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Space heating and cooling account for approximately half of all building-related energy consumption, emitting
3Gt of CO, annually, or nearly 10% of the global total. Operable shading, natural ventilation, and solar
heating are promising strategies for reducing these emissions, leveraging minimal mechanical energy to
condition space with cool night air, cold night skies, and solar radiation. However, these strategies are
under-utilized because their performance depends on rigorous coordination among their operable elements.
Additionally, the individuality of such systems, and the lack of physics-based models suitable for control
design, have thwarted the development of widely-applicable control strategies. To address this problem, here
we develop a new data-driven strategy for the design of shading and natural ventilation controls in residential
buildings using policy-based reinforcement learning (RL). To limit undesirable actions and reduce training
time, we first used imitation learning to initialize RL training with expert knowledge, yielding an initial
policy that reduced simulated late-spring space conditioning loads by >40% in 24 climatically diverse cities.
This policy was then trained with RL in four cities representing Mediterranean, semi-arid, humid subtropical,
and continental climates. When deployed in cities with unfamiliar yet related climates, these new policies
reduced space conditioning loads by >50% in the humid subtropics and by >90% in the other three climates,
showing exceptional portability. Further, their performance was unexpectedly robust to variations in dwelling
orientation, glazing, internal heat gain, and air leakage. These results show the extraordinary potential of
imitation-assisted RL in developing high-performance policies for dynamic passive heating and cooling control
that remain effective in unfamiliar situations, removing a substantial barrier to passive systems advancement
in carbon-free building operation.

1. Introduction 11] are counteracting these advances, causing total space condition-
ing emissions to resist decline and showing that new approaches are
urgently needed.

Dynamic passive cooling and heating have shown excellent poten-

1.1. Significance of dynamic passive cooling and heating

Mechanical space conditioning is the single greatest energy end-
use in buildings worldwide, consuming an estimated 25PJ of energy
and emitting approximately 3 Gt of CO, annually among International
Energy Agency member countries alone [1], equaling nearly 10% of
the global total [2]. As a result, the decarbonization of space heating
and cooling is a high priority in efforts to avert the worst effects of
climate change [3]. Over the past two decades, considerable advances
have been made in building energy efficiency codes [e.g. 4], green
building incentive programs [e.g. 5], urban landscape planning for
cooling [e.g. 6], and renewable electricity supplies [7]. At the same
time, increasing built area [8,9] and growing electricity demands [10,
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tial to reduce cooling and heating loads in recent work [e.g. 12-17].
In these systems, operable elements such as shading devices, movable
window insulation, vents, and window apertures allow buildings to
capture or exclude, as desired, climatic resources such as solar heat and
cool night air to reduce heating and cooling loads. For example, well-
controlled natural ventilation and shading have shown the potential to
reduce residential cooling loads by 50% or more in several Mexican
climates [18]; by 70% or more across numerous Chinese cities [13];
and by up to 80% in the Pacific Northwest [15]. Similarly, passive
solar heating with well-controlled movable insulation for windows has
shown the potential to reduce residential heating loads by half or more
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Nomenclature

D Training dataset for imitation learning

b Policy

7y Approximated policy parameterized by 6

TE Expert policy

0 Policy parameters

0* Final policy parameters after reinforcement
learning

0 Policy parameters after imitation learning

a, Action of the MDP at time ¢

E, Sum of mechanical space heating and
cooling loads at time ¢

G, Discounted cumulative rewards

r Reward value of the MDP at time ¢

s, State of the MDP at time ¢

Tin Indoor air temperature

T Outdoor air temperature

ACHs Air changes per hour at 50 Pa

MDP Markov Decision Process

in numerous U.S. climates [e.g. 16,17] and to contribute appreciably
to space heating in southeastern Canada [14].

1.2. Passive system controls and limitations

In the majority of dynamic passive conditioning studies, the action
of operable elements is signaled by static environmental setpoints such
as indoor or outdoor air temperature values (detailed in Section 2.2.1).
While such rule-based approaches are able to reduce cooling and heat-
ing loads in numerous climates, seasons, and building types [e.g. 17,
19-22], they have two important limitations. First, the setpoints used
are typically optimized for particular spaces and climates [e.g. 19,20,
22,23]. As a result, recommended rules for the operation of shading,
natural ventilation, and movable insulation vary widely, preventing
establishment of the reliable, generally-applicable operational strate-
gies needed to expand passive cooling and heating adoption. Second,
once defined, rule-based systems cannot adapt to changes in weather or
spatial configurations that may occur; for example, rules cannot adjust
their setpoints to accommodate the fluctuations between overheating
and overcooling that often occur during spring and fall months. These
problems have highlighted the need for new control strategies that are
responsive to weather variations, portable across climates, and robust
to variations among the spaces they control, allowing them to perform
well as soon as they are deployed. The purpose of this work is to
develop a new method to create such controls.

1.3. Insights from advanced controls for mechanical systems

The development of advanced control strategies for space cooling
and heating has focused primarily on mechanical, rather than passive,
heating and cooling systems. Such work has taken both model-based
approaches, relying on the derivation of dynamics models to solve for
optimal control strategies, and model-free approaches, relying on the
direct optimization of controllers without the formal use of models [24-
26]. Model-based strategies such as model-predictive control (MPC)
have become popular due to their excellent performance, particularly in
buildings with sophisticated heating, ventilating, and air-conditioning
(HVAC) systems [27]. However, deriving analytical models that are
suitable for control design from fundamental physical laws is time-
consuming and expensive, often prohibitively so at smaller residential
scales [28]. This limits the appeal of model-driven methods for passive
system applications.
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Model-free methods such as reinforcement learning (RL) [29-31],
in contrast, derive optimal control strategies through trial-and-error
processes, without formal models of system dynamics, and are therefore
less expensive to develop. Because of this trial-and-error nature, di-
rectly learning optimal control strategies from experiments on physical
systems is not feasible. As a result, optimal RL strategies are typically
learned in simulation environments, such as driving simulators for
autonomous vehicles [32] and building energy simulations for building
system controls [33]. The latter have shown excellent performance in
controlling mechanical HVAC systems, reviewed by Sierla et al. [34];
among them, most have controlled high-level or end states, such as
room air or supply air temperature setpoints, to reduce the number
of control points [e.g. 31,33]. In passive heating and cooling systems,
however, control actions must address the states of individual operable
elements directly because of the situational relationships between ele-
ment positions and their thermal influences. The retraction of window
shading may promote solar heat gain (heating) during a winter day, for
example, but heat loss (cooling) on a summer night. At the same time,
these complex relationships cause passive systems to be excellent can-
didates for RL control, despite the necessary methodological departure
from precedents established in mechanical HVAC systems [35-38].

1.4. State of the art and knowledge gap

The application of model-free RL to the development of control
strategies for passive systems such as shading, natural ventilation, and
direct solar heating is a newly emerging area, and published work is
limited. Nevertheless, recent studies have shown that RL control of
individual elements in passive systems can be highly successful, regu-
larly out-performing rule-based systems, while highlighting the further
challenges that remain [35,36,38,39]. The majority of these investiga-
tions have used tabular Q-learning or the related SARSA (state-action-
reward-state-action) method for training RL agents. Cheng et al. [35],
for example, used indoor illumination measurements and occupant
preferences to train agents to control window blind positions and
slat angles, saving cooling energy and improving visual comfort rel-
ative to manual and traditional automated controls. Similarly, Chen
et al. [36] trained Q-learning RL agents to minimize thermal dis-
comfort and space-conditioning energy use by assisting a mechanical
HVAC system with natural ventilation, again finding that RL policies
considerably improved performance compared to heuristic controls.
In related work, Han et al. [39] trained RL agents using Q-learning
and SARSA to control window opening to maintain thermal comfort
and indoor air quality in a building without mechanical cooling or
ventilation, easily out-performing manual controls. Likewise, our own
investigations have shown Q-learning to be effective in developing
control policies for integrated shading and natural ventilation, allowing
these passive strategies to reduce cooling loads significantly in several
climate types [38].

Further progress with tabular Q-learning methods will be con-
strained, however, by the inability of Q-learning to determine sim-
ilarities among related states or actions, limiting its effectiveness in
extensive state and action spaces such as those found in dynamic
passive space-conditioning systems. Additionally, tabular Q-learning
cannot address the continuous state and action spaces that appear
in such systems. Although nonlinear function approximators such as
neural networks can assess the proximities of states or actions by
directly learning the Q-functions, as in deep Q networks (DQN) [40,41],
the need to represent large numbers of states and actions explicitly
induces lengthy training times in building control applications [37].
To address the problems posed by tabular methods, Ding et al. [37] de-
veloped a new neural architecture, the Branching Dueling Q-Network,
for application to comprehensive building control, including shading
and natural ventilation; these trained policies predicted July energy
savings of about 18% in simulations of a non-residential building
in two hot-summer climates. Policy-gradient RL algorithms such as
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REINFORCE [42] also appear promising: our own preliminary studies
have shown that REINFORCE-trained policies reduced early-summer
space conditioning loads appreciably (>45%), in residential building
simulations in a range of climates, through the control of shading,
movable insulation, and natural ventilation [38].

