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Abstract—The quadrotor hierarchical control design
(position-attitude) based on the state-space modeling has
been widely applied in the past. Although the state-space
representation, based on a group of first-order differential
equations, is effective in modeling many dynamic systems,
inherent high-order dynamics and control of quadrotor
systems may not be properly handled by the state-space
modeling. This letter proposes a modified high-order fully
actuated (HOFA) theory for a group of high-order dynamic
systems, including the quadrotor system, without relying
on pseudo strict-feedback forms required by the original
HOFA approach. Hence, the quadrotor model can be essen-
tially converted into two HOFA subsystems. A nonlinear
3-DOF quadrotor modeling and control is applied as an
example to demonstrate the effectiveness of the proposed
approach, which can achieve arbitrarily assignable eigen-
structure like a stabilized linear system.

Index Terms—Quadrotor control, high order fully actu-
ated, modeling and control of nonlinear systems.

|. INTRODUCTION

VER the last decades, unmanned aerial vehicles have

been the focus of much research because of their
broad educational, commercial, industrial, and military appli-
cations [1], [2], [3]. The rotorcraft UAVs have several merits
over fixed-wing UAVs, such as hovering at a particular place,
vertical takeoff, landing, and agile maneuvering. The quadrotor
is a unique rotorcraft and does not require complex mechan-
ical linkages commonly applied on other types of rotorcrafts
such as helicopters and tiltrotors. It is a highly coupled, under-
actuated system with four rotor inputs (mixed into the roll,
pitch, yaw, and throttle) and six outputs (3-DOF translational
position and 3-DOF orientation). As a differentially flat nonlin-
ear system [1], [14], [17], generally, the 3-DOF translational
positions plus the yaw angle of a quadrotor with respect to
the earth frame are tracked by the flight controller. The roll
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and pitch angles are not independently controlled with four
inputs.

To achieve desired flying performance, model-based control
via the state space modeling was developed and applied
in a hierarchical control architecture for quadrotors. The
hierarchical architecture is widely used to separate different
time-scale control between the fast inner loop (attitude) and
slow outer loop (position). Linear control systems such as
Classical PID algorithms have been demonstrated successfully
due to their simplicity and proven reliability in practice [4].
Multi-loop PID architectures derived for a particular flight pro-
file over a trimmed model have performed even better [11].
Nonlinear controls such as Euler angle-based quadrotor con-
trol design techniques with rigorous mathematical foundations
include feedback linearization and backstepping Lyapunov
functions, sliding mode control, robust adaptive tracking con-
trol [5], [6], [13]. Further investigation on nonlinear manifolds
such as the quaternion [7], [8] and the special Euclidean
group SE(3) [10] based controllers are developed with desir-
able close-loop properties that are almost global. In [12], the
Lagrange formulation is explored, providing a more straight-
forward derivation of drag compensation with hierarchical
structures. However, for all these hierarchical controllers with
first-order state space representation, the position tracking
performance will be unsatisfactory if the quadrotor cannot
track the desired attitude quickly and precisely [14].

Different from all these hierarchical designs, a controller
design method based on the high-order model without the
assumption that the attitude dynamics are much faster than
position control in the horizontal plane was firstly presented
in [14]. A high-order state observer is designed to estimate
the thrust’s first and second-order time derivatives used in the
controller designed for the high-order system model. Although
a high-order system modeling was applied, the modeling and
control design was not organized in a systematic manner.

Recently, a new system modeling technique, namely the
high-order fully actuated model (HOFA), was developed to
eliminate nonlinear terms using the full actuation [20], [21].
After cancellation, a globally stabilized linear system is
obtained in a controllable form. The HOFA approach is
relatively general and can be applied to systems that the well-
known backstepping and feedback linearization methods are
not applicable. One key step of the HOFA approach is about
the derivation of a HOFA model for the studied system under
different circumstances. The crucial procedure is to convert
the nonlinear system into a pseudo strict-feedback form [20].
Once the set of HOFA models is obtained, the controllers of
the subsystems are then immediately written out. Finally, the
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closed-loop system consists of several independent constant
linear subsystems with arbitrarily assignable eigenstructures.
Conducting the HOFA approach on the quadrotor platform
would provide the advantage over the conventional hierarchical
designs mentioned above. Unfortunately, a group of nonlin-
ear systems, including quadrotors, cannot be converted into a
pseudo strict-feedback form based on [22].

