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Abstract

Bidirectional flow of information shapes the outcome of the host-pathogen interactions and depends on the genetics of each organism.
Recent work has begun to use co-transcriptomic studies to shed light on this bidirectional flow, but it is unclear how plastic the co-tran-
scriptome is in response to genetic variation in both the host and pathogen. To study co-transcriptome plasticity, we conducted transcrip-
tomics using natural genetic variation in the pathogen, Botrytis cinerea, and large-effect genetic variation abolishing defense signaling
pathways within the host, Arabidopsis thaliana. We show that genetic variation in the pathogen has a greater influence on the co-transcrip-
tome than mutations that abolish defense signaling pathways in the host. Genome-wide association mapping using the pathogens’
genetic variation and both organisms’ transcriptomes allowed an assessment of how the pathogen modulates plasticity in response to
the host. This showed that the differences in both organism’s responses were linked to trans-expression quantitative trait loci (eQTL) hot-
spots within the pathogen’s genome. These hotspots control gene sets in either the host or pathogen and show differential allele sensi-
tivity to the host's genetic variation rather than qualitative host specificity. Interestingly, nearly all the trans-eQTL hotspots were unique to
the host or pathogen transcriptomes. In this system of differential plasticity, the pathogen mediates the shift in the co-transcriptome more

than the host.
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Introduction

How hosts and microbes interact depends on a massive and rapid
flow of information between the organisms (Kang 2019). For one
organism to effectively shift the interaction, this information
flow has to be received and transformed into appropriate re-
sponses, such as the coordinated and orchestrated action of innu-
merable signaling molecules, regulatory cascades and metabolic
pathways (Botero et al. 2018; Ma et al. 2021). In a successful inter-
action, the organism(s) responses are sustainable in their ever-
changing complex micro- and macro- environment encompass-
ing a range of symbiotic and pathogenic organisms also engaging
in cross-species communication (Weiland-Bréuer 2021). Overall,
the flow of information is shaped at the molecular level into tran-
scriptome, protein, and/or metabolism responses (Szymariski
et al. 2020; Chen et al. 2021). Understanding the information flows
between interacting organisms is essential to characterize the
underlying biological processes that lead to differential phenotyp-
ic outcomes ranging from disease to beneficial symbiotic
interactions.

Studies of plant-pathogen interactions often focus on the flow
of information mediated by a myriad of effector molecules from
the pathogen to the host (Bent and Mackey 2007; Boller and
Felix 2009) with a response by the host generally following the

gene for gene interaction model (HH, Flor 1942). This includes
an array of small secreted effector proteins, hydrolysis enzymes
like plant cell wall degrading enzymes, oligosaccharides, specia-
lized metabolites, and small RNAs (Weiberg et al. 2013; Wang
et al. 2016; Quoc and Bao Chau 2017; van der Does and Rep
2017). Plants have in turn evolved the ability to interpret these
pathogen signals, and mount defense responses by combining
various signal transduction mechanisms, including mitogen-
activated kinases, reactive oxygen species, and phytohormones
like jasmonic acid (JA), ethylene, and salicylic acid (SA) pathways
in addition to their crosstalk. The end-point of these signal cas-
cades is frequently the production and or transport of specialized
metabolites like glucosinolates, camalexin, terpenes, alkaloids,
and phenylpropanoids that can poison the pathogen (Rogers
1996; Sticher et al. 1997; Bednarek et al. 2009; Shlezinger et al.
2011; Stotz et al. 2011; Ahuja et al. 2012). Recent studies showed
that these defense metabolites are then perceived by the patho-
gen and lead to corresponding changes in the attacking pathogens
transcriptome indicating the presence of bidirectional informa-
tion flow (Vela-Corcia et al. 2019; Kusch et al. 2022). This re-
sponse/counter-response model in the host and pathogen
transcriptomes suggests that it is possible to measure the bidirec-
tional flow of information using a co-transcriptome approach, a
simultaneous assessment of both transcriptomes.
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In the last decade, co-transcriptomic studies have started to
decipher the flow of information between interacting organisms
(Kawahara, et al. 2012; Hacquard et al. 2013; Jupe et al. 2013;
Yazawa et al. 2013; Rudd et al. 2015; Dobon et al. 2016; Wang et al.
2016). A primary focus of these studies has been to query how
qualitative effectors released from specialist plant pathogens
with a limited host range lead to the transcriptional reprograming
of the host transcriptome. For example, co-transcriptome studies
of the rice blast fungus (Kawahara et al. 2012) and barley powdery
mildew, Blumeria graminis f. sp. hordei (Bgh) (Hacquard et al. 2013)
pathosystems built upon earlier work (Caldo et al. 2004) to show
infection-responsive expression patterns that diverge between
compatible and incompatible interactions. The focus of these
studies on systems with qualitative loci lead to a biallelic survey
of genetic variation linked to presence/absence of these individual
large-effect loci (Zhong et al. 2017; Yang et al. 2021).

In contrast to qualitative systems, most plant-pathogen inter-
actions are not guided by large-effect loci. For example, plant in-
teractions with generalist necrotrophic pathogens like Botrytis
cinerea and Sclerotinia sclerotiorum are shaped by a myriad of mod-
erate to small effect loci (Caseys et al. 2021; Derbyshire et al. 2022;
Pink et al. 2022). Thus, it remains unclear if the changes noted in
large-effect co-transcriptome studies are transposable to a sys-
tem in which numerous signals are varying in both the host and
pathogen. To decipher the influence of regulatory variation in
stem rust resistance, a host-focused transcriptome study on bar-
ley (Hordeum vulgare) showed that host transcripts are largely con-
trolled by a plethora of quantitative moderate effect loci involving
a diversity of mechanisms and pathways (Druka et al. 2008;
Moscou et al. 2011). A transcriptomic study on strains of the wheat
pathogen Zymoseptoria tritici, differing in virulence, found con-
served and nonconserved gene expression patterns in genes in-
volved in virulence, suggesting that heterogeneity in pathogen
transcriptome  contributes  to  quantitative  virulence
(Palma-Guerrero et al. 2017). This suggested that at least in the
pathogen, quantitative virulence is linked to quantitative vari-
ation in the transcriptome.

