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Abstract

Data-driven control methods are strong tools due to their predictions for controlling the systems with a nonlinear dynamic
model. In this paper, the Koopman operator is used to linearize the nonlinear dynamic model. Generating the Koopman
operator is the most important part of using the Koopman theory. Dynamic mode decomposition (DMD) is used to obtain
eigenfunction for producing the Koopman operator. Then, a fractional order PID (FOPID) controller is applied to control
the linearized dynamic model. A swarm intelligence bat optimization algorithm is utilized to tune the FOPID controller’s
parameters. Simulation results on micro-electromechanical systems (MEMS) gyroscope under conventional PID controller,
FOPID, Koopman-based FOPID controller (Koopman-FOPID), and Koopman-FOPID control optimized by bat algorithm
(Koopman-BAFOPID) show that the proposed Koopman-BAFOPID controller has better performance in comparison with

three other controllers in terms of high tracking performance, low tracking error, and low control efforts.

Keywords Bat algorithm - Fractional PID control - Koopman operator - Dynamic mode decomposition - MEMS

gyroscope - Data-driven method

1 Introduction

The MEMS gyroscope is an interesting device that can
measure angular velocity by motion in x- and y-directions.
This tool has been used in the automotive industry due to
its low costs and small size [1, 2]. The control of the
MEMS gyroscope is a difficult task because it constantly
encounters external disturbances, which designing a suit-
able control method is required for this system [3].

An interesting area of study is data-driven control sys-
tem, which uses data to control dynamical systems [4-6].
Several techniques are used to create data-driven structures
such as deep neural network [7] and machine learning
algorithms [8]. One effective method for linearizing the
nonlinear dynamic model is the linear parameter varying
(LPV) method. Hadian et al. [9] proposed a controller to
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reduce computation and conservatism for constrained
nonlinear MIMO systems. Also, the simulation results
verified the effectiveness of the proposed method in terms
of disturbance rejection and high tracking performance. In
addition, a model predictive controller (MPC) is proposed
for nonlinear systems subjected to perturbations [10]. The
LPV method is used to linearize the nonlinear dynamic
model. Then, the MPC controller applied on the linearized
model. The proposed method is robust against the distur-
bances. In data-driven control systems, Koopman theory is
a strong approach. By projecting the system dynamics onto
the Koopman eigenspace, Goswami and Paley [11] explore
the issues of bilinearization and optimum control of a
control-affine nonlinear system. Under certain assump-
tions, the suggested technique converts the dynamics into a
bilinear system by using the Koopman canonical transform,
especially the Koopman eigenfunctions of the drift vector
field. Numerous examples of control-affine nonlinear sys-
tems are used to numerically demonstrate bilinearization
and the best control strategy while assuming a quadratic
cost function for the states and control input. The diffi-
culties of making models that are subject to model-based
control design methodologies make it challenging to
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operate soft robots precisely. Koopman operator theory
provides a framework for creating explicit dynamical
models of soft robotics and controlling them with practiced
model-based techniques [12]. How to derive the Koopman
operator is the most crucial aspect of the Koopman theory,
especially for complex systems with nonlinear dynamic
system.

A useful approach for estimating the modes and eigen-
values of the Koopman operator is the DMD method.
Utilizing an embedding into an infinite dimensional space,
the Koopman operator offers a linear description of non-
linear systems. Among the most often used finite dimen-
sional approximations of the Koopman operator are DMD
and extended DMD [13, 14]. Koopman operator theory and
the associated algorithm DMD were introduced by Ling
et al. for the study and control of signalized traffic flow
networks. They study DMD’s application to various issues
in signalized traffic as a model-free method for describing
complicated oscillatory dynamics from observed data [15].
Wilches-Bernal et al. [16] propose a novel technique for
identifying faults and other power quality issues. The major
signal indicating a power quality event has occurred is
identified by the suggested technique using the real com-
ponent of the principal eigenvalue computed by the DMD.
To discriminate between distinct failures, the study
demonstrates how the suggested approach may be utilized
to detect events utilizing current and voltage data. The
performance of the strategy is examined in relation to the
impact of the window size because the suggested method is
window-based. To properly control the system, an appro-
priate controller can be used with the linearized DMD
Koopman model such as linear quadratic regulator con-
troller (LQR) [17] and model predictive controller (MPC)
[18].

