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Abstract. In this paper, we present linearized learning methods to accelerate the con-
vergence of training for stationary nonlinear Navier-Stokes (NS) equations. To solve
the stationary nonlinear NS equation with deep neural networks, we integrate lineariza-
tions of the nonlinear convection term in the NS equations into the training process of
multi-scale deep neural network (DNN) approximations of the NS solution. Four forms
of linearizations are considered. We solve highly oscillating stationary flows in complex
domains utilizing the proposed linearized learning with multiscale neural networks. The
results show that multiscale deep neural network combined with the linearized schemes
can be trained much faster and accurately than regular fully connected DNNs.
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1. Introduction

Deep neural network (DNN) machine learning methods have been researched as al-
ternative numerical methods for solving partial differential equations arising from many
practical engineering problems. The deep learning framework for solving those kinds of
problems uses the given partial differential equations as regularization in the loss function
during training, where the auto-differentiation can be applied to the inputs of the neural
network. Since auto differentiation with respect to the inputs of neural network are built-
in, thus there is no need for any pre-generated meshes in the solution domain. Therefore,
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such a framework has the potential of being a flexible meshless method to solve governing
equations from fluid and solid mechanics in complex geometries, as an alternative method
to traditional finite element method. Moreover, these methods have shown much power in
solving high dimensional parabolic PDEs [6,12,18].

Fluid mechanics, on the other hand, has also been one of the active research fields for
the applications of neural network with physical information as regularizations. In the work
of [2,13], the authors proposed a method that combines the Navier-Stokes (NS) equation
with visualization data to predict the velocity field and pressure field, with synthetic data
in [13] and real experimental imaging data in [2], respectively. In [5], a physical-informed
neural network is used for solving the Reynolds-averaged Navier-Stokes equations with

Reynolds-stress components (u2,uv, and v2) as extra outputs of the neural networks. Rao
et al. [14] proposed a mixed-variable scheme with Cauchy stress tensor to eliminate the in-
tractability of the complex form of naive Navier-Stokes equation and its high-order deriva-
tives (e.g.,∇2 ) and this scheme was applied to learn the steady flow and the transient flow
passing a cylinder respectively. Furthermore, Oldenburg et al. [11] proposed the Geometry
Aware Physics Informed Neural Network to handle the Navier-Stokes equations with irreg-
ular geometry where they utilize the shape encoding network, i.e., an encoder, to reduce
the geometry dimensions to a size-fixed latent vector k and k will be the input of two addi-
tional neural networks, one to handle the boundary constraints and one to handle physical
information, i.e., the governing PDEs. In the meantime, the error estimations for neural
networks to approximate the Navier-Stokes equations has been studied in [4].

Recent studies on DNNs have shown that they have a frequency dependence perfor-
mance in learning solution of PDEs and fitting functions. Namely, the lower frequency
components of the solution are learned first and quickly compared with the higher fre-
quency components [17]. Several attempts have been made to remove such a frequency
bias for the DNNs. The main idea is to convert the higher frequency content of the solution
to a lower frequency range so the conventional DNNs can learn the solution in acceptable
training epochs. One way to achieve this goal is to use phase shifts [3] while the other
is to introduce a multiscale structure into the DNNs [10] where in which sub-neural net-
works with different scales will target different ranges of the frequency in the solutions.
The PhaseDNN has been shown to be very effective for high frequency wave propagation
while the MscaleDNN [10] has been used to learn highly oscillatory Stokes flow solutions
in complex domains [16] as well as high dimensional PDEs [18].

Most of the previous works are focusing on Linear PDEs. The learning of the solution of
linear PDEs via least squared residuals of the PDEs is in some sense equivalent to a fitting
problem in the frequency domain in view of the Parseval’s identity of Fourier transforms.
So it is natural the performance improvements of multiscale DNN also holds for learning
the solution of linear PDEs.

