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A Novel and Elliptical Lattice Design of Flocking
Control for Multi-Agent Ground Vehicles

Gang Wang, Mingzhe Liu, Fengchen Wang, and Yan Chen , Member, IEEE

Abstract—Flocking control of multi-agent ground vehi-
cles recently attracted rising attention because of its
strength in extending 1D platooning to coordinated 2D
movements. However, the uniform interaction ranges and
the non-defined orientation of the flocking lattice make
flocking control of ground vehicles face some key issues.
To achieve cooperative motions of connected and auto-
mated vehicles (CAVs), this letter proposed a novel and
elliptical lattice to extend the existing flocking theory with
a uniform hexagon lattice. The proposed elliptical lattice is
designed based on the characteristics of the vehicle head-
ing direction, velocity, minimum safety distance, and lane
width to analytically adapt to vehicle driving environments.
Moreover, a new flocking control law considering road
boundaries’ (permanent) repulsive forces is developed to
ensure the desired formation at a steady state. Simulation
results show that the proposed elliptical lattice of flock-
ing control can be applied to realize cooperative driving of
multi-agent CAVs with the desired formation on the road.

Index Terms—Flocking control, flocking lattice, multi-
agent systems, connected and automated vehicles.

I. INTRODUCTION

F
LOCKING, as a collective behavior, has attracted great

attention and research interest. To analyze flocking

behaviours, three types of agents, namely α-agents, β-agents,

and γ -agent(s), are introduced to represent a group of coopera-

tive agents, obstacles, and (virtual) leader(s), respectively [1],

[2], [3], [4]. To regulate α − α interactions in motion, con-

trol laws are designed to form (quasi) α-lattices, which are

typically in the shape of hexagons [2], [5], [6], [7]. Together

with control laws for α − β interactions (to avoid obstacles)

and α − γ interactions (to track leader(s)), some well-known

flocking rules for α-agents can be achieved, such as flock-

ing centering, collision avoidance, velocity matching, virtual

leader navigation, and obstacle avoidance [2], [4], [8], [9].

Recently, flocking control was applied to multi-agent ground

vehicles. For example, autonomous driving algorithms using
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flocking theory were proposed to perform different driving sce-

narios [10]. Two improved flocking protocols were introduced

to achieve lane-following and braking control [1]. Nonlinear

vehicle dynamics [3], [11] and permanent obstacles [12] were

investigated for flocking control of connected and automated

vehicles (CAVs). These works relied on uniform interaction

distances among vehicles (α-agents) without considering the

influence of vehicle speeds and orientations on the formed

flocking lattice. However, the vehicle’s longitudinal speed is

usually much larger than the lateral speed, which indicates

that the lattice scale in the longitudinal direction should be

larger than that in the lateral direction. This common feature

of ground vehicle movements needs to be modeled in the appli-

cation of flocking control, which cannot be represented by the

existing uniform hexagon lattice.

To form different longitudinal and lateral inter-vehicle

spacing, a flock-like model with additional rules was

developed [13]. Specific triangular vehicle formations were

proposed via confidence analysis [14] or permission-based

strategies [15], while maintenance required lane-changing

tasks. For the first time, an adaptive spacing policy was

developed by the authors to describe nonuniform flocking

movements of ground vehicles via the design of elliptical

lattice [16]. However, the structure of the proposed ellipti-

cal lattice needs to be improved because the potential energy

of the flock may not reach the minimum value when the

velocity consensus is achieved. Another issue is that the ori-

entation of the elliptical lattice does not align well with the

lanes, which may cause vehicles not to move in the middle of

lanes.

To solve the aforementioned problems, this letter proposes

a novel elliptical lattice design and flocking control protocol

by considering the heading direction of ground vehicles. The

contributions of this letter are summarized as follows.

1) A new elliptical lattice is developed for vehicle forma-

tions by non-trivally extending our previous work [16].

Six α-agents on one elliptical lattice are defined instead

of four. The heading direction of an ellipse is aligned

with the velocity direction of the ego α-agent instead of

the γ -agent.

2) The orientation of the proposed elliptical lattice is

defined and discussed for the first time. The Hamiltonian

function of an elliptical lattice is analyzed, and it is

concluded that in free space, the orientation cannot be

controled by the existing flocking theory [2].
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3) A novel interaction between α-agents and (permanent)

road boundaries is defined, which serves as a penalty

term to achieve the desired flocking lattice. Moreover,

the relationship between the distance of lane boundaries

and the length of the semi-minor axis is established

to guarantee that the vehicle flock can move into the

designed (numbers of) lanes or spaces.