PID controller is a strong control method to control
linear dynamic systems. It has been widely used in real-
world systems due to its low cost and ease of implemen-
tation [19, 20]. By regulating the PID gains, it constantly
evaluates errors and provides the best value. It is used to
control different systems such as MEMS gyroscope [21],
vehicle [22], and quadcopter [23]. However, the main
drawbacks of the PID control method are that it’s not
robust control against the external disturbances. Although
some useful methods can be used to tune the PID controller
parameters such as axiomatic design theory based [24], the
fractional control is also a suitable controller to improve
the robustness and stability of PID controller. FOPID
controller has been used in different research. Large
uncertainty in dynamic and hydrodynamic properties as
well as the signal transmission channel’s time delay is the
key challenges with autonomous underwater vehicles
(AUV) motion control. For an AUV yaw control system,
Liu et al. suggest a reliable FOPID controller architecture
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[25]. Erol [26] proposed a strong method of the pitch
control system of large wind turbines with a FOPID con-
troller that is delay dependent. The simulation findings
demonstrate that outcomes for the delay margin are
improved by using the proposed method. One of the main
parts of FOPID controller design is how to tune the con-
troller’s gains to achieve the best performance. The bat
optimization algorithm is a suitable method to tune the
proposed controller’s parameters.

The bat algorithm inspired by the echolocation behavior
of microbats, with varying pulse rates of emission and
loudness [27]. Finding solutions using algorithms based on
population and local search is a benefit of employing the
bat algorithm. We get both local rigorous exploitation and
global variety from this combination, which is crucial for
metaheuristic algorithms. The advantages of bat algorithm
in comparison with particle swarm optimization and
genetic algorithm are discussed in [28]. Based on the
equivalent transfer function model and a reduced decou-
pler, the [29] describes a technique for developing inde-
pendent FOPID controllers for two interacting conical
tank-level processes. An optimization bat algorithm is used
to increase the power system stability by tuning FOPID
controller parameters [30].

This research paper proposes a new data-driven control
algorithm to control the MEMS gyroscope. The contribu-
tion of this work is as follows:

1. The nonlinear dynamic model of the MEMS gyroscope
is presented.

2. DMD method is used to generate eigenfunction and
eigenvectors to obtain Koopman operator.

3. Using the Koopman theory, a FOPID controller is
implemented to control the linearized dynamic model.

4. A bat metaheuristic optimization algorithm is used to
tune the proposed control method parameters.

5. The robustness of the proposed control method verified
by random noise application.

The rest of this paper is arranged as follows. Section 2
discusses the dynamic model of the MEMS gyroscope.
Section 3 presents Koopman’s theory. Section 4 describes
the DMD method. Section 5 explains PID and FOPID
control methods. Section 6 discusses the bat algorithm.
Section 7 provides the simulation results. Section 7
demonstrates the conclusion.

2 Nonlinear dynamic model of MEMS
gyroscope

An essential instrument for angular velocity measurement
using x and y motion is the MEMS gyroscope [31-33].
This device has been used in automotive industry. A
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typical z-axis MEMS gyroscope architecture is shown in
Fig. 1.