Each of the model-free studies above noted significant problems,
as well: training RL agents to reach optimal performance required
explorations of the design space that were time-consuming [36,38],
resource-intensive [39], or created so much discomfort in occupied
space as to be infeasible in practice [35]; several also noted the need to
train agents for the specific building and climate in which deployment
was to occur [37-39]. An important knowledge gap therefore remains
regarding the design of RL policies for passive cooling and heating con-
trol that (i) learn rapidly, overcoming time and resource limitations; (ii)
show minimal undesirable behavior during learning, avoiding actions
that cause discomfort; (iii) provide excellent portability across climates;
and (iv) maintain consistent performance among building variations,
relaxing the specificity of trained agents for particular situations. Ad-
dressing these demanding features of RL, such that trained policies are
ready for general deployment in occupied spaces, is the central goal of
this work.

1.5. Approach and original contribution

To address the first challenge, that of creating RL agents that are
able to learn rapidly and show minimal undesirable behavior during
training, here we explore the potential of warm-starting the agents with
existing expert knowledge governing shading and natural ventilation.
The intent of this approach is to create an initial policy that is closer to
the optimal policy than a randomly chosen guess, reducing excursions
into undesirable actions as well as requirements for time and data
during training. Next, to investigate the challenge of creating policies
that are portable among climates, the initialized RL policy is trained
in several distinct climate types, generating climate-adapted policies.
These policies are then evaluated in climatically related yet unfa-
miliar locations, without further refinement or knowledge of system
dynamics, to reveal their portability. Finally, addressing the challenge
of creating policies that are robust to spatial variations, the climate-
adapted policies are evaluated in dwellings that vary in orientation,
window glazing, internal heat gain, and air leakage. Such robustness
is beyond the capability of rule-based controls for shading and natural
ventilation, and to our knowledge, it has not been examined among RL
control policies for these systems.

This work provides three original contributions: first, it represents
the first successful attempt to encode expert knowledge of passive space
cooling and heating control into an initial RL policy through imitation
learning. Second, it represents the most climatically extensive inves-
tigation of RL policies for shading and natural ventilation control to
date; to our knowledge, it is also only the second study [38] of policy-
gradient RL applied to such systems. Third, it provides the first evidence
that RL policies trained in this way can reduce space conditioning
loads extensively and consistently across climatic regions and across
typical building variations, showing excellent potential to reduce space
conditioning loads without climate- or space-specific training.

2. Problem formulation and preliminaries
2.1. Problem statement

The objective of this work is to develop a control strategy that uses
acquirable environmental measurements to actuate shading, window
apertures, and movable insulation in a building to reduce space cooling
and heating loads, as illustrated in Fig. 1, while avoiding unproductive
actions. To address the knowledge gap above, the control algorithm
must have the following features: (i) the ability to learn from limited
data, requiring minimal modeling and/or commissioning effort; (ii) the
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ability to use data from available sensors to yield appropriate decisions
among broadly related climates, showing portability; and (iii) general
applicability to building variations beyond those used in training,
showing robustness. We leverage access to a high-fidelity simulator
(EnergyPlus) to design this control strategy in a data-driven model-free
manner. In this study, we assume that we can measure (observe) indoor
and outdoor air temperatures, heat flux through window surfaces (as
demonstrated in [43]), and space heating and cooling loads at each
control update. In model-free data-driven control design, performance
relies on the quality as well as the quantity of training data. Since
the data available for training are often limited, whether derived from
simulations or field measurements, the intelligent integration of expert
knowledge into the design, detailed below (Section 2.2) is an attractive
option for reducing the need for training data.

2.2. Development of the expert policy

2.2.1. Precedent control rules

To date, most passive cooling and heating control studies have
employed rule-based strategies in which the operation of shading,
windows, or movable insulation is triggered by an environmental con-
dition. In window shading control, a central dilemma has been the
choice of the most effective environmental parameter(s) for signaling
operation. Because the majority of studies have addressed workplaces,
which require visual comfort, illumination values and glare indices
have become popular in meeting cooling goals as well [e.g. 20,23,44—
47]. These setpoints have been chosen to minimize electric lighting
loads [e.g. 44]; to maintain workplane illuminance within desired
ranges [e.g. 44,45]; to minimize glare [e.g. 20,44,46]; and to minimize
the sum of cooling, heating, and lighting energy consumption [e.g. 23,
46]. The primary disadvantage of illumination- and glare-based con-
trols for cooling, however, is the lack of close correlation between
illumination and solar heat gain [e.g. 43], giving effective setpoints
high specificity to particular spaces, orientations, and climates [23,46].

Studies interested primarily in cooling have therefore often con-
trolled shading according to incident solar radiation upon window
surfaces and/or transmitted solar radiation through window glazing
[e.g. 21]. These strategies have shown excellent cooling performance,
but they have had difficulty switching between heating and cooling
modes, which often alternate during spring and fall months [e.g. 19,
46]. In response, investigators have adopted separate shading setpoints
tailored to the two modes [e.g. 46,48] or to specific indoor and/or
outdoor air temperature ranges [21,48,49], confining shading actions
to hours when cooling was desired. Although these approaches have
improved performance, their space-specificity has persisted. To address
this problem, recent studies have investigated window surface heat
flux, a promising metric indicating net window heat gain or loss in-
dependent of space, orientation, or climate [e.g. 43,48]. Additionally,
the emergence of new, low-cost heat flux sensors, combined with
straightforward methods to filter out sensor noise [43], have allowed
heat flux sensing to become an affordable and effective option for
cooling-focused shading control. We therefore use window heat flux
measurements to control shading in the expert policy.

The primary challenge in natural ventilation control, in contrast,
has been the great sensitivity of indoor air temperature to outside
air temperature when ventilation is active, causing spaces to over-
cool easily and inducing window opening—closing oscillations [e.g. 28,
50,51]. In response, investigators have studied numerous combina-
tions of setpoints and deadbands involving indoor air and/or operative
temperatures, outdoor air temperatures, and occupancy status, often
varying by season [e.g. 15,19,21,50]. These efforts have been highly
successful in both residential and non-residential buildings, diminishing
cooling loads by substantial fractions. Additionally, the resulting rule
systems have shown relative consistency across climates and seasons,
as reflected in the expert policy.
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Fig. 1. Feedback control of operations in the dynamic passive system of interest. Observations included inside and outside air temperatures, window surface heat flux values, and
cooling or heating loads at each 15-min timestep. The learning goal was to develop a control logic for operating shading, night insulation, and window apertures to minimize the

sum of space cooling and heating loads.

Efforts to control shading and natural ventilation simultaneously
have met compounded challenges, however, because the effects of
shading and natural ventilation interact: for example, shading reduces
heat storage in wall and floor materials, causing a shaded space to
cool more rapidly than an unshaded one during natural ventilation.
These challenges have grown when passive cooling systems have been
expanded to include movable insulation for passive heating, leading
researchers to propose highly involved rule systems [21,52] or to
seek effective control setpoints through parametric searches [19] or
numerical optimizations [17]. Although the resulting strategies have
remained space-specific, they have confirmed the extent of passive
heating and cooling potential in these spaces, often meeting 40%-80%
of the respective loads, and they further informed the establishment of
setpoints for the consensus expert policy (Section 2.2.2).

2.2.2. Expert policy

In the expert policy z, window heat flux was chosen as the most
universally effective environmental parameter for shading control, for
cooling, from the evidence of Danis et al. [43]. These cooling-focused
rules were modified, however, to retract shading (i.e., to allow solar
heat gain to occur) when indoor air was sufficiently cool. A dead-
band was also provided to limit oscillation. Setpoints defining these
modifications were found heuristically, by automated trial-and-error,
to minimize space-conditioning loads in cities representing four distinct
climate types (Section 3.1) while limiting shade oscillation. In the final
policy 7 (Table 1), shading was extended if the indoor air temperature
T;, equaled or exceeded a threshold of 18.5 °C in any of the 5 previous
15-minute timesteps, representing an elapsed hour, and the window
gained heat in the current timestep; retracted if the indoor air equaled
or exceeded 18.5 °C at any time in the past hour and the window
lost heat definitively (<—2W/m?) in all 5 previous timesteps; and
maintained its current status otherwise.

Natural ventilation control, in turn, followed the summer rule struc-
ture of Schulze and Eicker [50]: ventilation was enabled only when
indoor air was sufficiently and consistently warm and when outdoor
air was sufficiently cool; once enabled, the window aperture opening,
as a proxy for air exchange, increased with outdoor air temperature
until the outdoor air became too warm. Specifically, natural ventilation
was enabled only if T}, equaled or exceeded the threshold of 18.5 °C in
all of the 5 previous timesteps and if the outside air temperature 7,
measured 25 °C or cooler in the current timestep; once enabled, the
extent of aperture opening was modulated according to 7,,,, to minimize
overcooling. As above, setpoints defining these boundaries were found
heuristically to minimize late-spring space-conditioning loads in the
four representative cities. Because space conditioning needs were ini-
tially dominated by cooling, explicit movable insulation control for heat
retention was not included. However, the shading element possessed
insulating properties, allowing it to serve as movable insulation (see
Section 3.1 and Table 2), and RL policies learned to use it in this
capacity (see Section 4.2). The use of this expert policy to initialize
RL training is described in Section 2.4.

actions - shading
+ movable insulation
/ AGENT \ * natural ventilation
. ENVIRONMENT
policy
. update | reinforcement outdoor temperature
policy - learning indoor temperature
algorithm reward | * window heat flux
4 heating / cooling load
observations

Fig. 2. Reinforcement learning process. The purpose of reinforcement learning is to
train an agent to perform desired actions in an unfamiliar environment through a series
of interactions with that environment. In each cycle, the agent receives observations
from the environment; responds with actions that influence the environment; and
receives a reward that indicates the relative success of the actions. The learning
algorithm then updates the policy parameters based on the observations, actions, and
reward, with the goal of maximizing the cumulative reward received.

