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Abstract
Data-driven control methods are strong tools due to their predictions for controlling the systems with a nonlinear dynamic

model. In this paper, the Koopman operator is used to linearize the nonlinear dynamic model. Generating the Koopman

operator is the most important part of using the Koopman theory. Dynamic mode decomposition (DMD) is used to obtain

eigenfunction for producing the Koopman operator. Then, a fractional order PID (FOPID) controller is applied to control

the linearized dynamic model. A swarm intelligence bat optimization algorithm is utilized to tune the FOPID controller’s

parameters. Simulation results on micro-electromechanical systems (MEMS) gyroscope under conventional PID controller,

FOPID, Koopman-based FOPID controller (Koopman-FOPID), and Koopman-FOPID control optimized by bat algorithm

(Koopman-BAFOPID) show that the proposed Koopman-BAFOPID controller has better performance in comparison with

three other controllers in terms of high tracking performance, low tracking error, and low control efforts.

Keywords Bat algorithm � Fractional PID control � Koopman operator � Dynamic mode decomposition � MEMS

gyroscope � Data-driven method

1 Introduction

The MEMS gyroscope is an interesting device that can

measure angular velocity by motion in x- and y-directions.

This tool has been used in the automotive industry due to

its low costs and small size [1, 2]. The control of the

MEMS gyroscope is a difficult task because it constantly

encounters external disturbances, which designing a suit-

able control method is required for this system [3].

An interesting area of study is data-driven control sys-

tem, which uses data to control dynamical systems [4–6].

Several techniques are used to create data-driven structures

such as deep neural network [7] and machine learning

algorithms [8]. One effective method for linearizing the

nonlinear dynamic model is the linear parameter varying

(LPV) method. Hadian et al. [9] proposed a controller to

reduce computation and conservatism for constrained

nonlinear MIMO systems. Also, the simulation results

verified the effectiveness of the proposed method in terms

of disturbance rejection and high tracking performance. In

addition, a model predictive controller (MPC) is proposed

for nonlinear systems subjected to perturbations [10]. The

LPV method is used to linearize the nonlinear dynamic

model. Then, the MPC controller applied on the linearized

model. The proposed method is robust against the distur-

bances. In data-driven control systems, Koopman theory is

a strong approach. By projecting the system dynamics onto

the Koopman eigenspace, Goswami and Paley [11] explore

the issues of bilinearization and optimum control of a

control-affine nonlinear system. Under certain assump-

tions, the suggested technique converts the dynamics into a

bilinear system by using the Koopman canonical transform,

especially the Koopman eigenfunctions of the drift vector

field. Numerous examples of control-affine nonlinear sys-

tems are used to numerically demonstrate bilinearization

and the best control strategy while assuming a quadratic

cost function for the states and control input. The diffi-

culties of making models that are subject to model-based

control design methodologies make it challenging to
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operate soft robots precisely. Koopman operator theory

provides a framework for creating explicit dynamical

models of soft robotics and controlling them with practiced

model-based techniques [12]. How to derive the Koopman

operator is the most crucial aspect of the Koopman theory,

especially for complex systems with nonlinear dynamic

system.

A useful approach for estimating the modes and eigen-

values of the Koopman operator is the DMD method.

Utilizing an embedding into an infinite dimensional space,

the Koopman operator offers a linear description of non-

linear systems. Among the most often used finite dimen-

sional approximations of the Koopman operator are DMD

and extended DMD [13, 14]. Koopman operator theory and

the associated algorithm DMD were introduced by Ling

et al. for the study and control of signalized traffic flow

networks. They study DMD’s application to various issues

in signalized traffic as a model-free method for describing

complicated oscillatory dynamics from observed data [15].

Wilches-Bernal et al. [16] propose a novel technique for

identifying faults and other power quality issues. The major

signal indicating a power quality event has occurred is

identified by the suggested technique using the real com-

ponent of the principal eigenvalue computed by the DMD.

To discriminate between distinct failures, the study

demonstrates how the suggested approach may be utilized

to detect events utilizing current and voltage data. The

performance of the strategy is examined in relation to the

impact of the window size because the suggested method is

window-based. To properly control the system, an appro-

priate controller can be used with the linearized DMD

Koopman model such as linear quadratic regulator con-

troller (LQR) [17] and model predictive controller (MPC)

[18].

