 (0.10) 119.3
120.4 120.4 14159 (0.64) 96.5
5.8 5.7 62.7 (0.03) 47

would destabilize the atmosphere, tending toward a net
of activity. Brooks (2013)
concluded that the vertical temperature gradient, or instability,

enhancement severe storm
as represented by a severe weather index known as convective
available potential energy (CAPE, measured in Jkg™), is
expected to increase. However, Brooks (2013) also noted the
compensating effect of expected weakening of the vertical wind
shear that spawns tornadoes. Gensini et al. (2014) suggested that
atmospheric instability (as represented by frequency of days with
abundant CAPE) is likely to weaken over nearly all of Louisiana,
for the 2041-2065 period vs. 1981-1995. Collectively, this
research guides our assignment of F;, of a 10 percent
decrease for hail, and a 10 percent increase for lightning and
tornadoes by 2050 compared to the present (Fjgi2050 = 0.90;
Flightning2050 = 1.10; Frornadooso = 1.10). Of course, different
hazard intensities would be derived for similar analyses for
projections of years other than 2050.

For each hazard, a sensitivity analysis is run, to produce loss
estimates for 2050 assuming an over- or under-estimation by
10 percentage points. For example, the 25 percent increase in the
drought hazard would mean that the sensitivity analysis is run
assuming values of 1.15, 1.25, and 1.35 for F;,.

Quantifying historical annual crop loss and
projecting crop land cover change

SHELDUS-based historical, inflation-adjusted (to represent
2019$) crop loss by parish (i) was aggregated to annual total by
hazard (j) and used to represent the economic impacts of past
events. For each i and j, mean annual crop loss, C;; was
computed as the mean historical annual crop loss (2019$) for
the 60-year period from 1960 to 2019 (excepting drought, for
which, as explained earlier, crop loss was available for Louisiana
only since 1996), as depicted in Eq. 2.

C. = [Ci,j,l%o + Ci,j,l%l +GC;, jage2 + ...+ Ci,j,2018 + Ci,j,2019]
Mo 60

@

The crop land cover area (CLC) from NLCD (including
pasture and hay) of each census tract (k) was calculated for the
available years (2001, 2004, 2006, 2008, 2011, 2013, and 2016;
CLCy). The CLCy for 2050 was then projected by fitting a
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TABLE 7 Total market value of crop products in Louisiana (USDA NASS
2020).

Year Market value of
crop ($ million)

2017 2,061
2012 2,784
2007 1,605
2002 1,066
Mean 1,879

TABLE 8 Total export value of crop products in Louisiana (USDA
Economic Research Service 2017).

Year Export value of
crop products
($ million)

2017 1259
2016 1133
2015 1350
2014 1604
2013 1614
2012 1653
2011 1439
2010 1253
2009 982
2008 1069
2007 985
2006 711
2005 664
2004 703
2003 688
2002 495
Mean 1100

regression line through the historical land cover area. Each CLCy
for 2050 was verified to fall between zero and the census tract
area. The data and regression parameters for three example
census tracts (k) are shown in Table 6.

Projecting consumer demand for louisiana
crops

A method of estimating future consumer demand of those
crops based on trends historical and current consumption
(i.e, domestic vs. international) and future population
projections was necessary. Specifically, the percentage of
domestic vs. international consumption was calculated from
the mean historical market value (Table 7) and export value
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(Table 8) of Louisiana’s crop-based products. Tables 7,8 suggest
that 58.5 percent of Louisiana crops is exported (i.e., consumed.

Internationally, Cyy,,4 Or 0.585), and therefore, 41.5 percent
is consumed domestically (Cys or 0.415). U.S. Census Bureau
(2020) estimates that U.S. population will increase by
16.9 percent by 2050 (Pysyso) and world population is
estimated to increase by 26.4 percent (Pyuorid2050). Assuming
no changes in consumer demands, competition, innovation,
and consumption patterns, the consumer demand increase
coefficient of Louisiana crops for 2050 (CD ,59) was
computed as a weighted average, or as

CDss0 = 1+ (Cwortd X Pworlazos0 + Cus X Pusaso) = 1.225

(©)

Thus, assuming that the production will meet this demand,
an additional 22.5 percent of crop value (2019$) will be exposed
to hazards by 2050.

