
Future crop risk estimation due
to drought, extreme
temperature, hail, lightning, and
tornado at the census tract level
in Louisiana

Rubayet Bin Mostafiz1,2,3*, Robert V. Rohli1,2, Carol J. Friedland3,

Melanie Gall4 and Nazla Bushra1

1Department of Oceanography & Coastal Sciences, Louisiana State University, Baton Rouge, LA,

United States, 2Coastal Studies Institute, Louisiana State University, Baton Rouge, LA, United States,
3LaHouse Resource Center, Department of Biological and Agricultural Engineering, Louisiana State

University Agricultural Center, Baton Rouge, LA, United States, 4Center for Emergency Management

and Homeland Security, Arizona State University, Phoenix, AZ, United States

Louisiana is one of the most hazard-prone states in the U.S., and many of its

people are engaged directly or indirectly in agricultural activities that are

impacted by an array of weather hazards. However, most hazard impact

research on agriculture to date, for Louisiana and elsewhere, has focused on

floods and hurricanes. This research develops a method of future crop loss risk

assessment due to droughts, extreme low and high temperatures, hail,

lightning, and tornadoes, using Louisiana as a case study. This approach

improves future crop risk assessment by incorporating historical crop loss,

historical and modeled future hazard intensity, cropland extent, population,

consumer demand, cropping intensity, and technological development as

predictors of future risk. The majority of crop activities occurred and will

continue to occur in south-central and northeastern Louisiana along the

river basins. Despite the fact that cropland is decreasing across most of the

state, weather impacts to cropland are anticipated to increase substantially by

2050. Drought is by far the costliest among the six hazards, accounting for

$56.1 million of $59.2 million (~95%) in 2050-projected crop loss, followed by

extreme cold ($1.4million), extreme heat ($1.0million), tornadoes ($0.4million),

hail ($0.2 million), and lightning ($0.05 million), respectively. These findings will

assist decision-makers to minimize risk and enhance agricultural resilience to

future weather hazards, thereby strengthening this economically-important

industry in Louisiana and enhancing food security.
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Introduction

Increases in population and development bring a sharp

increase in the risk (i.e., the product of the probability of a

hazardous event and the consequences of that event) associated

with weather hazards (Bushra et al., 2021). This risk is

exacerbated by policy that incentivizes development without

considering the additional complications in mitigating risk to

the increasing hazard exposure. The encouragement of

additional development only further increases vulnerability

and reduces resilience to the hazard in a positive feedback

mechanism. Ultimately, environmental, social, and economic

sustainability become impractical unless compensating action

is taken.

While loss and risk occur in a wide range of ways, much

weather hazard research focuses on property damage (e.g.,

Mostafiz et al., 2020a; 2021a; 2021b; 2021c; 2021d; 2022a) and

casualties (e.g., Jonkman 2005). Although such research is

beneficial, the risk posed to agriculture is often ignored.

Moreover, the risk to agriculture posed by less-catastrophic

weather hazards such as those due to lightning (e.g., Zhang

et al., 2011), hail (e.g., Changnon 1972), mid-latitude wave

cyclones (e.g., Mukherjee et al., 2018), and other weather

hazards is also important and understudied, even as

underutilized data sources, including comprehensive historical

loss databases and sophisticated model output to estimate the

changing hazard intensities, exist to improve such future risk

assessments (Mostafiz 2022c). Assessing weather hazard risk to

agriculture precisely and accurately, especially in spatially

heterogeneous areas, is also often problematic due to a coarse

scale of analysis. Another complication is that future population

and/or land cover changes confound projection of the future risk

to agriculture.

The purpose of this research is to address these gaps by

developing a geospatially-based risk assessment method for

census-tract-level future crop loss due to drought, extreme

cold and hot temperatures, hail, lightning, and tornadoes,

using Louisiana, one of the most weather-vulnerable U.S.

states, as a case study.

Background

Geospatial approaches to understanding the changing

weather hazard risk have proliferated in recent years. For

example, Kebede and Nicholls (2012) showed that flood

exposure increases are a function of the spatial distribution of

socio-economic variables (i.e., economic development,

urbanization, and population growth). In an analysis of socio-

economic factors contributing to natural hazard exposure at the

U.S. county-scale, Preston (2013) found that despite disaster risk

management successes, the U.S. continues to face dire

consequences of increasing economic losses due to extreme

weather events. The first Intergovernmental Panel on Climate

Change (IPCC) report (Cutter et al., 2012) confirmed these

assertions by reporting that societal exposure (and therefore

risk as defined here) is a product of development processes on

hazardous landscapes and also is an anticipated key driving force

contributing to future vulnerability to extreme weather events

(Pielke Sr et al., 2007; Hinkel et al., 2010). There remains a

paucity of risk assessment work at a scale more local than county-

level, especially while also considering changing hazard

intensities (Gnan et al., 2022a, 2022b; Mostafiz et al., 2022b,

Mostafiz et al., 2022 R. B.; Rahim et al., 2022).

Several recent studies have focused on risk assessment and/or

exposure/loss due to drought (e.g., Bushra et al., 2019). Wilhite

(2000) noted that drought and agricultural losses in general stand

out among weather hazards in terms of risk and exposure, and

both are increasing sharply, and lamented the long-problematic

lack of reliable, accurate, and accessible historic loss data. More

recently, drought monitoring and crop loss prediction has

improved with the Visible Infrared Imaging Radiometer Suite

(VIIRS) sensor in the National Oceanic and Atmospheric

Administration (NOAA) Suomi National Polar-Orbiting

Partnership (S-NPP) satellite, which was launched in 2011

(Kogan et al., 2015). Numerous studies suggest that crop

growing cycle exposure to drought and other hazards,

including extreme temperatures and hail, is increasing with

time (Potopova et al., 2016) and is likely to continue

increasing, resulting in decreasing crop yields (Guo et al.,

2017; Leng and Hall 2019), though benefits of CO2

fertilization and adaptations may be underestimated. Analyses

at shorter time scales improve efforts to identify drought impacts

on crop yields (Peña-Gallardo et al., 2019). Many of these themes

are echoed in the fourth (U.S.) National Climate Assessment

(NCA4) from the U.S. Global Change Research Program

(USGCRP; Gowda et al., 2018).