This letter will provide a modified HOFA approach, for the
first time, in the application of quadrotor modeling and con-
trol. This modified HOFA formulation does not require the
model to be converted into a pseudo strict-feedback form.
Because the planar quadrotor model is a typical non-minimum
phase dynamical system that has been heavily featured in
the literature of acrobatic robots [16], [25], [26], a 2"d-order
3-DOF planar quadrotor model is applied as an example to
verify the effectiveness of the modified HOFA approach. The
formulated planar quadrotor system is divided into two high-
order subsystems. Then, inputs of each subsystem are directly
written, and each closed-loop subsystem has desired eigen-
structures. The HOFA approach for a complete mixed-order
6-DOF quadrotor is discussed in the authors’ paper with
experimental results [23].

This letter is structured as follows. The existing HOFA
approach is reviewed in Section II. A modified HOFA
approach, which does not require the pseudo strict-feedback
form in the existing method, is presented in Section III. A
3-DOF planar quadrotor model and the HOFA formulation
are presented in Section IV. Simulation results are discussed
to verify the proposed approach and control performance in
Section V, and this letter is concluded in Section VI.

Il. PRELIMINARIES OF HOFA MODELING AND CONTROL

This section briefly reviews modeling and control of HOFA
systems with some standard terminologies and mathematic
expressions. For more details on the HOFA approach, the
literature [19], [20], [21] and references therein are referred.

For x € R", and A; € R™"(i = 1,2,...,m), frequently
used symbols in this letter are defined as follows,

X

x(ONm) AL

||>
R
+

O~m) &

.Xle

Ao £ [A0 Ay A . (D

A. Modeling and Control of HOFA Systems

Consider a general nonlinear system in the following affine
form,

x(m)=f<x(owm_l)>+B (x(owm_l)>u, (2)

where x € R" is the system state vector, u € R” is the system
input vector, f(x©=1) € R” is a sufficiently differentiable
vector function, and B(x(©~"=1D) e R™*" is a matrix function.
Note that the upper index m of x represents the mth time
derivative of state x(¢), without the symbol of “~”. Other terms
with “~” represent vectors defined in (1).

Given rank(B(x(>"=1DY)) = r = n, the system (2) is called
fully actuated [20]. If r > n, the system (2) is called over-
actuated, and such systems can be similarly treated as fully
actuated ones in terms of control.

Proposition 1 [20]: Let A; e R™*",i=0,1,...,m—1, be
a set of given matrices, then the following controller
U= —B_l(x(owm_l))(A()Nm,]x(ow’”_l)+u*)
w_ o (0~m—1 ; 3)
u —f(x( ))—v,

for the fully actuated system (2) with » = n will give the
constant linear closed-loop system,

2 4 Agpm 1 x0T D =y, 4)

For the linear system (4), the eigenvalues or eigenstruc-
tures can be arbitrarily assigned by selecting appropriate A;
matrices and external signal v [20]. This desired property for
control design makes modeling a HOFA system attractive for
the control design of general nonlinear systems. In fact, many
nonlinear systems can be (re)formulated into HOFA systems.

B. HOFA Approach for Underactuated Systems

Given the system (2) with r < n the system is called under-
actuated [17], [18]. Without loss of generality, we consider the
case n = r+ng with 0 < ng < r. To convert an underactuated
system into a HOFA form, a basic procedure was provided
in [20] and reviewed here as a baseline to propose the new
approach in the next section.

The first step is to find a unimodular matrix Q with z =
[z1 217 = Ox, z1 € R"77 satisfying,

0
0B :|:G(x(0~m—l))]’ G eR™". Q)

Multiplying Q on both sides of (2) and replacing x with z
give the pseudo strict-feedback form,

(m) (O~m—1)
i) e ]
= o + i u. (6)
|:Z§m):| |:f2(Z(0 m 1)) G(Z(O m 1))
Assumption 1 [20]: 2™ = fi (z©D) is in the following
form,

"= g("" ") 481z, %)

where ¢ € R"™" is a vector function. This step is crucial
and restricts the subsystem (7) to be linear with respect to
2. By € R=%7 g a full-row rank matrix.

