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Background: Shape deformations and charge radii, basic properties of atomic nuclei, are influenced by both the
global features of the nuclear force and the nucleonic shell structure. As functions of proton and neutron number,
both quantities show regular patterns and, for nuclei away from magic numbers, they change very smoothly from
nucleus to nucleus.

Purpose: In this paper, we explain how the local shell effects are impacting the statistical correlations between
quadrupole deformations and charge radii in well-deformed even-even Er, Yb, and Hf isotopes. This implies, in
turn, that sudden changes in correlations can be useful indicators of underlying shell effects.

Methods: Our theoretical analysis is performed in the framework of self-consistent mean-field theory using
quantified energy density functionals and density-dependent pairing forces. The statistical analysis is carried out
by means of the linear least-square regression.

Results: The local variations of nuclear quadrupole deformations and charge radii, explained in terms of
occupations individual deformed Hartree-Fock orbits, make and imprint on statistical correlations of computed
observables. While the calculated deformations or charge radii are, in some cases, correlated with those of their
even-even neighbors, the correlations seem to deteriorate rapidly with particle number.

Conclusions: The statistical correlations between nuclear deformations and charge radii of different nuclei
are affected by the underlying shell structure. Even for well deformed and superfluid nuclei for which these
observables change smoothly, the correlation range is rather short. This result suggests that the frequently made
assumption of reduced statistical errors for the differences between smoothly-varying observables cannot be

generally justified.
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I. INTRODUCTION

The global behavior of nuclear radii and quadrupole de-
formations is impacted by the macroscopic properties of
nuclear liquid drop such as incompressibility or surface ten-
sion. The local behavior, on the other hand, is determined by
the microscopic quantal effects such as the nucleonic shell
structure, nucleonic pairing, and zero-point correlations due
to the particle-vibrational coupling.

The origin of nuclear deformations can be traced back
to the nuclear Jahn-Teller effect [1-3], i.e., the spontaneous
symmetry breaking of the internal density (or mean-field) due
to the coupling of degenerate nucleonic states with collective
surface vibrations of the nucleus. The systematic behavior of
nuclear quadrupole deformations can be explained through the
geometrical properties, or shell topology, of valence proton
and neutron orbitals [1,4]. According to the Hartree-Fock
(HF) analysis [5,6], the main contribution to the quadrupole
deformation energy comes from the effective neutron-proton
quadrupole interaction that maximizes around the middle of
proton and neutron shells. This results in simple patterns [7,8]
of quadrupole deformations which can be well systematized
in terms of the promiscuity factor [9] that depends on the
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distance of Z and N to the closest magic proton and neu-
tron number. Atop this general behavior, local fluctuations
in quadrupole deformations may occur due to occupations of
individual deformed Nilsson single-particle (s.p.) orbits close
to the Fermi level. Depending on their s.p. quadrupole mo-
ments, these orbits can increase or decrease total quadrupole
deformations by polarizing the system.

Similar considerations pertain to nuclear charge radii,
which are the monopole moments of the nuclear charge
density that is dominated by the proton density. Here, the
occupations of states with large oscillator quantum numbers
dominate the general pattern. The charge radii are also im-
pacted by nuclear deformations in the second order.

The purpose of this paper is to analyze the local trends of
quadrupole deformations and charge radii in terms of statisti-
cal correlations between predicted observables in neighboring
nuclei. The motivation behind the use of statistical correlation
approach can be explained as follows. If the occupations of
s.p. levels change smoothly with particle number, and the
character of s.p. levels around the Fermi level is similar,
one would expect to see large statistical correlations between
deformations and radii in close-lying isotopes and isotones.
On the other hand, if the intrinsic structure changes rapidly
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due to, e.g., crossings of s.p. levels with very different quan-
tum numbers, the statistical correlations are expected to be
reduced. The isotopic and isotonic trend of statistical correla-
tions can thus be a useful guide in several respects. It indicates
changes in shell structure important for model understand-
ing and development. And the information about the typical
range of statistical correlation between nuclear observables is
important for modeling emulators based on machine learning
[10,11] and assessing statistical errors on differences of ob-
servables, e.g., energy differences or differential radii.