Additional difficulties arise when there are nonlinearities introduced in the PDEs. Based
on the results from Jin et al. [8], it is found that it could take � (104 ) epochs to solve a simple
domain problem, thus ineffective and impractical especially when highly oscillating prob-
lems are to be considered. Also, the MscaleDNN applied directly to the nonlinear Navier-
Stokes equation did not produce the same large improvement over conventional DNNs as
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in the case of the linear Stokes equations [16]. To handle such issue, we developed a lin-
earized learning procedure for the Navier-Stokes equation by integrating linearizations of
the Navier-Stokes equation in the loss function and dynamically updating the linearization
as the learning is being carried out. Numerical results demonstrated the fast convergence
of this approach in producing highly accurate approximation to oscillatory solutions of the
Navier-Stokes equations.

The rest of the paper will be organized as follows. Section 2.1 will review several it-
erative schemes for solving Navier-Stokes equations commonly used by the finite element
methods that inspires the linearized learning scheme of this paper. Section 3 will intro-
duce the multiscale DNN structure for learning oscillatory solutions with wide range of
frequencies, and then four linearized learning schemes for the Navier-Stokes equation will
be proposed in Section 3.2. Numerical tests of the linearized learning schemes will be con-
ducted for 2-D oscillatory flows in a domain containing one or multiple random cylinder(s)
in Section 4. Finally, conclusion and future work will be discussed in Section 5.

2. Iterative Method for Stationary Navier–Stokes Equations

2.1. Stationary Navier-Stokes equations

The problem considered in this paper is the following stationary Navier-Stokes equa-
tions:

(u · ∇)u− νΔu+∇p = f in Ω,

∇ ·u = 0 in Ω,

u= g on ∂Ω,

(2.1)

where Ω is an open bounded domain in �d , d = 2,3. u are the stationary flow velocity,
p is the pressure, ν is the kinematic viscosity, f is the external source term. In this paper,
we consider the incompressible flow, thus the constraints ∇ · u = 0 are considered. The
boundary conditions are Dirichlet boundary conditions.

To solve the stationary Navier-Stokes equation in a least squared minimal residual ap-
proach, intuitively, the PDEs (2.1) are written in a system of first order equations as in [1]
by introducing an extra velocity-gradient term, U, where Ui j = (∂ ui/∂ x j), i, j = 1, . . . , d

for d = 2,3 such that ∇ ·U = Δu. In this paper, we consider the velocity-pressure formu-
lation for the Navier Stokes equations as our benchmark loss, following the results of [16],

−ν∇ ·U+U · u+∇p = f in Ω, (2.2a)

U− (∇u)T = 0 in Ω, (2.2b)

∇ · u= 0 in Ω. (2.2c)

Similarly, to obtain an equation for the pressure p, we take divergence on both sides of
Eq. (2.2a) and apply the Eq. (2.2c) to arrive at

Δp+ 2(−ux vy + uy vx) =∇ · f, (2.3)
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where the subscripts ·x , ·y means the derivative with respect to x , y, respectively. Then,
a loss function for the velocity gradient (Vg) and a velocity-pressure (VP) formulation of
the NS equations can be defined as

LV gV P(θu,θp,θU) := ‖ν∇ ·U−U ·u−∇p+ f‖2
Ω
+α‖u− g‖2∂Ω

+ β‖Δp+ 2(−ux vy + uy vx)−∇ · f‖
2
Ω

+ γ‖∇ ·u‖2
Ω
+
��U− (∇u)T
��2
Ω

, (2.4)

where α and β are penalty terms to enforce the Poisson equation for the pressure p and
the Dirichlet boundary conditions of the velocity u, respectively. ‖ · ‖Ω is the L2 norm on
Ω and ‖ · ‖∂Ω is the L2 norm on ∂Ω. Later, we will show in Section 4.1 the training of
the network based on the formulation (2.2), using the nonlinear first order system and the
Poisson equation (2.3), converges slowly (even with the MscaleDNNs).

2.2. Iterative methods to solve stationary Navier-Stokes equations

Three iterative methods were introduced for solving the stationary Navier-Stokes equa-
tions in [7]. We will give a short review for those methods in this section.