This assumption restricts that ng) has a direct relation
with z> but not its derivatives. Taking the m-order derivatives
on both sides of (7) and substituting ng) from the second
subsystem of (6), give,

22 =™ () 1By (o ()+G( ), ®)
which can be rewritten as
=y ()+BIG(u, ©9)

with
pO=v (270 =g O+BIHO. (10)

To further expand (9), we divide the control vector as,

u :[Zj u R (11)
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Partitioning G(-) as G(Z(0~m—1)) _
R™ =" (9) can be rewritten as,

= % ()+B1G1 u1+B1Gouy.

Assuming BjGp is nonsingular [20], we can design the
controller for the first HOFA subsystem as,

[Gi1G2], G €

(12)

(A2 Z(0~2m 1)+1ﬁ( ))
uy= —(B1Gy) "' Po~2m-1%1 13
1= —(B1G1) ( +BIG2 - (13)
which gives the following linear high-order system,
@ 0~2m—1
A D) 2w, (14)

where v € R"™" is an external signal. z; in (6) also needs
to be handled. Let P be a nonsingular matrix such that (M is
nonsingular),

B\P =[Mu—r)x(1—r) O—nx2r—n]- (15)
We can define the transformation,
Y1 —1 n—r
y [yz} 22,Y1€ , (16)
and correspondingly partition P~
—1__ Ny (n—r)xr
P _[Nz]’N] eR . 17

Then we multiply P~! on both sides of the second part of (6),

P—lzém) _ P_lfz(z“’”’"‘”)+P_1G(z(0”m_l)>u,

U
1 o
ygm) = Nifs ( (0~m— )y(o m 1))

+N1G( (0~m—1) y(0~m—1))u’
(m) — Nofp ( (0~m—1) y(o~m—1))
+N2G( (O~m—1) y(owmfl))u.

Note that from (15),

(18)

Bizy" = BiPP~!"
[M(Vl r)x(n— r)O(n r)x(2r— n)]y _My(m)' (19)

Based on (7), (8), and (19), y; has contributions to z(zm) nd

( )

y2 does not. To derive the control of y;, y, ~ can be rewritten

from (18),
WO =Nofs ()4+N2G1 ur+N2Ga . (20)

Assume N>G; is nonsingular, we can design the controller
for (20) as follows,

(O~m—1)
— —1(Ap~ TN22 ()
= —(NrGo) 1 [ F0~m—1Y2 21
2 (W2G2) ( +N2Gruj—va @b
which produces the following linear closed-loop system
0~m—1
35 Ay =0 (22)

If det(N,G») # 0 is not met, (20) needs to be reorganized
into an affine form and then handled similarly [20].

Remark 1: Although the above HOFA derivation is orga-
nized systematically in [20], the related process cannot be
directly applied to model and control a quadrotor system

because the required unimodular matrix Q may not exist to for-
mulate the pseudo strict-feedback form (proof in Appendix).
Inspired by the dynamic properties of quadrotor systems, we
propose to modify the HOFA approach for the application
without requiring a pseudo strict-feedback form.

[1l. MoDIFIED HOFA APPROACH

To apply the HOFA approach to quadrotor modeling and
control, we present a modified HOFA approach that does
not require converting the system (2) into a pseudo strict-
feedback form, which are feasible for more high-order non-
linear systems.

First, we need to find a unimodular matrix Q with z =
21 21T = 0Ox, 71 € R"" and a nonsingular matrix P € R"™",
such that u = Pu; = Plu; uz,z]T, u;2 € R"" and,

1 G1 O—ryx(n—r)
OBP —[ G, ,

G1 GR(}’I—F)X(2V—}1) , GzGRrxr. (23)

Then we have the following derivations starting by multi-
plying Q on both sides of (2) with Of = [fi 17,
ox" = Qf(x(owm_l))+QB<x(ON’”_1))PuZ
U
M= f (Z(0~m71)>+Gl (Z(0~mfl))uz’1

= (z<°”’"*“)+G2 (z(°~m4>)uz. (24)
Assumption 2: z( ™ is in the following form:
O (D )16 (O 2, 09

Remark 2: Although the Assumption 2 restricts the sub-
system to have a non-derivative term of zp, the same as
Assumption 1, z; is not required to be affine with z>. Moreover,
the coefficient matrix G; in front of control u;; is more
general than a constant matrix.