Projecting cropping intensity and
technological development coefficient

It was assumed that technological development will increase
agricultural efficiency, as for global trends (Foley et al., 2011), to
meet the increasing CD,g5 for Louisiana’s crops, despite the
NLCD-regression-projected 9.5 percent decrease in Louisiana’s
areal cropland from 2016 to 2050. Thus, the projected crop land
cover coefficient in 2050 (CL ,g5) is the quotient of 100 divided
by (100—9.5), or 1.105. The future cropping intensity and
technological development coefficient for 2050 (CIC ,psp) was
estimated simply as

CIC2050 = CD2050 X CL2050 =1.225x1.105 = 1.354 (4)

This approach assumes that consumer demand increase and
crop land cover decrease contribute equally toward the intensity/
technological development coefficient.

Projecting future crop loss

Because overall crop loss is impacted by both the presence
and intensity of the hazard acting on the crop land cover in a
given census tract, a method of representing each is important.
For each hazard (analyzed separately), the parish-level, hazard-
and-cropland-adjusted loss ratio LR; ;26 was calculated by
dividing the mean annual historical parish-level crop loss
(o} j» from SHELDUS) by the product of historical hazard
intensity (H;x) and baseline 2016 crop land cover area
(CLCka016) for each census tract within that parish (n), or

Ci, j

LR; j2016 = "
! Zk=1(Hj,k X CLCk,zms)

5
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(1950—2016; Mostafiz et al., 2020b).

This method assigns the total historical parish loss based on
the sum of the product of these factors.

To estimate census-tract-level crop loss by hazard in 2050
(Ljk2050)> LR;ja016 from Eq. 5 is applied to the future mean
annual hazard intensity (Hj, x20s0; from Eq. 2), future cropping
intensity and technological development coefficient (CICy050;
from Eq. 4), and crop land cover area (CLCj0s0; as calculated
by the example in Table 6) within the census tract, or

Ljka0s0 = LRigs016 X Hj k2050 X CICs050 X CLC} 2050 (6)

Results and discussion

Historical and future hazard intensity
Historical hazard intensity (Hj)) for each hazard is mapped in

Figures 2A-F. The northwestern part of Louisiana is the most

vulnerable section of the state to drought, extreme heat, and hail
(Figures 2A,C,D, respectively). Not surprisingly, extreme cold
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Historical mean hazard intensity (H)) in Louisiana: (A) drought (2000—2017), (B) extreme cold temperature (1992—2017; Mostafiz et al,, 2020b),
(C) extreme heat (1992—2017), (D) hail (1982—2011; Mostafiz et al., 2020b), (E) lightning (1986—2012; Mostafiz et al., 2020b), and (F) tornado

09

temperatures are most common throughout northern Louisiana
(Figure 2B). Lightning density is concentrated inurban areas,
particularly in the southeast (Figure 2E). Tornado intensity peaks
prominently in south-central Louisiana, with a secondary area of
maximum intensity in northwestern Louisiana (Figure 2F).
Projected changes to the hazard intensities (H; 0s0) by
2050 are shown in Figures 3A-F. Decreases in the extreme
cold temperature and hail frequencies are apparent by
comparing Figures 2B to 3B and 2D to 3D, respectively. The
lightning-intensity hazard is for

projected to increase

southeastern Louisiana (compare Figures 2E to 3E).

