Collective motion driven by nutrient consumption

Pierre-Emmanuel Jabin*

Benoît Perthame†‡

July 18, 2023

Abstract

A classical problem describing the collective motion of cells, is the movement driven by consumption/depletion of a nutrient. Here we analyze one of the simplest such model written as a coupled Partial Differential Equation/Ordinary Differential Equation system which we scale so as to get a limit describing the usually observed pattern. In this limit the cell density is concentrated as a moving Dirac mass and the nutrient undergoes a discontinuity.

We first carry out the analysis without diffusion, getting a complete description of the unique limit. When diffusion is included, we prove several specific a priori estimates and interpret the system as a heterogeneous monostable equation. This allow us to obtain a limiting problem which shows the concentration effect of the limiting dynamics.

2010 Mathematics Subject Classification. Primary: 35B25. Secondary: 35B36, 35D40, 35K57, 35B25, 35Q92, 92C17.

Keywords and phrases. Asymptotic analysis; Pattern formation; Reaction-diffusion equations.

1 Introduction

A classical problem describing the collective motion of cells, is the movement driven by consumption/depletion of a nutrient [11, 17, 18]. The simplest description uses a number density of cells u_{ε} and a nutrient concentration v_{ε} . It is written

$$\begin{cases} \partial_t u_{\varepsilon} - \varepsilon \partial_{xx}^2 u_{\varepsilon} = \frac{1}{\varepsilon} u_{\varepsilon} (v_{\varepsilon} - \mu), & t \ge 0, \ x \in \mathbb{R}, \\ \partial_t v_{\varepsilon} = -u_{\varepsilon} v_{\varepsilon}, \end{cases}$$
 (1)

completed with initial data $u_{\varepsilon}^{0}, v_{\varepsilon}^{0}$, such that

$$\varepsilon u_{\varepsilon}^{0} \in L_{+}^{1}(\mathbb{R}), \qquad 0 < v_{m} \leq v_{\varepsilon}^{0} \leq v_{M} < \infty, \qquad v_{m} < \mu < v_{M}.$$

^{*}P.–E. Jabin. Department of Mathematics and Huck Institutes, Pennsylvania State University, State College, PA 16801, USA. Email: pejabin@psu.edu

[†]Sorbonne Université, CNRS, Université de Paris, Inria, Laboratoire Jacques-Louis Lions UMR7598, F-75005 Paris. Email : Benoit.Perthame@sorbonne-universite.fr

[‡]B.P. has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No 740623). P.E.J. is partially supported by NSF DMS Grants DMS-2049020, DMS-2205694, and DMS-2219397.

We have introduced a parameter ε which measures the time scale of the cell random motion compared to nutrient consumption. Our interest here is when this parameter is small because it is a case when a pattern is produced under the form of a high concentration of cells despite the parabolic character of Equation (1). In fact this phenomena is closely related to concentration effects in non-local semi-linear parabolic equations as studied intensively recently, see [9, 19, 6, 16] and the references therein. This analogy leads us to postulate that u_{ε} concentrate as Dirac masses at points where v_{ε} undergoes a discontinuity.

The scale proposed here, which is chosen to produce a distinguished limit, is usual for semi-linear diffusion equations and has been studied for local problems in classical works, [10, 1]. The most efficient method is to use the Hopf-Cole transform and viscosity solutions of Hamilton-Jacobi equations [8, 7]. We restrict our analysis to one dimension to explain the solution structure as depicted in Figure 1 but significant parts of our analysis can be extended to several dimensions.

Several related studies can be mentioned. Coupling Ordinary and Partial Differential Equation is rather classical in different areas: for pattern formation, see [12] (study of existence and stability of stationary solutions), modeling of two species dynamics with an unmotile specie [5, 20] for instance. Traveling waves with a non-motile phase have also been studied, see [21] and the references therein. However we are not aware of any analytical study related to the scaling proposed here.

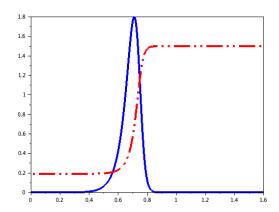


Figure 1: Traveling wave solution of Equation (1). In blue/solid line the component u_{ε} . In red/dashed line, the nutrient v_{ε} .

Our approach combines a reformulation of the problem which leads to a heterogeneous monostable equation for v_{ε} and the standard Hopf-Cole transform as mentioned above. This a convenient tool to represent the Dirac concentration of u_{ε} under the form $\exp(\varphi(t,x)/\varepsilon)$ where φ behaves like a quadratic function.

In Section 2, we begin with a simpler case where we omit the diffusion on u_{ε} , arriving to a system of ordinary differential equations which can be solved nearly explicitly. This allows us to introduce the tools which are used in Section 3 where we state and prove the concentration effect. Several related questions are detailed in appendices: the particular case of traveling waves, and some Sobolev regularity results.

2 The problem without diffusion

We begin with the simpler case where diffusion is ignored and where we can give a complete description while introducing the main tools for the general problem. We are reduced to a system of two differential equations with a parameter x, which solutions however behave as a front propagation in space, namely

$$\begin{cases} \partial_t u_{\varepsilon}(t,x) = \frac{1}{\varepsilon} u_{\varepsilon}(v_{\varepsilon} - \mu), & u_{\varepsilon}(t = 0,x) = u_{\varepsilon}^0(x) \ge 0, & t \ge 0, \ x \in \mathbb{R}, \\ \partial_t v_{\varepsilon} = -u_{\varepsilon} v_{\varepsilon}. \end{cases}$$
 (2)

We define

$$Q(v) = v - \mu \ln v,$$

and observe that Q(v) is a strictly convex function with a minimum at $v=\mu$. Moreover Q(v) converges to $+\infty$ as $v\to 0$ or $v\to \infty$. Given an initial condition $v^0_\varepsilon(x)$ this allows us to define two branches $v^0_-(x)$ and $v^0_+(x)$ s.t. $Q(v^0_-(x))=Q(v^0_+(x))=Q(v^0_\varepsilon(x))$ and $v^0_-(x)<\mu< v^0_+(x)$ provided $v^0_\varepsilon(x)\neq \mu$. We assume there are constants Q_m and Q_M such that

$$\begin{cases} \text{For } x < 0, \quad v_{\varepsilon}^{0}(x) < \mu, & \text{and for } x > 0 \quad v_{\varepsilon}^{0}(x) > \mu, \\ Q(v_{\varepsilon}^{0}(x)) + \varepsilon u_{\varepsilon}^{0} \leq Q_{M}, & Q(v_{\varepsilon}^{0}(x)) > Q_{m} > Q(\mu) & \text{for all } x \neq 0, \\ v_{\varepsilon}^{0} \to v^{0} & \text{pointwise for } x \neq 0. \end{cases}$$
(3)