2.3. Reinforcement learning

Reinforcement learning (RL) refers to a class of machine learning
algorithms in which a classifier or regressor is trained to make a
sequence of decisions to maximize a cumulative reward. The learner
in RL is typically termed the agent, which learns an appropriate control
strategy (or policy) by interacting with its surroundings, known as the
environment, as illustrated in Fig. 2. The agent uses the control strategy
to decide on an action, while the environment provides observations
(or states) and returns rewards to the agent. During the training pro-
cess, the agent takes an action, observes the outcome, and is given a
reward as a consequence of the action and the outcome. Based on the
action, the observation, and the reward, the agent updates its current
control strategy to maximize expected cumulative future rewards. This
process is repeated until the agent learns a strategy to achieve the goal
(interpreted as maximizing the reward) in a dynamical environment.

2.3.1. Markov decision processes and reinforcement learning problem for-
mulation

The design of RL algorithms is built on modeling the underlying
system as a Markov Decision Process (MDP). An MDP consists of the
following elements: the possible states S of the system, the allowable
actions A, the rewards R, € R, and the transition probabilities P(-|-,-)
between states, given an action. The states (.S;) are formal represen-
tations of the observations (measurements) from the environment at
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Table 1
Expert policy.
Condition 1 Duration® Condition 2 Duration Action®
Shading T, > 185 °C any WHG® > 0 W/m? any 1 (fully on)
WHG < -2 W/m? all 0 (fully off)
-2 W/m? < WHG < 0 W/m? all Keep previous action
T, <185 °C any None n/a Keep previous action
Natural T, > 185 °C all T, <11 current 0.01
ventilation 11 <T,, <14 0.01 7,
14 <T,, <16 0.02 T,
16 <T,, < 18.5 0.05 T,,
185<7T,, <25and T,, <T,, 1 (fully open)
25 <T,, 0 (fully closed)
T, <185 °C any None n/a 0 (fully closed)

aNumber of timesteps in the past hour.
bShading fraction on or window fraction open.
‘Window heat gain.

time #; the action A, describes the effect of the agent on the envi-
ronment; and the reward R, is a scalar value returned to the agent
when progressing from .S, to S,,;, taking action A,. The transition
probability P(S,,|S;, 4,) is the probability of transitioning from S, to
S, by taking the action A,. The transition probabilities capture the
inherent dynamics of the underlying environment; here, these include
the dwelling and its operable elements.

Given an MDP, the policy (of the agent) is a function that maps
the states S to actions .A. Policies can be deterministic (z : S — A)
or stochastic (r : S — Pr(A)) in nature. The policy is designed to
maximize a cumulative reward:

7" = argmax E [Zy ’R(S,H,A,)] . (€]

=0

This optimal control problem, though computationally intensive,
can be directly solved if the transition probabilities are perfectly
known. In a model-free learning scheme such as RL, however, the
transition probabilities of the MDP are unknown; as a result, the optimal
policy is found through interaction with the environment [29].

2.3.2. Policy-based reinforcement learning

The goal of an RL algorithm is to determine the optimal policy z*
that maximizes the expected cumulative future reward, E, [G,], where
G, = Y;_. 7. Here, y € [0,1] is a discount factor on future
rewards; G, is the discounted cumulative future reward; and E, [G,]
is the expectation of G, when actions are determined from the policy
7. Two broad classes of RL algorithms exist for determining the optimal
policy z*, namely, value-based RL and policy-based RL methods [29].

For a given policy z, the value function is the expected cumulative
future reward, given a state s at time 7, V7 (s):

Vi(s)=E, [G,|S; =] (2)

In policy-based RL, the optimal policy is directly learned without
determining the value function explicitly. The policy is functionally
represented by a set of d basis functions 3 and an associated parameter
vector § € RY, ie, « 7g. The parameter 6 is updated through
gradient ascent in policy-gradient (PG) methods, with the objective
of maximizing the expected future rewards. Hence the cost function
J(9) for an episodic case is defined as the state-value function, J(9) =
V7o (sy), where s, is the initial state at the beginning of the episode;
ie.,

0* = arg max J() = arg max E [V”'9 (so)] R 3)
0eRrd 0eRrd

where an episode refers to the length of a single ‘run’, e.g., the time

horizon over which the task is being executed. If the gradient of the

cost with respect to the policy parameters is available, gradient ascent

can be used to find a locally optimal policy. According to the policy

gradient theorem [29], the gradient of the cost V,J(#) can be written
as

Vol (0) =E [G,VInz(A, | S,.0)|. 4

To determine this gradient, here we employ the well-known REIN-
FORCE [42] algorithm, a policy-gradient approach that uses a Monte-
Carlo estimator for the gradient, i.e., an empirical estimate of the
expectation of the gradient is used to compute the parameter update.
The expectation term in Eq. (4) is computed from empirical reward
samples from trajectories consisting of state, action, and reward value
triplets. Algorithm 1 outlines the general REINFORCE algorithm.

Algorithm 1 REINFORCE: Monte-Carlo PG

Initialize parameter vector 6 € R?
for episode = 1,...,N do
Generate trajectory sg,dg, ry, ... ,S;_1.d,_1.F, following =,
for each timestep of the episode, t =0,...,7— 1 do
G, < Z;=x+1 J/k_[_lrk
0 < 0+ay'G,Vylnn(a, | s, 0)
until y'G,V,Inx(q, | s,,0) is small enough
end for
end for

2.4. Imitation learning

Encoding expert knowledge into an approximated policy (zy) that
serves as the initial guess for an RL agent can reduce training time
and data requirements. One approach to embed this expert knowledge
is through imitation learning, in which a classifier is used to learn
the behavior of an expert to perform complex tasks [53-55]. This is
accomplished by training the classifier to predict, or classify, the action
of the expert given an observation (measurement). These classifiers
are trained using supervised learning, such that the prediction error
is minimized for a collection of given observation-action pairs.

Relying on pure imitation learning has some limitations, however.
One problem is that the assumption of independent identical distribu-
tion (i.i.d.) among the states in the training dataset may not always
be satisfied, leading to unreliable performance and poor learning out-
comes [56]. This occurs because the state distributions encountered
by the learner and the expert are different: not all decisions of the
learner are identical to those of the expert, causing the state trajectories
to deviate from those experienced by the expert. Typically, this is
addressed through iterative training approaches, in which the expert
provides feedback during the training process to help the apprentice
learn to recover from mistakes and to extrapolate the expert’s behavior
in unforeseen scenarios [e.g. 57-59]. Additionally, the expert policy
may perform poorly in some scenarios; if so, relying on imitation
learning alone is likely to yield similarly poor performance for those
scenarios. We address these issues below (Section 3.3.1).
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Fig. 3. Workflow. An expert policy was used to generate state-action data to support imitation learning, yielding an initial RL policy with abilities comparable to those of the
expert. Refinement then occurred through RL training in multiple cities, yielding climate-adapted policies for further evaluation of performance among unfamiliar climates and

building variations.

3. Methods

The methods described below followed the sequence of steps shown
in Fig. 3. First, a dwelling model with operable windows and shading
(Section 3.1) was simulated under the control of an expert policy
(Section 2.2.2), in eight climatically diverse cities, to generate paired
state-action data. Next, guided by these data, an imitation learning al-
gorithm was used to mimic the expert policy and to generate the initial
RL policy (Section 3.3.1). The initial RL policy was then evaluated by
dwelling simulations in numerous additional cities, grouped into four
broad climatic regions. Next, the initial RL policy was refined through
training in cities representing each of the four climatic regions to cre-
ate four climate-adapted policies (Section 3.3.2). Climate-adapted RL
policies were then evaluated for portability within their corresponding
climatic regions and for robustness among dwelling variations.

3.1. Building energy modeling

Passive cooling and heating control policies were developed using
simulations of a South-facing one-bedroom apartment, represented as
a single thermal zone in EnergyPlus v9.2 [60]. Model geometry was
specified in Euclid 0.9.4.2 [61], an extension for SketchUp (Trimble
Inc., 2017), and glazing properties were specified in WINDOW 7.7 [62]
and exported as spectral IDF objects for use in EnergyPlus. For simplic-
ity, opaque envelope and glazing materials, infiltration, and internal
heat gain rates were specified to comply with requirements for a single
climate, Climate Zone 5, of the 2018 International Energy Conserva-
tion Code [4] (Table 2); however, typical variations in these factors
were considered as well (Section 4.5). Space heating and cooling were
provided by IdealLoadsAirSystem objects, yielding estimates of
heating and cooling loads independent of equipment efficiency; heating
and cooling thermostat setpoints were set at 18 °C and 25 °C, respec-
tively, again consistent with 2018 International Energy Efficiency Code
guidelines [4]. All simulations used 15-min timesteps.