However, it is unclear how the bidirectional nature of a host—
pathogen interaction responds to quantitative variation in the
pathogen. A co-transcriptome approach is required to query
how quantitative genetic variation in generalist quantitative
host-organisms systems transmits between the two organisms
via transcriptome variation ultimately leading to the phenotypic
outcome (Corwin et al. 2016b; Soltis et al. 2020). In such cases,
measuring the dual transcriptome of interacting partners simul-
taneously across multiple genotypes and constructing a dual
transcriptomic  network would aid in  understanding
network-for-network interaction, the flow of information happen-
ing at the transcriptome level (Zhang et al. 2017, 2019). While cor-
relation does not capture the directionality and causality between
variability at genome and transcriptome levels of the two species,
integrating a genetic mapping approach can help decipher the dir-
ection of causality by which genetic variation in the host and
pathogen influence the flow of information (Chen et al. 2010).
Ultimately, this may enable a more complete model as
to how the interaction leads to a specific disease phenotype
(Chen et al. 2010; Christie et al. 2017; Almeida-Silva and
Venancio 2021).

To explore how quantitative genetics shapes the bidirectional
flow of information, we conducted a co-transcriptomic genome-
wide association study of the B. cinerea-Arabidopsis thaliana patho-
system. Botrytis is a necrotrophic fungal pathogen infecting a
wide range of plants (>1,400 species) including A. thaliana

(Leisen et al. 2022). Botrytis is a highly polymorphic species with
a wide range of virulence on different hosts and an extensive
collection of single-nucleotide polymorphisms (SNP) enabling
GWAS studies (Rowe and Kliebenstein 2007; Williamson et al.
2007; Amselem et al. 2011; Staats and van Kan 2012; Atwell et al.
2015; Corwin et al. 2016a). Virulence is mediated by a complex
set of mechanisms including the secretion of a cocktail of pro-
teins, which includes several cell wall degrading enzymes, cell
death-inducing proteins, necrosis and ethylene-inducing pro-
teins, and metabolites like botrydial or botcinic acid. Further,
Botrytis is also known to secrete a collection of SRNA molecules
that can potentially target the expression of different host me-
chanisms (Choquer et al. 2021). This wide plethora of diverse yet
redundant virulence mechanisms facilitates Botrytis infection on
awiderange of plants while also allowing extensive genetic variation
in individual mechanisms, e.g. the botrydial and botcinic acid path-
ways have presence/absence variation (Siewers et al. 2005; Pinedo
et al. 2008; Plesken et al. 2021). All these clearly suggest the presence
of variability in genome-transcriptome-metabolome-mediated sig-
naling processes in Botrytis (Leisen et al. 2022). Thus, a collection of
Botrytis isolates acts as an assemblage of pathogens that is each
sending different information into the host to create different per-
turbations of the host—pathogen information flow. Combining co-
transcriptomics with genetic diversity in the host and pathogen di-
versity in this system can help to illustrate how the host-pathogen
transcriptomes respond to the variation in a quantitative
interaction.

Toidentify the pathogen loci that can shape a co-transcriptome
response, we conducted a comparative expression genome-wide
association study using 96 different wild-type B. cinerea strains.
These were infected on three different hosts, wild-type A. thaliana
Columbia 0 (Col-0) and two Arabidopsis mutants deficient in ma-
jor defense pathways, coil-1 (jasmonate insensitive) and nprl-1
(deficient in SA-mediated defenses) to test how the host’s vari-
ation may shape the pathogen’s response (Soltis et al. 2020). This
pathosystem has noidentified large-effect loci and allows us to in-
vestigate network-for-network interactions that may be masked
by large-effect “gene for gene” relationships. In previous work,
we focused solely on the analysis using only the Col-0 host, and
herein we expand to include all the host genotypes to query
how the two genomes interact to control both transcriptomes’
plasticity. Combining host and pathogen variation allowed us
to compare two contrasting models; the host-pathogen co-
transcriptome could be largely shaped by loci within Botrytis
acting either dependently or independently from the host geno-
type. To test between these models, we mapped Botrytis loci that
influence variation in the Botrytis—Arabidopsis co-transcriptome
using genome-wide efficient mixed model association and fur-
ther assessed the results using network ANOVAs, to test the
quantitative or qualitative nature of gene expression hotspots.
Our analysis demonstrates that the major hotspots in the patho-
gen transcriptome do link to causing hotspots in the host tran-
scriptome, suggesting that global shifts in the pathogen are not
responsible for the major host responses. Network ANOVA mod-
els showed that the pathogen responds specifically and largely
quantitatively to host genotypes and not qualitatively, even
though the host genotypes used are qualitative mutants in ma-
jor signaling pathways. Finally, we could identify instances of
host-genotype specific epistatic interactions. Our study thus
sheds light on the complex transcriptome-transcriptome
interaction, happening at the host-pathogen interface and how
it is modulated by the genetic diversity in the host and the
pathogen.

€20z AInF g1 uo Josn Aleiqr - sineq ‘eluloped Jo Ausioaun Aq 9GS/ | 2/660PEAYE/yZZ/al0Ie/So18USB/ W00 dno-olwapede//:sdny Wwoly papeojumoq



P.Krishnanetal. | 3

Materials and methods
Transcriptome data used in the study

In this study, RNA-seq was used to quantify the expression
of both Arabidopsis and Botrytis genes in Arabidopsis
leaves infected with 96 different Botrytis strains independent-
ly. We retrieved expression profiles for all Botrytis and
Arabidopsis genes from an earlier RNA-seq experiment
contained in the NCBI BioProject PRJNA473829 (Zhang et al.
2017, 2019) (https://www.ncbi.nlm.nih.gov/bioproject/?term =
PRJNA473829). Previous analysis of this data focused on solely
the transcriptional effects or GWA with solely the Col-0 host
genotype (Zhang et al. 2017, 2019, Soltis et al. 2020). This
work is extending to focus on the potential for plasticity
caused by the genetic variation in the host genotypes. Briefly,
the RNA-seq data comprise the gene expression values of
Arabidopsis and Botrytis genes during interaction of three A.
thaliana genotypes (Col-0, coil-1, and nprl-1) with a global col-
lection of 96 different B. cinerea strains collected as single
spores from natural infections of fruits and vegetable tissues
(Zhang et al. 2017, 2019; Atwell et al. 2018; Caseys et al. 2021).
The data were generated using four replicates in a randomized
block design divided across two independent balanced experi-
ments for all interactions. Fully mature and expanded
Arabidopsis leaves were harvested 5 weeks after sowing and
inoculated with 40 spores with one of 96 Botrytis strains, in a
detached leaf assay (Denby et al. 2004; Corwin et al. 2016a;
Zhang et al. 2017, 2019). Whole leaves were sampled at
16 hours post inoculation for RNA isolation, as this timepoint
is the point at which the largest transcriptomic responses
are identified in Arabidopsis-Botrytis interactions and previ-
ous work showed that the isolates are in a similar time frame
of development (Windram et al. 2012, Zhang et al. 2019).
RNA-seq libraries were generated following Kumar et al
(2012), and RNA sequencing was performed on an Illumina
HiSeq 2500 using single-end reads 50bp at the U.C. Davis
Genome Center-DNA Technologies Core. RNA-seq reads were
trimmed using the fastx toolkit (http:/hannonlab.cshl.edu/
fastx_toolkit/commandline.html) and aligned to both the A.
thaliana TAIR10.25 and B. cinerea B05.10 ASM83294v1 cDNA ref-
erence genomes. Gene counts were pulled from the resulting
sam file using a combination of SAMtools (Langmead et al.
2009; Li et al. 2009; Staats and van Kan 2012) and custom R
scripts, summed across gene models and normalized
(Langmead et al. 2009; Li et al. 2009; Staats and van Kan
2012). Trimmed mean of M-values (TMM) method was used
for normalization of gene counts using the function
calcNormFactors() from the “edgeR” package (Robinson and
Smyth 2007; Bullard et al. 2010; Robinson and Oshlack 2010;
Nikolayeva and Robinson 2014). The linear model was applied
on the TMM normalized gene counts using function glm.nb()
from the “MASS” package (Venables and Ripley 2002). The pre-
viously obtained model-corrected means and standard errors
for each transcript along with variance components were ob-
tained from the calculations as previously described in
Zhang et al. (2017). Briefly, this used a general linear model
that assumed a Gaussian distribution and included main ef-
fects of host genotype, pathogen genotype, and experiment
with nested effects of growth and infection flat.
Least-squares means were obtained from this model using
the lsmeans V2.19 package (Lenth 2016; Zhang et al. 2017).
Broad-sense heritability (H?) of each transcript was calculated
as the proportion of variance due to the genetic variability in