Historical and future projected change in
crop land cover

The majority of crop cultivation occurs in south-central and
northeastern Louisiana and along the major river basins
(Figure 4A). Figure 4B shows the change in crop land cover
at the census tract level from 2016 to 2050 in Louisiana. Crop
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FIGURE 3

As in Figure 2, but for projected future hazard intensity in Louisiana by 2050.

land cover is decreasing in the vast majority of the state, but

especially in coastal, north-central, northwestern, and
southeastern Louisiana (Figure 4B). Increases in crop land
cover are sporadic but are mostly in the northeastern part of
the state. By 2050, 320 census tracts are projected to have no crop
land cover, compared to 207 census tracts in 2016. CLC is
projected to increase in only 24 census tracts and decrease in
722 census tracts, with no change projected in 402 census tracts.
Urban infringement and abandonment of coastal lands are major

reasons for the anticipated decreases.

Historical and future projected annual
crop loss

Historical annual crop losses due to each of the six hazards in
Louisiana are shown in Supplementary Appendix SIA. On a
statewide basis, drought caused 93.1 percent of historical average
annual crop losses from the hazards analyzed here (Table 9). This
result is largely consistent with that from Fahad et al. (2017). The
relatively smaller positive impact of climate change via extreme
cold rather than via extreme heat tends to support the Lesk et al.
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(2016) position over that of Gu et al. (2008). Caddo
(northwestern Louisiana) had the greatest historical annual
crop loss due to drought among the parishes ($6,397,949 or
16.3 percent of Louisiana’s total; Supplementary Appendix SIA).
Likewise, Terrebonne and Lafourche (south-central Louisiana)
and St. James (southeastern Louisiana) experienced the largest
historical annual crop loss from extreme cold ($43,647 or
2.6 percent of the statewide total; Supplementary Appendix
S1A) and hot temperatures ($14,020 or 1.9 percent of
Louisiana’s total; Supplementary Appendix SI1A), respectively.
One caveat of this result is that since crop types are not
distinguished, it is likely that losses due to high-value crops,
such as the citrus orchards in Plaquemines Parish, are
underestimated in this analysis. Franklin Parish (northeastern
Louisiana) and Cameron Parish (southwestern Louisiana) had
the greatest historical annual crop loss due to hail ($31,070 or
19.9 percent of the statewide total; Supplementary Appendix
S1A) and lightning ($439 or 11.7 percent of Louisiana’s total;
Supplementary Appendix SIA), respectively. Finally, St. Landry
Parish in south-central Louisiana sustained the highest historical
annual crop loss due to tornado ($77,107 or 24.3 percent of the
total; Supplementary Appendix SIA). No historical crop losses
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Crop land cover in 2016 (A) and change in crop land cover at the census tract level from 2016 to projection for 2050 (B), in Louisiana.

TABLE 9 Comparison of Louisiana statewide crop loss, by hazard: Historical vs. 2050-projected.

Hazard Average annual crop Projected annual crop Projected change (%)
loss 1960-2019 (2019%) loss in 2050
(2019$)

Drought $39,196,210 $56,141,812 43.23%

Extreme Cold $1,711,019 $1,445,347 ~15.53%

Extreme Heat $734,551 $962,216 30.99%

Hail $155,956 $184,450 18.27%

Lightning $3,750 $4,587 22.32%

Tornado $316,764 $444,435 40.30%

Total $42,118,250 $59,182,847 40.52%

due to tornado were reported for Beauregard, Caldwell,
Cameron, De Soto, Jackson, La Salle, and Red River parishes.

By 2050, total annual crop loss (L;0s0), and therefore risk,
is expected to increase by about 40.5 percent (2019%), with
drought comprising 94.9 percent of the total (Table 9). Crop
losses due to extreme heat, hail, lightning, and tornado are
projected to increase substantially but remain relatively minor
shares of total losses. Of these, hail is an interesting case,
because Ljas9 increases despite a decreasing future hazard
intensity (F; 20s0) and increasing CDjpsp. Extreme cold
temperature will decrease in Ljzs0 due to global warming
despite the increased CDxpsp.