A common MEMS gyroscope design includes sensor
mechanisms, a proof mass suspended by springs, and an
electrostatic actuation system for generating an oscillatory
motion and determining the position and speed of the proof
mass [34]. The proof mass is mounted on a frame that
moves with a consistent linear velocity, while the gyro-
scope rotates at a gradually varying angular velocity, €,.
The centrifugal forces mQ?x and mQ?y are expected to be
insignificant due to the modest displacements x and y. The
development of the Coriolis forces, 2mQ.y and 2mQ’x, is
parallel to the driving and rotating axes [35]. The dynamics
of the gyroscope are determined by the following
equations.

mx+di %+ diy + kix + kiyy + = u +2mQly (1)

my +dy + dy + kKiyx + kiyy + By’ = uf —2mQx  (2)

The origin of the coordinates in Eqs. 1 and 2 is placed in
the center of the proof mass since there is no external force
applied on the system. The constants kj, and dy,, respec-
tively, stand in for the asymmetric spring and damping
coefficients. Despite the possibility of small unknown
deviations from their nominal values, the control forces in
the x- and y-direction, u; and uj, are usually accepted.
There are also typical descriptions of the damping rates, d

and dj, and the spring constants of springs interacting 1Xr);
the x- and y-directions, £}, and k;‘y. Therefore, both elec-
tromechanical and mechanical nonlinearity, which is a
positive constant, will introduce the terms fx* and By*. The
following vector representation might be used to express

Egs. 1 and 2:

kyy a dy
k,\’x kXX
L MW
m
1 1
y d, d.
k\ 'V T d\ 'V

Q,

Fig. 1 MEMS gyroscope structure [22]
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where each axis’ natural frequency is wq and the reference
length is gp.

The following are the dynamic equations for the MEMS
gyroscope.

q=—(D+2Q)j—Kyg— g’ +u+E (7)
An external disturbance, E, might be modeled as:
q=-Y§—Pqg— P’ +u+E (8)

where Y and P determine certain parameter variation
uncertainties, P =K,, and Y = (D +2Q). Therefore,
Eq. (8) might be expressed as:

q=—(Y+AY)§— (P+AP)q—Bg’ +u+E (9)
R | N
do dylo _[0? '3 i

[6)
D= YILKy=1| 5.
[dxy dw} ’ [wxy a)f }
There are several ways to show Eq. (9):

9=—Yq—Pq—Pq’ +u(r) +D(r) (10)
D(t) describes as:
D(t) = —AYG— APg+E (11)

The expression for Eq. (10) in the x- and y- directions is
x| ([de dy n 0 =20 X
y dyy dyy 2Q, 0 y
et oy [x] _[B O][#
oy oy ||y 0 Bl
1 0] [u D(1),
* [0 1} [“)} " {D(I)y} (12)

Equation (12) will be transformed into first-order
dynamic equations by selecting the following parameters:
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X =121
X=2
y=23
y=1u

Then, there is
i] =22
Z’Z = 760%21 - /32? - dxeZ — WyxyZ3 + (292 - dxy)z4 + Uz, +DZ|
3=2
2= —WyxyZl — (d,\‘y + ZQz)ZZ - (l)§Z3 - ,BZ% — QyyZ4 + Uz, + Dzz
(13)

Equation (13) shows

i=A(z) + Bu (14)

Equation (14) can be given in its classical form as
follows:

L) =1 (15)

3 Koopman theory

According to the Koopman operator theory, the crucial step
to correctly a nonlinear dynamical system is to transform
the nonlinear system’s original form into an infinite
dimensional state space so that the resulting system is
linear [18].

The dynamic in discrete time defines as [36]:

Zert = F(zk) (16)

where F is characterized by

to-+t

F(z(t)) = z(to) + f(z(z))d (17)

1o

When a finite-dimensional nonlinear system’s dynamics
are transferred to an infinite-dimensional function space
using the Koopman operator theoretic method, the original
system’s dynamics becomes linear. g is a real-valued scalar
measurement function and an observable, a part of an
infinite-dimensional Hilbert space. The Koopman operator
generates based on this observable as

Kg=goF (18)

Smooth dynamics can be implemented using a contin-
uous system.