The rest of this letter is organized as follows. Section II

introduces preliminaries of flocking control and defines the

elliptical flocking lattice. The new flocking control protocols

for the proposed elliptical lattice are designed for free space

and a bounded road in Section III. Section IV displays three

simulation cases with different weights of α − β interactions.

Finally, the conclusions are provided in Section V.

II. PRELIMINARIES AND ELLIPTICAL LATTICE DESIGN

In this section, the background of flocking control will be

first introduced. Then, the desired elliptical lattice for multi-

agent ground vehicles by specifically considering practical

ground traffic will be discussed.

A. Preliminaries of Flocking Control

The kinematic equation of N point-mass α-agents working

on m dimensional Euclidean space is displayed in (1).

{

q̇i = pi

ṗi = ui
i ∈ V, (1)

where qi, pi, and ui ∈ R
m denote the position, velocity and

control inputs of α-agent i, respectively. V = {1, 2, . . . , N}. In

this letter, α-agent j is called a neighbor of α-agent i if the

condition ‖qj − qi‖ < r is satisfied, where r is the interaction

range for α-agents, and ‖ · ‖ denotes the 2 − norm operation.

In addition, the σ − norm defined in [2] is given by,

‖z‖σ = 1

ε
[

√

1 + ε‖z‖2 − 1]. (2)

The control inputs for α-agent i in free space are defined

by (3).

⎧

⎪

⎪

⎨

⎪

⎪

⎩

ui = uα
i + u

γ
i ,

uα
i = cα

1

∑

j∈Nα
i

φα(‖qj − qi‖σ )ni,j

+ cα
2

∑

j∈Nα
i

aij(q)(pj − pi),

u
γ
i = c

γ

1 (qγ − qi) + c
γ

2 (pγ − pi).

(3)

where the uα
i and u

γ
i represent α − α and α − γ interactions,

respectively. Nα
i is the set of spatial neighboring α-agents cor-

responding to α-agent i. ni,j = (qj − qi)/

√

1 + ε‖qj − qi‖2.

aij(q) is the element in a spatial adjacency matrix A(q) defined

in [2]. The action function φα(·) is defined as,

φα(z) = ρh(z/‖r‖σ )φ(z − ‖d‖σ ), (4)

where ρh(·) is a bump function, φ(·) is an uneven sigmoidal

function, and d denotes the desired lattice scale. The virtual

γ -agent is commonly used to provide a virtual trajectory ref-

erence for α-agents (CAVs) path tracking. More details of

flocking theory refer to [2], [8].

Fig. 1. (a) Flocking lattice in a circle with seven interacting α-
agents. (b) Flocking lattice in an ellipse with five interacting α-agents.
(c) Flocking lattice in an ellipse with seven interacting α-agents.

Fig. 2. A new elliptical flocking lattice with six interacting α-agents.

B. Elliptical Lattice for Multi-Agent Ground Vehicles

To achieve the desired formation of a flock, the lattice-type

structure of α-agents was utilized in the literature [2], [7]. In

this section, three different geometries of the flocking lattice,

as shown in Fig. 1, will be investigated.

The first flocking lattice in Fig. 1(a) is achieved by employ-

ing the control protocol in (3). Due to the characteristic of

the rigid or uniform interaction ranges and inter-agent gaps,

this lattice was classified as a rigid spacing policy in [16].

Moreover, the distance difference between a pair of interacting

α-agents and the constant lattice scale, d, is depicted in (5)

using the σ − norm.

eij = ‖qj − qi‖σ − ‖d‖σ . (5)

Accordingly, the equation (4) with eij can be rewritten as,

φα(z, eij) = ρh(z/‖r‖σ )φ(eij). (6)

Fig. 1(b) shows an ellipse geometry for flocking lattice

in [16]. Four neighboring agents of α-agent i are located on

the semi-major and semi-minor axes of the desired ellipse.

However, some practical issues of this pattern exist for flocking

control of multi-agent ground vehicles. First, ground vehicles

typically will not move side by side on the road, considering

driving safety. Second, the potential energy does not reach the

minimum value, which makes this pattern hard to be achieved.