Similarly, several recent studies have focused on projecting

future risk due to extreme temperatures. Forzieri et al. (2017)

concluded that European weather-related risk in 2100 due to

cold, heat waves, and other hazards has increased 50-fold over

the 1981–2010 period due to the increase in population exposed

amid global warming. Zhang and Hu (2018) studied risk

assessment of extreme cold temperature events in China using

a copula distribution model based on intensity and duration of

the hazard. In a crop-focused extreme temperature risk

assessment, Annan and Schlenker (2015) found that in the

U.S., insured soybeans and corn have 43 and 67 percent more

sensitivity, respectively, to extreme heat than uninsured crops,

and extreme heat is well-understood to decrease crop yields in

Georgia and the Carolinas (Eck et al., 2020). Some (e.g., Lesk

et al., 2016) have explained that extreme cold is less impactful

than extreme heat, because cold temperatures usually occur

outside of the normal growing season. In addition, if the

warming temperatures occur uniformly across the seasonal

cycle, extreme low temperatures will become less frequent.
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However, others (e.g., Gu et al., 2008) have suggested that the

opposite net effect may occur—that rising temperatures may

cause increased vulnerability to cold by inducing premature

budding and growth before a subsequent unseasonable cold

outbreak.

Overall future crop loss due to hail has not been considered

comprehensively, yet improved understanding of such losses is

economically important, as crop loss due to hail averages

approximately 1 percent of the U.S. national annual crop

output (Changnon 1972). Leigh and Kuhnel (2001) modeled

loss and risk assessment associated with hail for the Sydney,

Australia, region, for insurance purposes. Zhou et al. (2016)

assessed the hail damage to potatoes in Washington using aerial

multispectral imagery at different growth stages and seasons.

Wang et al. (2016) found that hail risk increased (1950–2009) in

China at different growing stages of cotton in their county-level

GIS-based spatiotemporal study. Púčik et al. (2019) noted that

crop loss probability increases when the hail size exceeds 2–3 cm,

for central Europe.

Lightning impacts are generally considered to be decreasing

vis-à-vis death rate (Mills 2020), but this trend is presumably

driven by increased awareness facilitated by technological

development, with the risk of injuries and crop and property

loss still present. While much research has been invested in

identifying lightning risk and its impact on property loss (e.g.,

Villamil et al., 2015; Mostafiz et al., 2020b; Brooks et al., 2020; He

et al., 2020), little research focuses on the lightning-induced risk

to crop loss. Kocur-Bera (2018) identified the most sensitive

places in Poland to damage from lightning, in addition to

drought, cold temperatures, hail, and other hazards, but the

short (2010–2014) period of record limits conclusions.

Changnon et al. (2001) suggested that from 1950 to 1997,

normalized tornado crop losses in the U.S. displayed no temporal

trend. Subsequent work on tornado-driven risk assessments has

been conducted for losses to nuclear plants (Reinhold &

Ellingwood 1982) and property (Mostafiz et al., 2020b; Refan

et al., 2020), and generalized tornado-induced losses have been

conducted at the community (Masoomi & van de Lindt 2018),

and local scales. While not tornadic in nature, the 2020 Iowa

derecho (Hosseini et al., 2020) poignantly demonstrates the

tremendous crop damage that can result from severe weather

in general. However, a need remains for comprehensive analysis

of future tornado risk focused on crop loss.

Regardless of whether the hazard examined is drought,

extreme temperatures, hail, lightning, or tornadoes, increasing

evidence (e.g., Rahman & Rahman 2015) suggests that a

comprehensive management plan in at-risk areas, guided by

both traditional and scientific considerations, is vital for

assessing risk, enhancing resilience, and progressing toward

sustainability. Climate change complicates efforts to improve

management strategies and makes the future risk due to these

hazards even more uncertain. In projecting the probable

economic risk for extreme weather events at various return

periods under IPCC scenarios, Franzke and Czupryna (2020)

found that the risks can be increased by 3-to-5.4-fold for the U.S.

by 2060. Such future risk assessments must incorporate methods

for projecting population growth accurately (Wu et al., 2018).

Some attempts have been made to quantify resilience that

would be useful for agriculture, such as Lam et al. (2016, 2018),

who introduced the resilience inference measurement (RIM)

approach. While methods such as the RIM model are useful

for quantifying resilience, a similarly appropriate means of

assessing the risk remains elusive. This is problematic because

risk must be evaluated accurately and precisely at the planning

stage for development.

In this study, it is hypothesized that, despite a temporally

decreasing land cover in crops in Louisiana (Table 1), crop loss

from these hazards will increase by 2050 (Gowda et al., 2018) as

additional crop yield (Table 2) and production (Table 3) escalate

the risk, primarily driven by the increasing population, consumer

demand, and exposure to the hazards due to climate change.

Enhanced data and methodological techniques are employed to

improve the estimation of crop loss risk to these hazards and

thereby enhance the likelihood of improved planning for

mitigation, adaptation, and resilience.

Drought, extreme cold, extreme heat, hail, lightning, and

tornadoes are selected for analysis here because, with some

notable exceptions (e.g., Smith and Katz 2013; Smith and

Matthews, 2015) they are understudied, significant, crop-

damage-producers statewide, and are important for

Louisiana’s State Hazard Mitigation Plan (SHMP). Moreover,

with the exception of drought, crop losses due to these hazards

can be assessed relatively easily using existing data sources, in

contrast to more catastrophic hazards (e.g., floods and

hurricanes) in which crop damage occurs from multiple

sources (i.e., wind, lightning, tornadoes, etc.) simultaneously

but is not partitioned by hazard.

Study area

The U.S. state of Louisiana is highly vulnerable to extreme

weather events both in terms of physical exposure as well as in

terms of economic and human impacts, given the concentration

TABLE 1 Total cropland in Louisiana (Source: U.S. Department of

Agriculture (USDA) National Agricultural Statistics Service (NASS)

2020).