8@ =Keld) = Ve(2) £(2) (19)
where the Koopman operator is K. Due to the infinite
dimensions of the Koopman operator, which is significant
but problematic for operation and representation. Instead of
describing the development of all measurement functions
in a Hilbert space, applied Koopman analysis approximates
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the evolution on a subspace covered by a small number of

measurement functions. One can get a representation of the

Koopman operator in a finite-dimensional matrix by lim-

iting the operator to an invariant subspace. A Koopman

invariant subspace is covered by any combination of the

eigenfunctions of the Koopman operator [36]. When

eigenvalue A is satisfied by eigenfunction ¢(z) of the

Koopman model.

29(2) = @(F(2)) (20)
In continuous time, a Koopman eigenfunction ¢(z) is

satisfied.

d

@) =20() (21)

A finite-dimensional approximation is required from the
application side to approximate the Koopman operator.
DMD method is one of the approaches that can estimate
Koopman operator [36].

4 DMD method

A strong numerical method DMD utilizes to approximate
Koopman operator.

7 ~AZ (22)
where Z' is time shifted of matrix Z as:
Z=[zu 2 .....]

The A can be found according to Eq. (22) as:
A=7'7" (23)
where + represents the Moore—Penrose pseudoinverse. We
may use singular value decomposition (SVD) on the
snapshots to determine the dominating properties of the
pseudoinverse of Z because a typical calculation involving

A would need a significant amount of computation due to
its huge n [37].

Z~ USV* (24)
where U € R, X € R™", V € R"*", and * demonstrates

the conjugate transpose. SVD’s reduced rank for approxi-
mating Z is r. The eigenvectors can be defined as:

¢=7Vve'w (25)

where W is eigenvectors of full rank system dynamic
systems.

=2V 'w (26)
Let A be eigenfunction, then we will have:
KW =W (27)
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Fig. 2 The proposed control structure

where K is the Koopman operator.
The linearized dynamic model can be demonstrated as:

d
—y=Ky+ Bu

m (28)

5 FOPID control

PID controller is a suitable control method that has been
used in many industrial applications [38—40]. It constantly
evaluates the error by using its parameters K, K;, and K,
and delivers the correct value. The PID controller can be
defined as:

de(r)

t
upp = er(t) —+ Kl/ E(T)d’f + K;——— (29)
0

dt
where e(t) = y — y4, which y, is desired trajectory.

The main problem of the PID controller is that it’s not
robust against external disturbances. Also, the stability of
the PID controller is another issue that should be taken into
consideration during the controller design.

Fractional control method introduced to improve the
controller’s performance. It can improve the stability and
robustness of common PID controller. The FOPID con-
troller can be defined as:

uropp = Kpe(t) + KiD " e(t) + KsD"e(t) (30)

where D is fractional operator defines as D = é and p is

fractional order. The fractional type that we use in this
research is Grunwald-Letnikov [41]. The Grunwald-

Letnikov fractional derivative of the function e(?) with
respect to f is given

Dle(t) = limy,_oh™ i(*l)k ( ’Ij > f(e(r) — kh) (31)

k=0
where

(u) _pp—1)(p=2)..(p—k+1)  T(ut1)
k k! KT (u—k+1)

The detailed explanation can be observed in [41]. The
control structure shows in Fig. 2.

One of the main parts of FOPID controller design is how
to tune the controller’s parameters. The metaheuristic
algorithms are the rich sources to tune the FOPID con-
troller parameters.

6 Bat algorithm to tune the proposed
controller parameters

The optimization technique known as the bat bio-inspired
algorithm was influenced by how common bats use
echolocation to find food. It is introduced in [27, 42] and
used to resolve several optimization issues. The echolo-
cation strategy of bats is used in the algorithm. These bats
create an extremely loud sound pulse, and then, they listen
for the echo that is returned from the nearby objects.
Depending on the species, their signal bandwidth ranges
change through harmonics. The i bat moves randomly at
location x; with velocity v; and a set frequency fui,. To
discover food, the bat changes its wavelength and volume.
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Initialize parameters

I

Generate initial bats populations loudness
and velocities for the K}, K; and K; based ¢

l

Determine pulse frequency
for each bat

!