To address the above issues, this letter proposed a new

elliptical lattice, as shown in Fig. 1(c), where each ellipse

is generally centered at one α-agent with six neighbors. The

positions of these agents are displayed in Fig. 2. The coor-

dinates of two α-agents on the semi-major axis are (−da, 0)

and (da, 0), where da is the length of the semi-major axis. Let

l be the lane width of a multi-lane road. The coordinates of

the other four α-agents are (da/2, l), (−da/2, l), (−da/2,−l),

and (da/2,−l). Apparently, the seven α-agents are designed

to move along with three parallel lanes.
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Next, the ellipse will be determined by calculating da and

db (semi-minor axis). It is well-known that the summation of

distances from any points on an ellipse to the two foci F1 and

F2 always equals 2da. Thus, the six neighboring α-agents on

the ellipse satisfy the following equation,

‖qj − F1‖ + ‖qj − F2‖ = 2da. (7)

Substituting qj = (da/2, l), F1 = (dc, 0), F2 = (−dc, 0), and

dc =
√

d2
a − d2

b into (7), the semi-minor axis is calculated as,

db = 2√
3

l. (8)

Referring to equation (9) in [16], da is defined in (9).

da = thpr + µa, (9)

where th denotes the time-headway, pr is the velocity of the

virtual leader, and µa is the minimum safety distance.

III. CONTROL DESIGN FOR ELLIPTICAL LATTICE

A. Control Design in Free Space

1) Calculation of Distance Errors: To calculate the control

inputs for α-agents, the distance errors between neighboring

α-agents and the desired interaction gap need to be determined.

In [16], the distance error is formulated in (10).

ẽij = (‖qj − Fi
1‖ + ‖qj − Fi

2‖) − 2da, (10)

where Fi
1 and Fi

2 are the two foci of the ellipse centered at

qi. Intuitively, ẽij = ẽji may not be always satisfied. The ori-

entation of each semi-major axis was assumed to be parallel

to ensure ẽij = ẽji in [16], which may not be practical.

In this letter, the semi-major axis is defined to be aligned

with the velocity direction of the center α-agent. To ensure the

interaction force between a pair of α-agents is the same, the

distance error is finally determined by selecting the minimum

value of the ẽij and ẽji, as shown in (11).

eij = eji = min{ẽij, ẽji}, (11)

where ẽij and ẽji are rewritten by using the σ − norm,

ẽij =
‖(‖qj − Fi

1‖ + ‖qj − Fi
2‖)‖σ

2
− ‖da‖σ , (12a)

ẽji =
‖(‖qi − F

j

1‖ + ‖qi − F
j

2‖)‖σ

2
− ‖da‖σ . (12b)

Therefore, the control protocol for the elliptical lattice in

free space is defined in (13).

⎧

⎪

⎪

⎨

⎪

⎪

⎩

ui = uα
i + u

γ
i ,

uα
i = cα

1

∑

j∈Nα
i

φα(‖qj − qi‖σ , eij)ni,j

+ cα
2

∑

j∈Nα
i

aij(q)(pj − pi),

u
γ
i = c

γ

1 (qγ − qi) + c
γ

2 (pγ − pi).

(13)

where the action function φα(‖qj − qi‖σ , eij) is defined in (6)

and eij is given by (11).

Fig. 3. (a) Desired ellipse with two α-agents on the semi-major axis.
(b) Desired ellipse with two α-agents on the semi-minor axis. (c) Desired
ellipse without α-agents on the axes.

2) Orientation of Flocking Lattice: Fig. 3 shows flocking

lattices in three different orientations, with two neighboring

α-agents on the semi-major or semi-minor axis, or none on

the ellipse axes. To describe the orientation of the elliptical

lattice, we first define the heading angle of the lattice, η.

Definition 1 (Heading Angle of the Elliptical Lattice): For

the elliptical lattice, the heading angle is the angle between the

desired velocity direction and the line connecting two α-agents

on the ellipse with the longest distance.

According to this definition, the range of η is [0,

tan−1(db/(
√

3da))], where the minimum and maximum cases

are shown in Fig. 3(a) and Fig. 3(b), respectively.

Proposition 1: Via the α − α interactions in (13), the max-

imum number of neighboring α-agents within the desired

interaction distance on the proposed elliptical lattice is six,

and they are centrosymmetric about the center of the ellipse.

Proof: Taking Fig. 3(c) as an example, α-agent A(xA, yA)

is on the ellipse centered on α-agent O(xO, yO). Based on the

geometric relationship, We have

(xA − xO)2

d2
a

+ (yA − yO)2

d2
b

= 1. (14)

α-agents B(xB, yB) and F(xF, yF) are on the two intersection

points of the ellipses centered on α-agents A and O, respec-

tively. Thus, α-agents B and F are simultaneously in the

desired interaction distance of α-agents A and O. α-agent

C(xC, yC) is on another intersection point of the two ellipses

centered on α-agents B and O, respectively (but does not inter-

act with α-agents A and F). By utilizing (14) for different

interacting α-agents (such α-agents B and O, α-agents F and

O, α-agents A and B, seven pairs in total), α-agents C and

F are obtained to be symmetric about α-agent O, as shown

in (15).