Ventilation for fresh air was maintained at 0.007 m3/s, consistent
with the recommendations of ASHRAE Standard 62.2-2019 [63],
and natural ventilation airflow was calculated independently of this
quantity and added to it. Window area available for natural ventilation
totaled 5.1 m2, distributed between two windows. Natural ventilation
was simulated with ZoneVentilation:WindAndStackOpenArea
objects to improve processing speed without compromising reliability in
this simple case [15]. Shading and movable insulation, in turn, were
specified with WindowShadingControl objects, in which shading
and movable insulation were represented by the same interior operable
panels due to the inability of EnergyPlus 9.2 to support the action of
multiple devices upon a single window [64].

Table 2
Building parameters.
Element Properties
Dwelling
Floor area 44.9 m? (483 ft?)

20.9 m? (221 ft?)
24.7% (building); 7% (dwelling)

Exterior facade area
Window to wall ratio

Exterior facade orientation South

Location Top floor
Glazing

Area 5.1 m2 (54.5 ft? )

Properties U=1.61 W/m?K (0.28 Btu/h ft*> °F); SHGC=0.55
Shading

Optical properties
Thermal properties
Edge conditions
Exterior wall assembly
Roof assembly
Interior wall assembly
Floor assembly
Internal heat gain
Air exchange
Ventilation for fresh air

T,, =0.1; R, =08

U = 2.8 W/m?K (0.5 Btu/h ft> °F, or ‘R-2’)
Side tracks (opening multipliers = 0)

U = 0.32 W/m?K (0.057 Btu/h ft* °F)

U = 0.15 W/m?K (0.026 Btu/h ft> °F)

U = adiabatic; heat capacity = 390 kJ/m°K
U = adiabatic; heat capacity = 2010 kJ/m’K
8.6 W/m? (0.8 W/ft?)

0.007 m?/s (15 ft’/min)

Air leakage 3 ACHj,,
Site

Terrain City

Ground reflectance 0.2

3.2. Climates, seasons, and weather

Simulations were conducted in cities representing four climate types
that are widely represented in the U.S. and internationally, including
humid subtropical (Cfa), humid continental (Dfa/b), semi-arid (BSh/k),
desert (BWh/k), and Mediterranean (Csb), using weather files that
represented typical meteorological conditions from 2004-2018 [65]
(Table 3). All simulations were conducted during the month of May,
chosen to provide conditions suitable for passive heating and cooling
in many climates as well as a range of weather patterns: while May in
continental and Mediterranean climates in the Northern hemisphere is
often part of the residential heating season, the cooling season is well
underway in humid subtropical and warm semi-arid climates [e.g. 16].
Additionally, many of these climates experience May outdoor air tem-
peratures both warmer and cooler than the chosen thermostat setpoints,
challenging the RL process to accommodate alternating heat gain and
loss patterns. Dwelling microclimates were represented as urban, af-
fecting local wind speed [66], and with low surface reflectance; site
shading and urban heat island effects were not included (Table 2).

3.3. Learning architecture

A two-stage design strategy was employed for developing policies to
control shading, movable insulation, and natural ventilation (Fig. 4). In
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Table 3
Regions, climates, and weather files.

Region and city Koppen? IECCP Weather file (TMYx.2004--2008.epw [65])

Pacific Coast
Portland OR (training) Csb 4C USA_OR_Portland.Intl.AP.726980
Vancouver BC Csb 4C CAN_BC_Vancouver.Intl.AP.718920
Seattle WA Csb 4C USA_WA_Seattle-Tacoma.Intl.AP.727930
Eugene OR Csb 4C USA_OR_Eugene.AP-Sweet.Field.726930
Eureka CA Csb 4C USA_CA_Eureka-California.Redwood.Coast-

Humboldt.County.AP.725945

San Francisco CA Csb 3C USA_CA_San.Francisco.Intl.AP.724940

West and Midwest
Denver CO (training) BSk 5B USA_CO_Denver.Intl.AP.725650
Boise ID BSk/BWk 5B USA_ID_Boise.AP-Gowen.Field.ANGB.726810
Provo UT BSk/Dfb 5B USA_UT_Provo.Muni.AP.725724
Casper WY BSk/Dfb 6B USA_WY_Casper-Natrona.County.Intl.AP.725690
Omaha NE Dfa 5A USA_NE_Omaha-Eppley.AF.Intl.AP.725500
Wichita KS Dfa 4A USA_KS_Wichita.Eisenhower.Natl.AP.724500

Southeast
San Antonio TX Cfa 2A USA_TX_San.Antonio-JB.San.Antonio-Randolph.AFB.722536
Houston TX Cfa 2A USA_TX_Houston-Bush.Intercontinental.AP.722430
Jackson MS Cfa 3A USA_MS_Jackson-Evers.Intl.AP.722350_TMYx.2004--2018.epw
Atlanta GA Cfa 3A USA_GA_Atlanta-Hartsfield-Jackson.Intl.AP.722190
Tallahassee FL Cfa 2A USA_FL_Tallahassee.Intl.AP.722140

North and Northeast
Albany NY (training) Dfb 5A USA_NY_Albany.Intl.AP.725180
Bismarck ND Dfb 6A USA_ND_Bismarck.Muni.AP.727640
Milwaukee WI Dfa/Dfb 6A USA_WI_Milwaukee-Mitchell.Intl.AP.726400
Cleveland OH Dfa 5A USA_OH_Cleveland.Hopkins.Intl.AP.725240
Burlington VT Dfb 6A USA_VT_Burlington.Intl.AP.726170
Boston MA Dfa 5A USA_MA_Boston-Logan.Intl.AP.725090

aKoppen-Geiger climate designations: BSk: cold semi-arid (steppe); BWk: cold desert; Cfa: humid subtropical; Csh: Mediterranean; Dfa: hot-summer

humid continental; Dfb: warm-summer humid continental [67].

bInternational Energy Conservation Code (IECC) climate zones: 2: Hot; 3: Warm; 4: Mixed; 5: Cool; 6: Cold; A: Humid; B: Dry; C: Marine [4].

the first stage, supervised learning was used to create an approximate
representation of the expert policy 7 as a neural network (termed the
imitation network) (Fig. 4a). This approximate representation (z,) was
given the same parameterization as the RL agent to be trained, allowing
it to be used to initialize the learning process. In the second stage, this
initial guess was refined via RL to create distinct climate-adapted agents
(Fig. 4b).

3.3.1. Stage 1: Imitation learning from the expert

To create an imitation of the expert policy =, we first parameter-
ized a generic policy = by a set of basis functions identical in structure
to the policy used in the RL training and by a parameter vector 6
that was identified to best mimic the expert. To determine this optimal
parameter vector, we first collected observation and expert action pairs,
{y;, g (y;)}, respectively. The parameter vector 6, was then determined
by solving:

0 = argmind(zp(y,), 7(y;, 0).1 € {1,2,3 --}), )

where d(-,-) is an appropriate distance metric in the action space. The
parameterized policy 7z, is therefore the best approximation of the
expert, evaluated by the metric d.

The expert demonstration dataset was collected by simulating the
model dwelling (Section 3.1) under control of the expert policy, in
8 cities representing the four climates of interest (Fig. 5; Table 3),
to yield a generalized representation of the expert’s decisions. Each
demonstration sample was stored as a state—action Pair (s, 7 £ (Sn.r))s
in which S(me) denotes the observation (state) of city m at time 7, and
75 (S4ny) indicates the corresponding decision by the expert policy 7.
The aggregated dataset therefore consisted of D = {(s,,1)> 7 (S(ms)|
(m,t) € M x T}, where M indicates the set of cities and 7 indicates
the set of timesteps in which the state-action pairs were recorded.
Simulation in each the 8 cities over the single month of May, in 15-min
timesteps, yielded approximately 23,000 expert demonstration state—
action pairs. Dataset D was then divided into a training dataset and a

a) Policy initialization through Imitation Learning

Environment Aggregate

{st;mm(s0)} ||

Demonstration
pool

Expert policy
TE

Imitation network

Determine 6,

Transfer 0

-

Initialized policy for RL

7'l'gu
Adapt to climate

9,*4
[ [ Update 0;
DEN BNA ALB

b) Adaptation of the initial policy through Reinforcement Learning

Fig. 4. Development of climate-adapted RL controllers. (a) Simulations of the study
dwelling in eight cities with contrasting climates (Fig. 5), under control of the expert
policy z (Table 1), generated a demonstration pool of state (s,) and action (zz(s,))
pairs. This demonstration pool was then used in supervised learning to train the
imitation network, 6,. (b) Imitation model parameters were next imported into an
RL framework to create the initial policy, 7, . Subsequent training, using the policy-
gradient REINFORCE algorithm, generated policies z; adapted to the cold semi-arid
climate of Denver CO (DEN); humid subtropical Nashville TN (BNA); continental Albany
NY (ALB); and Mediterranean Portland OR (PDX), respectively (Table 3).
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Fig. 5. Cities simulated under control of the expert policy to generate data for imitation
learning. Cities were chosen to represent contrasting, globally significant climates:
Mediterranean (Csb; Seattle WA); cold semi-arid (BSk; Salt Lake City UT); hot desert
(BWh; Tucson AZ); hot-summer continental (Dfa; Chicago IL; Boston MA); warm-
summer continental (Dfa/b; Minneapolis MN); and humid subtropical (Cfa; Kansas City
MO; Raleigh NC).