In other words v_{ε}^{0} has an initial increasing discontinuity at x=0 because of the assumption $Q(v_{\varepsilon}^{0}(x)) > Q_{m} > Q(\mu)$ and stay away from μ even as x approaches 0. For the cell density, we assume that in the weak sense of measures, as $\varepsilon \to 0$, for some fixed constant $\rho^{0} > 0$,

$$\begin{cases} u_{\varepsilon}^{0} = \exp(\frac{\varphi_{\varepsilon}^{0}}{\varepsilon}) \rightharpoonup \rho^{0} \delta(x) & \text{in the weak sense of measures,} \\ \varphi_{\varepsilon}^{0} \to \varphi^{0} & \text{in } C(\mathbb{R}), \qquad \varphi^{0} < 0 \text{ for } x \neq 0. \end{cases}$$
(4)

In this framework, we can describe the behavior of solutions as follows

Theorem 1 Assume (3)- (4) and that $\sup_{\varepsilon} \int_{\mathbb{R}} u_{\varepsilon}^0 < \infty$. The solution of (2) has limits $u_{\varepsilon} \rightharpoonup u$ (weak measures) and $v_{\varepsilon} \to v$ (strongly in L_{loc}^p in time and space) and, for x > 0 there is a time $\tau(x)$ and $v_{-}^0(x) < \mu < v^0(x)$ such that

(i)
$$v(t,x) = v^0(x)$$
 for $t < \tau(x)$, $v(t,x) = v^0_-(x)$ for $t > \tau(x)$,

(ii)
$$u(t,x) = [\ln v^{0}(x) - \ln v^{0}(x)]\delta(t - \tau(x)),$$

(iii)
$$\tau(x) = -\frac{\varphi^0(x)}{v^0(x)-\mu}$$
 with φ defined by (8).

For x < 0, we have $v(t, x) = v^0(x)$.

Proof. A remarkable property of the system (2) is the identity

$$\partial_t [\varepsilon u_\varepsilon + v_\varepsilon - \mu \ln v_\varepsilon] = 0,$$

which implies

$$\varepsilon u_{\varepsilon} + Q(v_{\varepsilon}) = Q(v_{\varepsilon}^{0}(x)) + \varepsilon u_{\varepsilon}^{0} \le Q_{M}, \quad \forall x \in \mathbb{R}.$$
 (5)

Using this inequality and the fact that v_{ε} decreases in time, we first conclude for x < 0, $v_{\varepsilon} - \mu < 0$ and thus $u_{\varepsilon}(t,x) \to 0$ as $\varepsilon \to 0$, therefore $v_{\varepsilon}(t,x) \to v^{0}(x)$. More precisely, there exists $\eta > 0$

s.t. $v_{\varepsilon} - \mu < -\eta$ on x < 0 for all t. Thus $u(t,x) \le e^{-\eta/\varepsilon} u_{\varepsilon}^0(x)$. Since $v_{\varepsilon} < \mu$, we also have that $|v_{\varepsilon}(x) - v^0(x)| \le C |Q(v_{\varepsilon}(x)) - Q(v^0)|^{1/2}$ s.t. from (5)

$$\int_{-R}^{0} |v_{\varepsilon}(t,x) - v^{0}(x)| dx \le C \int_{-R}^{0} |Q(v_{\varepsilon}(x)) - Q(v^{0})|^{1/2} dx \le C \varepsilon^{1/2} \int_{-R}^{0} (u_{\varepsilon}^{0}(x) + u_{\varepsilon}(t,x))^{1/2} dx$$

$$\le C_{R} \varepsilon^{1/2} + C_{R} e^{-\eta/2\varepsilon},$$

implying the convergence of v_{ε} on $L^{\infty}(\mathbb{R}_+, L^p_{loc})$ for any $p < \infty$.

For x > 0, we conclude from (5) and assumption (3), that there are constants such that

$$v_m \le v_\varepsilon(t, x) \le v_M. \tag{6}$$

Also, integrating the second equation of (2), we have for all T > 0,

$$\int_0^T u_{\varepsilon}(t,x)dt = \ln v_{\varepsilon}^0(x) - \ln v_{\varepsilon}(T,x) \le C(T),$$

and since we expect that u_{ε} is a concentrated measure, we define $\varphi_{\varepsilon} = \varepsilon \ln u_{\varepsilon}$. It satisfies

$$\partial_t \varphi_{\varepsilon} = v_{\varepsilon} - \mu$$
 is bounded in t and x . (7)

We can argue x by x and define as $\varepsilon \to 0$ (after extraction of subsequences, but the uniqueness of the limit shows that it is the full family) the strong limits in $L^p([0, T])$ for any T > 0 for v_ε and in L^∞_{loc} for φ_ε

$$v_{\varepsilon}(t,x) \to v(t,x), \qquad \varphi_{\varepsilon} \to \varphi(t,x).$$

By the dominated convergence theorem, since v_{ε} is uniformly bounded, we also obtain the strong convergence of v_{ε} in $L^{p}([0, T] \times [-R, R])$ for any T, R > 0.

We can also define the weak limit

$$u_{\varepsilon}(t,x) \rightharpoonup m(t,x) \ge 0 \in \mathcal{M}^1(0,T).$$

These limits satisfy the equations obtained passing to the limit in (2) and (7)

$$\begin{cases} \partial_t \varphi(t, x) = v - \mu, & \varphi(t, x) \le 0 \\ \partial_t \ln(v) = -m(t, x), & \operatorname{supp}(m) \subset \{\varphi(t) = 0\}. \end{cases}$$

$$Q(v(t, x)) = Q(v^0(x)).$$
(8)

We observe in particular that for any fixed x, if $E_{\varepsilon}(x) = \{t, \ \varphi_{\varepsilon}(t, x) > \sqrt{\varepsilon}\}$, then from the bound on $\int_0^T u_{\varepsilon}(t, x) dt$, we get that

$$|E_{\varepsilon}(x)| \le C e^{-1/\sqrt{\varepsilon}} \to 0$$
, as $\varepsilon \to 0$.

The strong convergence of φ_{ε} proves that, at the limit, $\varphi \leq 0$. With a similar argument, one can show that u_{ε} is exponentially small on $\{t, \varphi(t) < -\sqrt{\varepsilon}\}$. Since φ_{ε} is uniformly Lipschitz in t, we have convergence of the corresponding level sets and this implies that $\sup(m) \subset \{\varphi(t) = 0\}$.

Because of this last equality, v(t,x) belongs to one of the two branches $v_-^0(x) < v_+^0(x) := v^0(x)$ of roots of $Q(v(t,x)) = Q(v^0(x))$. Therefore $v - \mu$ is away from 0 and there is a first time $\tau(x)$ such that $\varphi(\tau(x),x) = 0$ and $\varphi(t,x) < 0$ for $t \neq \tau(x)$. This time $\tau(x)$ is also the jump time from one branch to

the other for v as stated in (i).