PID controller is a strong control method to control

linear dynamic systems. It has been widely used in real-

world systems due to its low cost and ease of implemen-

tation [19, 20]. By regulating the PID gains, it constantly

evaluates errors and provides the best value. It is used to

control different systems such as MEMS gyroscope [21],

vehicle [22], and quadcopter [23]. However, the main

drawbacks of the PID control method are that it’s not

robust control against the external disturbances. Although

some useful methods can be used to tune the PID controller

parameters such as axiomatic design theory based [24], the

fractional control is also a suitable controller to improve

the robustness and stability of PID controller. FOPID

controller has been used in different research. Large

uncertainty in dynamic and hydrodynamic properties as

well as the signal transmission channel’s time delay is the

key challenges with autonomous underwater vehicles

(AUV) motion control. For an AUV yaw control system,

Liu et al. suggest a reliable FOPID controller architecture

[25]. Erol [26] proposed a strong method of the pitch

control system of large wind turbines with a FOPID con-

troller that is delay dependent. The simulation findings

demonstrate that outcomes for the delay margin are

improved by using the proposed method. One of the main

parts of FOPID controller design is how to tune the con-

troller’s gains to achieve the best performance. The bat

optimization algorithm is a suitable method to tune the

proposed controller’s parameters.

The bat algorithm inspired by the echolocation behavior

of microbats, with varying pulse rates of emission and

loudness [27]. Finding solutions using algorithms based on

population and local search is a benefit of employing the

bat algorithm. We get both local rigorous exploitation and

global variety from this combination, which is crucial for

metaheuristic algorithms. The advantages of bat algorithm

in comparison with particle swarm optimization and

genetic algorithm are discussed in [28]. Based on the

equivalent transfer function model and a reduced decou-

pler, the [29] describes a technique for developing inde-

pendent FOPID controllers for two interacting conical

tank-level processes. An optimization bat algorithm is used

to increase the power system stability by tuning FOPID

controller parameters [30].

This research paper proposes a new data-driven control

algorithm to control the MEMS gyroscope. The contribu-

tion of this work is as follows:

1. The nonlinear dynamic model of the MEMS gyroscope

is presented.

2. DMD method is used to generate eigenfunction and

eigenvectors to obtain Koopman operator.

3. Using the Koopman theory, a FOPID controller is

implemented to control the linearized dynamic model.

4. A bat metaheuristic optimization algorithm is used to

tune the proposed control method parameters.

5. The robustness of the proposed control method verified

by random noise application.

The rest of this paper is arranged as follows. Section 2

discusses the dynamic model of the MEMS gyroscope.

Section 3 presents Koopman’s theory. Section 4 describes

the DMD method. Section 5 explains PID and FOPID

control methods. Section 6 discusses the bat algorithm.

Section 7 provides the simulation results. Section 7

demonstrates the conclusion.

2 Nonlinear dynamic model of MEMS
gyroscope

An essential instrument for angular velocity measurement

using x and y motion is the MEMS gyroscope [31–33].

This device has been used in automotive industry. A
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typical z-axis MEMS gyroscope architecture is shown in

Fig. 1.

A common MEMS gyroscope design includes sensor

mechanisms, a proof mass suspended by springs, and an

electrostatic actuation system for generating an oscillatory

motion and determining the position and speed of the proof

mass [34]. The proof mass is mounted on a frame that

moves with a consistent linear velocity, while the gyro-

scope rotates at a gradually varying angular velocity, Xz.