Houston

O RL training city
® Pacific Coast (Mediterranean; Csb)

West + Midwest (Semi-arid and humid continental; BSk, Dfa, Dfb)
® North and Northeast (Humid continental; Dfa, Dfb)

Southeast (Humid subtropical; Cfa)

Fig. 6. Cities trained by RL for climate adaptation. Large, black-bordered dots indicate
training cities representing the Pacific Coast (teal), West and Midwest (orange), North
and Northeast (dark blue), and Southeast (light blue) regions and corresponding
climates; small dots indicate cities in which the resulting policies were tested. See
Table 3 for weather file details.

test dataset in a ratio of 4:1; the training dataset was used to train x,
as a classifier (Section 2.4), while the test dataset was used to evaluate
the accuracy of the imitation network in reproducing the expert policy
(Section 4.1).

3.3.2. Stage 2: Climate-specific policy refinement

Once the parameter vector 6, was optimized so that the imitation
network matched the expert policy as closely as possible, these learned
parameters were used as the initial guess for the policy parameters in
subsequent learning. These parameters were then trained through RL
in semi-arid Denver CO, humid subtropical Nashville TN, continental
Albany NY, and Mediterranean Portland OR (Table 3; Fig. 6). In each
climate, parameters were updated in the direction that maximized the
sum of expected future rewards, allowing the policy to learn climate-
adapted strategies for shading, natural ventilation, and in some cases,
movable insulation control.
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3.3.3. RL algorithm

For compatibility, the definitions of the states s and actions a for
the RL MDP were chosen to be identical to those of the expert policy,
as discussed in Section 2.4, i.e., s = s, and a = 7zp(s,). Next, the
reward function r(-) was designed to maximize utilization of passive
resources for the reduction of sensible heating and cooling loads.
(Latent loads were negligible under the conditions investigated; even
in humid subtropical cities, peak outside air temperatures coincided
with relative humidities of 55% or less, and the effectiveness of natural
ventilation in removing moisture generated by occupancy kept indoor
relative humidities below levels that would have compromised thermal
comfort [68].) The reward was therefore defined as the weighted sum
of r; and r,, where r; incentivized reduction of the total (sum of heating
and cooling) load at time ¢z, and r, was associated with the cost of
actuation for each passive element, as shown below,

r(E;,a;,a,_1) = wyry + wory, Where (6)
+1 E =0

ry, =

""1-1-E/C E >0, and

+1
ry =
27 4

We note that the policies 7, for both imitation and reinforcement
learning algorithms were given identical parameterization, though they
may have had different parameters 6. Although these policies were
functionally parameterized by fully connected neural networks, the
parameterized policy was structured such that the flow of informa-
tion mimicked the expert policy (Table 1). Specifically, two separate
networks were used to generate the actions corresponding to shading
and natural ventilation control (Fig. 7). The rationale for this choice
was two-fold: first, directing the necessary information to each network
separately improved the imitation accuracy, and second, the ability to
freeze or further train individual networks provided the freedom to
manage each controller and the associated network separately.

Therefore, each observation s, was split into two parts: components
corresponding to indoor air temperature and window heat flux histories
were used to generate shading decisions, while indoor and outdoor
air temperature histories were used to generate natural ventilation
decisions (Fig. 7). Each input observation component was fed to the
input layer of a separate neural network, each consisting of three
hidden layers with 100 nodes. Rectified Linear Unit (ReLU) functions
were chosen as the activation functions for each individual neuron in
the network. The output layers of the shading and ventilation neural
networks were designed with 4 and 7 nodes, respectively, with each
output node mapping to a specific action as shown in Table 1. Finally,
the values at each of these output nodes represented the probabilities
(e.g., p(shading = on), p(shading = off), as shown in Fig. 7), that a par-
ticular action would be taken. Thus, the policy = mapped observations
s, to probability distributions of actions p(A, = a,). Since the expert
policy = was deterministic, the corresponding probability distribution
collapsed to the expert action, setting the probabilities of all other
actions to zero.

a; =a,_|

a, #a,_;.

3.3.4. RL training hyperparameters and software implementation

The values of the learning rate « for imitation learning and for
RL were chosen to be 10~* and 5 x 1073, respectively, with a lower
learning rate assigned to RL to limit the loss of expert knowledge
gained during initialization. The discount factor, y, was heuristically
selected to be 0.99. Algorithm implementation and validation were
accomplished with Python v3.6, MATLAB 2021a, and EnergyPlus v9.2.
Python was used to implement the policy network, generate actions,
and compute gradients, while MATLAB was used as a communica-
tion intermediary between EnergyPlus and Python, supported by the
MATLAB-EnergyPlus Co-simulation Toolbox (MLEP) [69]. The high-
level decisions made in Python, i.e., the action decisions given by a
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Fig. 7. Structure of the neural networks used for policy parameterization. Two neural networks, one dedicated to shading and one to natural ventilation, worked in tandem to
determine the probability that each action would be taken. The policy was structured such that the flow of information reproduced that of the expert policy, in which observations
from the environment were split and transformed into input forms for each network. Each neural network had three hidden layers, each with 100 nodes; nodes of the output layer
corresponded to the probability that each possible shading and ventilation control action would be taken, respectively.

policy, were communicated to MATLAB through a TCP/IP port. Each
action was translated into a specific schedule command and deployed
in the EnergyPlus co-simulation through MLEP; observations acquired
from the EnergyPlus simulation were returned to Python through the
same TCP/IP port. The RL algorithm (REINFORCE) was implemented in
Python, using TensorFlow for all neural network-related computations.
Since the imitation learning did not require communication between
EnergyPlus and Python, the static training dataset for imitation learning
was generated in MATLAB and then loaded in Python for training.
All simulations and training algorithms were executed on an NVIDIA
Quadro P4000 GPU and an Intel i7-9700K CPU. Imitation learning
was complete within 10,000 training iterations and 2 min, while re-
inforcement learning required up to 900 iterations and 8 h. Although
the RL training process involved fewer iterations, each EnergyPlus
simulation of the model dwelling over one month, i.e. each single
iteration, required approximately 35 s.

3.4. Study scope and limitations

For brevity, clarity, and depth in the results, and to support the
central purpose of evaluating the potential of a new method, the scope
of this study was limited in several ways. First, it addressed only a sin-
gle space type, that of a one-bedroom apartment with a single exterior
exposure. This type was chosen for its abundance throughout the U.S.
and the world; at the same time, the results described below may not
be directly applicable to other residential spaces or to non-residential
buildings. For analogous reasons, the time period of investigation was
limited to a single month. This interval allowed consistent weather pat-
terns to be experienced within each city, facilitating clear and detailed
analyses of imitation learning accuracy and of policy changes made
by climate-adaptive reinforcement learning. Investigation of season-
to-season adaptations will be an important direction for future work,
however. Additionally, for comparability among the range of climates
investigated, the reward structure valued only the sum of sensible
heating and cooling loads. In other words, rewards did not consider

variations in the relative efficiencies of specific mechanical heating
and cooling systems, nor in regional differences in the fuel mixes
used to power them, although these are known to affect the relative
energy consumption and carbon emission intensities of space cooling
and heating. Policy actions therefore minimized space conditioning
loads rather than energy consumption, carbon emissions, or cost. The
reward construction also omitted the influence of relative humidity on
thermal comfort, since this was negligible in the month chosen (see
Section 3.3.3), although its inclusion will be important under warmer
and more consistently humid conditions. Finally, RL training excluded
rewards for providing daylight and/or views, to allow RL policy actions
to be interpreted without ambiguity; additionally, residential spaces are
less occupied than workplaces during daytime hours, when solar heat
gain occurs, even when occupants are present. Still, adding daylighting
and view criteria to RL reward structures will be a valuable advance,
particularly for the integration of passive cooling and heating systems
into workplaces.

4. Results and discussion
4.1. Imitation network accuracy and performance

The accuracy of the imitation network 7, in mimicking the expert
policy was first evaluated with a subset of data from the demonstration
pool, representing 20% of the total, that had been reserved for testing
(see also Section 3.3.1). In this evaluation, 1000 of the control decisions
made by the imitation network were compared to those that would
have been made by the expert policy; results are shown in confusion
matrices, which array predicted (i.e., imitation) values in one dimen-
sion and the corresponding true (i.e., expert) values in another. The
fraction of correct predictions therefore appears along a diagonal series
of cells, with fractions of incorrect predictions shown in the off-diagonal
positions (Fig. 8).