We can also compute, from the above equation on $\ln v$, and this gives (ii), namely

$$u_{\varepsilon} = -\partial_t \ln v_{\varepsilon} \rightharpoonup u = [\ln v_+(x) - \ln v_-(x)]\delta(t - \tau(x)).$$

The time $\tau(x)$ is fully identified from the limiting system: By integrating the equation on $\varphi(t,x)$, we find that

$$\varphi(t,x) = \begin{cases} \varphi(0,x) + t(v^{0}(x) - \mu), & t < \tau(x), \\ \varphi(0,x) + \tau(x)(v^{0}(x) - \mu) + (t - \tau(x))(v_{-}^{0}(x) - \mu), & t > \tau(x). \end{cases}$$

For x > 0, as $v_{-}^{0}(x) < \mu < v^{0}(x)$, $\varphi(t, x)$ is strictly increasing in time for $t < \tau(x)$, and strictly decreasing for $t > \tau(x)$.

Furthermore by the second equation, we have that $\varphi(\tau(x), x) = 0$. Hence this characterizes $\tau(x)$ as

$$\tau(x) = -\frac{\varphi^0(x)}{v^0(x) - \mu}.$$

This gives (iii) and identifies completely the limiting solution x by x.

Observe that we only define $\tau(x)$ for x > 0. It would possible to extend (iii) to x < 0 since $v^0 < \mu$ for those x, since $\varphi^0(x)$ is well defined for every x. This yields $\tau(x) < 0$ for x < 0, which is consistent with (i) and (ii), though not very useful.

3 The full problem

When diffusion is included, the previous analysis, which uses fundamentally x by x convergence, does not apply and the assumptions have to take into account the diffusion term. We also make more general assumptions. For the initial data, we assume that

$$u_{\varepsilon}^{0} > 0, \qquad \varepsilon u_{\varepsilon}^{0} \le C, \qquad \int_{\mathbb{D}} u_{\varepsilon}^{0} dx \le C,$$
 (9)

and, $\varphi_{\varepsilon}^0 = \varepsilon \ln u_{\varepsilon}^0$ satisfies

$$\varepsilon \partial_{xx}^2 \varphi_{\varepsilon}^0 \le C, \qquad |\partial_x \varphi_{\varepsilon}^0| \le C, \qquad \varphi_{\varepsilon}^0(x) \ge -C(1+|x|),$$
 (10)

$$\varepsilon \left| \partial_{xx}^2 \ln v_{\varepsilon}^0 \right| \le C, \qquad \left| \partial_x \ln v_{\varepsilon}^0 \right| + \left| \ln v_{\varepsilon}^0 \right| \le C. \tag{11}$$

Then, recalling the definition $Q(v) = v - \mu \ln v$, we also use

$$w = \ln v, \qquad \widetilde{Q}(w) = Q(v) = e^w - \mu w, \tag{12}$$

and we can define uniquely two smooth branches of initial data $w_{\pm,\varepsilon}^0$ by

$$\widetilde{Q}(w_{\varepsilon}^0) = \widetilde{Q}(w_{-,\varepsilon}^0) = \widetilde{Q}(w_{+,\varepsilon}^0), \qquad w_{-,\varepsilon}^0 \le \ln \mu \le w_{+,\varepsilon}^0.$$
 (13)

Note that assumption (11) provides corresponding bounds on w_{ε}^0 and $w_{\pm,\varepsilon}^0$, which are

$$|w_{\varepsilon}^{0}| + |w_{\pm,\varepsilon}^{0}| \le C, \quad |\partial_{x}w_{\varepsilon}^{0}| + |\partial_{x}w_{\pm,\varepsilon}^{0}| \le C, \quad \varepsilon |\partial_{xx}^{2}w_{\varepsilon}^{0}| + \varepsilon |\partial_{xx}^{2}w_{\pm,\varepsilon}^{0}| \le C. \tag{14}$$

And we also use, for an unessential result, the stronger condition

$$\varepsilon \partial_{xx}^2 (w_\varepsilon^0 - w_{-\varepsilon}^0) + u_\varepsilon^0 \le C. \tag{15}$$

Finally, we use the notation $|W|_{-} = \max(0, -W)$.

Our main theorem now reads

Theorem 2 Assume that $u_{\varepsilon}^{0} \in C^{2} \cap L^{1}(\mathbb{R})$ and that assumptions (9)–(11) hold. The solution of (1) has limits $u_{\varepsilon} \rightharpoonup u$ (weak measures) and $v_{\varepsilon} \rightarrow v$ (strongly in L_{loc}^{p}) and, there is a time $\tau(x)$ and $v_{\varepsilon}^{0}(x) < \mu < v^{0}(x)$ such that

(i)
$$v(t,x) = v_{-}^{0}(x)$$
 for a.e. x and $t < \tau(x)$, $v(t,x) = v_{-}^{0}(x)$ for a.e. x and $t > \tau(x)$,

(ii)
$$u(t,x) = [\ln v^0(x) - \ln v^0_-(x)]\delta(t - \tau(x)).$$

Compared to the case without diffusion in Theorem 1, there is no simple explicit formula for the jump time $\tau(x)$. However, here it is also characterized by $\varphi(\tau(x), x) = 0$ for the solution of an Eikonal equation.

The end of this section is devoted to the proof of Theorem 2.

Our analysis is based on the observation that $\partial_t \ln v_\varepsilon = -u_\varepsilon$, thus, from (1), we get the identity

$$\partial_t [\varepsilon u_\varepsilon + v_\varepsilon - \mu \ln v_\varepsilon + \varepsilon^2 \partial_{xx}^2 \ln v_\varepsilon] = 0,$$

and consequently

$$\varepsilon \partial_t \ln v_\varepsilon - \varepsilon^2 \partial_{xx}^2 \ln v_\varepsilon - Q(v_\varepsilon) = -Q(v_\varepsilon^0) - \varepsilon u_\varepsilon^0 - \varepsilon^2 \partial_{xx}^2 \ln v_\varepsilon^0,$$

which we can write in terms of w_{ε} as

$$\varepsilon \partial_t w_{\varepsilon} - \varepsilon^2 \partial_{xx}^2 w_{\varepsilon} - \widetilde{Q}(w_{\varepsilon}) = -\widetilde{Q}(w_{\varepsilon}^0) - \varepsilon u_{\varepsilon}^0 - \varepsilon^2 \partial_{xx}^2 w_{\varepsilon}^0. \tag{16}$$

Notice that this is a monostable equation of Fisher/KPP type, where the steady states depend on x.

A priori estimates on v_{ε} .

Lemma 3 The inequalities hold

$$0 < C \le w_{\varepsilon}(t, x) \le w_{+, \varepsilon}^{0}, \tag{17}$$

and for any R, there is a constant C_R such that,

$$\int_{|x| \le R} |\widetilde{Q}(w_{\varepsilon}) - \widetilde{Q}(w_{\varepsilon}^{0})| \mathbb{I}_{\{w_{\varepsilon} - w_{-, \varepsilon}^{0} \le 0\}} dx \le C_{R} \varepsilon, \qquad \forall t \ge 0.$$
(18)

Finally, with the additional assumption (15), we have $-C\sqrt{\varepsilon} + w_{-,\varepsilon}^0 \leq w_{\varepsilon}(t,x)$.