Year Total cropland (Acres)

1997 5,567,627

2002 5,071,537

2007 4,691,344

2012 4,275,637

2017 4,345,843
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of people and assets in high-risk areas, especially along the Gulf

of Mexico (Mostafiz et al., 2021a). Catastrophic loss events

causing more than $1 billion in damage are frequent. Since

1980 alone, Louisiana has been impacted by 25 severe storms,

19 tropical cyclones, 12 droughts, 9 floods, 7 winter storms, and

1 freeze—each causing over $1 billion (2020 Consumer Price

Index (CPI) adjustment) in economic damage (NOAA National

Centers for Environmental Information (NCEI, formerly known

as the National Climatic Data Center (NCDC), 2020). The

Southern Plains/Southwest drought and heat wave of spring-

summer 2011 cost $14.2 billion (2020 CPI adjusted) and caused

95 deaths in Arizona, Kansas, Louisiana, New Mexico,

Oklahoma, and Texas (NOAA NCEI 2020). This drought

spanned 107 consecutive weeks and is arguably the longest to

hit Louisiana, from 04/20/2010 to 05/01/2012, with

approximately 65 percent of Louisiana land cover suffering

from exceptional drought (D4) in late June 2011

(United States Drought Portal, 2020). The southeastern U.S.

winter storm of January 2000 caused four deaths and

$1.1 billion in damage over numerous states, including

Louisiana. Severe weather, including high winds, hail, and

tornadoes, caused $1.4 billion in damage across several

southern states including Louisiana in April 2020 (NOAA

NCEI 2020). With agriculture contributing over $3.1 billion,

or 2.9 percent of the state’s gross domestic product (University of

Arkansas Division of Agriculture 2021), the vulnerability of

Louisiana agriculture to weather hazards is substantial,

including to the leading crops featured in Tables 2 and 3.

Data

Crop loss data (1960–2019) at the parish level by hazard type

originates from the Spatial Hazards Events and Losses Database

for the United States (SHELDUS®; Center for Emergency

Management and Homeland Security (CEMHS) 2020), which

collects its data from the NCEI Storm Events reports. According

to NOAA NCEI (2018, p. 14), “crop damage information may be

obtained from reliable sources, such as the U.S. Department of

Agriculture (USDA), the county (i.e., parish in Louisiana)

agricultural extension agent, the state department of

agriculture, crop insurance agencies, or any other reliable

authority. Crop damage amounts may be obtained from the

USDA or other similar agencies.” It should be noted that for

TABLE 2 Yields of the top five Louisiana crops by value (source: USDA NASS 2020).

Year Soybeans
(bushels/acre)

Corn (bushels/acre) Rice (pounds/acre) Cotton (pounds/acre) Hay (tons/acre)

1949 15 20 1,825 329 1.29

1959 23.5 31 2,850 476 1.45

1969 20.5 37 3,500 551 1.82

1979 28 54 3,910 712 2.21

1989 22 95 4,430 672 2.6

1999 27 121 5,000 709 2.4

2009 39 132 6,300 745 2.8

2019 48 165 6,380 1,035 2.5

TABLE 3 As in Table 2, but for total production (source: USDA NASS 2020).

Year Soybeans
(1,000 bushels)

Corn (1,000 bushels) Rice (1,000 cwt) Cotton (1,000 bales) Hay (1,000 tons)

1949 345 14,540 10,822 651 395

1959 4,536 12,183 12,910 491 554

1969 32,964 4,477 21,385 482 647

1979 93,800 2,214 20,643 690 849

1989 38,500 13,490 21,488 868 781

1999 26,730 39,930 30,825 901 912

2009 36,660 80,520 29,217 349 1,064

2019 41,280 89,925 26,408 582 975
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Louisiana, drought-induced crop damage was only reported and

available to SHELDUS beginning in 1996.

Because the intended purpose of vegetation determines

whether its loss is considered as crop damage or property

damage (NOAA 2018), this analysis excludes timber, as

forested land cover is assumed to be unharvested and/or

property rather than crop. By contrast, pasture is considered

as cropland because its intended purpose is assumed to be

consumed, although loss of the animals that consume the

pasture are not considered as crop loss here, but would

instead be considered as property loss. Moreover, because

SHELDUS does not itemize losses by crop, a “bulk” analysis

of all crops is undertaken here. Annual crop loss in SHELDUS are

adjusted to 2019$. The indicators of historical hazard severity

and their data sources are shown in Table 4.

Because risk is a product of the probability and consequence

of the hazard occurrence, and the latter is a function of the

cropland value, the hazard intensity data must be accompanied

by data on historical and future cropland extent, demand, and

population (which impacts demand). For this reason, Louisiana

historical land cover data for 2001, 2003, 2006, 2008, 2011, 2013,

and 2016 were downloaded from the National Land Cover

Database (NLCD) archived by U.S. Geological Survey (USGS,

2016). Rasters containing the only two categories for crops in the

NLCD classification system (pasture/hay (category 81) and

cultivated crops (category 82)) comprise the cropland cover

data, from the NCLD database. Louisiana crop market values

available every 5 years from 2002 to 2017 from U.S. Department

of Agriculture (USDA) National Agricultural Statistics Service

(NASS, 2020) and crop export values available annually

(2002─2017) from USDA Economic Research Service (2017)

were used as indicator of crop demand. Historical and 2050-

projected population data for the world and U.S. were acquired

from the U.S. Census Bureau (2020) to assess population growth

for projecting that demand to 2050. Louisiana census-tract

shapefiles were downloaded from the U.S. Census Bureau

(2016). The census tract is the best geographic scale to

represent the crop land cover and crop loss because census

blocks and block groups are too localized (e.g., <0.01 mi2),

while parishes and the state level are too coarse to provide an

effective representation for cropland to represent individual

crops.

Methods

Because the methodology involves many steps, a flowchart

(Figure 1) is used to provide guidance on each step, described in

detail in the subsections below.