The imitation network correctly emulated the expert policy in the
great majority (>95%) of shading actions (Fig. 8a); in the remainder,
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Fig. 8. Accuracy of the imitation network in reproducing (a) shading and (b) natural ventilation control actions of the expert policy. Actions taken by the imitation network in
1000 samples of the imitation testing dataset (Fig. 5; Section 3.3.1) are shown horizontally; expert actions that would have been taken under the same conditions are shown
vertically. Values show the fraction of each imitation network action that corresponded to each expert action.

the imitation primarily activated shading under conditions in which the
expert would have maintained the previous position, slightly increasing
the shading frequency relative to the expert policy. Its accuracy in re-
producing the expert ventilation actions was somewhat lower (> 83%),
a finding partly explained by the inclusion of finer gradations in the
ventilation actions. Additionally, in many discrepancies, the imitation
network chose actions only one step removed from the action the expert
would have chosen. The majority of discrepancies occurred in the
imitation network’s choice of the ‘closed’, or 0, action, which occurred
in up to 15% of the cases in which the expert would have chosen
a partial aperture opening. In other words, the imitation network
somewhat reduced natural ventilation availability relative to the expert
policy.

We next investigated the effectiveness of the imitation network
in reducing space conditioning loads in 24 cities representing semi-
arid, humid subtropical, continental, and Mediterranean climate types
(Table 3), grouped geographically into four U.S. regions (Fig. 6). With
the exception of Seattle and Boston, these cities had not been included
in the imitation training or testing datasets (see also Section 3.3.1).
Because the state distribution encountered during this evaluation was
different from the distribution in the training data, however, the perfor-
mance of 7, depended exclusively on the effectiveness of the learned
policy. Baseline dwellings, i.e. those without passive systems, expe-
rienced sensible cooling loads in May ranging from approximately
650 MJ along the Mediterranean Pacific Coast to nearly 1600 MJ in the
humid subtropical Southeast, reflecting each region’s combination of
window solar heat gain; internal heat gain from occupancy, lighting,
and equipment; and envelope heat loss (Fig. 9). The latter reflected
the influence of contemporary (2018) building code requirements [4];
variations in building heat gain and loss properties are explored, how-
ever, in Section 4.5. No space heating loads were observed under these
conditions.

Use of the imitation network to control shading and natural ven-
tilation in these dwellings reduced May loads substantially. In cities
of the West and Midwest, with semi-arid and continental climates,
baseline loads were reduced by over 80%, to levels of 120 MJ or less.
Notably, the use of natural ventilation to reduce cooling loads also
induced small heating loads in this region (Fig. 9a), illustrating an area
for improvement through RL. Similarly, in the continental climates of
the Northern cities (Fig. 9¢), and in the Mediterranean climates of the
Pacific Coast cities (Fig. 9d), imitation policies reduced total loads by
70% or more, often with the induction of heating loads from imprecise

10

natural ventilation control. In the humid subtropical cities of the South-
east, cooling loads were also reduced considerably, but to lesser extents.
In Houston, for example, the cooling load decreased by only 47%,
remaining near 800 MJ (9b). Such differences in performance among
climates were expected: late spring is warmer in humid subtropical
areas than in the other climates shown [65], creating higher cooling
loads; further, humid climates often experience warmer nighttime tem-
peratures, limiting the utility of natural ventilation [15]. Still, these
results showed the strong potential of well-controlled, well-integrated
shading and natural ventilation to reduce heating and cooling loads
across a broad range of climate types, including the humid subtropics.
At the same time, the new heating loads that appeared above, as well
as the excellent performance of optimized, climate-specific controls
for integrated shading and natural ventilation systems [e.g. 17,22,36],
suggested that further potential remained.

4.2. Climate adaptation of actions through reinforcement learning

We next sought to improve the imitation network through RL
training in semi-arid Denver CO, humid subtropical Nashville TN,
continental Albany NY, and Mediterranean Portland OR (Table 3) to
yield climate-adapted policies. The imitation network =, was used
as the initial policy in each case; ¢ was updated at the end of each
training episode, using the REINFORCE algorithm, until converging
to 6* (Fig. 4b). Each RL training episode required fewer than 900
iterations to converge, showing notable improvement over previous RL
methods, unassisted by imitation learning, which required up to 1700
iterations [38].

RL training modified the imitation policies in noticeable, consistent
ways that corresponded to the training cities’ contrasting needs and cli-
matic resources, as shown by comparing control actions, indoor air tem-
peratures, and heating and cooling loads between dwellings controlled
by the imitation network and those controlled by the climate-adapted
RL policies (Fig. 10). In Albany, for example, May is a relatively cool
month, and control of passive systems by the imitation policy created
new heating loads through its use of natural ventilation. In response,
the RL policy added movable insulation to the windows on most nights,
reducing nighttime window heat loss, and reduced both the frequency
of natural ventilation and the extent of ventilation aperture opening.
As a result, the dwelling’s indoor air was kept about 1.5 °C warmer
under control of the RL policy than under control of the imitation pol-
icy, virtually eliminating the new space heating loads without adding
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Fig. 9. Performance of the imitation network, z, , in reducing residential space heating and cooling loads during the month of May. Loads are compared in the absence of passive
systems (blue) and in the presence of operable shading/movable insulation and natural ventilation controlled by the imitation network (orange) in four U.S. regions: (a) the West
and Midwest (semi-arid and continental); (b) the Southeast (humid subtropical); (c) the North and Northeast (continental); and (d) the Pacific Coast (Mediterranean). Cites used
in subsequent reinforcement learning, described below, are indicated in red dotted boxes.

cooling loads (Fig. 10a). The final (trained) RL policy maintained the
daytime shading actions of the imitation policy, however, both because
solar heat gain was not needed for warmth and because daylight and/or
view access were not rewarded. The latter considerations were beyond
the current scope (Section 3.4), but they could readily be included in
future work.

In humid subtropical Nashville, in contrast, the climate-adapted
RL policy adjusted the imitation policy’s daytime shading policy only
slightly (Fig. 10b). Instead, it increased natural ventilation substan-
tially, maintaining nighttime indoor air temperatures 2-3 °C below
those found in the dwelling controlled by the imitation policy. By
cooling the floor and other materials in the space, as well as the air, this
behavior allowed the dwelling to reach the upper thermostat setpoint
later in the day than it otherwise would have. As a result, cooling loads
were reduced appreciably (quantified below). Notably, further passive
cooling capacity existed in the form of cool night air than the RL policy
was able to use, due to the imposition of a lower thermostat setpoint
(18 °C). If this setpoint had been lowered further, or even eliminated
in unoccupied rooms, the residual loads could have been reduced even
further.

4.3. Portability of RL policies among related climates

We next investigated the abilities of the four climate-adapted RL
policies to reduce total space conditioning loads in related yet unfamil-
iar climates: if policy performance remained comparable among cities
with related climates, the need for time-consuming (re-)training would
be greatly reduced, facilitating general application.

Comparison of total space conditioning loads between each of the
RL training cities (Denver, Nashville, Albany, and Portland) and unfa-
miliar cities in their respective climate types (Fig. 6; Table 3) showed
that control by the climate-adapted RL policies reduced loads to levels
below those achieved by the imitation policy in virtually all cases. Ad-
ditionally, in most of the unfamiliar cities, RL control reduced loads to
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comparable or greater extents than in the training cities (Fig. 11). In the
semi-arid and continental West and Midwest, for example, the Denver-
trained RL policy reduced the loads that remained, under control of
the imitation network, by 16%-48% in Wichita, Provo, Omaha, Casper,
and Boise, compared to a reduction of 40% in Denver itself (Fig. 11a).
The remaining loads totaled approximately 80 MJ or less in each case,
representing reductions from the original (shown in Fig. 9a) of 93% or
more.

In the humid subtropical Southeast, the Nashville-trained RL policy
was also able to improve upon the imitation policy, but to a lesser
extent, reducing the remaining loads by 5%-15% in San Antonio,
Houston, Jackson, and Tallahassee, compared to a reduction of 23%
in Nashville itself (Fig. 11b). In part, this reflected the ability of
the imitation policy to operate the passive systems effectively in this
climate, given the cooling resources available, leaving little room for
improvement. In Atlanta, however, the changes to shading and natural
ventilation control made by the climate-adapted RL policy, analogous
to those shown for Nashville in Fig. 10b, caused total loads to rise by
about 6%. This increase resulted primarily from Atlanta’s greater May
solar radiation intensity (Table 3), increasing the dwelling’s solar heat
gain and inducing greater use of natural ventilation. Greater natural
ventilation in this unfamiliar climate, in turn, replaced a small fraction
of the cooling load with a slightly greater heating load. Still, the RL
policy reduced initial loads (shown in Fig. 9b) by 65% or more in all
of the humid subtropical cities (including Atlanta) except Houston, in
which it nevertheless reduced initial loads by more than 50%.