Let X , Y, M be the Hilbert spaces X = H1
0(Ω)

d , Y = L2(Ω)d , M = L2
0(Ω). The superscript

d at the end of H1
0(Ω)

d and L2(Ω)d means the dimension. For the case we are interested
in, d = 2. Then assume un

h
∈ X , pn

h
∈ M are the solutions at n-th iteration of velocity u and

pressure p, the three iterative schemes are given as follows:

Iterative Method I.

a
�
un

h
,vh

�
− d
�
vh, pn

h

�
+ d
�
un

h
,qh

�
+ b
�
un−1

h
,un−1

h
,vh

�
= (f,vh) , ∀vh ∈ X , ∀qh ∈ M , n≥ 1. (2.5)

Iterative Method II.

a
�
un

h
,vh

�
− d
�
vh, pn

h

�
+ d
�
un

h
,qh

�
+ b
�
un

h
,un−1

h
,vh

�
+ b
�
un−1

h
,un

h
,vh

�
= b
�
un−1

h
,un−1

h
,vh

�
+ (f,vh) , ∀vh ∈ X , ∀qh ∈ M , n≥ 1. (2.6)

Iterative Method III.

a
�
un

h
,vh

�
− d
�
vh, pn

h

�
+ d
�
un

h
,qh

�
+ b
�
un−1

h
,un

h
,vh

�
= (f,vh) , ∀vh ∈ X , ∀qh ∈ M , n≥ 1, (2.7)

where

a(u,v) = ν(∇u,∇v), u,v ∈ X ,

d(v,q) = (q, div v), v ∈ X , q ∈ M ,

b(u,v,w) =

�
(u · ∇)v+

1

2
div uvw

�
, u,v,w ∈ X ,

(·, ·) is the L2-scalar inner product.
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Assume a1(u,v,w) = ((u · ∇)v,w), then

b(u,v,w) =
1

2
a1(u,v,w)−

1

2
a1(u,w,v).

The bilinear term a(·, ·) is continuous and coercive on X × X ; the bilinear d(·, ·) satisfies
that for all q ∈ M

sup
v∈X

|d(v,q)|

‖∇v‖2,X
≥ β0‖q‖2,M ,

where β0 > 0, ‖ · ‖2,X and ‖ · ‖2,M are the corresponding L2 norm in X and M respectively.
The trilinear form a1(·, ·, ·) satisfies

|a1(u,v,w)| ≤ N‖∇u‖2,X‖∇v‖2,X‖∇w‖2,X ,

where N > 0.
Under stability conditions

4N‖f‖−1

ν2
< 1,

25N‖f‖−1

3ν2
< 1,

where ‖f‖−1 = ‖∇f‖2,X and the uniqueness condition

N‖f‖−1

ν2
< 1,

the following error estimates for the three schemes can be obtained.
Given a mesh size h for a finite element method and the number of iterative steps m,

for Iterative Methods I (2.5) and III (2.7), it has been shown [7] that

ν
��u− un

h

��
2,X � C1h2 + C2ν

��un
h
− un−1

h

��
2,X

,

ν
��∇ �u− un

h

���
2,X
+
��p− pn

h

��
2,M � C3h+ C4ν

��un
h
− un−1

h

��
2,X ,

where C1, . . . , C4 are constants.
For the Iterative Method II (2.6), we have

ν
��u− un

h

��
2,X � C5h2 + C6| logh|1/2

��∇ �un
h
− un−1

h

���
2,X

��un
h
− un−1

h

��
2,X ,

ν
��∇ �u− un

h

���
2,X
+
��p− pn

h

��
2,X � C7h+ C8| logh|1/2

��∇ �un
h
− un−1

h

���
2,X

��un
h
− un−1

h

��
2,X ,

where C5, . . . C8 are constants.
The strong forms of these three iterative methods, which will be used in defining the

loss functions of linearized learning schemes, are given below.

Iterative Method I.

−νΔun + (un−1 · ∇)un−1 +∇p = f. (2.8)

Iterative Method II.

−νΔun +
�
(un−1 · ∇)un + (un · ∇)un−1

�
+∇p = f+ (un−1 · ∇)un−1. (2.9)

Iterative Method III.