Simulate the system and evaluate the performance
index J using Eq. (37) and evaluate fitness

l

Update velocities and locations using
Eq. (36) and change frequency to
generate new positions for bats

!

Choose the bat with the ideal
position, then create a local
location surrounding the chosen
ideal position for the bat

l

Create a new position for a bat randomly

l

If the position satisfies the condition,
accept it. Then, using Eq.(36),
increase the pulse rate Ai and

decrease the rate r;

Yes

If iteration < n

Output the best bats

Fig. 3 Flow chart for a bat algorithm for tuning of Koopman-FOPID
parameters

To improve the echolocation capabilities, objective func-
tion needs to be optimized. It is possible to develop an
optimization algorithm from the way a bat searches for the
best answer. The algorithms for bat-inspired echolocation
can be created by enhancing certain of the microbats’
echolocation characteristics. The features of bat echoloca-
tion are used to address an optimization issue brought
about by the following hypotheses [43].
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Fig. 4 Position tracking of x and y under the proposed controllers

1. Echolocation is a tool used by all bats to detect
distance.

2. To locate prey, bats fly at random speeds of v; at
positions x; with a fixed frequency and wavelength of
Jfmin and a variable wavelength and frequency of A,.

3. Depending on how close the prey is, they can control
their wavelength/frequency and pulse emission rate,
r; € [0-1].

4. Their loudness decreases from high A, to low A,
levels as they get closer to the prey.

In real implementations, frequency occurs between [fin,
Jfmax] and is chosen to be similar to the size of the domain of
interest. For a virtual bat to solve an optimization issue,
rules must be developed to specify their locations and
velocities in the d-dimensional search space. The following
definitions apply to the new location x;" and velocity v;" at
time step ¢ [44].
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Fig. 5 Position tracking error of x- and y-directions under the
proposed controllers

ﬁ‘ :fmin + (fmax _fmin)é (32)
=l ) )
X=X (34)

The current best solution across all N bats is represented
by x", where & € [0-1] is the random vector generated at
random from a uniform distribution. When a new solution
is needed for local search, it is determined using the most
recent bat loudness A; and the most variance that can be
tolerated max(var) at a time stop, as shown below.

Xnew = Xold + €A;max(var) (35)
The volume drops and the pulse emission rate rises as a

bat locates its prey. The bat is heading toward the best

option, as shown by
AL = gAL P = [ — 7] (36)

[RE

where o and y are constant. Initial boundness is A; €[0.1—

Time (sec)

Fig. 6 Velocity of x- and y-directions under the proposed controllers

0.9], initial emission rate is ry € [0-1], and o =7y = 0.9.
Bat algorithm is used for tuning the [K),, K;, K] parameters
of proposed controller for a MEMS gyroscope. This
problem’s objective function is described as follows [19]:

J= /Oc(w1|e(t)| + wou? (1)) dt + wsty, (37)
0

7 Simulation results

A MEMS gyroscope is controlled using the proposed
Koopman-BAFOPID controller. Additionally, several
comparative methods are used to show how effective the
proposed bat algorithm is in adjusting the Koopman-
FOPID parameters. The nonlinear dynamic equations of a
MEMS gyroscope generated in this research. All simula-
tions steps are simulated using MATLAB software. Fig-
ure 3 shows the flow chart of bat algorithm step in tuning
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Fig. 7 Control efforts of x- and y-directions under the proposed
controllers

the Koopman-FOPID controller. The parameters of the
proposed controller in this study are as follows: total
population = 5; iteration = 20; loudness = 0.5; wave-
length = 0.5; frequency finin = 10, fmax = 20.

The objective function variables are set to w; = 0.99,
w, = 0.01, and w; = 2. The tuned parameters of bat algo-
rithm are K, = diag{17.9901}, K, = {22.3411}, and
K, = {27.2585}.

