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1. Introduction

The famous Jones index [8] is the von Neumann algebra extension of the group-
subgroup index and is defined for any inclusion My C M; of II; factors. An open
question in von Neumann algebra theory is to find an analog of the Schreier’s formula
for the number of generators of finite-index subgroups of non-abelian free groups [,,.
For example, one expects that the “number of generators” of a finite-index subfactor
My C My = L(F,) shouldbe 1 4+ (n — 1)[M : N]. Indeed, specific subfactors of L(IF})
constructed via amalgamated free products [5, 6, 14—16] have sets of generators for
which such a formula holds. However, there is little that is known in general, even for
index 2.

Returning to group theory, let H C G be a finite-index inclusion of groups. Denot-
ing by ﬁjz (G) the L2-Betti numbers of G one has the following generalization of
Schreier’s formula (see e.g. [12]):

BP(G) =G : HIT' B (H).

(Schreier’s formula corresponds to the case j = 1 and involves the equality 3 52) (F,) =
r — 1). A similar formula is true for finite-index inclusions of tracial algebras [21].
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Voiculescu’s free entropy dimension 8¢ [22, 23] takes the value r on a set of
generators of L(IF,); more generally, its value is related to L2 Betti numbers [2,13,18].
Therefore, one expects a statement of the following kind: given a finite index inclusion
My C M, for any generating set So for M there exists a generating set for M; (and
conversely, for any generating set S; for M there exists a generating set Sy for My)
so that

(1.1) 80(So) — 1 = [My : Mp) ' (80(S1) — 1).

However, at present only inequalities of the form 6¢(S1) < 80(So) are available [9].

In this paper we show that for very specific examples of subfactors, namely sub-
factors of the form My C M| = My x G with G a finite abelian group, we can find
generators My and M, for which the non-microstates free entropy dimension [25]
analog of (1.1) holds with an arbitrary small error. More precisely, we prove that given
& > ( there exist generating sets So for My and S; for M; for which

§*(So) — 1 = [My: Mo] ™' (§*(S1) — 1) + &.

Our result is interesting in connection with the following question. Let H be a
finitely generated group, and let o be an action of some infinite group G on H. Then it
is known [4, Theorem 6.8] that ,352) (H x¢ G) =0.Incasethat G = Z and H is finitely
presented sofic, this implies that the von Neumann algebra M; = L(H) % Z is strongly
one-bounded [7, 11, 18]; in particular for any generating S set of M1, §¢o(S) = 1. This
leads us to the following conjecture:

Conjecture 1. Let My be a finitely-generated von Neumann algebra, and let G be an
action of a infinite group on My. Then M1 = My Xy G is strongly 1-bounded.

If true, the conjecture has a somewhat surprising consequence: it would imply
non-isomorphism of free group factors. Indeed, let G be any infinite discrete group
so that L(G) is R®-embeddable (e.g. G = Z or G amenable), and regard F, as the
infinite free product of copies of Z indexed by G. Then G acts on this index set by
permutations and thus on Fo; call this action «. One can easily see that the resulting
semi-direct product is Z * G, corresponding to the extension

exid
e—>Fg —>2Z+xG — G —e.

Thus,

My = My xq G = L(Foo xg G) = L(Z % G) = L(Z) x L(G).
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The latter von Neumann algebra is known to be not strongly 1-bounded; in fact it has a
generating set whose free entropy dimension is strictly above 1. On the other hand, if
we were to assume that L(Fo,) = L(IF) (or even finitely-generated), our conjecture
(for the specific group G) would imply that M is strongly 1-bounded and thus all of
its generating sets have free entropy dimension 1, which would be a contradiction.

While we are unable to even come close to proving the conjecture, we are able
to show that if M| is finitely-generated and in addition My =~ M5>x>(Mjy) and G =
(Z/27)®>, then for any & > 0, M, has generating sets with free entropy dimension
bounded by 1 + &. The proof is reminiscent of Gaboriau’s proof [3] and it is this
connection that inspired us to study the behavior of free entropy dimension under
crossed products.