This paper is organized as follows. Section II describes
theoretical models used and the statistical correlation analysis.
The results obtained in this study are presented in Sec. III.
Finally, the conclusions are presented in Sec. I'V.

II. THEORETICAL MODELS

Our analysis has been carried out within the self-consistent
nuclear energy density functional method [12]. In our appli-
cations, we employ the energy density functionals (EDFs)
SV-min [13] and Fy(Ar,BCS) [14]. Both have been opti-
mized to large experimental calibration datasets of nuclear
ground state data by means of the standard linear regression
technique, which provides information on uncertainties and
statistical correlations between observables.

In SV-min calculations, we employed the standard [14]
density-dependent pairing force of mixed type [15]. The
generalized pairing functional in the Fy(Ar,BCS) model ad-
ditionally depends on the gradient of nucleonic density [16].
In both variants, pairing is treated in the Bardeen-Cooper-
Schrieffer (BCS) approximation. We do that because the
nuclei of interest are well bound; hence, the HF 4+ BCS ap-
proach is expected to offer a reasonable description of pairing
and high accuracy when computing statistical covariances.
Thus we employ Fy(Ar,BCS) as a BCS analog of the original
Fy(Ar,HFB) tuned to exactly the same calibration dataset,
particularly the differential charge radii.

Our statistical correlation analysis is based on linear least
square regression [13,17] using the covariance matrices ob-
tained in the course of EDF calibration. The correlation
between quantities x and y can be quantified in terms of the
bivariate correlation coefficient

R, = cov(x, ). (1)

0,0y

where o, and o, are variances of x and y, respectively. The
square R? is the coefficient of determination (CoD) [18]. It
contains information on how well one quantity is determined
by another one, within a given model. For our earlier appli-
cations of CoD to nuclear observables, see Refs. [19-23].
Values of CoD range from 0 to 1, where O implies that, for
a given model, the quantities x and y are uncorrelated, whilst
1 denotes that one quantity determines the other completely.

The correlation coefficient (1) is useful when estimating
the variance of a difference x — y:

o, , = GXZ + O'yz — 2R, y0,0,. 2)
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FIG. 1. Proton quadrupole ground-state deformations S, for
even-even Er, Yb, and Hf isotopes with 98 < N < 106 calculated
with (a) SV-min and (b) Fy(Ar,BCS) EDFs compared to empirical
values [24] (dashed lines). Statistical model uncertainties and exper-
imental errors are marked.

In particular, if the observables x and y are very well correlated
(Ry,y =~ 1), the variance of a difference becomes o,_, ~ |0, —
oyl, i.e., it can be very small if o, ~ 0.

III. RESULTS

The scope of this paper is to study the structure of statistical
correlations between ground-state deformations and between
charge radii in the even-even Er, Yb, and Hf isotopes with
98 < N < 106. These nuclei lie in the center of the deformed
rare-earth region [24].

The dimensionless quadrupole deformations can be de-
duced from the calculated proton quadrupole moments

(r*Ya0)
3ZR2 "’

This quantity is directly related to the geometrical shape and
thus simplifies comparisons across different nuclei. The av-
erage value of the spherical radius R was taken the same
as in Ref. [24]. Figure 1 shows the calculated values of B,
for SV-min and Fy(Ar,BCS) and compares them to empiri-
cal quadrupole deformations extracted from the experimental
transition probabilities for the lowest 21 states [24]. All
isotopes shown in Fig. 1 are very well deformed. Consider-
ing the scale of Fig. 1, the agreement between experiment
and theory is very reasonable, especially for Fy(Ar,BCS).
This is not so surprising because, as discussed in the in-
troduction, nuclear deformation properties are dominated
by shell topology: all reasonable nuclear models, includ-

B, = 4n R =1.2A"3 fm. 3)
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FIG. 2. Charge radii for even-even Er, Yb, and Hf isotopes with
98 < N < 106 calculated with (a) SV-min and (b) Fy(Ar,BCS)
EDFs compared to empirical values [25] (dashed lines). Statistical
model uncertainties and experimental errors are marked.