The centrifugal forces mX2
z x and mX2

z y are expected to be

insignificant due to the modest displacements x and y. The

development of the Coriolis forces, 2mX�
z _y and 2mX�

z _x, is

parallel to the driving and rotating axes [35]. The dynamics

of the gyroscope are determined by the following

equations.

mxþd�xx _xþ d�xy _yþ k�xxxþ k�xyyþ bx3 ¼ u�x þ 2mX�
z _y ð1Þ

myþd�xy _yþ d�yy _yþ k�xyxþ k�yyyþ by3 ¼ u�y � 2mX�
z _x ð2Þ

The origin of the coordinates in Eqs. 1 and 2 is placed in

the center of the proof mass since there is no external force

applied on the system. The constants k�xy and d�xy, respec-

tively, stand in for the asymmetric spring and damping

coefficients. Despite the possibility of small unknown

deviations from their nominal values, the control forces in

the x- and y-direction, u�x and u�y , are usually accepted.

There are also typical descriptions of the damping rates, d�xx
and d�yy, and the spring constants of springs interacting in

the x- and y-directions, k�xx and k�yy. Therefore, both elec-

tromechanical and mechanical nonlinearity, which is a

positive constant, will introduce the terms bx3 and by3. The

following vector representation might be used to express

Eqs. 1 and 2:

q
�

q0

þ D�

mx0

_q�

q0

þ Ka

mx2
0

q�

q0

þ b
q�

3

q0

¼ u�

mx2
0q0

� 2
X�

x0

_q�

q0

ð3Þ

where q� ¼ x�

y�

� �
, u ¼ u�x

u�y

� �
, X� ¼ 0 �X�

z

X�
z 0

� �
,

D� ¼ d�xx d�xy
d�xy d�yy

� �
, Ka ¼

k�xx k�xy
k�xy k�yy

� �
, and nondimensional

parameters as follows:

q ¼ q�

q0

dxy ¼
d�xy
mx0

Xz ¼
X�

z

x0

ð4Þ

ux ¼
u�x

mx2
0q0

uy ¼
u�y

mx2
0q0

ð5Þ

xx ¼
ffiffiffiffiffiffiffiffiffi
kxx
mx2

0

s
xy ¼

ffiffiffiffiffiffiffiffiffi
kyy
mx2

0

s
xxy ¼

kxy
mx2

0

ð6Þ

where each axis’ natural frequency is x0 and the reference

length is q0.

The following are the dynamic equations for the MEMS

gyroscope.

q ¼ � Dþ 2Xð Þ _q� Kbq� bq3 þ uþ E ð7Þ

An external disturbance, E, might be modeled as:

q ¼ �Y _q� Pq� bq3 þ uþ E ð8Þ

where Y and P determine certain parameter variation

uncertainties, P ¼ Kb, and Y ¼ Dþ 2Xð Þ. Therefore,

Eq. (8) might be expressed as:

q ¼ � Y þ DYð Þ _q� Pþ DPð Þq� bq3 þ uþ E ð9Þ

where. q ¼ x
y

� �
, u ¼ ux

uy

� �
, X ¼ 0 �Xz

Xz 0

� �
,

D ¼ dxx dxy
dxy dyy

� �
, Kb ¼

x2
x xxy

xxy x2
y

� �
.

There are several ways to show Eq. (9):

q ¼ �Y _q� Pq� bq3 þ u tð Þ þ D tð Þ ð10Þ

D(t) describes as:

D tð Þ ¼ �DY _q� DPqþ E ð11Þ

The expression for Eq. (10) in the x- and y- directions is

x
y

� �
¼ � dxx dxy

dxy dyy

� �
þ 0 �2Xz

2Xz 0

� �� �
_x
_y

� �

� x2
x xxy

xxy x2
y

� �
x
y

� �
� b 0

0 b

� �
x3

y3

� �

þ 1 0

0 1

� �
ux
uy

� �
þ D tð Þx

D tð Þy

� �
ð12Þ

Equation (12) will be transformed into first-order

dynamic equations by selecting the following parameters:

Fig. 1 MEMS gyroscope structure [22]
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x ¼ z1

_x ¼ z2

y ¼ z3

_y ¼ z4

8><
>:

Then, there is

_z1 ¼ z2

_z2 ¼ �x2
xz1 � bz3

1 � dxxz2 � xxyz3 þ 2Xz � dxy
� �

z4 þ uz1
þ Dz1

_z3 ¼ z4

_z4 ¼ �xxyz1 � dxy þ 2Xz

� �
z2 � x2

yz3 � bz3
3 � dyyz4 þ uz3

þ Dz3

8>><
>>:

ð13Þ

Equation (13) shows

_z ¼ A zð Þ þ Bu ð14Þ

Equation (14) can be given in its classical form as

follows:

d

dt
z tð Þ ¼ f zð Þ ð15Þ

3 Koopman theory

According to the Koopman operator theory, the crucial step

to correctly a nonlinear dynamical system is to transform

the nonlinear system’s original form into an infinite

dimensional state space so that the resulting system is

linear [18].