Botrytis strains, Arabidopsis genotype, or their interaction
effects.

Genome-wide association mapping

GWA of both Botrytis and Arabidopsis transcripts were performed
as described in Soltis et al. (2020). A total of 9,267 B. cinerea gene ex-
pression values and 23,947 A. thaliana gene expression values
across different genotypes of Arabidopsis were infected with 96
strains of Botrytis. Briefly, z-scaled model-adjusted least square
means of normalized gene counts of both the A. thaliana and B. ci-
nerea transcripts (Zhang et al. 2017, 2019) were used as the pheno-
type for GWA. A total of 237,878 SNPs across 96 different botrytis
strains mapped to the B. cinerea B05.10 ASM83294v1 genome
(Atwell et al. 2018) were used for the association study. GWA
was performed using GEMMA (Zhou and Stephens 2012), which
follows a univariate linear mixed model. A standardized related-
ness matrix was calculated in GEMMA to account for the popula-
tion structure among Botrytis strains. GWA was performed
separately for each Arabidopsis genotype in the study.

Defining eQTL hotspots

For defining expression quantitative trait loci (eQTL) hotspots, we
considered only the top SNP associated with each in Botrytis and
Arabidopsis transcripts as previously described (Soltis et al. 2020)
This provides a relatively conservative approach where allowing
some false positives has shown to provide useful information
about the genome-wide pattern of associations.

Thus, we considered 9,267 SNP associated for the 9,267 B. ciner-
ea transcripts and 23,947 SNP associated for the 23,947 A. thaliana
transcripts for each Arabidopsis genotype. When identifying hot-
spots, defined as a SNP (Top 1 SNP), which is associated with mul-
tiple transcripts, we used a permutation approach to identify a
conservative threshold. For each permutation, we randomly
sampled the number of SNPs (9,267 for B. cinerea of 23,947 for A.
thaliana) from the total set of SNPs (Soltis et al. 2020). The total
set of SNPs was used because all were potentially available to be
identified as the most significant for any transcript. We then con-
ducted the sliding window analysis on this sample to identify the
largest hotspot found in this random sample. This was then re-
peated 1,000 times to provide 1,000 permutations. A random per-
mutation threshold using 1,000 permutations found the largest
random hotspot to be 11 transcripts for Botrytis and 80 transcripts
for Arabidopsis (Soltis et al. 2020). Thus, we defined eQTL hotspots
as those Top 1 SNPs that are associated with 20 or more Botrytis
transcripts or with 100 or more Arabidopsis transcripts.

Validation and annotation of gene expression
hotspots

z-scaled (for each gene independently across strains)
model-adjusted least square means of normalized gene counts
of both the A. thaliana and B. cinerea transcripts were used for
this study. Firstly, a single-host Network Model was used to valid-
ate the gene expression hotspots. In this model, all of the tran-
scripts associated with a trans-eQTL hotspot are utilized within
the same model to maximize the ability to look at coordinated ef-
fects. A Network Model was performed on the data from expres-
sion data from each genotype separately.

Expression ~ SNP + Gene + (SNP x Gene) + ¢

The main effects indicate the two alleles of the trans-eQTL hot-
spot SNP being tested and Gene represents the different
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transcripts associated with the trans-eQTL hotspot. P-values for
each term were extracted, and significance of each term in con-
tributing to the variability of expression was analyzed. These large
sample sizes help linear models to be relatively robust to outliers,
and an analysis of residuals did not identify outliers driving the
observations. To further ensure that the P-values were truly sig-
nificant and were not significant just by chance, random sets of
genes, spanning the entire genome of Botrytis or Arabidopsis,
were generated, which could be potentially be regulated by the
hotspots. The same ANOVA model was run on using 100 random
sets of transcripts of the same number as the transcripts for the
hotspot to calculate the empirical estimate for each term. Only
those terms where the empirical estimates were >95 were consid-
ered to be significant. Next, a multiple-host model ANOVA was
used to validate the gene expression hotspots across all the three
Arabidopsis genotypes and to figure out if the polymorphisms dis-
played an Arabidopsis genotype-specific effect on the expression
of genes. ANOVA was performed on the pooled expression data
of Arabidopsis genotypes.

Expression ~ SNP + Gene + Host Genotype + (SNP x G)
+ (GXHG) + (SNP xHG) + (SNPXHGXG) + ¢

In this model, expression denotes the expression value of each
gene regulated by gene underlying the hotspot in all the holo-
bionts, which includes all the three Arabidopsis genotypes, SNP
denotes the different alleles underlying the trans-eQTL hotspot,
Gene (G) denotes the individual transcripts associated with the
trans-eQTL hotspot, and Host Genotype (HG) is the three different
Arabidopsis genotypes. P-values for each term were extracted,
and significance of each term in contributing to the variability of
expression was analyzed. These large sample sizes help linear
models to be relatively robust to outliers, and an analysis of resi-
duals did not identify outliers driving the observations. To make
sure that the P-values were truly significant random sets of genes,
spanning the entire genome of Botrytis or Arabidopsis were gener-
ated, which could be potentially be regulated by the hotspots. The
same ANOVA model was run on 100 such random sets of genes to
calculate the empirical estimate for each term. Only those terms
where the empirical estimates were >95 were considered to be
significant.