Frontiers in Environmental Science

Figures 5A-F shows the widely varying ranges for L; 50 by
hazard, as was noted previously in Table 9. The absence of crop
loss (i.e., risk) in a given area likely infers the absence of crop
cultivation (e.g., urban census tracts) and/or historical crop loss
for that hazard rather than absence of severe weather threat.

The risk due to drought by 2050 (Figure 5A) is projected to be
greatest the of hazard
(i.e., northwestern location), cropland (i.e., south-central and

where combination exposure
northeastern Louisiana), and a history of crop losses occur
(i.e, Caddo, Vermilion, Avoyelles, St. Landry, Assumption,
Calcasieu, and Jefferson Davis parishes). As was the case for

historical data, Caddo is projected to remain the parish with the
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Projected annual crop loss (20199) by Louisiana census tract, 2050: Drought (A), extreme cold temperature (B), extreme heat (C), hail (D),

lightning (E), tornado (F), and total (G).

greatest annual crop loss among the parishes ($8,386,852 or
14.9 percent of Louisiana’s total; Supplementary Appendix S1B)
by 2050.

Projected risk from extreme cold temperature annual crop
loss in 2050 (Figure 5B) varies substantially by parish but the risk
is relatively evenly distributed throughout Louisiana.
Assumption Parish (south-central Louisiana) may have the
highest annual crop loss ($45,734 or 3.2 percent of the
statewide total) due to extreme cold temperatures in 2050
(Supplementary Appendix S1B). The greatest annual extreme
cold temperature loss is projected to be in census tract
22121020300 in West Baton Rouge Parish of central Louisiana
($33,011). Extreme heat risk is also projected to be evenly
distributed but is more concentrated in the northeastern part
of Louisiana (Figure 5C). St. James Parish is projected to have the
highest annual crop loss ($21,273) among the parishes
(2.2 percent of the state’s total; Supplementary Appendix
S1B). Annual crop loss peaks at $ 17,681 in census tract
22021000100 within Caldwell Parish.

Interestingly, cold temperatures pose more of a risk than hot
temperatures in Louisiana, despite the projected increased
temperatures. It should be noted that extreme heat and the
much larger drought risk go hand-in-hand, so some of the
extreme heat risk is likely to be accounted for by the drought
analysis. Also, because cold and heat waves typically engulf large

areas, the SHELDUS data resolve many of the historical crop
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losses due to extreme cold and heat at a coarse regional scale,
causing the historical annual crop loss values due to extreme
heat (and separately, due to extreme cold) to be assigned
equally across many parishes (Supplementary Appendix
SIA). The method employed here allows projected loss to
vary across parishes by distributing the loss based on
current and projected changes to land cover by census tract
and spatial variability in hazard intensity (Supplementary
Appendix S1B).

The crop risk to the hail hazard in 2050 is projected to peak in
northeastern Louisiana, including Catahoula, Concordia, East
Carroll, Franklin, Madison, and Tensas parishes (Figure 5D).
Franklin Parish is projected to have the greatest annual crop loss
among the parishes ($38,442 or 20.8 percent of Louisiana’s total;
Supplementary Appendix S1B). The census tract with the highest
projected annual crop loss due to hail ($22,439 in census tract
22065960200) is in Madison Parish.

Lightning risk is projected to peak in sparsely-populated
southwestern and northeastern Louisiana (Figure 5E) where
hazard, CLC, and historical crop loss overlap. This spatial
peak in risk occurs despite a higher hazard intensity elsewhere
(see again Figure 3E), as the higher hazard intensity is occurring
in largely non-agricultural areas. Cameron Parish is projected to
have the greatest annual crop loss ($561) among the parishes
(12.2 percent of Louisiana’s total; Supplementary Appendix S1B).
Annual crop loss peaks at $468 in Cameron Parish (census tract
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TABLE 10 Sensitivity analysis of annual crop loss (i.e., risk) estimates statewide in Louisiana for each hazard by 2050, for 10 percent overestimation or

underestimation of the hazard intensity change (20198$).