The dynamic in discrete time defines as [36]:

zkþ1 ¼ F zkð Þ ð16Þ

where F is characterized by

F z t0ð Þð Þ ¼ z t0ð Þ þ
Z t0þt

t0

f z sð Þð Þds ð17Þ

When a finite-dimensional nonlinear system’s dynamics

are transferred to an infinite-dimensional function space

using the Koopman operator theoretic method, the original

system’s dynamics becomes linear. g is a real-valued scalar

measurement function and an observable, a part of an

infinite-dimensional Hilbert space. The Koopman operator

generates based on this observable as

Kg ¼ g � F ð18Þ

Smooth dynamics can be implemented using a contin-

uous system.

d

dt
g zð Þ ¼ Kg zð Þ ¼ rg zð Þ:f zð Þ ð19Þ

where the Koopman operator is K. Due to the infinite

dimensions of the Koopman operator, which is significant

but problematic for operation and representation. Instead of

describing the development of all measurement functions

in a Hilbert space, applied Koopman analysis approximates

the evolution on a subspace covered by a small number of

measurement functions. One can get a representation of the

Koopman operator in a finite-dimensional matrix by lim-

iting the operator to an invariant subspace. A Koopman

invariant subspace is covered by any combination of the

eigenfunctions of the Koopman operator [36]. When

eigenvalue k is satisfied by eigenfunction u zð Þ of the

Koopman model.

ku zð Þ ¼ u F zð Þð Þ ð20Þ

In continuous time, a Koopman eigenfunction u zð Þ is

satisfied.

d

dt
u zð Þ ¼ ku zð Þ ð21Þ

A finite-dimensional approximation is required from the

application side to approximate the Koopman operator.

DMD method is one of the approaches that can estimate

Koopman operator [36].

4 DMD method

A strong numerical method DMD utilizes to approximate

Koopman operator.

Z 0 � AZ ð22Þ

where Z
0

is time shifted of matrix Z as:

Z ¼ z1 z2 . . .. . .:½ �

The A can be found according to Eq. (22) as:

A ¼ Z 0Zþ ð23Þ

where ? represents the Moore–Penrose pseudoinverse. We

may use singular value decomposition (SVD) on the

snapshots to determine the dominating properties of the

pseudoinverse of Z because a typical calculation involving

A would need a significant amount of computation due to

its huge n [37].

Z � URV� ð24Þ

where U 2 Rn�r, R 2 Rr�r, V 2 Rn�r, and * demonstrates

the conjugate transpose. SVD’s reduced rank for approxi-

mating Z is r. The eigenvectors can be defined as:

/ ¼ Z 0VR�1W ð25Þ

where W is eigenvectors of full rank system dynamic

systems.

/ ¼ Z 0VR�1W ð26Þ

Let k be eigenfunction, then we will have:

KW ¼ kW ð27Þ
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where K is the Koopman operator.

The linearized dynamic model can be demonstrated as:

d

dt
y ¼ Kyþ Bu ð28Þ

5 FOPID control

PID controller is a suitable control method that has been

used in many industrial applications [38–40]. It constantly

evaluates the error by using its parameters Kp, Ki, and Kd

and delivers the correct value. The PID controller can be

defined as:

uPID ¼ Kpe tð Þ þ Ki

Z t

0

e sð Þdsþ Kd
de tð Þ
dt

ð29Þ

where e tð Þ ¼ y� yd, which yd is desired trajectory.

The main problem of the PID controller is that it’s not

robust against external disturbances. Also, the stability of

the PID controller is another issue that should be taken into

consideration during the controller design.