To further determine the functionality of each hotspot, we
looked for the annotation of the genes underlying the hotspot.
The SNPs were annotated with a gene by identifying if the SNP
was within a distance of 1 kb upstream of the start codon of a
gene or within 1 kb downstream of the stop codon of the gene
This distance was chosen as the average linkage disequilib-
rium decay in the B. cinerea genome is <1kb (Atwell et al
2018). B. cinerea B05.10 ASM83294v1 GFF3 file was used to iden-
tify the genes underlying the hotspot, while gene functional
annotations were obtained from the fungal genomic resource
portal (fungidb.org). Further, SnpEff (Cingolani et al. 2012)
was used to predict the effects of genetic variants underlying
the hotspots.

Epistasis

To test for the presence of epistasis, first we looked if any of the
genes underlying Botrytis hotspots regulating Arabidopsis tran-
scripts were present in the list of genes regulated by genes under-
lying Botrytis hotspots regulating Botrytis transcripts. Network
ANOVAs were performed on such Botrytis genes, which could pos-
sibly interact with each other and thus influence the Arabidopsis

transcript, using single-host model epistasis and multiple-host
model epistasis. For single-host model epistasis, the model was

Expression ~ SNPA + SNPB + Gene + SNPA x SNPB
+ SNPA x Gene + SNPB x Gene + SNPA x SNPB x Gene + ¢

The main effects indicate the alleles of the two trans-eQTL hot-
spots, SNPA and SNPB, being tested and Gene represents the dif-
ferent transcripts associated with the trans-eQTL hotspot.
P-values for each term were extracted, and significance of each
term in contributing to the variability of expression was analyzed.
The same model was utilized for the multiple-host epistasis by in-
cluding a Host Genotype term and incorporatingitinto the various
interaction terms. To make sure that the P-values were truly sig-
nificant, random sets of genes, spanning the entire genome of
Botrytis or Arabidopsis, were generated, which could potentially
be regulated by the hotspots. The same ANOVA model was run
on 100 such random sets of genes to calculate the empirical esti-
mate for each term. Only those terms where the empirical esti-
mates were >95 were considered to be significant.

Enrichment analysis of the target gets

Gene ontology (GO) enrichment analysis for overrepresentation of
molecular function and biological processes among the genes tar-
geted by each eQTL hotspot in Arabidopsis was determined using
the Bioconductor packages org.At.tair.db and topGO, R statistical
environment. Hypergeometric test was conducted to look for
over-enrichmentin genes targeted by each eQTL hotspot for genes
found in the previous B. cinerea and A. thaliana transcriptome mod-
ules (Subramanian et al., 2005; Zhang et al. 2017, 2019).

Gene co-expression analysis

To obtain genes co-expressed with a gene underlying a hotspot, we
performed gene co-expression analysis. z-scaled model-adjusted
least square means of normalized gene counts of both the A. thali-
ana transcripts (23,947) and B. cinerea transcripts (9,267) from indi-
vidual strain infection across three Arabidopsis genotypes were
used. Spearman’s rank correlation coefficients of the gene expres-
sion values of the gene of interest with all other transcripts was
calculated using the cor function in R. Three gene-for-gene correl-
ation matrixes were generated independently for each of the three
Arabidopsis genotypes. Transcripts, which showed a correlation
coefficient >0.5, was considered co-expressed with the gene of
interest.

Statistics

All statistical analyses were performed in R environment using
custom-made scripts, including ANOVA, calculation of empirical
estimates, GO enrichment analysis, and hypergeometric test.

Results

Genetic variability in the pathogen differentially

modulates the host and pathogen transcriptomes
To understand the relative impact of genetic variation in the host
and pathogen on the Botrytis—Arabidopsis co-transcriptome, we
calculated each transcripts’ relative broad-sense heritability (H?)
attributed to the hosts (host H% Col-0, coil-1, and npri-1) or the
pathogen’s genetic variation (pathogen H? genetic variation
among 96 Botrytis strains). We also calculated the fraction of
the total variance controlled by the interaction of the host and
pathogen’s genetic variation (co-H?: Supplementary Table 1). All
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the Botrytis transcripts showed a similar behavior predominantly
being influenced by pathogen H? and the interaction of host and
pathogen, co-H? (Fig. 1: Host HZ2,:0.01, Pathogen H3,4:0.15,
co»Hﬁvg:O.12)4 Thus, even knockout mutations in the hosts SA/
JA-signaling pathways do not have consistent effect across all
pathogen genotypes, but instead, the host’s effect on the patho-
gen depends on the pathogen genotype (Fig. 1a) (Zhanget al. 2019).

The Arabidopsis transcripts showed a different pattern to the
Botrytis transcripts with a wider spread dominated by a bimodal
distribution (Supplementary Table 1 and Fig. 1b). One modality
is near the center of the equilateral triangle where the
Arabidopsis transcripts are equally influenced by host genotype,
pathogen genotype, and their interaction. This suggests that this
modality has a set of host genes whose response to the pathogen
is dependent on both the pathogen and the internal JA/SA path-
way. The second modality is at a position where the transcripts
had a nearly equal contribution of the pathogen and the host-
pathogen interaction with little main effect from host genotype.
These host transcripts would rely on the internal JA/SA signaling
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Fig. 1. Differential genetic contributions to co-transcriptome variation.
Shown are ternary plots representing the percentage of the total
heritability that is attributable to the host, pathogen, and host-pathogen
interaction (different axes as labeled) on a) Botrytis transcripts and b)
Arabidopsis transcripts. The percentage of total heritability was
determined by summing up the heritability attributed to host, pathogen,
and host-pathogen interaction terms and then dividing each individual
term by that total.

pathwayin a manner thatis completely conditioned on the patho-
gen’s genetic variation. These results imply that JA/SA signalingin
the host is highly conditional on the pathogen’s genotype. Both
the pathogen and host transcriptomics’ genetic variance parti-
tioning differ from previous lesion size phenotypic observations,
as the host and pathogen equally impacted lesion variance in le-
sion size (Host H3,,:0.16, Pathogen H32,,:0.15, co-HZ,,:0.05)
(zhang et al. 2017). Combined, the transcriptomics and lesion
size show that the phenotypic outcome is driven by the organ-
ism’s interaction.