−νΔun + (un−1 · ∇)un +∇p = f. (2.10)
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3. Linearized Learning Algorithm with Multiscale Deep Neural Network

3.1. Multiscale deep neural network (MscaleDNN)

In order to improve the capability of the DNN to represent functions with multiple
scales, we developed the MscaleDNN [10], which consists of a series of parallel fully con-
nected sub-neural networks, for solving partial differential equations. Each of the sub-
networks will receive a scaled input with different scales. The final output of the MscaleDNN
is a linear combination of the outputs of the parallel fully connected neural networks (refer
to Fig. 1). The individual sub-network in the MscaleDNN with a scaled input is designed
to approximate a segment of frequency content of the targeted function and the scaling is
to convert a specific high frequency segment to a lower frequency domain, thus leading
to frequency uniform convergence of approximations for highly oscillating functions. Fur-
thermore, due to the radial scaling used in the MscaleDNN as shown in [10], it could be
very powerful once we consider to approximate solutions of high dimensional PDEs [18].

Fig. 1 shows the schematics of a typical MscaleDNN consisting of n parallel sub-net-
works. Each sub-network are with L hidden layers and can be expressed as

fθ (x ) = W
[L−1]σ ◦
�
· · · (W [1]σ ◦ (W [0](x ) + b

[0]) + b
[1]) · · ·
�
+ b

[L−1],

where W [1], · · · ,W [L−1] are trainable weights and b[1], · · · , b[L−1] are bias to be optimized
via the training, σ(x) is the activation function. Mathematically, a MscaleDNN solution
f (x ) is represented by the following weighted sum of sub-networks fθ ni with network pa-

Figure 1: Schematics of MscaleDNN: The MscaleDNN shown has n scales 1, 2, . . . , n. The outputs of
MscaleDNN y are linear combinations of y1, y2, . . . , yn.
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rameters denoted by θ ni :

f (x ) =

M∑
i=1

ωi fθ ni (αix ),

where αi is the chosen scale for the i-th sub-network as shown in Fig. 1. For more details
on the design and discussion about the MscaleDNN, we refer to the original paper [10].

In this paper, the following plane wave activation function will be used due to its local-
ized frequency property [15,16],

σ(x) = sin(x).

For the input scales, we consider the scale to be 2i−1 for the i-th sub-network.

3.2. Linearization schemes for neural network training

To speed up the convergence of the training of the DNN solutions of the NS equations, in
this section, we will propose an iterative training procedure for the stationary Navier-Stokes
equation based on the iterative scheme introduced in Section 2.2 so that the residual of the
training procedure are linearized. Note the term linearize is specific for the non-linear term
(u · ∇)u. In a nutshell, by fixing either u or ∇u in (u · ∇)u, the stationary Navier-Stokes
equation turns to be a linear equation, thus we coin the term linearized learning.

Assume the learned velocities up to current epoch are u∗
θ
= (u∗, v∗) and the velocities

to be learned at current epoch are denoted as uθ = (u, v) with pθ as the pressure to be
learned at current epoch. Thus four schemes with different linearization are listed below.

Scheme 1 (GradFixed). Gradients of velocities in the nonlinear term will be fixed during
training

−νΔuθ + (uθ · ∇)u
∗
θ +∇pθ = f,

Δpθ + 2(−ux vy + uy vx) =∇ · f.
(3.1)

Scheme 2 (VFixed). Velocities in the nonlinear term are fixed during training, inspired by
Iterative Method III (2.10)

−νΔuθ + (u
∗
θ · ∇)uθ +∇pθ = f,

Δpθ + 2(−ux vy + uy vx) =∇ · f.
(3.2)

Scheme 3 (VFixed1). This is the strong form of the Iterative Method II (2.9), which can
be seen as a modification of Scheme 2 (VFixed) (3.2)

−νΔuθ + (u
∗
θ · ∇)uθ + (uθ · ∇)u

∗
θ +∇pθ = f+ (u∗θ · ∇)u

∗
θ ,

Δpθ + 2(−ux vy + uy vx) =∇ · f.
(3.3)

Scheme 4 (Hybrid). The Navier-Stokes equation in this scheme is represented as the av-
erage of Scheme 1 (GradFixed) (3.1) and Scheme 2 (VFixed) (3.2)

−νΔuθ +
1

2

�
(u∗θ · ∇)uθ + (uθ · ∇)u

∗
θ

�
+∇pθ = f,

Δpθ + 2(−ux vy + uy vx) =∇ · f.
(3.4)
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Based on Eqs. (3.1)-(3.4), we can design the following loss functions:

Loss function for Scheme 1.