ing macroscopic-microscopic approaches as well as various
flavors of nuclear density functional method, are bound to
reproduce the deformations of well deformed nuclei. On the
other hand, appreciable model differences are expected for
transitional isotopes for which the concept of a rigid nu-
clear deformation is questionable. At the second glance,
we see quantitative differences between the two models. The
values of B, predicted by SV-min are 5%—-10% larger and
the trend for the Hf isotopes differs visibly. Although the
deformation is dominated by shell structure, the final de-
tails emerge from an interplay of Coulomb pressure, surface
energy, shell effects, and pairing, which all depend on the
actual model. We also note that both models tend to predict
deformations that are slightly larger than the empirical val-
ues. But this minor mismatch is unimportant for our present
study which aims at exploring the isotopic and isotonic
trends of B, and the statistical correlations of B, between
the isotopes. Coulomb pressure and surface energy change
only smoothly with Z and N and this should lead to strong
inter-correlations. However, shell structure and pairing can
fluctuate, as can already be seen from local variations of §, in
Fig. 1.

The charge radii Ry, of the discussed Er, Yb, and Hf
isotopes are displayed in Fig. 2. The radii gradually increase
with Z and N, as expected. The fluctuations atop this smooth
behavior are seen in the differential radii and their ratios [26].
The charge radii obtained in SV-min are systematically larger
than those of Fy(Ar,BCS). This, together with the results
for the quadrupole moments shown in Fig. 1 suggests that
the proton densities predicted by SV-min are slightly more
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FIG. 3. The CoD R,%SZ(Z,N),,‘SZ(Z’,N’) between the quadrupole de-
formation of the nucleus indicated and S, of other Er, Yb, and
Hf isotopes with 98 < N < 106 calculated with (left) SV-min and

(right) Fy(Ar,BCS) EDFs.

radially extended. As in the case of quadrupole deformations,
local variations of R, with N and Z are present.

Figure 3 shows a plot of statistical correlations in terms
of CoDs between the deformation f, in '"2Yb (upper panels),
172Yb (middle panels), and 12Yb (lower panels) and B, values
of all other isotopes considered. Interestingly, the quadrupole
deformations of '7>Yb (N = 102) and '>Yb (N = 98) are
well correlated with those of neighboring nuclei, in accor-
dance with expectations. It is only when the neutron number
approaches N = 106 that the correlation deteriorates. The sit-
uation is different for 1’2 Yb—the heaviest nucleus considered.
Here, the CoD values are small, even with the nearest neigh-
bors. The internuclei correlations of charge radii are shown
in Fig. 4. It is seen that the values of R, are intercorrelated
better than quadrupole deformations. But, similar as in the 3,
case, there are regions of surprisingly low CoDs. Particularly
low correlations are predicted for !’>Yb in SV-min and '">Yb
in Fy(Ar,BCS) for both $, and R.

While the general trend is similar for both models, the
quantities predicted by SV-min are systematically better cor-
related than those obtained with Fy(Ar,BCS). The significant
variations of CoDs seen in Figs. 3 and 4 are indicative of shell
effects. To confirm that, we must look at the deformed shell
structure in this region of nuclei.

Figure 5 shows the single particle (s.p.) energies of
12Yb as functions of B, (Nilsson diagram), generated by
quadrupole-constrained HF calculations. The s.p. levels are
labeled by means of the asymptotic Nilsson quantum numbers
[Noscn; A]Q2™ of the stretched harmonic oscillator. The s.p.
diagram of Fig. 5 is fairly robust, i.e., it is valid for the
deformed Yb region and it weakly depends on the model
used (cf. Ref. [27] for the modified harmonic oscillator and
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FIG. 4. Similar as in Fig. 3 but for the charge radii.

Woods-Saxon s.p. diagrams in this region or Ref. [28] for
Gogny-model calculations).