Fractional control method introduced to improve the

controller’s performance. It can improve the stability and

robustness of common PID controller. The FOPID con-

troller can be defined as:

uFOPID ¼ Kpe tð Þ þ KiD
�le tð Þ þ KdD

le tð Þ ð30Þ

where D is fractional operator defines as D ¼ d
dt

and l is

fractional order. The fractional type that we use in this

research is Grunwald–Letnikov [41]. The Grunwald–

Letnikov fractional derivative of the function e(t) with

respect to t is given

Dl
t e tð Þ ¼ limh!0h

�l
Xn
k¼0

�1ð Þk l
k

� �
f e tð Þ � khð Þ ð31Þ

where

l
k

� �
¼ l l� 1ð Þ l� 2ð Þ. . . l� k þ 1ð Þ

k!
¼ C lþ 1ð Þ

k!C l� k þ 1ð Þ

The detailed explanation can be observed in [41]. The

control structure shows in Fig. 2.

One of the main parts of FOPID controller design is how

to tune the controller’s parameters. The metaheuristic

algorithms are the rich sources to tune the FOPID con-

troller parameters.

6 Bat algorithm to tune the proposed
controller parameters

The optimization technique known as the bat bio-inspired

algorithm was influenced by how common bats use

echolocation to find food. It is introduced in [27, 42] and

used to resolve several optimization issues. The echolo-

cation strategy of bats is used in the algorithm. These bats

create an extremely loud sound pulse, and then, they listen

for the echo that is returned from the nearby objects.

Depending on the species, their signal bandwidth ranges

change through harmonics. The ith bat moves randomly at

location xi with velocity vi and a set frequency fmin. To

discover food, the bat changes its wavelength and volume.

Fig. 2 The proposed control structure
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To improve the echolocation capabilities, objective func-

tion needs to be optimized. It is possible to develop an

optimization algorithm from the way a bat searches for the

best answer. The algorithms for bat-inspired echolocation

can be created by enhancing certain of the microbats’

echolocation characteristics. The features of bat echoloca-

tion are used to address an optimization issue brought

about by the following hypotheses [43].

1. Echolocation is a tool used by all bats to detect

distance.

2. To locate prey, bats fly at random speeds of vi at

positions xi with a fixed frequency and wavelength of

fmin and a variable wavelength and frequency of A0.

3. Depending on how close the prey is, they can control

their wavelength/frequency and pulse emission rate,

ri 2 [0–1].

4. Their loudness decreases from high A0 to low Amin

levels as they get closer to the prey.

In real implementations, frequency occurs between [fmin,

fmax] and is chosen to be similar to the size of the domain of

interest. For a virtual bat to solve an optimization issue,

rules must be developed to specify their locations and

velocities in the d-dimensional search space. The following

definitions apply to the new location xþi and velocity vþi at

time step t [44].

Fig. 3 Flow chart for a bat algorithm for tuning of Koopman-FOPID

parameters

Fig. 4 Position tracking of x and y under the proposed controllers
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fi ¼ fmin þ fmax � fminð Þn ð32Þ

vti ¼ vt�1
i þ xt�1

i � x�
� �

fi ð33Þ

xti ¼ xt�1
i þ vti ð34Þ

The current best solution across all N bats is represented

by x*, where n 2 [0–1] is the random vector generated at

random from a uniform distribution. When a new solution

is needed for local search, it is determined using the most

recent bat loudness Ai and the most variance that can be

tolerated max(var) at a time stop, as shown below.

xnew ¼ xold þ eAimax varð Þ ð35Þ

The volume drops and the pulse emission rate rises as a

bat locates its prey. The bat is heading toward the best

option, as shown by

Atþ1
i ¼ aAt

i; r
tþ1
i ¼ r

�

r 1 � e�ct½ � ð36Þ

where a and c are constant. Initial boundness is Ai 2[0.1–

0.9], initial emission rate is r0 2 [0–1], and a = c = 0.9.