L∇ = Ru +αBu + βRp+γDu,

Ru = ‖− νΔuθ + (uθ · ∇)u
∗
θ +∇pθ − f‖22,X ,

Rp = ‖Δp+ 2(−ux vy + uy vx)−∇ · f‖
2
2,M ,

Bu =

∫
∂Ω

(u − g)2dS, Du =

∫
Ω

(∇ · u)2d x .

(3.5)

Loss function for Scheme 2.

Lu = Ru +αBu + βRp+γDu,

Ru = ‖− νΔuθ + (u
∗
θ · ∇)uθ +∇pθ − f‖22,X ,

Rp = ‖Δp+ 2(−ux vy + uy vx)−∇ · f‖
2
2,M ,

Bu =

∫
∂Ω

(u − g)2dS, Du =

∫
Ω

(∇ · u)2d x.

(3.6)

Loss function for Scheme 3.

Lu1 = Ru +αBu + βRp+γDu,

Ru = ‖− νΔuθ + (u
∗
θ · ∇)uθ + (uθ · ∇)u

∗
θ +∇pθ − f− (u∗θ · ∇)u

∗
θ‖

2
2,X ,

Rp = ‖Δp+ 2(−ux vy + uy vx)−∇ · f‖
2
2,M ,

Bu =

∫
∂Ω

(u − g)2dS, Du =

∫
Ω

(∇ · u)2d x .

(3.7)

Loss function for Scheme 4.

LH = Ru +αBu + βRp+γDu,

Ru =

����−νΔuθ +
1

2

�
(u∗θ · ∇)uθ + (uθ · ∇)u

∗
θ

�
+∇pθ − f

����
2

2,X

,

Rp = ‖Δp+ 2(−u
x
v

y
+ u

y
v

x
)−∇ · f‖22,M ,

Bu =

∫
∂Ω

(u − g)2 dS, Du =

∫
Ω

(∇ · u)2 d x .

(3.8)

Note ‖ · ‖2,X are the L2 norm of space X , ‖ · ‖2,M are the L2 norm of space M , and α,β ,γ
are the penalty terms. The Poisson equation for pressure p is also considered as a further
regularization for training pθ .
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3.3. Linearized learning algorithms

Our linearized learning algorithm for the Navier-Stokes equation is implemented thro-
ugh the following steps illustrated in Algorithm 3.1. In the implementation, u∗

θ
and uθ are

two different neural networks with same number of hidden layers and the same number
of hidden neurons at each layer. Once the loss (3.5)-(3.8) decreases a specific ratio, then
the parameters of uθ are copied to u∗

θ
, and the parameters of u∗

θ
will be frozen up to c

epochs until the loss decreases the specific ratio again. The algorithm will terminate once
the training epoch is up to the maximum training epoch N. The optimizer considered is the
popular Adam Optimizer [9].

Algorithm 3.1 Linearized Learning Algorithm.

Once the loss L is smaller than or equal to γτ, the parameters of ui
θ

will be copied to u∗
θ

and note that the parameters of u∗
θ

will never be updated by Adam algorithm. It should
be noted that the number of epochs before updating the fixed (linearized) term c will be
a hyperparameter to be adjusted carefully.

1: procedure LINEARIZEDLEARNING(u0
θ

,u∗
θ

, pθ )
2: γ← 0.9 � The ratio to make sure the loss is strictly less then the threshold τ when

updating the network u∗
θ
.

3: τ← 1012 � The threshold.
4: for i← 0, . . . , N do

5: for j← 1, . . . , c do � c is a variable to determine the epochs to train the new
network ui

θ
.

6: L← Loss(u∗
θ
,ui
θ
, pθ ) � The Loss is one of (3.5)-(3.8).