Proof. For the first statement, on the one hand, we note that we necessarily have that for any x, $w_{\varepsilon}^{0}(x) = w_{-,\varepsilon}^{0}(x)$ or $w_{\varepsilon}^{0}(x) = w_{+,\varepsilon}^{0}(x)$. In both cases, that implies that $w_{\varepsilon}^{0}(x) \leq w_{+,\varepsilon}^{0}(x)$. Since v_{ε} is non-increasing in time, so is w_{ε} and

$$w_{\varepsilon}(t,x) \leq w_{\varepsilon}^{0}(x) \leq w_{+,\varepsilon}^{0}(x).$$

On the other hand, as $\partial_t w_{\varepsilon} \leq 0$, we can deduce from (16), that

$$-\varepsilon^2 \partial_{xx}^2 (w_{\varepsilon} - w_{-,\varepsilon}^0) + [\widetilde{Q}(w_{-,\varepsilon}^0) - \widetilde{Q}(w_{\varepsilon})] \ge -\varepsilon^2 \partial_{xx}^2 (w_{\varepsilon}^0 - w_{-,\varepsilon}^0) - \varepsilon u_{\varepsilon}^0.$$
(19)

Using assumptions (9) and (11) (or more precisely (14)), one may bound the right-hand side by some constant C so that

$$-\varepsilon^2 \partial_{xx}^2 (w_{\varepsilon} - w_{-,\varepsilon}^0) + [\widetilde{Q}(w_{-,\varepsilon}^0) - \widetilde{Q}(w_{\varepsilon})] \ge -C.$$

We conclude from the maximum principle that at a minimum value of $w_{\varepsilon} - w_{-,\varepsilon}^0$, the quantity $\widetilde{Q}(w_{-,\varepsilon}^0) - \widetilde{Q}(w_{\varepsilon})$ is controlled from below by -C. From the definition of \widetilde{Q} , the lower bound on w_{ε} follows. Note that assumption (15) is not required here as we do not need to show that the right-hand side of (19) is of order ε but simply that it is bounded.

Define the negative part of f as $f_- = \max(-f, 0)$ and observe that the usual convex inequalities yield that $\partial_{xx}^2 f \mathbb{1}_{\{f<0\}} \ge -\partial_{xx}^2 (f_-)$. It follows from (19) that

$$-\varepsilon^{2}\partial_{xx}^{2}(w_{\varepsilon}-w_{-,\varepsilon}^{0})_{-}+[\widetilde{Q}(w_{\varepsilon})-\widetilde{Q}(w_{-,\varepsilon}^{0})]\mathbb{I}_{\{w_{\varepsilon}-w_{-,\varepsilon}^{0}<0\}}\leq\varepsilon\,u_{\varepsilon}^{0}+\varepsilon^{2}|\partial_{xx}^{2}(w_{\varepsilon}^{0}-w_{-,\varepsilon}^{0})|. \tag{20}$$

Because the set $\{W \, s.t. \, W - w_{-,\varepsilon}^0 < 0\}$ lies in the decreasing branch of \widetilde{Q} , the quantity $[\widetilde{Q}(w_{\varepsilon}) - \widetilde{Q}(w_{-,\varepsilon}^0)] \mathbb{I}_{\{w_{\varepsilon}-w_{-,\varepsilon}^0<0\}}$ is positive. We integrate against some smooth non-negative ψ with $\psi=1$ on B(0,R) and ψ compactly supported in B(0,2R). Since we have already proved that $w_{\varepsilon}-w_{-,\varepsilon}^0$ is bounded, we obtain the estimate

$$\int_{|x| < R} |\widetilde{Q}(w_{\varepsilon}) - \widetilde{Q}(w_{\varepsilon}^{0})| \mathbb{I}_{\{w_{\varepsilon} - w_{-, \varepsilon}^{0} \le 0\}} dx \le C_{R} \varepsilon^{2} + \varepsilon \int_{|x| < R} u_{\varepsilon}^{0} dx + \varepsilon^{2} \int_{|x| < R} |\partial_{xx}^{2}(w_{\varepsilon}^{0} - w_{-, \varepsilon}^{0})| dx.$$

Using assumption (9) and assumption (11) concludes the second point of the lemma.

We may also use the specific assumption (15) in (20), we obtain that

$$-\varepsilon^2 \partial_{xx}^2 (w_{\varepsilon} - w_{-,\varepsilon}^0)_- + [\widetilde{Q}(w_{\varepsilon}) - \widetilde{Q}(w_{-,\varepsilon}^0)] \mathbb{I}_{\{w_{\varepsilon} - w_{-,\varepsilon}^0 < 0\}} \le C\varepsilon.$$

Recalling that $[\widetilde{Q}(w_{\varepsilon}) - \widetilde{Q}(w_{-,\varepsilon}^0)] \mathbb{I}_{\{w_{\varepsilon} - w_{-,\varepsilon}^0 < 0\}}$ is positive, we conclude that

$$Q(w_{\varepsilon}) - \widetilde{Q}(w_{-,\varepsilon}^0) \mathbb{I}_{\{w_{\varepsilon} - w_{-,\varepsilon}^0 < 0\}} \le C\varepsilon,$$

and thus the third statement of Lemma 3 holds, namely $w_{\varepsilon} - w_{-,\varepsilon} \geq -C\sqrt{\varepsilon}$.

Concentration dynamics of u_{ε} . We turn to the study of u_{ε} and begin with some simple estimates. • Since $u_{\varepsilon} = -\partial_t w_{\varepsilon}$, and using the bound (17), we find

$$\sup_{x} \int_{0}^{T} u_{\varepsilon}(t, x) dt = \sup_{x} [w_{\varepsilon}^{0}(x) - w_{\varepsilon}(x, T)] \le C(T), \tag{21}$$

and thus, integrating in space and time the equation on u_{ε} , we also get

$$\varepsilon \int_{\mathbb{R}} u_{\varepsilon}(t,x) \, dx = \varepsilon \int_{\mathbb{R}} u_{\varepsilon}^{0}(x) \, dx + \int_{\mathbb{R}} \int_{0}^{t} u_{\varepsilon}(s,x) (v_{\varepsilon}(s,x) - \mu) ds \, dx \le C(t). \tag{22}$$

• Next, we use the Hopf-Cole transform

$$\varphi_{\varepsilon}(t,x) = \varepsilon \ln u_{\varepsilon}(t,x).$$

As usual, we compute that φ_{ε} satisfies the Eikonal equation

$$\partial_t \varphi_{\varepsilon} = \varepsilon \partial_{xx}^2 \varphi_{\varepsilon} + |\partial_x \varphi_{\varepsilon}|^2 + v_{\varepsilon} - \mu. \tag{23}$$

We are going to show some uniform bounds on φ_{ε} .