Genomic distribution of co-transcriptome eQTLs

The above results show that the heritable genetic variation
amongst the Botrytis strains influences the co-transcriptome via
an interaction with the host genotype. This host-pathogen inter-
action could be caused by loci within Botrytis influencing the co-
transcriptome, and the identity of these loci may differ depending
on the host genotype, i.e. wild-type (Col-0)-specific or coil-specific
pathogen loci. Alternatively, the causal loci in Botrytis may have a
quantitative host conditionality whereby the same loci have ef-
fects in all host genotypes, but the effect size changes depending
on the host genotype. To test between these models, we mapped
Botrytis loci that influence variation in the Botrytis—Arabidopsis
co-transcriptome and assess how these pathogen loci are influ-
enced by the host genotype.

To identify eQTL, we performed genome-wide association
study across all detected Botrytis and Arabidopsis transcripts as
measured separately on three different Arabidopsis genotypes
(coil, Col-0, and npr1). For the GWA, we used the z-scaled expres-
sion values of 9,267 Botrytis genes and 23,947 Arabidopsis genes.
For the Botrytis genetic polymorphisms, we used a previously gen-
erated dataset of Botrytis’ SNPs dataset consisting of 237,878 SNPs
with a conservative minimum minor allele frequency cutoff of
0.20 (Soltis et al. 2019). eQTL mapping was conducted using
genome-wide efficient mixed model association (GEMMA) based
on a univariate linear mixed model and a kinship matrix to ac-
count for the low but present population structure within the
Botrytis collection. GWA was run separately on each transcriptin-
dependently for each Arabidopsis-genotype. Previous work
showed that given the large number of tests using the top SNP
per transcript was an optimal compromise in minimizing the po-
tential for false positives while maximizing the information avail-
able to identify genomic patterns for this analysis (Soltis et al.
2020). Thus, for further analysis, we focused only on the most sig-
nificant SNP per transcript. Given that largest effect SNPs are typ-
ically assumed to be cis-eQTL, if this introduces a general bias, it
could be expected to bias towards cis-eQTL.

Using these results, we first queried the genomic distribution of
loci associated with variation in the Botrytis transcriptome. SNPs
influencing a transcripts abundance can be located within the
gene causing a direct effect such as altering the promoter, cis, or
they can be located distal to the gene and alter the regulatory or
other machinery influencing the gene, trans. To get an overview
of the distribution of eQTLs in Botrytis, cis/trans plots (Fig. 2)
were generated for the Botrytis transcripts separately, as mea-
sured on each Arabidopsis genotype. In these plots, the genomic
position of the top SNP for each transcript (x-axis) is plotted
against the genomic position of the gene encoding the transcript
(y-axis). However, there is evidence for trans-eQTL hotspots,
which can be seen as vertical lines of points. Trans-hotspots re-
present Botrytis polymorphisms that are associated with the vari-
ation in transcript abundance for a large number of transcripts
and typically function in trans to the associated transcripts.
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Further, these hotspots differ across the three host genotypes
using this approach (Fig. 2). As previously found, there is a paucity
of cis-eQTL within this pathogen as indicated by the absence of a
cis diagonal on any of the three host genotypes.
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Fig. 3. Distribution of Arabidopsis and Botrytis transcript/SNP
associations across the Botrytis cinerea genome. Shown are
Manhattan-like plots representing the number of transcripts associated
with a specific eQTL. Hyphenated lines indicate the significant thresholds
for a hotspot fixed based on permutation and randomization >20
transcript/SNP (for Botrytis transcripts) and >100 transcripts/SNP (for
Arabidopsis transcripts) (Soltis et al. 2020); a) The number of Botrytis
transcripts whose variation associates with each SNP when using the
transcriptomes from isolates infected on Arabidopsis coil, Col 0, and nprl
per legend. b) The number of Arabidopsis transcripts whose variation
associates with each Botrytis SNP when using the transcriptomes from
isolates infected on Arabidopsis coil, Col 0 and npr1.

Trans-eQTL hotspots vary across host genotypes

To investigate trans-hotspots, we considered the host genotype as
an environment that plastically shapes the pathogen genotypes.
To compare the hotspots, we plotted the number of Arabidopsis
and Botrytis transcripts significantly associated with each SNP
using only the top SNP per transcript for each host genotype for
a total of six datasets (Fig. 3). Using random permutations, the
thresholds for a hotspot were >20 Botrytis transcripts per SNP,
and >100 Arabidopsis transcripts per SNP were used (Soltis et al.
2019). Studying the three different host genotypes revealed the
pathogen-conditional effect that the host has on the co-
transcriptome. Changing the host genotype altered the number
of hotspots with 26 eQTL hotspots for Botrytis transcripts when in-
fecting coil and 18 on nprl, while 22 eQTL hotspots were detected
in Arabidopsis wild-type host, Col-0 (Supplementary Table 2). As
each hotspot has an underlying genotypic variation in Botrytis,
these host-conditional hotspots are what is being captured by
the co-H? interaction of host-pathogen on the co-transcriptome.
Additionally, the majority of the eQTL hotspots for Botrytis
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transcripts (46 out of 55) was unique to individual Arabidopsis
host genotypes with only two eQTL hotspots shared across all
three host genotypes, four eQTL hotspots shared between coil
and Col-0, one between Col-0 and nprl, and two between nprl
and coil (Fig. 4a).

Shifting from the Botrytis transcriptome to the Arabidopsis
transcriptome found a similar pattern with 36 total eQTL hot-
spots; only one of which is identified across multiple-host geno-
types (Fig. 4b., Supplementary Table 3). Thus, the host genotype
influences the ability to identify Botrytis SNPs that link to
trans-eQTL hotspots in the co-transcriptome. We next tested if
any hotspots were shared across the two species transcriptomes
as would be expected if a Botrytis SNP influences the Botrytis tran-
scriptome consequently altering the Arabidopsis transcriptome.
Across all the host genotypes, there was only a single
trans-eQTL hotspot identified as influencing the transcriptome
of both pathogen and host transcriptomes (Supplementary
Tables 2 and 3). This trans-eQTL hotspot was found in the coil
host genotype, and the SNP is within the Bcin06g07340 gene encod-
ing a synonymous polymorphism in a FAD binding domain pro-
tein of unknown function. Future work is needed to ascertain if
this is a causal association and what may be creating the lack of
connectivity between hotspots in the two species.