7: Update ui
θ

by Adam with L.
8: Update pθ by Adam with L.
9: end for

10: if L ≤ γτ then

11: τ = L;
12: u∗

θ
← ui

θ
;

13: ui+1
θ
← ui

θ
;

14: end if

15: end for

16: return u∗
θ
, pθ � The outputs.

17: end procedure

4. Numerical Results

4.1. A benchmark: A non-oscillatory problem - effect of linearized learning

We first consider a non-oscillatory problem in a rectangle domain Ω = [0,2] × [0,1]
with one cylinder hole centered at (0.7,0.5) whose radius is 0.2 as shown in Fig. 2, the
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Figure 2: A simple domain with one hole: A rectangle domain Ω= [0, 2]× [0, 1] with one cylinder hole
centered at (0.7, 0.5) whose radius is 0.2.

analytical solutions of the incompressible Navier-Stokes equations is given as follows:

u = 1− eλx cos (2mπx + 2nπy) ,

v =
λ

2nπ
eλx sin (2mπx + 2nπy) +

m

n
eλx cos (2mπx + 2nπy) ,

p =
1

2
(1− e2λx ), λ=

Re

2
−

√√Re2

4
+ 4π2, Re=

1

ν
.

(4.1)

In this non-oscillatory case, we consider the frequency m = 1, n = 2 and the viscosity
ν = 0.05. The source term f is obtained by substituting the exact solution (4.1) into the
Navier-Stokes equation (2.1). The boundary conditions are Dirichlet boundary conditions
which are obtained by computing the analytical solutions (4.1) on boundaries, including
the four edges of the rectangle and the circle inside. The penalty terms α,β ,γ are set to be
104,1,1 for this case. We will show the linearization could speed up the learning procedure
for a neural network to learn the solution of the stationary Navier-Stokes equation in this
section.

We compared the performance of the convergence of fully connected network (fcn) with
different loss schemes, including the VgVP formulation (2.4) and three linearized schemes
(3.5) or (3.6) or (3.8). The training data are generated by randomly sampling 160000
points inside Ω and 16000 points on ∂Ω during each epoch. In the learning process, the
number of batches for each epoch are set to be 50. We choose the fully connected neural
network with 4 hidden layer, 100 hidden neurons each layer for uθ ,u∗

θ
, pθ for all cases. The

hyperparameters are the same for four cases. The losses during training for different cases
by minimizing given loss function are compared in Fig. 3. The results show that the three
linearized learning neural networks converge in 300 epochs for all schemes while learning
using the loss function (2.4) for the nonlinear Navier-Stokes equations fails to (top line in
Fig. 3). The comparisons of the x component of velocity and pressure along line y = 0.7
of different linearized schemes after 300 epoch training are shown in Figs. 4 and 5. For
the current case, the Hybrid scheme (3.8) offers the best approximation, but the results
of the GradFixed scheme (3.5) and the VFixed scheme (3.6) lose some accuracy, which
corresponds to the loss Fig. 3.
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Figure 3: Losses (bottom 3 lines) of three linearized learning schemes (3.5), (3.6) or (3.8) and loss
(top line) based on nonlinear Navier-Stokes equation (2.4). The results show that the neural networks
with three linearized learning schemes (GradFixed (3.5), VFixed (3.6) and Hybrid (3.8)) converge fast
comparing with the neural networks using the VgVp loss function (2.4).

a) VFixed scheme b) Hybrid scheme c) GradFixed scheme

Figure 4: Linearized learning of fully connected network (FCN): The x components of velocity after 300
epoch training for bench mark problem along line y = 0.7.

a) VFixed scheme b) Hybrid scheme c) GradFixed scheme

Figure 5: Linearized learning of fully connected network (FCN):The pressures after 300 epoch training
for bench mark problem along line y = 0.7.
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4.2. Performance: Oscillating flows learned by MscaleDNN with linearized

learning

In our previous work [16], it has been shown that the MscaleDNN could improve the
approximation performance dramatically when learning oscillatory solutions for the linear
Stokes equations. Based on the previous experience, we consider MscaleDNN is the prefer-
ential framework for solving Navier-Stokes equation with oscillatory solutions, combined
with the linearized learning scheme. The frequencies now are taken to be m= 40, n= 35,
much higher than the benchmark problem. We also adjusted the learning rate during train-
ing by a decreasing of 5% every 50 epochs for the oscillating flow case to accelerate the
convergence.