In the continental North and Northeast, the Albany-trained RL
policy reduced the combination of cooling and heating loads that
remained, under imitation network control, by 65%-90% in Burling-
ton, Boston, Milwaukee, and Cleveland, compared to approx. 70% in
Albany itself (Fig. 10c). As a result, RL control nearly eliminated May
space conditioning loads in four of the five unfamiliar cities, achieving
reductions of 98% or more; this was accomplished by adding movable
insulation to windows at night, reducing heat loss, and by lessening
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Fig. 10. Climate adaptation of control policies through RL. Indoor and outdoor air temperatures, shading/movable insulation and natural ventilation control actions, and sums of

heating and cooling loads are shown for the study dwelling under control of imitation

network policies (yellow) and of climate-adapted RL policies (blue), simulated in (a) Albany

NY (continental, Dfb) and (b) Nashville TN (humid subtropical, Cfa) over representative weeks of May; weather data were provided by TMYx 2004-2018 weather files (Table 3).

natural ventilation. Even in Bismarck, with the highest final load in
the region of 35MJ, the initial load (shown in Fig. 9¢) was reduced
by over 95% by the climate-adapted RL policy. In the Mediterranean
Pacific Coast region, finally, the Portland-trained RL policy reduced the
remaining loads by 33%-88% among the cities of Seattle, Vancouver,
Eugene, San Francisco, and Eureka, although it reduced loads in Port-
land itself by only 16% (Fig. 10d). In each of these cities, however, the
Portland-trained RL policy reduced initial loads (shown in Fig. 9d) by
over 90%, echoing the findings in the Western and Northern regions.
These results show that imitation-assisted policy-gradient RL is
highly effective in generating policies that control shading, movable in-
sulation, and natural ventilation simultaneously, reducing space condi-
tioning loads dramatically when passive cooling and heating resources
are present. Integrated control of passive cooling and heating elements
has been investigated only rarely [e.g. 17,52], and the finding that

REINFORCE can generate multiple effective climate-adapted policies
for this challenging problem is a notable contribution. Of greater
significance, these results also show for the first time that climate-
adapted policy gradient RL policies are highly portable among cities
within related climates, suggesting that far less climate-specific learning
may be required than previously believed.

4.4. Advantage provided by use of the expert system

To reveal the performance advantage provided by initialization with
the expert system, we next trained RL agents without it, in each of
the four training climates (Denver, Nashville, Albany, and Portland),
in two ways. One set of agents was trained with the two-part neural
network used above (Fig. 7), in which policies for shading and natural
ventilation actions were learned separately. Although this structure was
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Fig. 11. Performance of climate-adapted RL control policies. Heating and cooling loads represent totals over the month of May in simulations of the study dwelling under control
of the imitation network (orange, consistent with Fig. 9) and under control of trained RL policies (red), in (a) the West and Midwest (semi-arid and continental), (b) Southeast
(humid subtropical), (c) North and Northeast (continental), and (d) Pacific Coast (Mediterranean) regions. Climate-adapted policies were initialized through imitation learning and
adapted further through reinforcement learning in the training cities, shown in red dotted boxes (see also Fig. 4).

appropriate for RL following imitation learning, as described above
(Section 3.3.3), it limited the ability of a naive agent (i.e., one with-
out the knowledge of an expert system) to coordinate shading and
natural ventilation control. Because of this, another set of agents was
trained with a single neural network, integrating shading and natural
ventilation control actions, analogous to that of Park et al. [38].

Comparison of total space conditioning loads among dwellings con-
trolled by each of the three RL agents showed, strikingly, that the
agents pre-trained through imitation learning achieved the greatest
load reductions by substantial margins in each region (Fig. 12). In
the semi-arid and continental West and Midwest, for example, pre-
trained agents reduced loads by 70% or more, compared to the agents
trained by RL alone, in 5 of the 6 cities examined. In the sixth, the
pre-trained agent reduced loads by about 25%. Pre-trained agents also
reduced loads by 70% or more in the humid subtropical Southeast,
compared to RL-only agents. In this region, however, control by RL-
only agents increased baseline cooling and heating loads in several cities
(compare Figs. 12b to 9b), showing that pre-training also contributed
to agent portability among related climates. Likewise, in the North
and Northeast (continental) and Pacific Coast (Mediterranean) regions,
pre-trained agents reduced loads by 70%-98%, compared to those
achieved by agents trained by RL alone, with only one exception. In that
exception, occurring in oceanic San Francisco, the pre-trained agent
nevertheless improved slightly upon the RL-only agent; in no case did
pre-trained agents perform worse than agents trained by RL alone.
Together, these results confirm that the performance of RL agents in
shading and natural ventilation control can be improved markedly by
imitation learning.

4.5. Robustness to variation in dwelling thermal parameters

We next sought to understand the robustness of the climate-adapted
RL policies to common variations among apartment dwellings within
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a single climate, focusing on parameters known to affect residential
heating and cooling loads appreciably: exterior facade orientation;
window glazing assemblies; heat gain rates from people, lighting, and
equipment; and infiltration rates. Results are illustrated in two cities
with contrasting climates: continental Burlington VT, in which typical
May outdoor air is frequently cooler than the lower thermostat setpoint
(18 °C), and humid subtropical Houston TX, in which May outdoor air
is often warmer than the upper thermostat setpoint (25 °C); these cities
are comparable climatically to Albany NY and Nashville TN, respec-
tively, shown in Fig. 10. Within these climates, RL policy performance
was compared among (i) exterior orientations of North, East, and
West, in comparison to the original orientation of South; (ii) window
assemblies representing double-paned clear glass and triple-paned low-
emissivity (LowE) glass, in comparison to the original double-paned
LowE assembly; (iii) internal heat gain rates of 0.75x, 1.0x, and 1.25x
the original rate of 9.15 W/m?; and (iv) air leakage rates of 1.0x and
1.67x the original value of 3 ACHg,.

4.5.1. Robustness to variation in orientation

In both continental Burlington and subtropical Houston, dwelling
orientation affected baseline cooling loads noticeably: dwellings with
East-facing windows showed the highest loads, resulting from morning
solar heat gain retained throughout the day, while Western exposures
experienced the second-greatest loads, showing the influence of win-
dow heat gain from low-altitude afternoon sun; these exposures both
had higher cooling loads than the original South-facing dwelling. In
contrast, North-facing dwellings experienced lower cooling loads than
the original, as expected, since their exposure to direct sun was lowest.

In Burlington, the continental climate-adapted RL policy (trained in
Albany NY; Fig. 6) reduced the baseline cooling load in the original
South-facing orientation by over 99% (Table 4; see also Figs. 9c and
11c). Remarkably, this RL policy performed just as well in North,
East, and West-facing dwellings, again reducing loads by over 99%
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Fig. 12. Performance comparison among RL agents trained with and without pre-training by the imitation network. Heating and cooling loads represent totals over the month
of May in simulations of the study dwelling under control of each agent type. Training by RL alone used either the dual neural network above (“RL only: Dual”) or a single
neural network combining shading and natural ventilation actions (“RL only: Single”). RL training following initialization with the imitation network used the dual network above
(“Imitation + RL: Dual”, in red, consistent with Fig. 11). Results are shown for (a) West and Midwest (semi-arid and continental), (b) Southeast (humid subtropical), (c) North
and Northeast (continental), and (d) Pacific Coast (Mediterranean) regions. Cities in which regional training occurred are indicated by red dotted boxes.

in each case. Analogous results were found in Houston: in this city,
the humid subtropical climate-adapted RL policy (trained in Nashville
TN; Fig. 6) reduced the baseline cooling load of the original South-
facing dwelling by approximately 55%, whereas it reduced the cooling
loads of North, East, and West-facing dwellings by 53% or more. The
climate-adapted RL policies therefore maintained greater performance
consistency than expected throughout the range of possible dwelling
orientations, including the demanding East and West exposures, show-
ing that dwellings of all orientations within a multifamily building
have the potential to benefit comparably from such control of passive
space-conditioning systems.

4.5.2. Robustness to variation in glazing assembly

The substitution of the original double LowE glazing assembly with
a double clear assembly, raising both the thermal transmittance and
solar heat gain coefficient (Table 4), caused minimal changes to the
original cooling loads: in Burlington, the cooling load was reduced by
about 1%, while in Houston it rose by about 5%, reflecting the near
balance in May between the increased solar heat gain and the increased
window heat loss that resulted. Accordingly, the climate-adapted RL
policies performed as well in dwellings with double clear assemblies
as in those with the original double LowE assemblies, reducing cool-
ing loads by over 99% in Burlington and by over 57% in Houston.
Substitution of the original windows with triple LowE assemblies, in
contrast, lowered baseline cooling loads by 15% in Burlington and
by 10% in Houston, reflecting their lower solar heat gain coefficients
and thermal transmittance values. Again, however, the respective RL
policies maintained the levels of performance observed in the original
dwelling: in Burlington, the baseline cooling load was reduced by over
99%, while in Houston, it was reduced by nearly 50%.