Lemma 4 We have

$$\partial_t \varphi_{\varepsilon}(t, x) \le C, \qquad \forall x \in \mathbb{R}, \ t \ge 0$$
 (24)

$$\|\partial_x \varphi_{\varepsilon}(t)\|_{L^{\infty}(\mathbb{R})} \le C, \qquad \|\partial_t \varphi_{\varepsilon}\|_{L^p_{t,x}} \le C(p), \quad \forall p \in [1, \infty),$$
 (25)

$$-C(t)(1+|x|) \le \varphi_{\varepsilon}(t,x) \le 2\varepsilon \ln \frac{1}{\varepsilon} + C(t)\varepsilon, \qquad \forall x \in \mathbb{R}, \ t \ge 0.$$
 (26)

Proof. Before proving the estimates, we observe that for a fixed $\varepsilon > 0$, the system (1) is well-posed on any time interval. Moreover by differentiating in x or t, it also follows that u_{ε} and v_{ε} or w_{ε} are C^1 . Of course those bounds are not uniform in ε and, in fact, may behave very poorly with $\exp 1/\varepsilon$ factors.

Still for fixed $\varepsilon > 0$, we may now solve the viscous Eikonal (23) on φ_{ε} since v_{ε} is now given and smooth, having been obtained from (1). Since the viscosity is strictly positive, we obtain a C^2 classical solution w_{ε} , from [2] for example; but again with a priori very poor dependence on ε on any bound. This however allows to easily justify the following calculations.

For the time derivative, differentiating (23) and using the equation on v_{ε} , we find

$$\partial_t(\partial_t \varphi_{\varepsilon}) = \varepsilon \partial_{xx}^2(\partial_t \varphi_{\varepsilon}) + 2\partial_x \varphi_{\varepsilon} \partial_x(\partial_t \varphi_{\varepsilon}) - u_{\varepsilon} v_{\varepsilon} \le \varepsilon \partial_{xx}^2(\partial_t \varphi_{\varepsilon}) + 2\partial_x \varphi_{\varepsilon} \partial_x(\partial_t \varphi_{\varepsilon}),$$

so that the maximum principle gives $\partial_t \varphi_{\varepsilon}(t,x) \leq \max_x \partial_t \varphi_{\varepsilon}(t,x)|_{t=0}$ which gives (24) thanks to the assumption (10).

Next, we prove the Lipschitz bound. Consider any point x_{ε} that is a maximum in x of $\partial_x \varphi_{\varepsilon}$ at any time t (standard arguments apply if the maximum is not achieved, see [7, 2]). Then $\partial_{xx}^2 \varphi_{\varepsilon}(x_{\varepsilon}) = 0$ and we conclude, still using (24), that

$$|\partial_x \varphi_{\varepsilon}(t, x_{\varepsilon})|^2 = \partial_t \varphi_{\varepsilon}(t, x_{\varepsilon}) + v_{\varepsilon} - \mu \le C.$$
(27)

Once $\partial_x \varphi_{\varepsilon} \in L^{\infty}_{t,x}$ uniformly, standard parabolic estimates (see for example [13, 15]) provide a uniform bound on $\partial_t \varphi_{\varepsilon}$ in $L^p_{t,x}$ for any $1 \leq p < \infty$.

Finally, since φ_{ε} is uniformly Lipschitz in x, let x_{ε} be a maximum of φ_{ε} , then

$$\varphi_{\varepsilon}(t, x) \ge \max \varphi_{\varepsilon}(t, .) - C |x - x_{\varepsilon}|,$$

so that, using (22),

$$\frac{C}{\varepsilon} \ge \int_{\mathbb{R}} u_{\varepsilon}(t, x) \, dx \ge \int_{\mathbb{R}} e^{\max \varphi_{\varepsilon}(t, .)/\varepsilon} \, e^{-C |x - x_{\varepsilon}|/\varepsilon} \, dx \ge \frac{\varepsilon}{C} \, e^{\max \varphi_{\varepsilon}(t, .)/\varepsilon},$$

which proves the upper bound in (26). The lower bound relies, as it is standard [2, 7, 3], on the construction of a sub-solution. Here one can immediately check that $-C(t+1) - \frac{Cx^2}{\sqrt{1+|x|^2}}$ will work.

Compactness of v_{ε} . We introduce the quantity $\Phi(x, w)$, defined up to a constant, by

$$\Phi_w(x, w) = |\widetilde{Q}(w_{\varepsilon}^0(x)) - \widetilde{Q}(w)| \ge 0.$$

Lemma 5 With assumptions (11)-(9), we have

$$\sup_{x \in \mathbb{R}, \ 0 \le t \le T} |\partial_x w_{\varepsilon}| \le \frac{C_T}{\varepsilon}, \qquad \int_0^T \int_{|x| < R} |\partial_x \Phi(x, w_{\varepsilon}(t, x))| \le C_{T, R}.$$

Consequently, by monotonicity of Φ in w, v_{ε} is locally compact in $L^p((0,\infty)\times\mathbb{R})$ for any $1\leq p<\infty$.

Remark 6 It is also possible to conclude from this lemma that w_{ε} is uniformly bounded in $L^{1}([0, T], W^{\theta, 1}(\mathbb{R}))$ for some $\theta > 0$; see Appendix B.

Proof. First of all, calculate

$$\partial_t \partial_x w_\varepsilon = -\partial_x u_\varepsilon = -\frac{\partial_x \varphi_\varepsilon}{\varepsilon} u_\varepsilon,$$

which yields, from the Lipschitz bound on φ_{ε} in (27) and the estimate (21),

$$|\partial_x w_{\varepsilon}(t,x)| \le |\partial_x w_{\varepsilon}^0(x)| + \frac{C}{\varepsilon} \int_0^t u_{\varepsilon}(s,x) \, ds \le \frac{C(t)}{\varepsilon}.$$

Next, we write $\partial_x[\Phi(x,w_\varepsilon(t,x))] = \partial_x\Phi(x,w_\varepsilon) + [\widetilde{Q}(w_\varepsilon^0) - \widetilde{Q}(w_\varepsilon)]\partial_xw_\varepsilon$. Since $\partial_x\Phi(x,w_\varepsilon)$ is bounded in L^∞ , and thanks to the second bound in Lemma 3, we conclude that

$$\int_{0}^{T} \int_{|x| \le R} |\partial_{x} \Phi(x, w_{\varepsilon})| \le C_{T,R} + \varepsilon \sup_{|x| \le R, \ 0 \le t \le T} |\partial_{x} w_{\varepsilon}| \int_{0}^{T} \int_{|x| \le R} |\frac{Q(v_{\varepsilon}^{0}) - Q(v_{\varepsilon})}{\varepsilon}| \le C_{T,R}. \tag{28}$$

Since $\partial_t w_{\varepsilon} \leq 0$ and w_{ε} bounded provide us with compactness in time, we conclude that $\Phi(x, w_{\varepsilon})$ is compact and thus converges a.e. By monotonicity of Φ in w_{ε} , we also conclude that w_{ε} converges a.e.

Convergence as $\varepsilon \to 0$. We are now ready to study the limit as ε vanishes.

• The bounds in Lemma 4 show that φ_{ε} is locally compact in $C(\mathbb{R}_{+} \times \mathbb{R})$ and hence, after extraction of a subsequence that we still denote by ε , there exists φ which is Lipschitz in space and with time derivatives in L^{p} such that

$$\|\varphi_{\varepsilon} - \varphi\|_{L^{\infty}((0,T)\times(-R,R))} \to 0$$
, as $\varepsilon \to 0$, $\forall T > 0, R > 0$.