2. Estimates on non-microstates free entropy dimension

2.1. Special generators for crossed product subfactors. Let M be a II; factor and
let o be a properly outer action of a finite abelian group G on M . Consider the inclusion
of factors

MC cMcMx,G,

where M C is the fixed point algebra for the action «. It follows from Takai—Takesaki
duality [19,20] that M x4 G = M|g|x|6|(M©) , and moreover that the inclusion
MC% c M is isomorphic to an inclusion of the form M GcM© X! 6 where G is the
group dual of G and o' is a certain action related to the dual action of GonM x4 G.

Assume now that M is finitely generated; thus also M X, G is finitely generated.
Since M|G|X|G|(MG) ~ M x4 G we also know that M @ is finitely generated. Let
X = (X1,...,Xq) be aset of generators for M . Denote by il, € MY x G,g€G,the
unitaries implementing o’. Using the isomorphism (MS c M) Cc (M® C M© xy G),
we may view these unitaries as elements of M. Then the set X U (& g)g <& generates M.
Furthermore, if we denote by ug € M x4 G, g € G, the unitaries implementing o,
then X U (i), s U (4g)gec form a generating set of M %, G. Note that we have

geG
the following relations:

ngju;:Xj, geG, j=1,...,d,

ugﬁhuz, = (g.hu,, g€G, he G,
where we use (-, -) to denote the pairing between the elements of G and its dual G.

2.2. Estimates on non-microstates free entropy dimension §*. In this paper it will
be convenient to work with a non-selfadjoint version of free entropy dimension. Given
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non-commutative random variables Y in a tracial von Neumann algebra M and a
sub-algebra B C M, let A = x-alg(Y, B) and let C be a circular element free from A;
we normalize C so that 7(C*C) = 2. Consider the derivation

dy: A — span{ACA + AC* A}

determined by the Leibniz rule and by dy (Y) = C, dy (Y*) = C*, dy (b) = 0 for all
b € B. The vector J(Y : B) € L?(A, 1), if it exists, is called the conjugate variable
to Y and is uniquely determined by

(J(Y . B), P)LZ(A) = (C*, P)LZ(A*W*(C))’ VP e A.
Given {Y; : i € I}, the free entropy dimension is then determined by

.7 — P . t. . 2
8*(¥; 1i € 1) =2|I| ~liminf 1 ST (Y G e 1\{i})]5
iel
where Yi’ =Y; + /tC; and {C; : i € I} are circular elements *-free form {Y; :i € I}.
It is not hard to see that our definition is equivalent to the usual definition of §* for
self-adjoint variables (implicitly introduced in [25], see also [2, Section 4]), in that

§*Yi:iel)y=46;, ReY;,ImY; :i €1).

Lemma 2. Suppose that a is an action of a finite abelian group G on a tracial von
Neumann algebra M, and suppose thatY; € M, j € I are (not necessarily self-adjoint)
generators of M. Let C j(g ), g € G be circular elements x-free from M, and extend o
to

W*Yi:ie )« WHC® :iel geG)

by setting ag (Ci(g/)) = Ci(gg,). Let finally Y} = Y; + \/ij(e), where e € G is the
neutral element. Let

S;:J(th;(yitiiel\{j}))

be the free conjugate variables.
For each h € G, denote by (C j(h) )* the projection of (C j(e))* on to the linear
subspace of

span{ozg((Cj(e))*) :g€G)

consisting of vectors x satisfying ag(x) = (g, h)x.
Then

@1 & = G2 Epeyrien(CM)). Ve,
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and also

t (G c@yy _ 2o . A
(6. €)= 6. € = (o IgIE. Vil hed.

In particular, if we denote by 5}’(”) the projection of & jt onto the subspace of
span{ag () : g € G}

consisting of vectors x satisfying ag(x) = (g, h)x, then

<t,(h . -~
IEFP3 = leuP jel hed,

RAONTION
&P/ = mﬂmu

so that all of the orthogonal components S ‘B in the decomposmon ég_ =3 ned § g
have the same length and the same inner product with (C )* (It is worth noting that
S gl ¢ W*(Y/! :i € 1) since that algebra is not invariant under the action a.)