The proton shell structure in the deformed Yb region
is defined by the pronounced deformed subshell closure at
Z =70. At lower deformations, this gap is closed by the
up-sloping (oblate-driving) extruder orbitals [404]7/2% and
[402]5/2*. At larger deformations, 8, > 0.33, the down-
sloping (prolate-driving) [541]1/27 intruder level becomes
occupied at Z = 72. Below the Z = 70 gap, there appear
two close-lying Nilsson levels: oblate-driving [411]1/2" and

-5 /

z T gy
W
: 2
~— ¥ y [523]7/27 .
g " M M
?D = [411712° g v
OE 81 e 215, IR W
PR IOMIEE— g LM
Q
9 <
t ' | o
g ? {512]3/2\\\,’@@ O R <
: S DN T 624107 bk S ]
2 -6 - {51012 [Body /65//1;
’ 3
o . JEA
[633]7/2°
, R e 22
_9 -

0.20 0.25 0.30 0.35 0.20 0.25 0.30 0.35
Quadrupole deformation 3,

FIG. 5. Proton (top) and neutron (bottom) single-particle en-
ergies of 'Yb calculated with SV-min (left) and Fy(Ar,BCS)
(right) EDFs as functions of the proton quadrupole deformation. The
asymptotic Nilsson labels [Nys .1, A]Q2" are marked. The positions of
proton Fermi levels for the N = 102 isotones is indicated by stars
in panel (b) and the neutron Fermi levels along the Yb isotopic
chain—in (d).
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FIG. 6. Proton (solid lines) and neutron (dashed lines) pairing
energies (expectation values of the pairing EDF) for even-even Er,
Yb, and Hf isotopes with 98 < N < 106 calculated with (a) SV-min
and (b) Fy(Ar,BCS) EDFs.

prolate-driving [532]7/2~, which close another deformed gap
at Z = 66. These levels cross at , ~ 0.30 for Fy(Ar,BCS)
and B, ~ 0.39 for SV-min.

The neutron shell structure is characterized by the de-
formed gap at N = 104. This gap is closed from the above by
the oblate-driving [514]7/2~ and the unique-parity [624]9/2%
levels, which cross at 8, =~ 0.35. From the below, the N =
104 gap is bounded by the prolate-driving unique-parity
[633]7/2*" level and the oblate-driving [512]5/2~ level,
which cross at 8, ~ 0.32 for SV-min and B, ~ 0.28 for
Fy(Ar,BCS).

The deformed shell structure is defined by the occupa-
tions of s.p. orbits shown in Fig. 5. In the presence of
nucleonic pairing, the s.p. occupations change gradually with
particle number leading to smooth variations of nuclear
observables. If pairing is weak, the transitions between in-
trinsic HF configurations are sharp and the underlying picture
becomes diabatic. Consequently, large pairing is expected
to increase correlations between observables belonging to
different nuclei. Figure 6 displays proton and neutron pair-
ing energies of the nuclei considered. The large deformed
gap at Z =70 gives rise to very weak proton pairing in
the Yb isotopes. The variations of neutron pairing are ap-
preciable; they reach a minimum at the deformed neutron
closure N = 104.

The systematic trend of 8, in Fig. 1 can be traced back
to the s.p. diagram of Fig. 5. The quadrupole deformations
of Er and Yb isotopes are close as the quadrupole polarization
effects of [411]1/2% and [523]7/2 proton levels compensate.
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The reduction of §, in the Hf isotopes in Fy(Ar,BCS) and for
N > 100 in Fy(Ar,BCS) can be attributed to the occupations
of the oblate-driving [404]7/2% and [402]5/2" proton levels.
The large value of B, in '"?Yb predicted in SV-min is due
to the filling of the 7w [541]1/27 level. Finally, a reduction of
B> when approaching N = 106 reflects the filling of oblate-
driving [512]5/27 and [514]7/27 neutron levels. When it
comes to the charge radii, the local increase of R, around
N =100, 102 can be associated with the occupation of the
neutron intruder level [633]7/27.