Single-host modeling of eQTL hotspots

Direct GWA found that eQTL hotspots are qualitatively plastic,
showing upin only one or at most a few host genotypes. Two alter-
native hypotheses could explain this result. This GWA result

could be a biological reality, or it could be the result of issues in-
herent to GWA where each test is susceptible to stochastic noise,
and combining these results could hide hotspot sharing across
host genotypes. To test more directly each hotspot in each host,
we proceeded to investigate these eQTL hotspots using network-
based linear models (Network Model) to more directly assess the
influence of the SNPs on sets transcripts (Kliebenstein et al.
2006). The use of networks can improve detection power by limit-
ing the stochastic noise. To implement the network approach, we
defined a network as the transcript set linked to each specific
eQTL hotspot, and the sets of transcripts were used in the model.
Given the potential for genome structure or other data structure
to influence the significance estimates, we generated empirical
P-value distributions by permutation testing to empirically esti-
mate the alpha error potential. For each network, 100 random
sets of transcripts of the same membership size were generated,
and the linear modeling was performed using these random tran-
script sets. This generated a random distribution of 100 models.
This showed that there was some bias in the P-value distribution,
due to genome, population, or other data structure, and as such,
an ANOVA term was only considered significant if the P-value
was <0.05 and it was within the 5% tail of empirical permutations
(empirical a=0.05).

The initial round of Network Models focused on each Botrytis
trans-eQTL hotspot in single Arabidopsis genotypes (single-host
models). All 55 identified eQTL hotspots influencing the Botrytis
transcriptome were tested on all three-host genotypes to test if
the host genotype dependency might be an issue of GWA power.

€20z AInF g1 uo Josn Aleiqr - sineq ‘eluloped Jo Ausioaun Aq 9GS/ | 2/660PEAYE/yZZ/al0Ie/So18USB/ W00 dno-olwapede//:sdny Wwoly papeojumoq


http://academic.oup.com/genetics/article-lookup/doi/10.1093/genetics/iyad099#supplementary-data
http://academic.oup.com/genetics/article-lookup/doi/10.1093/genetics/iyad099#supplementary-data
http://academic.oup.com/genetics/article-lookup/doi/10.1093/genetics/iyad099#supplementary-data

8 | GENETICS, 2023, Vol. 224, No. 3

Using this single-host model, seven of the 55 eQTL hotspots were
not significant, while 48 eQTL hotspots for Botrytis transcripts
were found to be significant in at least one of the three
Arabidopsis genotypes (Fig. 4c, Supplementary Tables 2 and 4).
Interestingly, this single-host model showed that 29 of the eQTL
hotspots were detected on multiple hosts. Thus, the percentage
of Botrytis transcript eQTL hotspots detected on multiple hosts in-
creased from 16% with the single transcript GWA to 40% with the
Network Model. This increase included 14 of the 48 eQTL hotspots
for Botrytis transcripts being found on all the three-host geno-
types. This suggests that Network Models are more sensitive in de-
tecting the quantitative effects at eQTL hotspots.

Applying the single-host Network Model to eQTL hotspots for
Arabidopsis transcripts showed that all 36 eQTL hotspots were
found to be significant in at least one of the host genotypes
(Supplementary Tables 2 and 4). Twenty-nine eQTL hotspots for
Arabidopsis transcripts were common to all the three
Arabidopsis genotypes, while a single eQTL hotspot was specific
to each coil and nprl (Fig. 4d). No eQTL hotspot was specific to
the wild-type genotype Col-O. Consistent with results of the
Network Model for Botrytis transcripts, the number of
Arabidopsis eQTL hotpots significant on multiple hosts increased
considerably, from 3% in individual transcript GWA to 94% when
we used the Network Model (Supplementary Table 4). One inter-
pretation of this result is that there is not absolute host specificity
but possibly quantitative variation or plasticity of the transcrip-
tomes in response to the different Arabidopsis host genotypes.

Multihost modeling of eQTL hotspots provides
evidence of host genotype effect

To directly test for quantitative host by pathogen genetic interac-
tions at the above eQTL hotspot loci, we combined the host geno-
types into a multihost network linear model. This multiple-host
Network Model specifically tests for the significance of SNP-Host
genotype interactions across the set of transcripts influenced by
the eQTL hotspot. We again utilized the permutation approach
as described to estimate significance thresholds. Our focus was
on the SNP and SNP by Host Genotype interaction terms within
the model. The SNP term directly tests the main effect of the hot-
spot SNP on the transcripts across all three Arabidopsis geno-
types, whereas the SNP by Host Genotype term tests if the SNP
has an interaction effect, i.e. the influence of the SNP on the tran-
script network differs across the host genotypes. To visualize the
interaction of the host genotype with each SNP, allele-specific
average expression values heat-maps and line plots for network
transcripts were generated, for the three Arabidopsis genotypes
(Figs 5 and 6). Isolates with null alleles were not included in the
analysis.

Most eQTL hotspots had a significant main effect across the
three host genotypes: 38 of 55 Botrytis eQTL hotspots and 32 of
36 Arabidopsis eQTL hotspots (Supplementary Tables 2 and 3).
The seven eQTL hotspots in the Botrytis transcriptome found as
not significant in the single-host models remained nonsignificant
in the multihost model. Thirty-three of the Botrytis eQTL hotspots
and 24 of the Arabidopsis eQTL hotspots (based on network ana-
lysis) that had main effect on the respective transcripts also had
significant interaction effects with the host genotypes, indicating
that they affected the network transcripts significantly across all
the Arabidopsis genotypes; however, their effect varied quantita-
tively across the different Arabidopsis genotypes (example: SNP:
9_SNP2320063; Fig. 5¢c and example SNP: 4_SNP326744; Fig. 6b).
A further 13 Botrytis eQTL hotspots and four Arabidopsis eQTL
hotspots were found to have solely host genotype-specific effects

(example: 7_SNP759639; Fig. 5b; SNP: 8_SNP1066959, Fig. 6c).
Finally, a few eQTL hotspots, five Botrytis and eight Arabidopsis,
displayed only a main effect (e.g. solely pathogen genotype) with
consistent effects across all host genotypes (example:
4_SNP251635; Fig. 5a; 4_SNP1637103 Fig. 6a). These results further
suggest that most networks influenced by genetic variation in the
co-transcriptome show a host x genotype related plasticity, and
this plasticity is largely quantitative in nature.