Bat algorithm is used for tuning the [Kp, Ki, Kd] parameters

of proposed controller for a MEMS gyroscope. This

problem’s objective function is described as follows [19]:

J ¼
Z 1

0

w1 e tð Þj j þ w2u
2 tð Þ

� �
dt þ w3tu ð37Þ

7 Simulation results

A MEMS gyroscope is controlled using the proposed

Koopman-BAFOPID controller. Additionally, several

comparative methods are used to show how effective the

proposed bat algorithm is in adjusting the Koopman-

FOPID parameters. The nonlinear dynamic equations of a

MEMS gyroscope generated in this research. All simula-

tions steps are simulated using MATLAB software. Fig-

ure 3 shows the flow chart of bat algorithm step in tuning

Fig. 5 Position tracking error of x- and y-directions under the

proposed controllers Fig. 6 Velocity of x- and y-directions under the proposed controllers
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the Koopman-FOPID controller. The parameters of the

proposed controller in this study are as follows: total

population = 5; iteration = 20; loudness = 0.5; wave-

length = 0.5; frequency fmin = 10, fmax = 20.

The objective function variables are set to w1 = 0.99,

w2 = 0.01, and w3 = 2. The tuned parameters of bat algo-

rithm are Kp = diag{17.9901}, Ki = {22.3411}, and

Kd = {27.2585}.

Figure 4 shows the trajectory tracking of x- and y-di-

rection under PID, FOPID, Koopman-FOPID, and Koop-

man-BAFOPID controllers. It demonstrates that the

proposed Koopman-BAFOPID controller has high tracking

performance in comparison with the three other controllers.

Figure 5 shows the position tracking error of x- and y-di-

rections under PID, FOPID, Koopman-FOPID, and Koop-

man-BAFOPID controllers. It illustrates that the proposed

Koopman-BAFOPID controller has low tracking error in

comparison with the PID, FOPID, Koopman-FOPID, and

Koopman-BAFOPID controllers. Figure 6 shows the

velocity of x- and y-direction under PID, FOPID, Koop-

man-FOPID, and Koopman-BAFOPID controllers. A

conventional PID controller applied on nonlinear MEMS

gyroscope to control the x- and y-direction. The main

problem of that controller is that it is not stable. Then, a

FOPID controller used to remove the stability problem of

conventional PID controllers. Figure 7 shows the control

inputs under PID, FOPID, Koopman-FOPID, and Koop-

man-BAFOPID controllers. It demonstrates that the PID

controller is not stable by increasing the control efforts

when time is increased, but the FOPID controller fixed this

problem. Therefore, using FOPID controller provides bet-

ter stability along with using Koopman theory on nonlinear

MEMS gyroscope. The robustness of the proposed control

method is verified by random noise 0.5*randn(1,1) appli-

cation. Figure 8 shows that the proposed control method is

robust against the external disturbances.

Fig. 7 Control efforts of x- and y-directions under the proposed

controllers

Fig. 8 Robustness of x- and y-directions under the proposed

controllers
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8 Conclusion

This paper proposed a new Koopman-BAFOPID control of

a nonlinear MEMS gyroscope. The PID controller stability

improved by proposing FOPID controller. The Koopman

theory used to drive a linear dynamic model of MEMS

gyroscope. The DMD method used to estimate the Koop-

man operators numerically. Then, selected FOPID con-

troller applied on linearized MEMS gyroscope dynamic

model to control the x- and y-direction suitably. A bat

algorithm implemented on Koopman-FOPID controller in

order to tune the proposed controller parameters. The

simulation results verified that the proposed Koopman-

BAFOPID controller has better performance in comparison

with PID, FOPID, and Koopman-FOPID controllers in

terms high tracking performance, low tracking error, low

control efforts, and high stability.

Funding Funding was provide by Directorate for Engineering,

National Science Foundation.

Data Availability Data sharing is not applicable to this article as no

datasets were generated or analyzed during the current study.

Declarations

Conflict of interest There are no conflicts of interest.

References

1. Solouk MR, Shojaeefard MH, Dahmardeh M (2019) Parametric

topology optimization of a MEMS gyroscope for automotive

applications. Mech Syst Signal Process 128:389–404

2. Classen, J., Frey, J., Kuhlmann, B., Ernst, P., & Bosch, R. (2007,

August). MEMS gyroscopes for automotive applications. In

Advanced Microsystems for Automotive Applications (pp.