Historical hazard intensity

For each week, shapefiles of drought intensity from the

United States Drought Monitor, (2017), coded according to

the first two columns in Table 5, were rasterized using the

value in the second column of Table 5, with a pixel size of

0.0005 × 0.0005 decimal degrees. The drought value for each

raster cell was averaged across all weeks (2000─2017), providing

the mean weekly historical drought intensity by cell.

In the extreme cold and high temperature analysis, for

139 stations within and adjacent to Louisiana (1/1/1992 to 10/

14/2017), any daily data that were missing, erroneous (e.g.,

minimum temperature exceeds maximum temperature on that

day), or spurious (following Global Historical Climate Network-

Daily (NOAA, 2017a)) criteria, were discarded. Furthermore, any

station with discarded temperature data exceeding 10 percent of

days were removed, as were stations with less than 5 years of data.

These criteria narrowed the analysis to 102 stations. The mean

annual frequency of days having temperatures below 32°F, and in

a separate analysis, above 95°F, were mapped using “ordinary

kriging” with a spherical semivariogram, cell size of 0.0005 ×

0.0005 degrees, and variable search radius of 12 points.

Methods for analyzing intensity of the other three hazards

were relatively straightforward. A map of mean annual

(1982─2011) frequency of days with hail of 0.75 + inches in

diameter within 25 miles (NOAA National Severe Storms

Laboratory 2014) was digitized. Then, a triangulated irregular

network (TIN), with these hail-day contour lines generated as

hard edge, was developed. This TIN was then rasterized using

TABLE 4 Indicator of hazard severity, data source, and years analyzed, by hazard in Louisiana.

Hazard Indicator
of hazard severity

Data source Years analyzed

Drought Weekly drought intensity U.S. Drought Monitor 2000–2017

Extreme Cold Annual frequency of days with temperatures <32°F National Centers for Environmental Information (NCEI) 1992─2017

Extreme Heat Annual frequency of days with temperatures >95°F NCEI 1992─2017

Hail Hail days per year National Severe Storms Laboratory (NSSL), University of Oklahoma 1982─2011

Lightning Lightning density per year NCEI 1986─2012

Tornado Tornado days per year Storm Prediction Center (SPC) 1950─2016
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linear interpolation at a cell size of 0.005 × 0.005 degrees. Mean

annual lightning strike data (1986─2012) were acquired in

netCDF format from NOAA, (2017b). These data were

rasterized to 4 km × 4 km cells and converted using lightning

density in flashes mi-2 yr-1. Tornado touchdown point data

(1950─2016) were acquired from the U.S. Storm Prediction

Center (SPC; 2017). These data were then processed to

calculate the mean annual frequency of days having a

touchdown within 40 km, at a 100 m × 100 m cell size, using

a spatial probability density heat map derived from kernel density

estimation (Epanechnikov 1969) in QGIS®. Further details

regarding the methodology employed in assessing historical

hazard intensity for extreme cold, hail, lightning, and tornado

are described in Mostafiz et al. (2020b).

For each hazard j, where j is 1 through 6, the mean historical

hazard intensity by census tract k, where k is 1 through 1148

(Hj,k), was calculated. Hj,k is one of the key factors used for

calculating projected crop loss by 2050.

Future hazard intensity

A distinctive feature of our method is the use of statewide

adjustment coefficients to represent hazard intensity in future

year x; this produced Hj,x of all six hazards taken individually.

Because hazard frequencies and/or magnitudes may change in

the future, statewide adjustment coefficients for hazard j in future

year x (Fj,x) were computed considering NCA4-projected

(USGCRP 2017) changes to the hazard. Future hazard

intensity was then projected in each census tract k (Hj,k,x) by

modifying historical hazard intensities Hj, k using the statewide

adjustment coefficients Fj,x (Eq. 1).

Hj,k,x � Hj, k × Fj,x (1)

It was then necessary to determine the values of Fj,x. For

drought, although Louisiana precipitation is expected to change

little by 2100 (Easterling et al., 2017, their Figure 7.5), enhanced

evapotranspiration caused by increased temperatures may result

in drying soils by 2100 over much of the continental U.S.,

including Louisiana, at least under the higher radiative forcing

and emissions scenario (Wehner et al., 2017; their Figure 8.1).

FIGURE 1

Methodological framework.

TABLE 5 Pixel values in drought intensity calculation.

Category Value for drought
intensity analysis

D0 (Abnormally Dry) 0

D1 (Moderate Drought) 1

D2 (Severe Drought) 2

D3 (Extreme Drought) 3

D4 (Exceptional Drought) 4

Normal or Wet Conditions No value
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These changes will impact soil moisture availability in Louisiana.

Specifically, in Louisiana, winter, spring, and summer soil

moisture decreases, made with a “medium” degree of

confidence, are projected to be large relative to natural

variability (Wehner et al., 2017). For these reasons, an

increase in drought hazard of 25 percent was assumed for the

state by 2050, or Fdrought,2050 � 1.25.

Similarly, Fj,x for extreme heat was considered to increase by

20 percent (Fextreme heat,2050 � 1.20), based on data in NCA4 by

Vose et al. (2017; their Figure 6.9), although their figure used 90°F

as the threshold rather than the 95°F used in the historical

analysis here. As described in Mostafiz et al. (2020b), changes

to the extreme cold temperature hazard were assumed to parallel

the projected changes to the annual mean frequency of sub-

0°C days. Vose et al. (2017; their Figure 6.9) also estimated such

changes. Thus, Fj,x for extreme cold temperature was assumed to

decrease by 20 percent by 2050 (Fextreme cold,2050 � 0.80).

An analogous method of representing the severe storm (hail,

lightning, and tornado) hazards as that presented in Mostafiz

et al. (2020b) was employed here. Specifically, the method of

assigning Fj,x was determined by weighing the results of current

modeling-based literature. One line of theoretical consideration

suggests that the frequency and/or intensity of severe

thunderstorms in Louisiana capable of producing hail and

lightning may decrease. This is because the expected

increasing temperatures through at least 2050 would shift the

cold/warm air mass interface and associated polar front jet

stream poleward, leaving Louisiana less frequently near the

peak area for tornadic development (i.e., along vigorous cold

fronts trailing from mid-latitude wave cyclones). The increasing

temperatures would also decrease the frequency/intensity of hail

events because the percentage of time and vertical extent that

subfreezing temperatures exist in the cumulonimbus clouds that

produce hail would decrease with increasing temperatures. The

seasonality of the magnitudes of projected warming is likely to be

less important for this analysis than it might be for most other

locations, because severe thunderstorms and tornadoes show less

seasonality in Louisiana than in most other places.