We note that

$$-C(1+t) - C|x| \le \varphi(t,x) \le 0.$$
(29)

• From Lemma 5, we also conclude that v_{ε} converges locally; for any $1 \leq p < \infty$,

$$v_{\varepsilon} \to v$$
, $w_{\varepsilon} \to w = \ln v$ in $L^p((0,T) \times (-R,R))$, $\forall T > 0, R > 0$.

• From the bound (21), we can also extract a subsequence such that, in the weak sense of measures,

$$u_{\varepsilon} \rightharpoonup u$$
, in $\mathcal{M}((0,T) \times (-R,R))$, $\forall T > 0, R > 0$.

We may pass to the limit, in distributional sense, in Equations (1) and get, as $\varepsilon \to 0$,

$$u_{\varepsilon}v_{\varepsilon} \rightharpoonup u\mu, \qquad \partial_t w = -u \qquad \partial_t v = \text{w-lim } (-u_{\varepsilon}v_{\varepsilon}) = -u\mu,$$

which expresses that the concentration of the measure u_{ε} is exactly at the point where $v_{\varepsilon} = \mu$. And from Lemma 3, we know that

$$\widetilde{Q}(w) = \widetilde{Q}(w^0), \quad i.e., \quad w(t,x) = w_-^0(x) \quad or \quad w_+^0(x).$$

Since w is non-decreasing in time, we conclude that, for all $x \in \mathcal{S}$, a subset of \mathbb{R} where $w^0 = w_-^0$, there is a unique time $\tau(x)$ such that w jumps from $w_-^0(x)$ to $w_+^0(x)$ (with $\tau(x) = \infty$ for x < 0), and

$$u(t,x) = [w_+^0(x) - w_-^0(x)]\delta(t - \tau(x)) \mathbb{I}_{\{x \in S\}}, \qquad \varphi(\tau(x),x) = 0.$$

Open questions. Uniqueness for the limit problem, which we proved when diffusion is ignored (Section 2, is an open question in full generality. In particular it seems hard to determine more properties about the set S, which depends on the initial data. In the monotone case when $w^0(x) = w^0_-(x)$ for x < 0 and $w^0(x) = w^0_+(x)$ for x > 0 with $u^0 = [[w^0]]\delta(x)$, one can expect $\tau(x)$ be invertible and to obtain a front located at some value x = X(t).

Acknowledgments. The authors would like to thank the Institut Henri Poincaré for its support and hospitality during the program "Mathematical modeling of organization in living matter". The authors also thank similarly the Isaac Newton Institute for Mathematical Sciences, Cambridge, for support and hospitality during the program "Frontiers in kinetic theory: connecting microscopic to macroscopic scales - KineCon 2022" where work on this paper was undertaken. This work was supported by EPSRC grant no EP/K032208/1. B.P. has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No 740623). P. E. Jabin is partially supported by NSF DMS Grants DMS-2049020, DMS-2205694, and DMS-2219397.

A Traveling wave

Traveling waves are an intuitive way to understand, in a very particular case, the general behavior of system (1). considering solutions of the form $u_{\varepsilon}(x-\sigma t)$, $v_{\varepsilon}(x-\sigma t)$, $w_{\varepsilon}=\ln v_{\varepsilon}$. Recalling the notation $\widetilde{Q}(w)=e^w-\mu w$, we arrive at an equation on the single quantity $w_{\varepsilon}(y)$,

$$-\sigma \varepsilon w_{\varepsilon}' - \varepsilon^2 w_{\varepsilon}'' = \widetilde{Q}(w_{\varepsilon}) - A,$$

with the conditions at infinity

$$w_{\varepsilon}(-\infty) = w_{-} < \ln \mu, \qquad w_{\varepsilon}(+\infty) = w_{+} > \ln \mu, \qquad A = \widetilde{Q}(w_{-}) = \widetilde{Q}(w_{+}).$$

This is just a Fisher/KPP monostable equation with w_+ the unstable state and we know from the general theory [14] that there is a traveling wave with minimal speed σ_* which is characterized by the property of a double root for the polynomial

$$-\sigma\varepsilon\lambda - \varepsilon^2\lambda^2 = \widetilde{Q}'(w_+),$$

that is $\sigma_* = 2\sqrt{\tilde{Q}'(w_+)}$. In our analysis, this value σ_* also appears in the limit of Equation (23), that is the Eikonal equation

$$\partial_t \varphi = |\partial_x \varphi|^2 + v - \mu,$$

which for the traveling wave problem generates a solution $\varphi(x-\sigma t)$ with

$$\sigma\varphi'(y) = |\varphi'(y)|^2 + v_{\pm}(y) - \mu,$$

where $v_{\pm}(y) = v_{-}$ for y < 0 and $v_{\pm}(y) = v_{+}$ for y > 0. The limiting minimal speed traveling wave solution is

$$\varphi(y) = \begin{cases} p_{-}y < 0 & \text{for } y < 0, \\ p_{+}y < 0 & \text{for } y > 0, \end{cases}$$

and p_+ is the double root of the polynomial $-\sigma_*\lambda - 2\lambda^2 = \widetilde{Q}'(w_+) = v_+ - \mu$. This approach based on the concentration as a Dirac measure of u_{ε} differs (but is restricted to one dimension) from the general front propagation theory in [1, 4] based on the quantity v_{ε} .

B A Sobolev estimate

We may use the bound (28) to obtain Sobolev regularity on v_{ε} by controlling

$$\sup_{|h| < 1} \int_0^T \int_{|x| < R} \frac{|v_{\varepsilon}(x+h) - v_{\varepsilon}(x)|}{|h|^{\theta}} dx dt, \tag{30}$$

for some appropriate value of θ .

This requires to be a bit more precise on the set where the initial data v_{ε} crosses μ . Specifically, we assume that there exists some constants C > 0 and $\kappa > 0$ such that for any $\delta > 0$

$$|\{x, |v_{\varepsilon}^{0}(x) - \mu| \le \delta\}| \le C \delta^{\kappa}. \tag{31}$$

Observe that when $|h| \leq \varepsilon^{1/(1-\theta)}$ then by the Lipschitz bound on v_{ε} (which follows immediately from that on w_{ε}), then

$$\int_0^T \int_{|x| < R} \frac{|v_{\varepsilon}(x+h) - v_{\varepsilon}(x)|}{|h|^{\theta}} dx dt \le C_{T,R} \|\partial_x v_{\varepsilon}\|_{L^{\infty}} |h|^{1-\theta} \le C_R,$$

so that we can limit ourselves to $h \ge \varepsilon^{1/(1-\theta)}$.