291–306). Berlin, Germany: Springer.

3. Zhang WJ, Lin Y (2010) On the principle of design of resilient

systems–application to enterprise information systems. Enterprise

Information Systems 4(2):99–110

4. Gao S, Liu L, Wang H, Wang A (2022) Data-driven model-free

resilient speed control of an Autonomous Surface Vehicle in the

presence of actuator anomalies. ISA Transact 127:251

5. Xian B, Gu X, Pan X (2022) Data driven adaptive robust attitude

control for a small size unmanned helicopter. Mech Syst Signal

Process 177:109205

6. Liu H, Cheng Q, Xiao J, Hao L (2021) Data-driven adaptive

integral terminal sliding mode control for uncertain SMA actu-

ators with input saturation and prescribed performance. ISA

Transact 128:624

7. Sun C, Dominguez-Caballero J, Ward R, Ayvar-Soberanis S,

Curtis D (2022) Machining cycle time prediction: Data-driven

modelling of machine tool feedrate behavior with neural net-

works. Robotics and Computer-Integrated Manufacturing

75:102293

8. Chen WH, You F (2021) Semiclosed greenhouse climate control

under uncertainty via machine learning and data-driven robust

model predictive control. IEEE Trans Control Syst Technol

30(3):1186–1197

9. Hadian M, Ramezani A, Zhang W (2022) An interpolation-based

model predictive controller for input–output linear parameter

varying systems. Inter J Dyn Cont 10:1–14

10. Hadian M, Ramezani A, Zhang W (2021) robust model predictive

controller using recurrent neural networks for input-output linear

parameter varying systems. Electronics 10(13):1557

11. Goswami D., and Paley DA (2021). Bilinearization, reachability,

and optimal control of control-affine nonlinear systems: A

Koopman spectral approach. IEEE Transact Automatic Cont

12. Bruder D, Fu X, Gillespie RB, Remy CD, Vasudevan R (2020)

Data-driven control of soft robots using koopman operator theory.

IEEE Trans Rob 37(3):948–961

13. Zanini F, Chiuso A (2021) Estimating Koopman operators for

nonlinear dynamical systems: a nonparametric approach. IFAC-

PapersOnLine 54(7):691–696

14. Jiang L, Liu N (2022) Correcting noisy dynamic mode decom-

position with Kalman filters. J Comput Phys 461:111175

15. Ling E, Zheng, L, Ratliff LJ, & Coogan, S (2020). Koopman

operator applications in signalized traffic systems. IEEE Transact

Intell Transport Syst

16. Wilches-Bernal F, Reno MJ, Hernandez-Alvidrez J (2021) A

Dynamic Mode Decomposition Scheme to Analyze Power

Quality Events. IEEE Access 9:70775–70788

17. Mamakoukas G, Castano M, Tan X, & Murphey, T (2019). Local

Koopman operators for data-driven control of robotic systems. In

Robotics: Science and Systems.

18. Ping Z, Yin Z, Li X, Liu Y, Yang T (2021) Deep Koopman model

predictive control for enhancing transient stability in power grids.

Int J Robust Nonlinear Control 31(6):1964–1978

19. Rahmani M, Ghanbari A, Ettefagh MM (2016) Robust adaptive

control of a bio-inspired robot manipulator using bat algorithm.

Expert Syst Appl 56:164–176

20. Rahmani M, Komijani H, Ghanbari A, Ettefagh MM (2018)

Optimal novel super-twisting PID sliding mode control of a

MEMS gyroscope based on multi-objective bat algorithm.

Microsyst Technol 24(6):2835–2846

21. Fei, J., & Chu, Y. (2016, August). Dynamic global PID sliding

mode control for MEMS gyroscope using adaptive neural con-

troller. In: 2016 joint 8th international conference on soft com-

puting and intelligent systems (SCIS) and 17th international

symposium on advanced intelligent systems (ISIS) (pp. 16–21).

IEEE.