4.5.3. Robustness to variation in internal heat gain
Variation in internal heat gain rates, representing variation in oc-
cupancy patterns, lighting intensity, and use of electrical equipment
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(e.g. appliances), affected baseline cooling loads dramatically in both
cities, as expected. Reduction of the original internal gain rate of
9.15 W/m? [4] by one-quarter lowered cooling loads by about 30%
in Burlington and by about 18% in Houston; similarly, raising inter-
nal gains by one-quarter increased cooling loads by about 30% in
Burlington and about 17% in Houston, revealing the relatively greater
contribution of internal heat gain to cooling loads in Burlington’s cooler
continental climate (Table 4). As above, however, the climate-adapted
RL policies performed comparably over the range of internal heat gain
levels. In Burlington, the continental RL policy reduced cooling loads
by over 99% in all three cases, allowing only slight (<1%) increases
at the unfamiliar heat gain levels. In Houston, similarly, the humid
subtropical RL policy reduced the cooling load by about 52% in the
dwelling with the higher internal heat gain rate, compared to about
55% in the original dwelling; however, it reduced the load by over 59%
in the dwelling with the lower internal gain rate. This shows that the
RL policy was able to accommodate the lower internal heat gain to the
advantage of cooling, without overcooling (which remains possible in
May even in the humid subtropics; Fig. 10b), giving it the potential to
adapt to increasing efficiency in lighting and electrical equipment in a
space over time.

4.5.4. Robustness to variation in air leakage

Variation in air leakage is a fourth important contributor to space
conditioning loads in buildings, as well as a complicating factor in
natural ventilation control. Air leakage rates reflect wall and window
sealing methods, and older buildings typically have higher infiltration
and exfiltration rates than newer ones. Increasing air leakage from the
original value of 3 ACHjs, to 5 ACHjy, lowered the baseline cooling load
in Burlington by about 10%, as expected given its cool May air, but
raised it slightly (by <1%) in Houston due to its relative warmth. Still,
consistent with the results above, the continental RL policy reduced the
cooling load in the unfamiliar 5 ACHs, dwelling in Burlington by over
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Table 4
Robustness of final RL policies to dwelling variations.
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Orientation Glazing Internal gains Air leakage Cooling load®: Cooling load": Load
assembly (W/m?) (ACH,,) Baseline (MJ) Trained policy (MJ) reduction (%)

Burlington VT (continental)
South Dbl LowES 9.15 3 841.4 1.7 99.8
North Dbl LowE 9.15 3 565.6 0.4 99.9
East Dbl LowE 9.15 3 1088.4 4.4 99.6
West Dbl LowE 9.15 3 903.8 1.5 99.8
South Dbl Clrd 9.15 3 830.9 2.6 99.7
South Tpl LowE® 9.15 3 713.7 5.6 99.2
South Dbl LowE 4.57 (0.75%) 3 574.2 5.2 99.1
South Dbl LowE 18.3 (1.25x) 3 1103.1 9.4 99.1
South Dbl LowE 9.15 5 (1.67x) 759.4 41 99.5

Houston TX (humid subtropical)
South Dbl LowE 9.15 3 1572.2 709.5 54.9
North Dbl LowE 9.15 3 1534.1 707.3 53.9
East Dbl LowE 9.15 3 2080.9 776.9 63.7
West Dbl LowE 9.15 3 1841.4 734.3 60.1
South Dbl Clr 9.15 3 1653.0 699.2 57.4
South Tpl LowE 9.15 3 1417.7 718.4 49.3
South Dbl LowE 4.57 (0.75%) 3 1297.7 529.2 59.2
South Dbl LowE 18.3 (1.25x) 3 1835.4 879.1 52.1
South Dbl LowE 9.15 5 (1.67%) 1577.5 721.2 54.3

aNo heating loads were observed in these cases.

PNo heating loads were observed in these cases.
¢Double LowE Argon: U = 1.61 W/m?K, SHGC = 0.55.
dDouble Clear Air: U = 2.70 W/m*K, SHGC = 0.70.
¢Triple LowE Argon: U = 0.70 W/m’K, SHGC = 0.30.

99%,; similarly, the humid subtropical RL policy reduced the cooling
load in the 5ACH5, Houston dwelling by over 54%, a value almost
identical to that observed in the original dwelling. Climate-adapted RL
policies were therefore able to accommodate variations in air leakage
as well as they had responded to variations in orientation, window
glazing, and internal heat gain, further supporting the implication that
such policies have the potential to perform well across a range of
dwelling variations, without space-specific training.

5. Conclusions

This study provides the first investigation, to our knowledge, of the
application of policy-gradient RL assisted by imitation learning to the
integrated control of dynamic passive cooling and heating systems in
buildings. Together, the results above support four central conclusions
regarding this new method and the policies that result:

1. Imitation learning effectively captures expert knowledge of
shading and natural ventilation control. Imitation learning, used to
develop an appropriately structured neural network, generated a policy
that mimicked the actions of a rule-based expert with high fidelity:
shading actions were reproduced with over 95% accuracy, and natural
ventilation actions were reproduced with over 80% accuracy. Addi-
tionally, the imitation network performed well across climate types,
reducing early-summer space conditioning (cooling + heating) loads by
over 45% in the humid subtropics, represented by cities of the South-
east U.S., and by over 70% in semi-arid, continental, and Mediterranean
climates, represented by U.S. cities of the West and Midwest, North and
Northeast, and Pacific Coast, respectively. These results showed that
imitation learning has excellent potential to initialize RL policies with
prior knowledge, supporting efforts to reduce total training time and to
minimize undesirable actions during training.

2. RL training is improved by expert initialization. During sub-
sequent RL training in contrasting climates, policies initialized with the
imitation network converged in approximately 50% fewer iterations
and achieved greater final performance than those initialized randomly.
Whereas RL training with random initialization yielded control policies
capable of reducing early-summer cooling loads by 30% or more in
each of the four training climates, i.e. semi-arid Denver CO, continental
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Albany NY, humid subtropical Nashville TN, and Mediterranean Port-
land OR, these agents performed inconsistently among related climates
in the corresponding regions. In some cases, particularly in the humid
subtropical Southeast, their control actually increased these loads. RL
agents initialized with the imitation network, in contrast, reduced
cooling loads by 85% or more in each training city and by 50% or
more in each related climate in the corresponding region. In direct
comparisons, pre-trained RL agents reduced cooling loads to 30% or
less of those reached by RL agents that lacked pretraining, in 22 of
the 24 cities examined; in the two exceptions, pre-trained agents still
out-performed the randomly initialized agents, but to lesser extents.
3. Climate-adapted RL policies are portable within broad cli-
mate types. RL training, following pre-training with the imitation
network, generated observably different control patterns among the
climates investigated: the policy adapted to continental climates, for
example, added night insulation and lessened natural ventilation, main-
taining warmer indoor conditions that avoided overcooling at night,
while the humid subtropical policy increased morning and evening
ventilation, maintaining cooler indoor air that minimized overheating
during the day. This differentiation, as well as the improved perfor-
mance among RL policies, illustrated the value of climate-adaptive
training. Remarkably, these climate-adapted RL policies performed
approximately as well, in numerous unfamiliar yet climatically related
cities, as they did in the cities in which training occurred. Among the
humid subtropical cities, the climate-adapted policy reduced early sum-
mer space conditioning loads by 55%-75%; in semi-arid, continental,
and Mediterranean climates, climate-adapted policies reduced loads
by 90%-99%. These trained policies were therefore portable across
sizable geographic regions, each extending over 1000 km in its greatest
dimension and encompassing substantial climatic variation. Climate
specificity is a well-known limitation in the control of dynamic passive
systems [e.g. 15,36]; these results show, for the first time, that effective
control policies can be developed instead for broader climatic regions.
4. Climate-adapted RL policies are robust to building varia-
tions. Of equal significance, the climate-adapted RL policies performed
virtually identically, within each climatic region, among dwellings that
showed realistic variations in orientation, internal heat gain, window
glazing materials, and air leakage rates. In Burlington VT, for exam-
ple, the continental RL policy reduced cooling loads by over 99% in
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each variation, while in Houston TX, the humid subtropical RL policy
reduced cooling loads by approximately 50%-60% in each variation.
The striking implication of this finding is that RL policies trained for
a particular space type have unexpectedly low space-specificity, in
notable contrast to rule-based controls, giving them the potential for
far more general deployment.

Summary. The results above provide compelling evidence that
passive heating and cooling systems can be well-controlled by region-
ally trained agents, without requiring extensive custom training in
individual spaces. While the continuation of learning after an agent’s
deployment in a space is desirable as an ultimate goal, the evidence
above indicates that substantial load reduction should be achievable
immediately. This study therefore addresses four key challenges in
passive cooling and heating control (Section 1.4), demonstrating a
new solution for the design of passive cooling and heating control
policies that require considerably reduced training; that avoid un-
desirable behavior during the learning stage; that provide excellent
portability within regional climate types; and that maintain consistent
performance throughout building variations.

Future work. Further refinements will be necessary to develop
this work for application in occupied space. Annually complete expert
policies and imitation networks must be developed, for example, and
future reward structures should incorporate the value of daylighting
and views as well as the relative energy and carbon profiles of the
relevant heating and cooling systems. Responsiveness to weather fore-
casts will be advantageous, as well, to improve agents’ abilities to
accommodate unusually hot or cold weather. Modes of communication
between agents and humans will also require thorough exploration to
support the operation of manual systems, which prevail in residential
spaces. The work presented here provides a rigorous foundation for
such work: by documenting the performance, portability, and robust-
ness of imitation-assisted reinforcement learning policies, it reveals that
generalized control is possible, removing a central barrier to the real-
ization of high-performance passive heating and cooling in residential
buildings.
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