We now take m-order derivatives on both sides of (25), and
apply the general Leibniz rule to have

m
O () 3 ()l o
k=0

Let 4"V =m0, A7), (26) s writ
ten as,

Zgzm) _ h( (0~2m— 1)’ §0~m>)

+m2< >G(k) R e T 1))
k=0
The 1% and the 3" terms of (27) can be written as,
h(z(lo~2m—1)’zgo~m)) _ hl(Z§0~2m—l)7Z§0~m—l))
] G ECRC)

Ggm) <Z§0~m—1)7zz) iol) = (H, ( (0~2m— 1)7Z;0~m—1))

+ i (2" ) e, 29)
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fi 0

Fy =mg
)

3-DOF quadrotor for a planar motion.

Fig. 1.

1 (M) = L, () + Hi Oz +

Li(:) =¥ (), and ha(-) + H2(-)u;1 = ¢(-), and substitute the

expression of zém) in (6), (28), and (29) into (27),

7 = Yy O+ O Y)

Denote

+ G (0D ). (30)
Partitioning
G (D) =[Gt Goa] GoaeR™C, (31)
we have
(Zm) =V O+O(LO)+Gr1uz1+Grouz ). (32)

Assume ¢(-)Go—p is nonsingular (singularity can be
avoided [24], see an UAV example in Section 1V), we can
design the controller for the above HOFA subsystem as

(0~2m—1)

~(£()G22)” 1( W%fizz—vl )
uls = O (HO+Ga1uz1),

where v; is an external signal of dimension n — r. Finally, we

have the following linear closed-loop system

(2m)+A0N2m IZ(10 ~2m—1) =y

S

£

38
I

(33)

(34)

Thus, we have completed the derivation of the first HOFA
subsystem. The process of separating the leftover system from

Zg") and using u; | as the input remains the same as the process
from (15) to (22).

IV. HOFA APPLICATIONS: 3-DOF QUADROTOR
CONTROL

Consider a 3-DOF planar quadrotor system in Figure 1. The
quadrotor is confined to move within the x — z plane. The
mathematic model is given below [22],

x—f' +f

Z—f1+f2 cosf—g
= f2 fl7

sin 6
(35)

where 6 is the pitch angle, f1,f> are rotor thrusts, m is the
quadrotor mass, J is the yaw moment of inertia, and g is the
gravity acceleration.

To control the positions of x and z with the modified HOFA

approach, we select the system inputs as u; = ]%, uy =

fZ;fl , O =343, and P = Ix». We have

2 =x2=[2-1 Z2—2]T=[Z H]T. (36)

The system (35) is rewritten as,

Z& 0 sinZp_» O "
22, |=| —g|+|coszn 0 [ul}
@ 0 0 1 |BL*2
-2

This system cannot be reformed with the existing HOFA
approach (see proof in Appendix), namely in the form of (7).
However, the B matrix in (37) is already in the form of (23),
and the sub-system z; in (37) is already in the form of (25).
Thus, we can take the 2nd order derivative of the first equation
in (37) yields,

(37

4 .. ..
z§ ) = ity sinzp_2+2i1122-2 C0S 222
— 2 sursinza_p4+7ouicosza_a.  (38)
Substituting Z»_» = up from (37), we can design uy as,
M2+Af)'~3 §0~3)_V1 % e .
uy = s u2:u1 SInzpy_»o
—U| COSZr_2
+ 2111205 cos zyz—i%_zm sinza_2, (39)

which gives the following closed-loop system (translational
position x = z1)

AP +Ag 42 =

(40)
Regarding the leftover system z>_1, it is trivial to have

g—Ag lzg) 11) +v2

COSZ72-2

uy= (41)

which results in the following closed-loop system (altitude z =
22-1)

(2) (0~1)

1+A62,\,1 1 =2 42)
Remark 3: To avoid singularity in (39) and (41), constraints

at near-zero interval are needed for u; and cos zp_», which are

trivial and work for large-angle fighting maneuvers [24].

Afly e R4 A2 e R12 and vy, v, are external signals.
All the variables used in the controller are all available, and the
states of the original system (35) are all measurable. Clearly,
once the set of HOFA models is obtained, the controllers of
the subsystems (x and z) are immediately written out, and
the obscure tunning procedure in the conventional hierarchical
method is skipped. Admittedly, the high-order terms give the
challenge to noise and disturbance attenuation [14]. A well-
designed observer may be needed.