22. Marino R, Scalzi S, Netto M (2011) Nested PID steering control

for lane keeping in autonomous vehicles. Control Eng Pract

19(12):1459–1467

23. Yoon J, Doh J (2022) Optimal PID control for hovering stabi-

lization of quadcopter using long short term memory. Adv Eng

Inform 53:101679

24. Li JW, Chen XB, Zhang WJ (2010) Axiomatic-design-theory-

based approach to modeling linear high order system dynamics.

IEEE/ASME Trans Mechatron 16(2):341–350

25. Liu L, Zhang L, Pan G, Zhang S (2022) Robust yaw control of

autonomous underwater vehicle based on fractional-order PID

controller. Ocean Eng 257:111493

26. Erol H (2021) Stability analysis of pitch angle control of large

wind turbines with fractional order PID controller. Sustainable

Energy, Grids and Networks 26:100430

27. Yang, XS (2010). A new metaheuristic bat-inspired algorithm.

In Nature inspired cooperative strategies for optimization

(NICSO 2010) (pp. 65-74). Springer, Berlin, Heidelberg

28. Perwaiz U, Younas I, Anwar AA (2020) Many-objective BAT

algorithm. PLoS ONE 15(6):e0234625

29. Lakshmanaprabu SK, Elhoseny M, Shankar K (2019) Optimal

tuning of decentralized fractional order PID controllers for TITO

Neural Computing and Applications (2023) 35:9831–9840 9839

123



process using equivalent transfer function. Cogn Syst Res

58:292–303

30. Chaib L, Choucha A, Arif S (2017) Optimal design and tuning of

novel fractional order PID power system stabilizer using a new

metaheuristic Bat algorithm. Ain Shams Eng J 8(2):113–125

31. Fang Y, Fu W, Ding H, Fei J (2022) Modeling and neural sliding

mode control of mems triaxial gyroscope. Adv Mech Eng

14(3):16878132221085876

32. Lu C, & Fei J (2016). Adaptive sliding mode control of MEMS

gyroscope with prescribed performance. In: 2016 14th interna-

tional workshop on variable structure systems (VSS) (pp. 65–70).

IEEE.

33. Guo Y, Xu B, Zhang R (2020) Terminal sliding mode control of

mems gyroscopes with finite-time learning. IEEE Transact Neu-

ral Netw Learn Syst 32(10):4490–4498

34. Rahmani M, Rahman MH, Nosonovsky M (2020) A new hybrid

robust control of MEMS gyroscope. Microsyst Technol

26(3):853–860

35. Yan W, Hou S, Fang Y, Fei J (2017) Robust adaptive nonsingular

terminal sliding mode control of MEMS gyroscope using fuzzy-

neural-network compensator. Int J Mach Learn Cybern

8(4):1287–1299

36. Kaiser E, Kutz JN, Brunton SL (2021) Data-driven discovery of

Koopman eigenfunctions for control. Mach Learn: Sci Technol

2(3):035023

37. Snyder G, & Song Z (2021) Koopman operator theory for non-

linear dynamic modeling using dynamic mode decomposi-

tion. arXiv preprint arXiv:2110.08442.

38. Malarvili S, Mageshwari S (2022) Nonlinear PID (N-PID) con-

troller for SSSP grid connected inverter control of photovoltaic

systems. Electric Power Syst Res 211:108175

39. Guo TY, Lu LS, Lin SY, Hwang C (2022) Design of maximum-

stability PID controllers for LTI systems based on a stabilizing-

set construction method. J Taiwan Inst Chem Eng 135:104366

40. Yan L, Webber JL, Mehbodniya A, Moorthy B, Sivamani S,

Nazir S, Shabaz M (2022) Distributed optimization of heteroge-

neous UAV cluster PID controller based on machine learning.

Comput Electr Eng 101:108059

41. Abdelouahab MS, Hamri NE (2016) The Grünwald-Letnikov

fractional-order derivative with fixed memory length. Mediterr J

Math 13(2):557–572

42. Yang XS (2012). Bat algorithm for multi-objective optimisa-

tion. arXiv preprint arXiv:1203.6571.

43. Sathya MR, Ansari MMT (2015) Load frequency control using

Bat inspired algorithm based dual mode gain scheduling of PI

controllers for interconnected power system. Int J Electr Power

Energy Syst 64:365–374
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