However, other factors suggest increasing frequency/

intensity of future hail- and lightning-producing

thunderstorms and tornadoes. Thunderstorm and tornadic

activity is most likely when energetic, near-surface air

underlies much colder air, so the continued surface warming

would destabilize the atmosphere, tending toward a net

enhancement of severe storm activity. Brooks (2013)

concluded that the vertical temperature gradient, or instability,

as represented by a severe weather index known as convective

available potential energy (CAPE, measured in J kg−1), is

expected to increase. However, Brooks (2013) also noted the

compensating effect of expected weakening of the vertical wind

shear that spawns tornadoes. Gensini et al. (2014) suggested that

atmospheric instability (as represented by frequency of days with

abundant CAPE) is likely to weaken over nearly all of Louisiana,

for the 2041–2065 period vs. 1981–1995. Collectively, this

research guides our assignment of Fj,x of a 10 percent

decrease for hail, and a 10 percent increase for lightning and

tornadoes by 2050 compared to the present (Fhail,2050 � 0.90;

Flightning,2050 � 1.10; Ftornado,2050 � 1.10). Of course, different

hazard intensities would be derived for similar analyses for

projections of years other than 2050.

For each hazard, a sensitivity analysis is run, to produce loss

estimates for 2050 assuming an over- or under-estimation by

10 percentage points. For example, the 25 percent increase in the

drought hazard would mean that the sensitivity analysis is run

assuming values of 1.15, 1.25, and 1.35 for Fj,x.

Quantifying historical annual crop loss and
projecting crop land cover change

SHELDUS-based historical, inflation-adjusted (to represent

2019$) crop loss by parish (i) was aggregated to annual total by

hazard (j) and used to represent the economic impacts of past

events. For each i and j, mean annual crop loss, �Ci,j was

computed as the mean historical annual crop loss (2019$) for

the 60-year period from 1960 to 2019 (excepting drought, for

which, as explained earlier, crop loss was available for Louisiana

only since 1996), as depicted in Eq. 2.

�Ci,j �
[Ci,j,1960 + Ci,j,1961 + Ci, j,1962 + . . . + Ci,j,2018 + Ci,j,2019]

60

(2)

The crop land cover area (CLC) from NLCD (including

pasture and hay) of each census tract (k) was calculated for the

available years (2001, 2004, 2006, 2008, 2011, 2013, and 2016;

CLCk). The CLCk for 2050 was then projected by fitting a

TABLE 6 Examples regression-based projection of crop land cover area (km2) by 2050 by census tract (CLCk,2050).

Census
tract

2001 2004 2006 2008 2011 2013 2016 Intercept Slope 2050

22001960300 124.1 123.9 123.3 123.3 122.9 122.9 122.7 318.8 (0.10) 119.3

22003950400 129.3 126.9 124.6 121.5 119.9 120.4 120.4 1,415.9 (0.64) 96.5

22005030102 6.1 6.1 5.8 5.8 5.8 5.8 5.7 62.7 (0.03) 4.7

Projecting Consumer Demand for Louisiana Crops.
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regression line through the historical land cover area. Each CLCk

for 2050 was verified to fall between zero and the census tract

area. The data and regression parameters for three example

census tracts (k) are shown in Table 6.

Projecting consumer demand for louisiana
crops

A method of estimating future consumer demand of those

crops based on trends historical and current consumption

(i.e., domestic vs. international) and future population

projections was necessary. Specifically, the percentage of

domestic vs. international consumption was calculated from

the mean historical market value (Table 7) and export value

(Table 8) of Louisiana’s crop-based products. Tables 7,8 suggest

that 58.5 percent of Louisiana crops is exported (i.e., consumed.

Internationally, CWorld or 0.585), and therefore, 41.5 percent

is consumed domestically (CU.S. or 0.415). U.S. Census Bureau

(2020) estimates that U.S. population will increase by

16.9 percent by 2050 (PUS2050) and world population is

estimated to increase by 26.4 percent (Pworld2050). Assuming

no changes in consumer demands, competition, innovation,

and consumption patterns, the consumer demand increase

coefficient of Louisiana crops for 2050 (CD 2050) was

computed as a weighted average, or as

CD2050 � 1 + (CWorld × PWorld2050 + CUS × PUS2050) � 1.225

(3)

Thus, assuming that the production will meet this demand,

an additional 22.5 percent of crop value (2019$) will be exposed

to hazards by 2050.

Projecting cropping intensity and
technological development coefficient

It was assumed that technological development will increase

agricultural efficiency, as for global trends (Foley et al., 2011), to

meet the increasing CD2050 for Louisiana’s crops, despite the

NLCD-regression-projected 9.5 percent decrease in Louisiana’s

areal cropland from 2016 to 2050. Thus, the projected crop land

cover coefficient in 2050 (CL 2050) is the quotient of 100 divided

by (100—9.5), or 1.105. The future cropping intensity and

technological development coefficient for 2050 (CIC 2050) was

estimated simply as

CIC2050 � CD2050 x CL2050 � 1.225 x 1.105 � 1.354 (4)

This approach assumes that consumer demand increase and

crop land cover decrease contribute equally toward the intensity/

technological development coefficient.

Projecting future crop loss

Because overall crop loss is impacted by both the presence

and intensity of the hazard acting on the crop land cover in a

given census tract, a method of representing each is important.

For each hazard (analyzed separately), the parish-level, hazard-

and-cropland-adjusted loss ratio LRi,j,2016 was calculated by

dividing the mean annual historical parish-level crop loss

(�Ci,j, from SHELDUS) by the product of historical hazard

intensity (Hj,k) and baseline 2016 crop land cover area

(CLCk,2016) for each census tract within that parish (n), or

LRi,j,2016 �
�Ci,j

∑n
k�1(Hj,k × CLCk,2016)

(5)

TABLE 7 Total market value of crop products in Louisiana (USDA NASS

2020).