(xC − xO, yC − yO) = −(xF − xO, yF − yO). (15)

Similarly, we have symmetric paris,

(xA − xO, yA − yO) = −(xD − xO, yD − yO), (16a)

(xB − xO, yB − yO) = −(xE − xO, yE − yO). (16b)

Therefore, up to six neighboring α-agents are within the

desired interaction distance on the proposed elliptical lattice.

The average position of these α-agents is determined in (17).

q̄ = 1

7
(qA + qB + qC + qD + qE + qF + qO) = qO. (17)

To explore the rationale of three patterns in Fig. 3, we intro-

duce a Hamiltonian function consisting of three parts, namely
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the relative kinetic energy, the potential energy of α−α agents,

and the potential energy of α − γ agents.
⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

H(q, p) = K(p) + Vα(q) + Vγ (q),

K(p) = c
γ

2
2

∑

i∈V ‖pi − pr‖2,

Vα(q) = cα
1

∑

i∈V
∑

j∈V\{i}
∫ ‖qj−qi‖σ

‖d‖σ
φα(x)dx,

Vγ (q) = c
γ

1
2

∑

i∈V ‖qi − qr‖2.

(18)

Proposition 2: Suppose the flocking lattice in Proposition 1

is formed, the Hamiltonian in (18) reaches the minimum value

of 3c
γ

1 (d2
a + d2

b)/2 iff qr = q̄, and is independent of η.

Proof: The velocity consensus is achieved in steady state,

and all neighboring α-agents are in the desired interaction dis-

tance. Therefore, K(p) = 0 and Vα(q) = 0 are held. In this

case, the Hamiltonian in (18) is

H(q, p) = Vγ (q) =
c
γ

1

2

∑

i∈V
‖qi − qr‖2. (19)

The derivation of H with respect to qr is

dH(qr)

dqr

= c
γ

1

∑

i∈V
(qi − qr). (20)

The optimal solution q∗
r for the minima H∗ is given as,

q∗
r = 1

N

∑

i∈V
qi = q̄ = qO. (21)

Since α-agents B and F are on the intersection points of the

two ellipses centered on α-agents A and O, respectively, it is

easy to obtain that,

‖qA − qO‖2 + ‖qB − qO‖2 + ‖qF − qO‖2 =
3d2

a + 3d2
b

2
.

(22)

Substituting (15), (16), (21), (22) into (19), the minimum

Hamiltonian, H∗, is derived as,

H∗ =
c
γ

1

2

∑

i∈V
‖qi − q∗

r ‖2 =
3c

γ

1

2

(

d2
a + d2

b

)

. (23)

Eq. (23) indicates that the Hamiltonian function is indepen-

dent of η. Thus, flocking control (13) obtained from minimiz-

ing the Hamiltonian function cannot control or adjust η.

B. Control Design in a Bounded Road

To apply the proposed elliptical lattice to regulate CAV

driving on the road, permanent road (not lane) boundaries,

which cannot be bypassed by CAVs and can interact with

vehicles all the time, are investigated as β-agents to achieve

the desired flocking orientation. Fig. 4 shows flocking with

the proposed elliptical lattice in three patterns developed in

Fig. 3. By appropriately selecting the interaction range and

formulating the repulsive force of the road boundaries, the

three elliptical patterns will converge to our dedicated pattern.

The repulsive forces of road boundaries with multiple lanes

are defined in (24).

u
β
i = c

β

1 fw(q̂i − qi)n̂i + c
β

2 1(fw(q̂i − qi))(p̂i − pi), (24)

Fig. 4. Flocking with the proposed elliptical lattices interacting with
permanent road boundaries.

Fig. 5. An illustration of designed interaction forces from road bound-
aries (β-agents).

where the q̂i and p̂i are the position and the velocity of βi

agent [2]. n̂i = (q̂i − qi)/
√

1 + ε‖q̂i − qi‖2. The indicator

function, 1(fw(q̂i − qi)), is defined by 1(fw(q̂i − qi)) = 1 if

fw(q̂i−qi) > 0, otherwise 1(fw(q̂i−qi)) = 0. Inspired from [1],

the action function fw(x) is defined as,

fw(x) = 1/‖l/2‖2
σ − 1/‖x‖2

σ , 0 < x < l/2. (25)

Note that the action function in [1] was only focused on

a single-lane driving scenario with limited applications, and

cross-section artificial potential function in [13] was compli-

cated. The repulsive forces of the road boundaries defined in

this letter can be extended to any number of lanes with the

specifically defined interaction range as follows.