Figure 4 shows the trajectory tracking of x- and y-di-
rection under PID, FOPID, Koopman-FOPID, and Koop-
man-BAFOPID controllers. It demonstrates that the
proposed Koopman-BAFOPID controller has high tracking
performance in comparison with the three other controllers.
Figure 5 shows the position tracking error of x- and y-di-
rections under PID, FOPID, Koopman-FOPID, and Koop-
man-BAFOPID controllers. It illustrates that the proposed
Koopman-BAFOPID controller has low tracking error in
comparison with the PID, FOPID, Koopman-FOPID, and
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Fig. 8 Robustness of x- and y-directions under the proposed
controllers

Koopman-BAFOPID controllers. Figure 6 shows the
velocity of x- and y-direction under PID, FOPID, Koop-
man-FOPID, and Koopman-BAFOPID controllers. A
conventional PID controller applied on nonlinear MEMS
gyroscope to control the x- and y-direction. The main
problem of that controller is that it is not stable. Then, a
FOPID controller used to remove the stability problem of
conventional PID controllers. Figure 7 shows the control
inputs under PID, FOPID, Koopman-FOPID, and Koop-
man-BAFOPID controllers. It demonstrates that the PID
controller is not stable by increasing the control efforts
when time is increased, but the FOPID controller fixed this
problem. Therefore, using FOPID controller provides bet-
ter stability along with using Koopman theory on nonlinear
MEMS gyroscope. The robustness of the proposed control
method is verified by random noise 0.5*randn(1,1) appli-
cation. Figure 8 shows that the proposed control method is
robust against the external disturbances.
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8 Conclusion

This paper proposed a new Koopman-BAFOPID control of
a nonlinear MEMS gyroscope. The PID controller stability
improved by proposing FOPID controller. The Koopman
theory used to drive a linear dynamic model of MEMS
gyroscope. The DMD method used to estimate the Koop-
man operators numerically. Then, selected FOPID con-
troller applied on linearized MEMS gyroscope dynamic
model to control the x- and y-direction suitably. A bat
algorithm implemented on Koopman-FOPID controller in
order to tune the proposed controller parameters. The
simulation results verified that the proposed Koopman-
BAFOPID controller has better performance in comparison
with PID, FOPID, and Koopman-FOPID controllers in
terms high tracking performance, low tracking error, low
control efforts, and high stability.

Funding Funding was provide by Directorate for Engineering,
National Science Foundation.

Data Availability Data sharing is not applicable to this article as no
datasets were generated or analyzed during the current study.

Declarations

Conflict of interest There are no conflicts of interest.

References

1. Solouk MR, Shojaeefard MH, Dahmardeh M (2019) Parametric
topology optimization of a MEMS gyroscope for automotive
applications. Mech Syst Signal Process 128:389-404

2. Classen, J., Frey, J., Kuhlmann, B., Ernst, P., & Bosch, R. (2007,
August). MEMS gyroscopes for automotive applications. In
Advanced Microsystems for Automotive Applications (pp.
291-306). Berlin, Germany: Springer.

3. Zhang W], Lin Y (2010) On the principle of design of resilient
systems—application to enterprise information systems. Enterprise
Information Systems 4(2):99-110

4. Gao S, Liu L, Wang H, Wang A (2022) Data-driven model-free
resilient speed control of an Autonomous Surface Vehicle in the
presence of actuator anomalies. ISA Transact 127:251

5. Xian B, Gu X, Pan X (2022) Data driven adaptive robust attitude
control for a small size unmanned helicopter. Mech Syst Signal
Process 177:109205

6. Liu H, Cheng Q, Xiao J, Hao L (2021) Data-driven adaptive
integral terminal sliding mode control for uncertain SMA actu-
ators with input saturation and prescribed performance. ISA
Transact 128:624

7. Sun C, Dominguez-Caballero J, Ward R, Ayvar-Soberanis S,
Curtis D (2022) Machining cycle time prediction: Data-driven
modelling of machine tool feedrate behavior with neural net-
works. Robotics and Computer-Integrated Manufacturing
75:102293