Year Market value of
crop ($ million)

2017 2,061

2012 2,784

2007 1,605

2002 1,066

Mean 1,879

TABLE 8 Total export value of crop products in Louisiana (USDA

Economic Research Service 2017).

Year Export value of
crop products
($ million)

2017 1259

2016 1133

2015 1350

2014 1604

2013 1614

2012 1653

2011 1439

2010 1253

2009 982

2008 1069

2007 985

2006 711

2005 664

2004 703

2003 688

2002 495

Mean 1100
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This method assigns the total historical parish loss based on

the sum of the product of these factors.

To estimate census-tract-level crop loss by hazard in 2050

(Lj,k,2050), LRi,j,2016 from Eq. 5 is applied to the future mean

annual hazard intensity (Hj, k,2050; from Eq. 2), future cropping

intensity and technological development coefficient (CIC2050;

from Eq. 4), and crop land cover area (CLCj,2050; as calculated

by the example in Table 6) within the census tract, or

Lj,k,2050 � LRi,k,2016 × Hj, k,2050 ×CIC2050 × CLCj,2050 (6)

Results and discussion

Historical and future hazard intensity

Historical hazard intensity (Hj) for each hazard is mapped in

Figures 2A–F. The northwestern part of Louisiana is the most

vulnerable section of the state to drought, extreme heat, and hail

(Figures 2A,C,D, respectively). Not surprisingly, extreme cold

temperatures are most common throughout northern Louisiana

(Figure 2B). Lightning density is concentrated inurban areas,

particularly in the southeast (Figure 2E). Tornado intensity peaks

prominently in south-central Louisiana, with a secondary area of

maximum intensity in northwestern Louisiana (Figure 2F).

Projected changes to the hazard intensities (Hj, 2050) by

2050 are shown in Figures 3A–F. Decreases in the extreme

cold temperature and hail frequencies are apparent by

comparing Figures 2B to 3B and 2D to 3D, respectively. The

lightning-intensity hazard is projected to increase for

southeastern Louisiana (compare Figures 2E to 3E).

Historical and future projected change in
crop land cover

The majority of crop cultivation occurs in south-central and

northeastern Louisiana and along the major river basins

(Figure 4A). Figure 4B shows the change in crop land cover

at the census tract level from 2016 to 2050 in Louisiana. Crop

FIGURE 2

Historical mean hazard intensity (Hj) in Louisiana: (A) drought (2000─2017), (B) extreme cold temperature (1992─2017; Mostafiz et al., 2020b),

(C) extreme heat (1992─2017), (D) hail (1982─2011; Mostafiz et al., 2020b), (E) lightning (1986─2012; Mostafiz et al., 2020b), and (F) tornado

(1950─2016; Mostafiz et al., 2020b).
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land cover is decreasing in the vast majority of the state, but

especially in coastal, north-central, northwestern, and

southeastern Louisiana (Figure 4B). Increases in crop land

cover are sporadic but are mostly in the northeastern part of

the state. By 2050, 320 census tracts are projected to have no crop

land cover, compared to 207 census tracts in 2016. CLC is

projected to increase in only 24 census tracts and decrease in

722 census tracts, with no change projected in 402 census tracts.

Urban infringement and abandonment of coastal lands are major

reasons for the anticipated decreases.

Historical and future projected annual
crop loss

Historical annual crop losses due to each of the six hazards in

Louisiana are shown in Supplementary Appendix S1A. On a

statewide basis, drought caused 93.1 percent of historical average

annual crop losses from the hazards analyzed here (Table 9). This

result is largely consistent with that from Fahad et al. (2017). The

relatively smaller positive impact of climate change via extreme

cold rather than via extreme heat tends to support the Lesk et al.

(2016) position over that of Gu et al. (2008). Caddo

(northwestern Louisiana) had the greatest historical annual

crop loss due to drought among the parishes ($6,397,949 or

16.3 percent of Louisiana’s total; Supplementary Appendix S1A).

Likewise, Terrebonne and Lafourche (south-central Louisiana)

and St. James (southeastern Louisiana) experienced the largest

historical annual crop loss from extreme cold ($43,647 or

2.6 percent of the statewide total; Supplementary Appendix

S1A) and hot temperatures ($14,020 or 1.9 percent of

Louisiana’s total; Supplementary Appendix S1A), respectively.

One caveat of this result is that since crop types are not

distinguished, it is likely that losses due to high-value crops,

such as the citrus orchards in Plaquemines Parish, are

underestimated in this analysis. Franklin Parish (northeastern

Louisiana) and Cameron Parish (southwestern Louisiana) had

the greatest historical annual crop loss due to hail ($31,070 or

19.9 percent of the statewide total; Supplementary Appendix

S1A) and lightning ($439 or 11.7 percent of Louisiana’s total;

Supplementary Appendix S1A), respectively. Finally, St. Landry

Parish in south-central Louisiana sustained the highest historical

annual crop loss due to tornado ($77,107 or 24.3 percent of the

total; Supplementary Appendix S1A). No historical crop losses

FIGURE 3

As in Figure 2, but for projected future hazard intensity in Louisiana by 2050.
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due to tornado were reported for Beauregard, Caldwell,

Cameron, De Soto, Jackson, La Salle, and Red River parishes.

By 2050, total annual crop loss (Lj,2050), and therefore risk,

is expected to increase by about 40.5 percent (2019$), with

drought comprising 94.9 percent of the total (Table 9). Crop

losses due to extreme heat, hail, lightning, and tornado are

projected to increase substantially but remain relatively minor

shares of total losses. Of these, hail is an interesting case,

because Lj,2050 increases despite a decreasing future hazard

intensity (Fj, 2050) and increasing CD2050. Extreme cold

temperature will decrease in Lj,2050 due to global warming

despite the increased CD2050.