Proof. By [17], we may assume that there exists a family of free creation operators ZJ(.g ),

E(g) satisfying, forall g, g’ € G, j,j € [,y e M,

(E(.g))*yﬁ(.g) = (E(g))*yﬂg) = 8g=g/8j=j1T(y),
(@ @)y yg(g) (((®)* yz(g> =0,

and so that C j(g ) = Ej(-g) + (Zj(g ))*. The action « can be extended by putting
/ / Ao/ N
g (07) = €557 and o (1)) =0 &,

Denote by

7oy _ |
Kj —EZ(&

geG

= 1 ~
mag (0, TP = G 3 g hyag @)
geG
the prOJectlons of K( °) (respectively, £; S )) onto the linear subspace of span{ﬂ(g ). :g€G}
(resp., span{@ (£) :g€G)) con51st1ng of vectors x satisfying ag (x) = (g, h)x in this
way we get that

=) _ 7(h AONS
Ch=tP + @™
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We can now verify the following equations:
—(h (K = h = W _
(Ej( ))*yﬁj(’ )= (zj( ))*yfj(, ) = G| 18h=h/8j=j/f(y)»
= h =’ — = W
Py yl 1 = @y ye " = .

From this it follows that (C j(h) cjelhe @) is a family of free circular operators (of
variance |G|~!) which are free from M. Since foreach j € I ,

(e) _ ~ (h)
heG

it follows from [25] and the equalities J(C;) = Cj*, J(éj(h)) = |G|((7j(h))* that
£ = (0 4V s (7 e 1)
= s((rr iR )+ vie® (v i e )

h#h

—(h — h/ . .
= Eyapend (V€D s (14 VE X €YU 0 e\ 1)

h' #h
_ ~(h
= |G|t I/ZEW*(YJ.’:]'GI)((CJ'( ))*),

the last equality by freeness. This gives (2.1). On the other hand,

- (e)
£ =1 UZEW*(Y;:je])(Cje )

It follows that

(. (C/N") = (€ Eweirrsjen (C))
= 1'2{g.£7)
= |G (E] Ew=qryjen(C™))
= |G| gL ()",

which readily implies the remaining statements of the lemma. [

Theorem 3. Let X be an arbitrary generating set for M ©, and let X U (i g)g g be the

generating set for M and X U (ﬁg)geé U (Ug)geG be the generating set for M xy G

as constructed in Section 2.1. Then for any € > 0, there exists a A > 0, so that

(2.2) §*(AX; :i e DUy :heG)U (ug : g € G)) — 1
<|GI7'(8*(Y;:iel)—1)+e
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Proof. LetI ={1,...,dyuG;fori € I,setY; = X; ifi €{1,...,dYand ¥; = i,
ifi =h e G. Let also w;: G — C be given by w;(g) =11ifi € {1,...,d} and
wi(g) = (g, h)ifi =he G. We then have the following relations:

ugYiuy, = wi(g)Y;, iel, geG.

Fori € I, let C; be a circular system, free from W*(Y; :i € I,ug : g € G), and for
g € G, let C; be another circular system free from W*(Y;,C; :i € I,ug : g € G).
We then have

8* (X U (i) eq U (tg)gec) = 2(d + |G| +1G))

—li?l)i(r)lft[Z”J(Yj +VIC (Y i € IN{jY) U (ug + VICL 1 g € GY)) |3
jel
+ ZHJ(ug + «/?C;, c(Yiiie DU (ug + \/?Cé’,/ = G\{g}))Hi].

geG

Denote by M, the von Neumann algebra W*(Y; + +/tC; : j € I) and by M, the
von Neumann algebra W*(M;,ug + \/fCé, g €G).
Using [25], we note that

| (ug + V1CL (Vi i € IN{}Y) U (ugr + VICL 1 g/ € G\ {g)))|
> | (ug + ViCy : (uy + VICy 18" € G\ {g))
and by [13], we get that

.. 2
2/G| —liminf ZGHJ(ug +Vi1Cy s (wy +V1Cy g € G\ {g}))];
ge

=5"ug g€ G) = PG~ PG +1=1-|G[™".