8. Chen WH, You F (2021) Semiclosed greenhouse climate control
under uncertainty via machine learning and data-driven robust

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

model predictive control. IEEE Trans Control Syst Technol
30(3):1186-1197

. Hadian M, Ramezani A, Zhang W (2022) An interpolation-based

model predictive controller for input—output linear parameter
varying systems. Inter J Dyn Cont 10:1-14

Hadian M, Ramezani A, Zhang W (2021) robust model predictive
controller using recurrent neural networks for input-output linear
parameter varying systems. Electronics 10(13):1557

Goswami D., and Paley DA (2021). Bilinearization, reachability,
and optimal control of control-affine nonlinear systems: A
Koopman spectral approach. IEEE Transact Automatic Cont
Bruder D, Fu X, Gillespie RB, Remy CD, Vasudevan R (2020)
Data-driven control of soft robots using koopman operator theory.
IEEE Trans Rob 37(3):948-961

Zanini F, Chiuso A (2021) Estimating Koopman operators for
nonlinear dynamical systems: a nonparametric approach. IFAC-
PapersOnLine 54(7):691-696

Jiang L, Liu N (2022) Correcting noisy dynamic mode decom-
position with Kalman filters. J] Comput Phys 461:111175

Ling E, Zheng, L, Ratliff LJ, & Coogan, S (2020). Koopman
operator applications in signalized traffic systems. IEEE Transact
Intell Transport Syst

Wilches-Bernal F, Reno MJ, Hernandez-Alvidrez J (2021) A
Dynamic Mode Decomposition Scheme to Analyze Power
Quality Events. IEEE Access 9:70775-70788

Mamakoukas G, Castano M, Tan X, & Murphey, T (2019). Local
Koopman operators for data-driven control of robotic systems. In
Robotics: Science and Systems.

PingZ,YinZ,Li X, Liu Y, Yang T (2021) Deep Koopman model
predictive control for enhancing transient stability in power grids.
Int J Robust Nonlinear Control 31(6):1964-1978

Rahmani M, Ghanbari A, Ettefagh MM (2016) Robust adaptive
control of a bio-inspired robot manipulator using bat algorithm.
Expert Syst Appl 56:164-176

Rahmani M, Komijani H, Ghanbari A, Ettefagh MM (2018)
Optimal novel super-twisting PID sliding mode control of a
MEMS gyroscope based on multi-objective bat algorithm.
Microsyst Technol 24(6):2835-2846

Fei, J., & Chu, Y. (2016, August). Dynamic global PID sliding
mode control for MEMS gyroscope using adaptive neural con-
troller. In: 2016 joint 8th international conference on soft com-
puting and intelligent systems (SCIS) and 17th international
symposium on advanced intelligent systems (ISIS) (pp. 16-21).
IEEE.

Marino R, Scalzi S, Netto M (2011) Nested PID steering control
for lane keeping in autonomous vehicles. Control Eng Pract
19(12):1459-1467

Yoon J, Doh J (2022) Optimal PID control for hovering stabi-
lization of quadcopter using long short term memory. Adv Eng
Inform 53:101679

Li JW, Chen XB, Zhang WJ (2010) Axiomatic-design-theory-
based approach to modeling linear high order system dynamics.
IEEE/ASME Trans Mechatron 16(2):341-350

Liu L, Zhang L, Pan G, Zhang S (2022) Robust yaw control of
autonomous underwater vehicle based on fractional-order PID
controller. Ocean Eng 257:111493

Erol H (2021) Stability analysis of pitch angle control of large
wind turbines with fractional order PID controller. Sustainable
Energy, Grids and Networks 26:100430

Yang, XS (2010). A new metaheuristic bat-inspired algorithm.
In Nature inspired cooperative strategies for optimization
(NICSO 2010) (pp. 65-74). Springer, Berlin, Heidelberg
Perwaiz U, Younas I, Anwar AA (2020) Many-objective BAT
algorithm. PLoS ONE 15(6):¢0234625

Lakshmanaprabu SK, Elhoseny M, Shankar K (2019) Optimal
tuning of decentralized fractional order PID controllers for TITO

@ Springer



9840

Neural Computing and Applications (2023) 35:9831-9840

30.