4.2.1. A simple domain - effect of MscaleDNN

In this section, we consider the same simple domain as in Fig. 2 and utilize Scheme 1 (Grad-
Fixed) (3.1) of the linearized learning algorithms where the previous velocity are used to
linearize the convection term. The purpose of this section is to show that MscaleDNN com-
bining with linearized learning scheme could offer extraordinary performance improve-
ment for stationary Navier-Stokes equations with oscillating solutions.

The multiscale deep neural networks are given 8 scales: {x , 2x , 4x , 8x , 32x , 64x , 128x},
whose subnetworks contain 4 hidden layers and 128 hidden neurons in each layer. As
a comparison, we also trained a 4-layer fully connected neural network with 1024 hidden
neurons combining GradFixed scheme in 1000 epochs. Figs. 6 and 7 show the predictions
of networks after 1000 epoch training. Figs. 8 and 9 give more details along line y = 0.7.
The penalty terms α,β ,γ are set to be 104,1,1, respectively, as the same as in Section 4.1.
Fig. 10 shows the relative errors of these 2 different neural network structures along line
y = 0.7. We could conclude that the MscaleDNN improves the accuracy of both the pressure
field and the velocity field compared with the fully connected neural network.

a) Contour of pressure of the oscillatory case after 1000
epoch training for linearized learning with fully-connected

network (FCN)

b) Contour of velocity of the first component after 1000
epoch training for linearized learning with MscaleDNN

Figure 6: Pressure of the oscillatory case for linearized learning with MscaleDNN and fully connected
networks (FCN).
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a) Contour of the first component of velocity of the
oscillatory case after 1000 epoch training for linearized

learning with fully-connected network (FCN)

b) Contour of the first component of velocity of the
oscillatory case after 1000 epoch training for linearized

learning with MscaleDNN

Figure 7: The first component of velocity of the oscillatory case for linearized learning with MscaleDNN
and fully connected networks (FCN).

a) Pressure of the oscillatory case after 1000 epoch
training alone line y = 0.7

b) Velocity of the first component after 1000 epoch
training along line y = 0.7

Figure 8: The results of the oscillatory case using linearized learning with multi-scale neural networks.

a) Pressure of the oscillatory case after 1000 epoch
training alone line y = 0.7

b) Velocity of the first component after 1000 epoch
training along line y = 0.7

Figure 9: The results of the oscillatory case using linearized learning with fully connected networks
(FCN).
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a) Error of two different models w.r.t. pressure of the
oscillatory case after 1000 epoch training alone line

y = 0.7

b) Error of two different models w.r.t. velocity of the first
component after 1000 epoch training along line y = 0.7

Figure 10: The errors of the oscillatory case for linearized learning with fully-connected network (FCN)
and multiscale network (MSNN).

4.2.2. A complex domain

In this section, we consider an oscillating case in complex domain with more than one hole.
The domain is shown in Fig. 11. In this case, we use the similar settings for the multiscale
deep neural networks, adjustments of learning rates, and sampling strategies like what
we choose in the oscillatory case with the scale of the simple domain with one hole in Sec-
tion 4.2. The multiscale deep neural networks has 8 scales: {x , 2x , 4x , 8x , 32x , 64x , 128x},
whose subnetworks contain 4 hidden layers and 128 hidden neurons in each layer. The fre-
quency we select for this case are the same as what in Section 4.2.1. The initial learning
rate for this case is 4e − 3. The penalty terms α,β ,γ are set to be 104,1,1, respectively,
the same as in Section 4.1. Fig. 12 shows contours of the first component of velocity for
different schemes. Figs. 13 and 14 show the relative errors of these 4 different lineariza-
tion schemes along line y = 0.7. All schemes we propose converges more accurately to the
exact solutions.

Fig. 15 displays the behavior of the velocity field’s divergence under varying penalty
values γ while the neural networks are trained by scheme (3.3). The results indicate that
as γ increases, the divergence of velocity decreases. The divergence-free property thus is
enforced through the extra regularization with large penalty.