For some $\alpha > 0$ which we later relate to θ and some constant C, denote

$$\Omega_{-} = \{(t, x) \in [0, T] \times B(0, R), \ w_{-, \varepsilon}^{0} - |h|^{\alpha} \le w_{\varepsilon}(t, x) \le \ln \mu - |h|^{\alpha/2} \},$$

$$\Omega_{+} = \{(t, x) \in [0, T] \times B(0, R), \ w_{\varepsilon}(t, x) \ge \ln \mu + |h|^{\alpha/2} \},$$

$$\Omega_0 = \{(t, x) \in [0, T] \times B(0, R), \ln \mu - |h|^{\alpha/2} \le w_{\varepsilon}(t, x) \le \ln \mu + |h|^{\alpha/2} \text{ or } w_{\varepsilon}(t, x) \le w_{-, \varepsilon}^0 - |h|^{\alpha} \}.$$

Observe that when $(t, x) \in \Omega_0$ then

$$\sup_{\varepsilon^{1/(1-\theta)} \le |h| \le 1} \int_{(t,x)\in\Omega_0 \text{ or } (t,x+h)\in\Omega_0} \frac{|v_{\varepsilon}(t,x+h) - v_{\varepsilon}(t,x)|}{|h|^{\theta}} dx dt$$

$$\le 2 \sup_{\varepsilon^{1/(1-\theta)} \le |h| \le 1} \frac{||v_{\varepsilon}||}{|h|^{\theta}} \int_{(t,x)\in\Omega_0 \text{ or } (t,x+h)\in\Omega_0} dx dt$$

We note that if $w_{\varepsilon}(t,x) \leq w_{-,\varepsilon}^{0}(x) - |h|^{\alpha}$ then

$$|\widetilde{Q}(w_{\varepsilon}) - \widetilde{Q}(w_{\varepsilon}^{0})| \ge |h|^{\alpha}/C.$$

Similarly if $\ln \mu - |h|^{\alpha/2} \le w_{\varepsilon}(t,x) \le \ln \mu + |h|^{\alpha/2}$ but $w_{\varepsilon}^{0}(x) < \ln \mu - 2 |h|^{\alpha/2}$ or $w_{\varepsilon}^{0}(x) > \ln \mu + 2|h|^{\alpha/2}$, then we have again

 $|\widetilde{Q}(w_{\varepsilon}) - \widetilde{Q}(w_{\varepsilon}^{0})| \ge |h|^{\alpha}/C,$

as $\widetilde{Q}(w)$ has a minimum at $w = \ln \mu$ but is strictly convex. Hence by (31)

$$|\Omega_0| \leq \frac{C}{|h|^{\alpha}} \int_0^T \int_{B(0,R)} |\widetilde{Q}(w_{\varepsilon}) - \widetilde{Q}(w_{\varepsilon}^0)| \, dx \, dt + \{x, |w_{\varepsilon}^0(x) - \ln \mu| \leq 2 |h|^{\alpha/2} \}$$

$$\leq \frac{C}{|h|^{\alpha}} \int_0^T \int_{B(0,R)} |\widetilde{Q}(w_{\varepsilon}) - \widetilde{Q}(w_{\varepsilon}^0)| \, dx \, dt + C |h|^{\kappa \alpha/2}.$$

We therefore obtain that

$$\sup_{\varepsilon^{1/(1-\theta)} \le |h| \le 1} \int_{(t,x)\in\Omega_0 \text{ or } (t,x+h)\in\Omega_0} \frac{|v_{\varepsilon}(t,x+h) - v_{\varepsilon}(t,x)|}{|h|^{\theta}} dx dt
\le \sup_{\varepsilon^{1/(1-\theta)} \le |h| \le 1} \frac{C}{|h|^{\theta}} \frac{1}{|h|^{\alpha}} \int_0^T \int_{B(0,R)} |\widetilde{Q}(w_{\varepsilon}) - \widetilde{Q}(w_{\varepsilon}^0)| dx dt + C \frac{|h|^{\kappa \alpha/2}}{|h|^{\theta}} \le C_{T,R},$$

by Lemma 3 and provided that $\kappa \alpha/2 \ge \theta$ leading us to take $\alpha = 2\theta/\kappa$ and $(\alpha + \theta)/(1 - \theta) = (1+2/\kappa)\theta/(1-\theta) \le 1$. It is always possible to satisfy these inequalities provided that $\theta/(1-\theta) \le \frac{1}{1+2/\kappa}$. We can consequently exclude the case where $(t,x) \in \Omega_0$ or $(t,x+h) \in \Omega_0$ when bounding (30).

The BV bound (28) also directly controls the case where $(t,x) \in \Omega_-$ and $(t,x+h) \in \Omega_+$ (or vice-versa). Indeed in that case, we necessarily have that $w_{+,\varepsilon}^0 \geq w_{-,\varepsilon}^0 + 2 |h|^{\alpha/2}$ and $\partial_w \Phi(x,w_\varepsilon) = \widetilde{Q}(w_\varepsilon^0) - \widetilde{Q}(w_\varepsilon)$ has a sign between $w_{-,\varepsilon}$ and $w_{+,\varepsilon}$ so that there exists a constant C s.t. (again at least

locally)

$$|\Phi(x,w_{-,\varepsilon}^0) - \Phi(x,w_{+,\varepsilon}^0)| \ge \frac{|h|^{3\alpha/2}}{C}.$$

By our definitions of Ω_{-} and Ω_{+} and taking C large enough, this implies that

$$|\Phi(x, w_{\varepsilon}(t, x+h)) - \Phi(x, w_{\varepsilon}(t, x))| \ge \frac{|h|^{3\alpha/2}}{C}$$
 if $(t, x) \in \Omega_{-}$ and $(t, x+h) \in \Omega_{+}$.

Therefore

$$\int_{(t,x)\in\Omega_{-} \text{ and } (t,x+h)\in\Omega_{+}} \frac{|v_{\varepsilon}(t,x+h) - v_{\varepsilon}(t,x)|}{|h|^{\theta}} dx dt \leq 2 \frac{\|v_{\varepsilon}\|}{|h|^{\theta}} \int_{(t,x)\in\Omega_{-} \text{ and } (t,x+h)\in\Omega_{+}} dx \\
\leq \frac{C}{|h|^{\theta+3\alpha/2}} \int_{0}^{T} \int_{B(0,R)} |\Phi(x,w_{\varepsilon}(t,x+h)) - \Phi(x,w_{\varepsilon}(t,x))| dx dt \leq C_{T,R} |h|^{1-\theta-3\alpha/2},$$

by (28). This is bounded as long as $\theta + 3\alpha/2 = \theta (1 + 3/\kappa) \le 1$.