Figures 5A–F shows the widely varying ranges for Lj,2050 by

hazard, as was noted previously in Table 9. The absence of crop

loss (i.e., risk) in a given area likely infers the absence of crop

cultivation (e.g., urban census tracts) and/or historical crop loss

for that hazard rather than absence of severe weather threat.

The risk due to drought by 2050 (Figure 5A) is projected to be

greatest where the combination of hazard exposure

(i.e., northwestern location), cropland (i.e., south-central and

northeastern Louisiana), and a history of crop losses occur

(i.e., Caddo, Vermilion, Avoyelles, St. Landry, Assumption,

Calcasieu, and Jefferson Davis parishes). As was the case for

historical data, Caddo is projected to remain the parish with the

FIGURE 4

Crop land cover in 2016 (A) and change in crop land cover at the census tract level from 2016 to projection for 2050 (B), in Louisiana.

TABLE 9 Comparison of Louisiana statewide crop loss, by hazard: Historical vs. 2050-projected.

Hazard Average annual crop
loss 1960–2019 (2019$)

Projected annual crop
loss in 2050
(2019$)

Projected change (%)

Drought $39,196,210 $56,141,812 43.23%

Extreme Cold $1,711,019 $1,445,347 ─15.53%

Extreme Heat $734,551 $962,216 30.99%

Hail $155,956 $184,450 18.27%

Lightning $3,750 $4,587 22.32%

Tornado $316,764 $444,435 40.30%

Total $42,118,250 $59,182,847 40.52%
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greatest annual crop loss among the parishes ($8,386,852 or

14.9 percent of Louisiana’s total; Supplementary Appendix S1B)

by 2050.

Projected risk from extreme cold temperature annual crop

loss in 2050 (Figure 5B) varies substantially by parish but the risk

is relatively evenly distributed throughout Louisiana.

Assumption Parish (south-central Louisiana) may have the

highest annual crop loss ($45,734 or 3.2 percent of the

statewide total) due to extreme cold temperatures in 2050

(Supplementary Appendix S1B). The greatest annual extreme

cold temperature loss is projected to be in census tract

22121020300 in West Baton Rouge Parish of central Louisiana

($33,011). Extreme heat risk is also projected to be evenly

distributed but is more concentrated in the northeastern part

of Louisiana (Figure 5C). St. James Parish is projected to have the

highest annual crop loss ($21,273) among the parishes

(2.2 percent of the state’s total; Supplementary Appendix

S1B). Annual crop loss peaks at $ 17,681 in census tract

22021000100 within Caldwell Parish.

Interestingly, cold temperatures pose more of a risk than hot

temperatures in Louisiana, despite the projected increased

temperatures. It should be noted that extreme heat and the

much larger drought risk go hand-in-hand, so some of the

extreme heat risk is likely to be accounted for by the drought

analysis. Also, because cold and heat waves typically engulf large

areas, the SHELDUS data resolve many of the historical crop

losses due to extreme cold and heat at a coarse regional scale,

causing the historical annual crop loss values due to extreme

heat (and separately, due to extreme cold) to be assigned

equally across many parishes (Supplementary Appendix

S1A). The method employed here allows projected loss to

vary across parishes by distributing the loss based on

current and projected changes to land cover by census tract

and spatial variability in hazard intensity (Supplementary

Appendix S1B).

The crop risk to the hail hazard in 2050 is projected to peak in

northeastern Louisiana, including Catahoula, Concordia, East

Carroll, Franklin, Madison, and Tensas parishes (Figure 5D).

Franklin Parish is projected to have the greatest annual crop loss

among the parishes ($38,442 or 20.8 percent of Louisiana’s total;

Supplementary Appendix S1B). The census tract with the highest

projected annual crop loss due to hail ($22,439 in census tract

22065960200) is in Madison Parish.

Lightning risk is projected to peak in sparsely-populated

southwestern and northeastern Louisiana (Figure 5E) where

hazard, CLC, and historical crop loss overlap. This spatial

peak in risk occurs despite a higher hazard intensity elsewhere

(see again Figure 3E), as the higher hazard intensity is occurring

in largely non-agricultural areas. Cameron Parish is projected to

have the greatest annual crop loss ($561) among the parishes

(12.2 percent of Louisiana’s total; Supplementary Appendix S1B).

Annual crop loss peaks at $468 in Cameron Parish (census tract

FIGURE 5

Projected annual crop loss (2019$) by Louisiana census tract, 2050: Drought (A), extreme cold temperature (B), extreme heat (C), hail (D),

lightning (E), tornado (F), and total (G).
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22023970100), likely because it is one of the few tracts in

Cameron with intense cultivation.

Tornado risk is anticipated to remain much higher than that

of hail and lightning. Acadia Parish in southwestern Louisiana is

projected to have the highest annual crop loss ($112,376 or

25.3 percent of the state total) due to tornado in 2050

(Supplementary Appendix S1B). At the census tract scale,

peak losses are projected to be in the large, northeastern

Louisiana census tracts in Catahoula, Concordia, Morehouse,

southern East Carroll, and westernMadison parishes (Figure 5F).

The greatest annual tornado loss is in census tract

22095071100 in St. John the Baptist Parish ($33,022).

Sensitivity analysis

A brief sensitivity analysis to demonstrate the impact of

different model assumptions regarding future conditions for each

hazard, taken one at a time, is presented in Table 10. The final

column in Table 10 shows the estimated change in annual crop

loss if an underestimate or overestimate in modeled values of ten

percentage points occurs. Interestingly, due to compensating

effects of hazard intensities that are projected to increase

(i.e., drought, extreme heat, lightning, and tornado) vs. those

expected to decrease (i.e., extreme cold and hail), an “across-the-

board” underestimation or overestimation for all six hazards

leads to bulk total property losses that change by

only ±7.5 percent (i.e., bottom row of Table 10).

Study limitations

Because of the lack of model-output data with high

confidence at the sub-state scale, the geographical distribution

of the hazards is assumed to be constant over space throughout

Louisiana. Similarly, projected temporal changes in hazard

intensity by 2050 are assumed to be consistent statewide. In

reality, changing frequencies and intensities of synoptic weather

patterns that produce extreme weather conditions will not be

consistent across space, even at the sub-state scale.