Having established the consistency of trends in B, and
R, with the deformed shell structure, let us see whether the
details of the Nilsson plot will be reflected in the correlation
systematics of Figs. 3 and 4. Microscopically, the energies
and wave functions extruder and intruder Nilsson states (in-
cluding the unique-parity states) impacting the configuration
changes of the deformed Er, Yb, and Hf isotopes are strongly
influenced by the surface and spin-orbit terms of the EDFs
[16,29]. Consequently, these parts of the EDFs are expected
to impact statistical correlations between computed surface
deformations and charge radii.

Let us begin discussion from the CoD pattern of B,. As
seen in Figs. 3(a) and 3(d), B, in '7?>Yb is poorly correlated
with quadrupole deformations of other nuclei. This nucleus
is predicted to have a reduced value of 8, &~ 0.3 compared
to other systems. At this deformation, the occupation of the
[404]7/2% and [402]5/2% extruder orbits is 1.2—1.3, while
these orbits are practically empty in the Yb and Er isotopes,
as well as in ""%1"2174Hf in SV-min in which the intruder
level [541]1/2~ becomes occupied at B, > 0.34. Moreover,
the neutron structure of '7>Yb involves the occupation of the
[514]7/2" and [624]9/27 orbitals, which are empty in lighter
isotopes with N < 104. All these configuration changes in-
volve deformation-driving orbitals and result in reduced CoD
values.

Moving on to Figs. 3(b) and 3(e), the quadrupole defor-
mation of !"2Yb is correlated fairly well with the B, values
of lighter systems. This nucleus is calculated to have B, ~
0.34. The decrease of correlations at N = 106 can be as-
sociated with the filling of the neutron [624]9/2" intruder
level. The situation shown in Figs. 3(c) and 3(f) for '7>Yb is
reminiscent of that for '"2Yb: the decrease of ,-correlations
is seen for N = 106 (neutron [624]9/2% /[514]7/2~ occupa-
tion) and Z = 72 (proton [541]1/2~ or [404]7/2% /[402]5/2F
occupation).

The pattern of internuclear R.,-correlations shown in Fig. 4
differs from that of B,-correlations as the charge radii are
expected to primarily depend on the radial properties of
occupied states, hence Nys.. Those are Ny, = 5 proton lev-

els [523]7/27 and [541]1/27 and Ny = 6 neutron levels
[642]15/2F, [633]7/2", and [624]9/27.

IV. CONCLUSIONS

In this paper, we investigated intercorrelations between ob-
servables in neighboring nuclei which exhibit smooth trends
as a function of proton or neutron number. To this end, we
selected 15 well-deformed even-even Er, Yb, and Hf isotopes
in the middle of the well deformed rare earth region. The
spherical shell structure in these nuclei is much fragmented
by deformation effects, and the single-particle occupations are
smoothed out by nucleonic pairing. The calculated quadrupole
moments and charge radii vary gradually with Z and N, which
would intuitively suggest strong intercorrelations. To check
this hypothesis, we carried out statistical correlation analysis
based on covariance matrices obtained in the least-square
optimization. As measure for correlations, we use the coef-
ficient of determination which is the square of the normalized
covariance between two observables.

The calculated CoD diagrams show patterns that are sur-
prisingly localized as compared to the smooth trends of
observables. These local variations of CoDs reflect the under-
lying deformed shell structure and changes of single-particle
configurations due to crossings of s.p. levels, especially high-
Nosc intruder and oblate-driving extruder levels. In fact, the
correlation range is fairly short. In some extreme cases, e.g.,
quadrupole deformation of '"?Yb in Fy(Ar,BCS), the observ-
ables are hardly correlated with the values in neighboring
nuclei. This finding is consistent with the results for separa-
tion energies using Bayesian machine learning [10,11]. Our
results suggest that the frequently made assumption of strong
correlations between smoothly varying observables, which
must result in reduced statistical errors of their differences,
cannot always be justified. The recommended way to compute
statistical uncertainties on theoretical predictions and their
differences, however smooth they are, remains the standard
way, namely by means of covariances (or posterior distri-
bution functions) obtained in the course of least-squares or
Bayesian calibration, see, e.g., Refs. [13,30].
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