We are finally able to focus on the case where for example both $(t,x) \in \Omega_-$ and $(t,x+h) \in \Omega_-$. Note again that $\partial_w \Phi(x,w_\varepsilon) = \widetilde{Q}(w_\varepsilon^0) - \widetilde{Q}(w_\varepsilon)$ vanishes once with a change of sign at $w_\varepsilon = w_{-,\varepsilon}$ for $(t,x) \in \Omega_-$. Therefore $w \to \Phi(x,w)$ is injective on $w \in [w_{-,\varepsilon}^0, \ln \mu - |h|^{\alpha/2}]$ for some constant C and

$$|w_1 - w_2|^3 \le C |\Phi(x, w_1) - \Phi(x, w_2)|, \quad w_1, w_2 \in [w_{-,\varepsilon}^0, \ln \mu - |h|^{\alpha/2}].$$

Since $w_{\varepsilon} \geq w_{-,\varepsilon}^0 - |h|^{\alpha}$ on Ω_- , this implies that for both $(t,x) \in \Omega_-$ and $(t,x+h) \in \Omega_-$, we have

$$|w_{\varepsilon}(t,x) - w_{\varepsilon}(t,x+h)|^{3} \leq C |\Phi(x,w_{\varepsilon}(t,x)) - \Phi(x,w_{\varepsilon}(t,x+h))| + C \varepsilon^{\alpha}.$$

By a straightforward Hölder inequality, we get

$$\int_{(t,x)\in\Omega_{-} \text{ and } (t,x+h)\in\Omega_{+}} \frac{|v_{\varepsilon}(t,x+h) - v_{\varepsilon}(t,x)|}{|h|^{\theta}} dx dt$$

$$\leq C_{T,R} \left(\int_{(t,x)\in\Omega_{-} \text{ and } (t,x+h)\in\Omega_{-}} \frac{|w_{\varepsilon}(t,x+h) - w_{\varepsilon}(t,x)|^{3}}{|h|^{3\theta}} dx dt \right)^{1/2}$$

$$\leq C_{T,R} \left(\int_{(t,x)\in\Omega_{-} \text{ and } (t,x+h)\in\Omega_{-}} \frac{|\Phi(x,w_{\varepsilon}(t,x)) - \Phi(x,w_{\varepsilon}(t,x+h))| + |h|^{\alpha}}{|h|^{3\theta}} dx dt \right)^{1/2} \leq C_{T,R},$$

by (28) again, provided that $3\theta \le 1$ and $\alpha \ge 3\theta$. Since we chose $\alpha = 2\theta/\kappa$, this last inequality holds provided that $\kappa \le 2/3$, which we can always impose.

To summarize, we have obtained the desired bound (30) provided that $\theta \leq 1/3$ and $\theta \leq 1/(1+3/\kappa)$ together with $\theta/(1-\theta) \leq 1/(1+2/\kappa)$.

References

- [1] G. Barles, L. C. Evans, and P. E. Souganidis. Wavefront propagation for reaction diffusion systems of PDE. *Duke Math. J.*, 61(3):835–858, 1990.
- [2] Guy Barles. Solutions de viscosité des équations de Hamilton-Jacobi, volume 17 of Mathématiques & Applications (Berlin). Springer-Verlag, Paris, 1994.
- [3] Guy Barles, Sepideh Mirrahimi, and Benoît Perthame. Concentration in Lotka-Volterra parabolic or integral equations: a general convergence result. *Methods Appl. Anal.*, 16(3):321–340, 2009.
- [4] Guy Barles and Panagiotis E. Souganidis. A remark on the asymptotic behavior of the solution of the KPP equation. C. R. Acad. Sci. Paris Sér. I Math., 319(7):679–684, 1994.
- [5] K. Böttger, H. Hatzikirou, A. Chauviere, and A. Deutsch. Investigation of the migration/proliferation dichotomy and its impact on avascular glioma invasion. *Math. Model. Nat. Phenom.*, 7(1):105–135, 2012.
- [6] Nicolas Champagnat and Pierre-Emmanuel Jabin. The evolutionary limit for models of populations interacting competitively via several resources. *J. Differential Equations*, 251(1):176–195, 2011.
- [7] M. G. Crandall, L. C. Evans, and P.-L. Lions. Some properties of viscosity solutions of Hamilton-Jacobi equations. *Trans. Amer. Math. Soc.*, 282(2):487–502, 1984.
- [8] Michael G. Crandall and Pierre-Louis Lions. Viscosity solutions of Hamilton-Jacobi equations. Trans. Amer. Math. Soc., 277(1):1–42, 1983.
- [9] O. Diekmann, P.-E. Jabin, S. Mischler, and B. Perthame. The dynamics of adaptation: an illuminating example and a Hamilton-Jacobi approach. *Theor. Popul. Biol.*, 67(4):257–271, 2005.

- [10] W. H. Fleming and P. E. Souganidis. PDE-viscosity solution approach to some problems of large deviations. *Annali della Scuola Normale Superiore di Pisa-Classe di Scienze*, 13(2):171–192, 1986.
- [11] I. Golding, Y. Kozlovsky, I. Cohen, and E. Ben-Jacob. Studies of bacterial branching growth using reaction-diffusion models for colonial development. *Physica A*, 260:510–554, 1998.
- [12] Alexandra Köthe, Anna Marciniak-Czochra, and Izumi Takagi. Hysteresis-driven pattern formation in reaction-diffusion-ODE systems. *Discrete Contin. Dyn. Syst.*, 40(6):3595–3627, 2020.
- [13] O. A. Ladyženskaja, V. A. Solonnikov, and N. N. Ural'ceva. *Linear and quasilinear equations of parabolic type*. Translations of Mathematical Monographs, Vol. 23. American Mathematical Society, Providence, R.I., 1968. Translated from the Russian by S. Smith.
- [14] King-Yeung Lam and Yuan Lou. Reaction-Diffusion Equations: Theory and Applications. Lecture Notes on Mathematical Modelling in the Life Sciences. Springer International Publishing, To appear.
- [15] J.-L. Lions and E. Magenes. Non-homogeneous boundary value problems and applications. Vol. I–III. Die Grundlehren der mathematischen Wissenschaften, Band 183. Springer-Verlag, New York-Heidelberg, 1972–1973. Translated from the French by P. Kenneth.
- [16] Alexander Lorz, Sepideh Mirrahimi, and Benoît Perthame. Dirac mass dynamics in multidimensional nonlocal parabolic equations. *Comm. Partial Differential Equations*, 36(6):1071–1098, 2011.
- [17] M. Mimura, H. Sakagushi, and M. Matsushita. Reaction-diffusion modelling of bacterial colony patterns. *Physica A*, 282:283–303, 2000.
- [18] J. D. Murray. *Mathematical biology. II*, volume 18 of *Interdisciplinary Applied Mathematics*. Springer-Verlag, New York, third edition, 2003. Spatial models and biomedical applications.
- [19] Benoît Perthame and Guy Barles. Dirac concentrations in Lotka-Volterra parabolic PDEs. *Indiana Univ. Math. J.*, 57(7):3275–3301, 2008.
- [20] Christina Surulescu and Michael Winkler. Does indirectness of signal production reduce the explosion-supporting potential in chemotaxis-haptotaxis systems? Global classical solvability in a class of models for cancer invasion (and more). European J. Appl. Math., 32(4):618–651, 2021.
- [21] Kate Fang Zhang and Xiao-Qiang Zhao. Asymptotic behaviour of a reaction-diffusion model with a quiescent stage. *Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci.*, 463(2080):1029–1043, 2007.