The reliability of the crop loss as projected for the year

2050 depends on the accuracy of input data (i.e., historical hazard

intensity, historic crop loss, and crop market and export values)

and model estimations (i.e., future hazard conditions, future crop

land cover changes, population projection, changing consumer

demand, cropping intensity, and technological development).

The consideration of annual values can introduce inaccuracies

and uncertainties, as climate changes are assumed to occur

differently by season, yet the climate model uncertainties still

lag behind uncertainties of other models, such as hydrological, at

the seasonal scale (Joseph et al., 2018). Human cultural and

economic changes, including wealth/GDP, product preferences,

adaptations (e.g., changing competition from other producers),

and policy are not incorporated in the study.

This study’s source for historic crop losses (SHELDUS) has

limitations. First, despite including loss estimates across all

hazard types and magnitudes, gaps and biases in these

estimates exist in SHELDUS. For example, because

SHELDUS assumed the lower bound of the logarithmic

range (e.g., $5,000 to $50,000) that NOAA’s NCEI (NCDC

at the time) had been using to report loss estimates prior to

1996, losses tended to be underestimated for the earlier

decades. Furthermore, indirect losses, including employment

hours, health problems during evacuation, and complications

caused by other storm-induced stressors, are not included (Gall

et al., 2009). A known issue with loss databases and their

application to projections of losses is how compound events

are categorized. Zscheischler et al. (2018) acknowledged that

loss underestimates could occur due to the accounting of

compound events as only one hazard type. In the case of the

present analysis, given that SHELDUS losses are divided

equally, some errors are naturally introduced and

unavoidable as the U.S. National Weather Service, the data

source for SHELDUS, reports losses as compound event totals

TABLE 10 Sensitivity analysis of annual crop loss (i.e., risk) estimates statewide in Louisiana for each hazard by 2050, for 10 percent overestimation or

underestimation of the hazard intensity change (2019$).

Hazard Overestimate Fj,x by
10 percent

Modeled Fj,x (Eq. 6) Underestimate Fj,x by
10 percent

Difference
from Eq. 6

Drought $60,633,159 (+35%) $56,141,812 (+25%) $51,650,468 (+15%) ±8.0%

Extreme Cold $1,264,683 (─30%) $1,445,347 (─20%) $1,626,021 (─10%) ±12.5%

Extreme Heat $1,042,399 (+30%) $962,216 (+20%) $882,030 (+10%) ±8.3%

Hail $163,953 (─20%) $184,450 (─10%) $204,941 (0%) ±11.1%

Lightning $5,006 (+20%) $4,587 (+10%) $4,172 (0%) ±9.1%

Tornado $484,836 (+20%) $444,435 (+10%) $404,030 (0%) ±9.1%

Total $63,594,036 $59,182,847 $54,771,662 ±7.5%
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only and forgoes estimation by hazard type. A final limitation

regarding the crop loss data is that because SHELDUS did not

itemize crop loss by crop, the data availability necessitated a

“bulk” analysis of all crops, which in fact masks the influences

of different climatic extremes on the individual crops.

Data management decisions by the responsible agencies can

also introduce uncertainties when used for purposes in this

research. For example, although the U.S. National Weather

Service strives to collect county-scale loss data, losses from

some events are reported only at the multi-county scale. In

such cases, SHELDUS partitions losses equally among the

affected counties, regardless of differences in population,

population density, or development. Because the scale of such

events is so broad, the most glaring example of this type of

generalization of losses is for extreme heat; nearly all parishes

were assigned the same historical crop loss value (Supplementary

Appendix S1A). Despite the limitations, SHELDUS data have

been used successfully in similar research (e.g., Li et al., 2015;

Rohli et al., 2016; Hahn et al., 2017; Paul and Sharif 2018;

Mostafiz et al., 2020b) and remains the best available source

for U.S. hazard-induced crop loss data.

Summary and conclusion

This study offers an approach for improving risk estimates

for six important weather hazards using the example of

Louisiana, one of the most weather-vulnerable U.S. states.

The method avoids, where possible, aggregating data to a

county-level risk. The finer-resolution spatial analysis is

valuable because uneven population distribution and/or

hazard exposure often makes the scale of natural hazard-

induced damage, and therefore the risk, spatially

heterogeneous and/or localized. This work also circumvents

another perennial complication in risk assessment by

incorporating estimates of future changes in both the local

hazard intensity and crop land cover; one or both of these

factors are often ignored in projecting risk. While our approach

certainly cannot avoid making gross assumptions, the use of

localized, weighted, model-based projections of crop land

cover, consumer demand, and future hazard intensities to

estimate census-tract-level risk of crop loss due to several

severe weather hazards in Louisiana, United States, by 2050,

enhances our current understanding of current and future

severe weather impacts.

The major findings of this research are:

1) While the majority of cropland occurs and will continue to

occur in south-central and northeastern Louisiana along the

river basins, crop activity is decreasing in southeastern and

northwestern Louisiana and is increasing in parts of the

northeast.

2) By 2050, crop risk, measured as likelihood of economic loss,

statewide is likely to continue to be dominated by drought,

which is projected to account for $56 million of the

$59 million (~95%) in crop loss by 2050.

3) Extreme cold is likely to continue to produce more damage

than extreme heat (although the latter often occurs in tandem

with drought), despite the projected warming climate.

4) Tornadoes, hail, and lightning will remain the fourth, fifth,

and sixth riskiest hazards examined, respectively.

5) The northeastern part of the state can be expected to remain

impacted relatively more heavily than other parts of the state

by extreme heat, hail, lightning, and tornadoes.

The findings in this study will help decision-makers to make

crops more resilient to future hazards, thereby strengthening the

economically-important agriculture industry in Louisiana and

enhancing food security.

Work based on a similar methodology is needed to evaluate

future risk from other hazards in other locations. Moreover, more

sophisticated projections of cropland, consumer demand, cropping

intensity, technological development, and demography will improve

model projections of future losses, enhancing decision-making for

allocating resources to mitigate and adapt to these natural hazards.
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