Evidence for host genotype specific epistatic
interactions

The above analysis suggested that a majority of eQTL hotspots for
Botrytis and Arabidopsis transcripts were unrelated with only a
single locus being a hotspot for both species’ transcriptomes.
This suggested another hypothesis: Botrytis transcripts/loci influ-
encing the Arabidopsis eQTL hotspots may be linked in trans to
Botrytis eQTL hotspots. To test this possibility, we queried for
Botrytis genes that have a SNP associated with an Arabidopsis
eQTL hotspot. We then cross-referenced this list of Botrytis genes
that may cause Arabidopsis transcript variation to test if these
gene transcripts were controlled in trans by a Botrytis eQTL hot-
spot. This query identified five Botrytis genes with variation linked
to Arabidopsis eQTL hotspots, and their transcript variation is
linked to 8 different eQTL hotspots for Botrytis transcripts
(Supplementary Table 6). This suggests that the Botrytis trans-
hotspot should work through the Botrytis gene associated to the
Arabidopsis hotspot suggesting a possibility of epistasis between
the two SNPs in Botrytis. To test if there was evidence for epistasic
interactions between the two SNPs in modulating the Arabidopsis
transcriptome, we used Network Models. Here again, both single-
host model and multiple-host model were used. Using this ap-
proach showed that a majority of the eight potential epistatic in-
teractions were significant in coil, Col-0, and nprl using the
single-host model. Further, using the multiple-host model
showed that six of the eight interactions were found to be signifi-
cant across all the genotypes and also significant host genotype-
specific effect (Supplementary Table 6). This suggests that it is
possible in co-transcriptomics to use both the host and pathogen
transcriptome to identify potential epistatic interactions wherein
a Botrytis transcriptome hotspot influences a Botrytis transcript
that is associated with an Arabidopsis transcriptome hotspot.

Enrichment of enzymatic activities in genes
containing trans-eQTL hotspot SNPs

To investigate the genes and possible polymorphisms underlying
the identified eQTL hotspots, we queried the annotation of the
genes containing the SNP and the potential effect of the SNP on
the genes’ function. Average linkage disequilibrium decay in the
B. cinerea genome is <1 kb (Atwell et al. 2018); hence, we focused
on genes where the eQTL hotspot SNP was located plus or minus
1 kb of the start/stop codon. Thirty-six out of the 55 eQTL hotspots
for Botrytis transcripts and 28 out of 36 eQTL hotspots for
Arabidopsis transcripts were located within a gene and the rest
were intergenic. Nine of the hotspots for Botrytis transcripts and
12 of the eQTL hotspots for Arabidopsis transcripts were linked
to two adjacent genes. Using these gene lists, we queried if there
was any enrichment in the potential function of these potential
causal genes (Supplementary Table 7). This showed that for the
genes underlying the Botrytis eQTL hotspots, there was an enrich-
ment for ubiquitin and enzymatic processes (Supplementary
Table 7). The genes underlying the Arabidopsis eQTL hotspots
showed enrichment for enzymatic processes especially the ones
in folate and sulfur metabolism (Supplementary Table 7).
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Trans-eQTL hotspots are often thought to be linked to transcrip-
tion factors, but there was no enrichment for transcription factors
in the genes containing SNPs linked to these trans-eQTL hotspots
(Supplementary Table 7).

Potential functions of transcript networks
influenced by trans-eQTL hotspots

To better understand the potential networks modulated by the
eQTL hotspots, we investigated the function of the transcripts
linked to each of these eQTL hotspots. We first queried the
Arabidopsis transcript networks using GO enrichment analysis
for over-represented biological processes. As previously found,

GO analysis revealed that eight of the hotspots for Arabidopsis
transcript networks displayed an overrepresentation of
photosynthesis-related functions (Zhang et al. 2017, 2019). Five
of the hotspots were enriched in genes related to abiotic stress,
six enriched in genes related to biotic stress, and one of the gene
clusters was enriched in genes involved in the metabolism of spe-
cialized metabolites, including glucosinolates. However, while
these enrichments are known to be linked to host-pathogen inter-
actions, they are fairly vague. To dive into more specific mechan-
ism, we conducted network enrichment using specific networks
previously linked to Botrytis resistance (Zhang et al. 2017, 2019).
This showed that 10 of the 36 eQTL hotspots for Arabidopsis
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transcripts were enriched in genes belonging to network 1 that
consists of genes related to JA/SA signaling and the production
of indolic phytoalexins known to defend against Botrytis (Fig. 7).
Eleven of the eQTL hotspots for Arabidopsis transcripts were en-
riched in genes belonging to network 4 that are enriched in
nuclear-encoded photosynthetic genes localized on chloroplasts
(Fig. 7). Additionally, the trans-eQTL hotspot analysis identified
a number of new networks that did not readily have GO or a priori
identifiable function.

Because GO annotation of networks is limited in Botrytis, we fo-
cused on using the same prior network analysis to query the po-
tential function of the Botrytis transcript eQTL hotspots (Zhang
et al. 2017, 2019). This showed that there was a single
trans-eQTL hotspot that controlled all members of a single bio-
synthetic gene cluster predicted to make cyclic peptides that
can be associated with virulence (Fig. 7). Most Botrytis
trans-eQTL hotspots (25) were enriched in genes that co-express

with each other and are associated with the formation and move-
ment of vesicles potentially related to altering virulence. Eight of
trans-eQTL hotspots all associate with genes linked to increased
translation and potentially growth rate. Further, there were a
number of novel networks identified using the trans-eQTL hot-
spots (Fig. 7). Thus, the previously identified networks are all
modulated by multiple eQTLs in this system suggesting that the
polygenic basis of this co-transcriptome interaction may filter
through a few common networks.

Discussion

Plant-pathogen interactions involve the bidirectional exchange of
information between the two interacting organisms that alter the
organism’s transcriptomes. In specialist pathogens, these interac-
tions are largely determined by single/few large-effect genes in
either/or both species. In contrast, generalist pathogens like
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the previous Botrytis and Arabidopsis transcriptome modules.

Botrytis utilize an array of genes with quantitative effects. How
this quantitative interaction alters the bidirectional exchange of
information and the mutual transcriptome responses is unclear.
Here we utilized a collection of 96 different Botrytis strains to
study the bidirectional flow of information in plant-pathogen
quantitative interactions and how the host and pathogen geno-
types influence these interactions.

In this study, using host genotypes that abolish the key SA and
JAimmune signaling pathways and a diverse collection of Botrytis
genotypes, we found that pathogen transcripts are largely de-
pendent on pathogen variation or its interaction with the host im-
mune system (Fig. 1a). In contrast, the host transcriptome had two
populations of transcripts (Fig. 1b). One population of host tran-
scripts mirrored the pathogen by being largely dependent on the
pathogen and pathogen x host interaction with little host effect.
A second population of host transcripts showed a balanced contri-
bution from host, pathogen, and host x pathogen interactions. Itis
intriguing that the host genotype has the least influence on vari-
ability of both host and pathogen, despite the host’s genotypes
having knockouts in major SA and JA defense signaling pathways.