Hazard Overestimate F; . by Modeled F; . (Eq. 6) Underestimate F;, by Difference
10 percent 10 percent from Eq. 6

Drought $60,633,159 (+35%) $56,141,812 (+25%) $51,650,468 (+15%) +8.0%

Extreme Cold $1,264,683 (—30%) $1,445,347 (—20%) $1,626,021 (—10%) +12.5%

Extreme Heat $1,042,399 (+30%) $962,216 (+20%) $882,030 (+10%) +8.3%

Hail $163,953 (—20%) $184,450 (—10%) $204,941 (0%) +11.1%

Lightning $5,006 (+20%) $4,587 (+10%) $4,172 (0%) +9.1%

Tornado $484,836 (+20%) $444,435 (+10%) $404,030 (0%) +9.1%

Total $63,594,036 $59,182,847 $54,771,662 +7.5%

22023970100), likely because it is one of the few tracts in
Cameron with intense cultivation.

Tornado risk is anticipated to remain much higher than that
of hail and lightning. Acadia Parish in southwestern Louisiana is
projected to have the highest annual crop loss ($112,376 or
25.3 percent of the state total) due to tornado in 2050
(Supplementary Appendix SI1B). At the census tract scale,
peak losses are projected to be in the large, northeastern
Louisiana census tracts in Catahoula, Concordia, Morehouse,
southern East Carroll, and western Madison parishes (Figure 5F).
The greatest annual tornado loss is in census tract
22095071100 in St. John the Baptist Parish ($33,022).

Sensitivity analysis

A brief sensitivity analysis to demonstrate the impact of
different model assumptions regarding future conditions for each
hazard, taken one at a time, is presented in Table 10. The final
column in Table 10 shows the estimated change in annual crop
loss if an underestimate or overestimate in modeled values of ten
percentage points occurs. Interestingly, due to compensating
effects of hazard intensities that are projected to increase
(i.e., drought, extreme heat, lightning, and tornado) vs. those
expected to decrease (i.e., extreme cold and hail), an “across-the-
board” underestimation or overestimation for all six hazards
leads to bulk total property that by
only +7.5 percent (i.e., bottom row of Table 10).

losses change

Study limitations

Because of the lack of model-output data with high
confidence at the sub-state scale, the geographical distribution
of the hazards is assumed to be constant over space throughout
Louisiana. Similarly, projected temporal changes in hazard
intensity by 2050 are assumed to be consistent statewide. In
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reality, changing frequencies and intensities of synoptic weather
patterns that produce extreme weather conditions will not be
consistent across space, even at the sub-state scale.

The reliability of the crop loss as projected for the year
2050 depends on the accuracy of input data (i.e., historical hazard
intensity, historic crop loss, and crop market and export values)
and model estimations (i.e., future hazard conditions, future crop
land cover changes, population projection, changing consumer
demand, cropping intensity, and technological development).
The consideration of annual values can introduce inaccuracies
and uncertainties, as climate changes are assumed to occur
differently by season, yet the climate model uncertainties still
lag behind uncertainties of other models, such as hydrological, at
the seasonal scale (Joseph et al., 2018). Human cultural and
economic changes, including wealth/GDP, product preferences,
adaptations (e.g., changing competition from other producers),
and policy are not incorporated in the study.