31.

32.

33.

34.

35.

36.

37.

38.

process using equivalent transfer function. Cogn Syst Res
58:292-303

Chaib L, Choucha A, Arif S (2017) Optimal design and tuning of
novel fractional order PID power system stabilizer using a new
metaheuristic Bat algorithm. Ain Shams Eng J 8(2):113-125
Fang Y, Fu W, Ding H, Fei J (2022) Modeling and neural sliding
mode control of mems triaxial gyroscope. Adv Mech Eng
14(3):16878132221085876

Lu C, & Fei J (2016). Adaptive sliding mode control of MEMS
gyroscope with prescribed performance. In: 2016 14th interna-
tional workshop on variable structure systems (VSS) (pp. 65-70).
IEEE.

Guo Y, Xu B, Zhang R (2020) Terminal sliding mode control of
mems gyroscopes with finite-time learning. IEEE Transact Neu-
ral Netw Learn Syst 32(10):4490-4498

Rahmani M, Rahman MH, Nosonovsky M (2020) A new hybrid
robust control of MEMS gyroscope. Microsyst Technol
26(3):853-860

Yan W, Hou S, Fang Y, Fei J (2017) Robust adaptive nonsingular
terminal sliding mode control of MEMS gyroscope using fuzzy-
neural-network compensator. Int J Mach Learn Cybern
8(4):1287-1299

Kaiser E, Kutz JN, Brunton SL (2021) Data-driven discovery of
Koopman eigenfunctions for control. Mach Learn: Sci Technol
2(3):035023

Snyder G, & Song Z (2021) Koopman operator theory for non-
linear dynamic modeling using dynamic mode decomposi-
tion. arXiv preprint arXiv:2110.08442.

Malarvili S, Mageshwari S (2022) Nonlinear PID (N-PID) con-
troller for SSSP grid connected inverter control of photovoltaic
systems. Electric Power Syst Res 211:108175

@ Springer

39.

40.

41.

42.

43.

44.

Guo TY, Lu LS, Lin SY, Hwang C (2022) Design of maximum-
stability PID controllers for LTI systems based on a stabilizing-
set construction method. J Taiwan Inst Chem Eng 135:104366
Yan L, Webber JL, Mehbodniya A, Moorthy B, Sivamani S,
Nazir S, Shabaz M (2022) Distributed optimization of heteroge-
neous UAV cluster PID controller based on machine learning.
Comput Electr Eng 101:108059

Abdelouahab MS, Hamri NE (2016) The Griinwald-Letnikov
fractional-order derivative with fixed memory length. Mediterr J
Math 13(2):557-572

Yang XS (2012). Bat algorithm for multi-objective optimisa-
tion. arXiv preprint arXiv:1203.6571.

Sathya MR, Ansari MMT (2015) Load frequency control using
Bat inspired algorithm based dual mode gain scheduling of PI
controllers for interconnected power system. Int J Electr Power
Energy Syst 64:365-374

Miti¢ M, Miljkovi¢ Z (2015) Bio-inspired approach to learning
robot motion trajectories and visual control commands. Expert
Syst Appl 42(5):2624-2637

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the
accepted manuscript version of this article is solely governed by the
terms of such publishing agreement and applicable law.


http://arxiv.org/abs/2110.08442
http://arxiv.org/abs/1203.6571

	Data-driven Koopman fractional order PID control of a MEMS gyroscope using bat algorithm
	Abstract
	Introduction
	Nonlinear dynamic model of MEMS gyroscope
	Koopman theory
	DMD method
	FOPID control
	Bat algorithm to tune the proposed controller parameters
	Simulation results
	Conclusion
	Data Availability
	References