Figure 11: A more complex domain.
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a) Contour of the first component of velocity of the
oscillatory case after 1000 epoch training for scheme

gradFixed (3.1)

b) Contour of the first component of velocity of the
oscillatory case after 1000 epoch training for scheme

vFixed (3.2)

c) Contour of the first component of velocity of the
oscillatory case after 1000 epoch training for scheme

vFixed1 (3.3)

d) Contour of the first component of velocity of the
oscillatory case after 1000 epoch training for scheme

Hybrid (3.4)

Figure 12: The results of the first component of velocity of the oscillatory case for four linearized learning
schemes with MscaleDNN.

Figure 13: Relative errors at the line y = 0.7 of four linearized learning schemes with MscaleDNN for
pressure of the complex domain case after 1000 epoch training.
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a) Relative errors alone line y = 0.7 of GradFixed
linearized learning scheme (3.1) and Hybrid linearized

learning scheme (3.4) for the first component of velocity of
the complex domain case after 1000 epoch training

b) Relative errors along line y = 0.7 of vFixed linearized
learning scheme (3.2) and vFixed1 linearized learning
scheme (3.3) for the first component of velocity of the

complex domain case after 1000 epoch training

Figure 14: The relative errors of the complex domain case for four linearized learning schemes with
MscaleDNN.

a) ∇ · u given γ = 100. The largest
value is 2.16

b) ∇ · u given γ= 103. The largest
value is 0.9

c) ∇ · u given γ = 106. The largest
value is 0.07

Figure 15: The divergence of velocity ∇ · u where u is trained by linearized learning scheme (3.3) with
1000 epochs.

4.2.3. Smaller viscosity coefficient

In this section, we consider the same oscillating case in the complex domain but with
smaller viscosity coefficient, ν = 0.001. The multiscale deep neural networks are the same
as in the oscillatory case with 8 scales: {x , 2x , 4x , 8x , 32x , 64x , 128x} and the correspond-
ing subnetworks contain 4 hidden layers and 128 hidden neurons in each layer. The learn-
ing rates are multiplied by 0.1 at the 100th,300th,600th epoch. The batch size is 8092 in
the domain and 512 on the boundary of domain, respectively. The penalties considered in
the case are 104 for α, 1 for β and 103 for γ, respectively. The frequencies selected for this
case are the same as what in Section 4.2.1. The initial learning rate is 4e− 3. The scheme
is (3.3) as it gives the best results for the complex domain case in Section 4.2.2. Figs. 16
and 17 show the results of linearized learning scheme (3.3). The divergence of velocity is
even better comparing with the larger viscosity coefficient case.
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a) Relative errors for velocities in both x direction and y

direction alone line y = 0.7
b) Relative errors for pressure p alone line y = 0.7

Figure 16: The relative errors of velocity u and pressure p along line y = 0.7 where neural networks are
trained by linearized learning scheme (3.3) with 1000 epochs as ν = 0.001.

Figure 17: The divergence of velocity ∇ · u where neural networks are trained by linearized learning
scheme (3.3) with 1000 epochs as ν= 0.001. The largest value is 0.023.

5. Conclusion and Future Work

In this paper we proposed four linearized learning schemes to solve the stationary highly
oscillatory Navier-Stokes flows with multiscale deep neural networks and showed the ac-
celeration of convergence of the schemes are substantial, which demonstrate the capability
of the multiscale deep neural networks and the effectiveness of the linearized schemes to
solve the nonlinear Navier-Stokes equations. These schemes shed some lights on the practi-
cal applications of neural network machine learning algorithms to the nonlinear equations,
which are time-consuming using traditional finite element methods. The deep neural net-
work based methods offer an alternative that does not require meshes and has no need to
solve large-scale linear systems, as in traditional numerical methods.
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There are more works to be done for these linearized learning methods, among them the
most important is to understand the convergence property of these schemes. The applica-
tions of these schemes to other nonlinear PDEs will also be considered. Another challenging
work is to consider the time dependent Navier-Stokes equation, which will be explored in
a future work. Additionally, exploring the extension of the presented method to the 3D
Navier-Stokes equation will be a topic for future research.
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