This implies that the influence of JA/SA pathway regulation on
Arabidopsis transcripts is highly conditional on the pathogen
genotype. Further, the SA and JA defense signaling pathways
only influence the pathogen dependent on the pathogens geno-
type. Thus, there is a bidirectional flow of information in the
Arabidopsis/Botrytis interaction with the pathogen having genetic
variation in the ability to modulate the hosts’ JA/SA defense sig-
naling pathways.

Interestingly, the phenotypic outcome of the interaction, the
lesion size, is mostly driven by the main effects of pathogen and
host genotype with a smaller albeit significant interaction contri-
bution (Zhang et al. 2017). This contrasts to both the host tran-
scriptome, bimodal distribution with one being mainly pathogen
and host x pathogen while the other is an equal mix of all three,
and to the pathogen transcriptome, largely pathogen and host x
pathogen. Thus, the host has a larger fractional effect on viru-
lence than it has on either organism’s transcriptome. This could
result from unmeasured post-transcriptional effects or on nonad-
ditive interactions between the transcriptomes that we are not
capturing.
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Host effect on transcriptional plasticity

Transcriptional plasticity achieved by mutations in regulatory re-
gions are known to be associated with many complex adaptive
traits in several species including plant pathogenic fungi (Bodi
etal. 2017; Krishnan et al. 2018; Haueisen et al. 2019). Arecent study
on Fusarium virguliforme, a generalist pathogen, suggests that it
utilizes transcriptional plasticity to modulate infection strategies
on wide range of morphologically and biochemically diverse hosts
(Baetsen-Young et al. 2020). Similarly, in a generalist pathogen like
Botrytis, transcriptional plasticity might be linked to an ability
to sense the defense capability of the host. The transcriptional
plasticity could facilitate optimal host invasion and adaption
to numerous hosts, thus contributing to rapid evolution
(Frantzeskakis et al. 2020). In our study, the differences in effects
across host genotypes are a direct measure of host-modulated
plasticity. Therefore, host-modulated plasticity is a dominant
component influencing both of the transcriptomes (Figs. 1-7).

Plasticity could be qualitative in nature such that an eQTL was
identified on only one host genotype and on other suggesting that
the eQTL may influence a function optimized to that one host.
Alternatively, the plasticity could be quantitative whereby the
eQTL influences the co-transcriptome across all or most host gen-
otypes with a differing range of effects. In both the Botrytis and
Arabidopsis transcriptomes, there was exclusively quantitative
plasticity whereby the eQTL effects were present in each host al-
beit with different effects (Fig. 5 and 6). Further, the networks in-
fluenced by the plasticity were almost entirely controlled by a
polygenic architecture such that each transcriptome network
was linked to multiple eQTLs (Fig. 7). Thus, host-Botrytis
interactions are likely highly dependent on plasticity whereby
each isolate of Botrytis makes different transcriptome decisions
based on the specific host with which it is interacting.
Correspondingly, this transmits signals to the host leading to dif-
ferent transcriptomes.

Individual transcript GWA vs network modeling
for plasticity

In this analysis, the individual transcript GWA identified plasticity
hotspots that appeared to be highly specific to individual host gen-
otypes. In contrast, the network modeling showed that the hot-
spots were shared across the host genotypes with the plasticity
being quantitatively different responses across the hosts. The
GWA is based on the use of individual transcripts, each suscep-
tible to independent stochastic variance that could shift the
rank order of significant SNPs. In combination with differential ef-
fects across the host genotypes, this could lead to a significant
hotspot in one host that then disappears in another condition
when relying solely on GWA. The network modeling approach al-
lows for the incorporation of information across the group of tran-
scripts and increases the signal-to-noise ratio, which could
increase the power to detect. The combination of approaches pro-
vides complementary strengths as the GWA provides a survey
ability to detect and create networks that can then be tested dir-
ectly by the network modeling. This does suggest that a sole reli-
ance on GWA signals to query plasticity can be potentially
misleading.

Trans-eQTL hotspot causality

From the eQTL analysis, we were able to identify a large number of
trans-eQTL hotspots controlling the co-transcriptome for both
Botrytis (55) and Arabidopsis transcripts (36) (Fig. 3 and 4 and 7).
Trans-eQTL hotspots are a common feature of eQTL studies in

both structured and unstructured populations. Frequently they
are theorized to be major regulatory loci influencing a wide array
of transcripts, and this is frequently short-handed to mean that
they are more likely to be transcription factors (Hansen et al. 2008).

While several studies have reported eQTLs in plant and patho-
gen genomes (West et al. 2007; Chen et al. 2010; Christie et al. 2017;
Wilkerson et al. 2022), it has not yet been widely determined if
these loci are enriched for regulatory genes like transcription fac-
tors. Interestingly, in this analysis, we did not find any significant
GO enrichment for transcription factors in the genes underlying
the trans-eQTL hotspots. Other studies have found a similar pau-
city of transcription factors in eQTL studies (Weiser et al. 2014;
Wang et al. 2018). In contrast, we did find GO enrichment for en-
zymatic functions underlying these trans-eQTL hotspots. This is
not unprecedented as Arabidopsis trans-eQTL hotspots have been
causally linked to both genes in primary and specialized metabolism
(Kerwin et al. 2011; Francisco et al. 2021). Similarly, several studies
also showed an enrichment of genes involved in specialized metab-
olism among the genes underlying trans-eQTL hotspots (Weiser et al.
2014; Wang et al. 2018). Thus, it is possible that genetic variation in
the plasticity of Botrytis-host interactions is being predominantly
modulated by variation in enzymatic/metabolic processes. None of
the genes underlying these loci have been previously associated
with plant-pathogen interactions providing a rich source of candi-
date genes to pursue in the future.

This work shows the potential for co-transcriptome analysis to
show how plastic the host and pathogen transcriptomes are in re-
sponse to genetic variation in each other. Highly plastic transcrip-
tome responses indicate that both the host and pathogen
carefully shape their regulatory response to the blend of signals
moving back and forth between the two interacting organisms.
It remains to be tested if the plastic response leads to the optimal
transcriptome for the interaction of host and pathogen or if the
plasticity instead creates a blend of beneficial and harmful tran-
scriptome responses. This will require mutating the different out-
puts of the co-transcriptome and measuring the virulence
consequence across an array of interactions. Additionally, it re-
mains to be seen how these responses change across time, cell
type, and the spatial surface of the interaction. Understanding if
and how plasticity may help to shape specific responses is key to
engineering resistance in the future.
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