An illustration of the repulsive forces from road boundaries

is shown in Fig. 5, in which the interaction ranges are defined

within the half lane width starting from the two (left and right)

road boundaries. Let nl be the number of lanes, w = nll denote

the distance between the two road boundaries.

Therefore, the flocking control protocol for elliptical lattices

in a bounded road is defined as,

ui = uα
i + u

β
i + u

γ
i . (26)

where uα
i and u

γ
i are given by (13), u

β
i is defined in (24).

IV. SIMULATION RESULTS AND DISCUSSIONS

In this section, the dynamics of twenty α-agents, tracking a

virtual γ -agent, are investigated in free space and a bounded
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Fig. 6. The initial position of twenty α-agents and the (virtual) γ -agent.

Fig. 7. Trajectories of twenty α-agents and the γ -agent in three cases.

road. The initial positions of the twenty α-agents are randomly

determined in an area of [(0, 0), (30, 15)], and the γ agent is

started at (30, 7.5), as shown in Fig. 6. The initial velocity of

all α-agents is zero. Three simulation cases are analyzed with

the same initialization conditions. In the first case (case 1),

the flocking control protocol in (13) is employed to study the

proposed elliptical flocking lattice in free space. In the second

case (case 2) and the third case (case 3), the corresponding

flocking control protocol in (26) is utilized with different c
β

1

and c
β

2 to analyze the influence of the boundaries’ force in (24)

on the flocking behavior. The parameters of this simulation are

summarised in Table I.

Fig. 7 depicts the trajectories of all α-agents and the γ -agent

in the X and Y directions for these three cases. As shown by the

X direction trajectories in Fig. 7(a), Fig. 7(c), and Fig. 7(e), all

α-agents in the three cases can approach the γ -agent at a same

time. Fig. 7(b), Fig. 7(d), and Fig. 7(f) show the Y direction

trajectories for the three cases. In case 1 of free space, the

Fig. 8. Formation Pattern of twenty α-agents in three cases.

TABLE I
PARAMETER VALUES OF FLOCKING CONTROL

movement of α-agents first spread out and then stabilize in the

range [−1.29, 20.84]. In case 2 and case 3, the two permanent

boundaries are defined at Y = 0 and Y = 15, with five lanes.

Due to the boundaries’ effect given by (24), the movement of

α-agents in the Y direction is in the range [0, 15]. Also, they

can be divided into five lanes as expected.

Fig. 8 presents the result of flocking formation. The direc-

tion of the black arrow indicates the direction of the corre-

sponding α-agent. The flocking lattice in the dedicated ellipse

of a flock is formed. Furthermore, η in case 1 of free space

is 0.21, as shown in Fig. 8(b), where η is 0 in case 2 and

case 3 of a bounded road, as shown in Fig. 8(d) and Fig. 8(f).

The formation results in Fig. 8(d) and Fig. 8(f) demonstrate

that the method proposed in (26) can successfully form a flock

with the dedicated flocking lattice in a bounded road.

Fig. 9 displays the velocity and control inputs for all α-

agents in the three cases. As shown in Fig. 9(a), Fig. 9(e), and
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Fig. 9. Speed profiles and control inputs of twenty α-agents in three
cases.

Fig. 9(i), the velocities of all α-agents in the X direction have

a similar trend, where the time to reach the velocity match

for case 1 is 7.16 s, which is faster than case 2 and case 3.

Fig. 9(b), Fig. 9(f), and Fig. 9(j) show the velocity in the Y

direction, where the matching time of case 1 is 6.75 s, which

is still faster than the other two cases. The amplitude of control

inputs in the X direction is similar for the three cases, as shown

in Fig. 9(c), Fig. 9(g), and Fig. 9(k). The variation range of

control inputs in the Y direction, as displayed in Fig. 9(d),

Fig. 9(h), and Fig. 9(i), are different in the three cases. In case

3, the variation range is [-270.6, 246.9], which is smaller than

that of case 1 and case 2. This indicates that a suitable weight

of the α − β interactions can reduce the control inputs for

the multi-agent systems. Motivated by the flocking navigation

study of [17], the delayed and noisy response of α-agents will

be investigated in the future.

V. CONCLUSION

This letter proposed a novel and elliptical lattice for reg-

ulating CAV motions on a bounded road by considering the

heading direction, minimum safety distance, non-uniform lon-

gitudinal and lateral motions, and lane width. Two flocking

algorithms were designed to achieve the elliptical flocking lat-

tice in free space and bounded roads. Three simulation cases

demonstrated the effectiveness of the proposed two algorithms,

which have great potential to apply to CAV drivings and other

multi-agent systems moving in non-uniform lattices.
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