This method is currently based on the model with a fixed
order. Assuming the angular velocities are obtained from the
derivatives of the Euler angles, this approach can also be used
for a second-order 6-DOF quadrotor model. The derivation of
the HOFA model for the complete mixed-order 6-DOF quadro-
tor system shown in Figure 2 and experimental results are
presented in the authors’ paper [23].
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Fig. 3. Tracking results comparison between the HOFA approach and
one conventional controller.

V. SIMULATION RESULTS AND DISCUSSIONS

This  section  presents  simulation  results in
MATLAB/Simulink to validate the proposed modified
HOFA approach for the control of a planar quadrotor.

The quadrotor parameters are set as m = 1.0 kg, = 0.01 kg-
m?2, and g=938 m/s2. The control parameters are,

A, =124, 216, 864, 1296],
Vi = 362004322 ) 4129621 e

AZ =16, 64],

~

vy = 8257 | 6422 er. 43)

The closed-loop system can also be written in the frequency
domain with a capital Z as the state,

36
Z_| 0 e 231 ref

Naturally, the designed bandwidth of the altitude (z = zo—1)
tracking is faster than that of the translational position (x = z1)
tracking. Sinusoidal signals are applied as the reference inputs
and tracking control results and errors are presented in Figure 3
and Figure 4, respectively.

We first compare tracking results with a conventional con-
troller (e.g., a PID controller with a hierarchical structure [4])
to show advantage of HOFA controller on parameter tuning.
xp, and z;, are outputs of the conventional controller. The com-
parison represents a common scenario as the conventional
controller may not be well tuned due to the obscure tuning

Fig. 4. Tracking errors comparison between the HOFA approach and
one conventional controller.

1 ]
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Fig. 5. Tracking results comparison among two HOFA controllers and
one well-tuned conventional controller.

......

0 1 2 3 4 5 6 7 8 9 10
Time (s)

Fig. 6. Tracking error comparison among two HOFA controllers and one
well-tuned conventional controller.

procedure. From Figure 3 and Figure 4, it is clear to see that
tracking errors of x and z from the modified HOFA approach
are smaller than the conventional method.

Denote x, and z, as the outputs of an alternative HOFA con-
trollers with higher bandwidth, which can be easily obtained
based on the feature of the HOFA approach without tuning

efforts,
1
Xa — S+?o 0 Xa,ref
Za 0 Hl-% Za,ref

(45)

Different HOFA controllers (or control parameters) for
different close-loop system performances are presented in
Figure 5 and Figure 6 to compare with the conventional con-
troller. The outputs of the conventional controller are well
tuned in this case for comparison. To get the desired closed-
loop system response, the conventional method typically
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requires extensive work and experience of controller tuning.
However, the HOFA approach can easily achieve desired con-
trol performance by arbitrarily assigning desired eigenvalues.
Even if a well-tuned conventional controller is acquired to get
a similar performance to that defined in (44), it is much easier
to obtain a better and faster close-loop performance defined
in (45) with the HOFA approach.

V1. CONCLUSION

Unlike conventional methods based on the universal state-
space representation, Lyapunov methods, and hierarchical
structure, the HOFA approach can obtain a constant linear
closed-loop system from nonlinear systems. However, the
HOFA system reformulation from certain nonlinear systems
is sometimes difficult based on the existing HOFA approach.
This letter proposes a modified HOFA approach for the
quadrotor control or a family of nonlinear systems that can-
not be directly converted into a pseudo strict-feedback form.
The theoretical development and simulation results show the
effectiveness of the proposed method.

APPENDIX

Proof [Infeasibility of Q Matrix for Quadrotor Systems]: For
the system (35), we assume the unimodular matrix Q exists

with OB = G € R¥2. Denote uy = 12 yyy = 2201

and we have,

0
G ’

—g |+| cos O

0 0 1
—— ——
B

0 sind 0
i

”1}. (46)

Denote

qi1
q21
q31

q12
q22
q32

q13
q23 |,
q33

0= (47)

and we have

q11 sinf + q12 cos @ q13
g1 8in6 + g32 cos O g3
q318in60 + g32 cos 6 g33

OB = (48)

= [on)

Considering the first element in (48),

q118in6 4+ gipcosd =0 (49)

We have

q12 = —q11 tané. (50)

Thus, Q contains one element that is a variable of the pitch
angle 6. Based on the definition of a unimodular matrix [27],
this implies it is infeasible to find a unimodular matrix Q to
convert the system (37) into a pseudo strict-feedback form.
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