This study’s source for historic crop losses (SHELDUS) has
limitations. First, despite including loss estimates across all
hazard types and magnitudes, gaps and biases in these
estimates in SHELDUS.
SHELDUS assumed the lower bound of the logarithmic
range (e.g., $5,000 to $50,000) that NOAA’s NCEI (NCDC
at the time) had been using to report loss estimates prior to

exist For example, because

1996, losses tended to be underestimated for the earlier
decades. Furthermore, indirect losses, including employment
hours, health problems during evacuation, and complications
caused by other storm-induced stressors, are not included (Gall
et al, 2009). A known issue with loss databases and their
application to projections of losses is how compound events
are categorized. Zscheischler et al. (2018) acknowledged that
loss underestimates could occur due to the accounting of
compound events as only one hazard type. In the case of the
present analysis, given that SHELDUS losses are divided
equally, naturally introduced and
unavoidable as the U.S. National Weather Service, the data

source for SHELDUS, reports losses as compound event totals

some  errors are
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only and forgoes estimation by hazard type. A final limitation
regarding the crop loss data is that because SHELDUS did not
itemize crop loss by crop, the data availability necessitated a
“bulk” analysis of all crops, which in fact masks the influences
of different climatic extremes on the individual crops.

Data management decisions by the responsible agencies can
also introduce uncertainties when used for purposes in this
research. For example, although the U.S. National Weather
Service strives to collect county-scale loss data, losses from
some events are reported only at the multi-county scale. In
such cases, SHELDUS partitions losses equally among the
affected counties, regardless of differences in population,
population density, or development. Because the scale of such
events is so broad, the most glaring example of this type of
generalization of losses is for extreme heat; nearly all parishes
were assigned the same historical crop loss value (Supplementary
Appendix SIA). Despite the limitations, SHELDUS data have
been used successfully in similar research (e.g., Li et al., 2015;
Rohli et al., 2016; Hahn et al., 2017; Paul and Sharif 2018;
Mostafiz et al.,, 2020b) and remains the best available source
for U.S. hazard-induced crop loss data.

Summary and conclusion

This study offers an approach for improving risk estimates
for six important weather hazards using the example of
Louisiana, one of the most weather-vulnerable U.S. states.
The method avoids, where possible, aggregating data to a
county-level risk. The finer-resolution spatial analysis is
valuable because uneven population distribution and/or
hazard exposure often makes the scale of natural hazard-
the spatially
heterogeneous and/or localized. This work also circumvents

induced damage, and therefore risk,

another perennial complication in risk assessment by
incorporating estimates of future changes in both the local
hazard intensity and crop land cover; one or both of these
factors are often ignored in projecting risk. While our approach
certainly cannot avoid making gross assumptions, the use of
localized, weighted, model-based projections of crop land
cover, consumer demand, and future hazard intensities to
estimate census-tract-level risk of crop loss due to several
severe weather hazards in Louisiana, United States, by 2050,
enhances our current understanding of current and future
severe weather impacts.
The major findings of this research are:

1) While the majority of cropland occurs and will continue to
occur in south-central and northeastern Louisiana along the
river basins, crop activity is decreasing in southeastern and
northwestern Louisiana and is increasing in parts of the
northeast.
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2) By 2050, crop risk, measured as likelihood of economic loss,
statewide is likely to continue to be dominated by drought,
which is projected to account for $56 million of the
$59 million (~95%) in crop loss by 2050.

3) Extreme cold is likely to continue to produce more damage

~

than extreme heat (although the latter often occurs in tandem
with drought), despite the projected warming climate.
4

=

Tornadoes, hail, and lightning will remain the fourth, fifth,
and sixth riskiest hazards examined, respectively.

Ul
~

The northeastern part of the state can be expected to remain
impacted relatively more heavily than other parts of the state
by extreme heat, hail, lightning, and tornadoes.

The findings in this study will help decision-makers to make
crops more resilient to future hazards, thereby strengthening the
economically-important agriculture industry in Louisiana and
enhancing food security.

Work based on a similar methodology is needed to evaluate
future risk from other hazards in other locations. Moreover, more
sophisticated projections of cropland, consumer demand, cropping
intensity, technological development, and demography will improve
model projections of future losses, enhancing decision-making for
allocating resources to mitigate and adapt to these natural hazards.
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