Let &8 = J(Y; + V1Cj: (Y 1i € I\ {j}) U (ug + +/1C; : g € G)) and set
£ =J; + ViCi: (Y;:i € I\{j})).Forh e G, denote by Ej(h) the projection
of C; onto the subspace of span{ugCjuy : g € G} consisting of vectors x, so that
{ug(x)uy = (g, h)x}. Letalso

<(h - ~(h
oW =112 E g ().
Then by applying Lemma 2 with C j(e) =C;,C j(g ) =y gCjug, we have

£ = |G|t Ep, (C)).
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It follows that
(11265, (€)= (Eg, (€)). (€)= (¢} B, ()")

= (€7 1617 Y B, (ue (€ u)

geG

= (€1 161" Y g, (g + 112 (C) g +112Cp")) + 011
geG

=(cr.1617 D Eg,(CO)yug) + 0

<|G| IZu ug,Eﬂt(Ej.(”)*)JrO(zl/z)
= ((C\)* Eg (C/)*) = (Eg (C\)* Eg (C)*) + 0('?)
= IEg, (G5 + 0/2).

Similarly, letting EJ’.’“) be as in Lemma 2, we have that

( i, (C(e)) t1/2;§t (e)) < i, (C(e)) 2|6~ IZ”g >
geG

= (1617 Y up B, (€ g 12%))

geG
= (E, (C[). 1'% + 0(t"72).

Using this and E 5 (£7) = &/, and Lemma 2, we obtain the inequality

<Eﬁt(6}8)>,t1/2§;’“)> (Ej, (), 11/2¢!)

~(e) 1/2
I1E 5, (C; )2 — = + 0('7)

61728 T

(e) 21617 1E 12
C2E) oy TSR

"G 1/ZIIS’II G712 Il

(172
= G IE4]2 + 0/,
so that

(1126, (€)= |1 E g, (CIDIE + 02 = 1167 1§15 + 0 /?).

We now claim that for all but one h € G, {1 1/2§’ (C(h)) ) is almost 2|G|~!.
Let us use the notation x(¢) € M, + oY) to 51gn1fy that there exists an element
y(t) € M,, so that

lx(@) = y()]2 = O@").
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Since (ug + \/;Cé)(}]j + V1C)(ug + «/?Cé/,)* € M, and Y, +1Cj € M,, we
have that

(g + VICH(Y; + VIC)(ug + VICH* — w; (@) (Y; + VIC)) € M.
Thus, also
VI(CLYjuh +ug Y (C))* — wi(9)Cj +ugCiul) € My + O(1).
Hence,
CLYjub +ugY;(CL)* — wi(8)Cj +ugCiul € My + O(t'/?).

Since u;u ¢ = 1, we similarly deduce

CLul +ug(CL)* € M, + 0(t'/?),
so that, noting that ug € M, + o(t'/?)
(CH* +uiClug € M, + 0(t'/?).
This gives
CoYjuy —ugYiuyCoug — 0 (8)Cj +ugCiuy € M, + 0(t'?).

Projecting onto eigenspaces for the G action glven by conjugation by ug (noting
again that u, € M; + O(t'/2)) gives us forall h € G,

haw L 1o ! — —
(C )Eg “ )Yju —ugYjuy C( “ ) —a)j(g)Cj(h)—l-ung(h)u;eMt—I-O(tl/z).

We note also that
5 _
(€ " Duy = (h, g™ )i (g) - ug (CHP
and
=(h =(h
ung( )uz, = (h,g)Cj( ),
whence

(hw;) =/(h-w;)

Yiuy — (h, g~ (g)ug YiuzugCy
+ ((h.g) — 0 ()" € My + 0('/?).

(Cg
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It follows that
=(h)\* =(h
(0128 (C)*) = (E g, (Cj).CP)

= (Cj. Egg, (")
— Z (h) E (C(h)))
neG

= (C/" Eg, () + 0'1?)
= |Eg, (C™)3 + 0('/?)

> max <6j(h),
<C’>(hw’ g = (g~ oy g Yy Tl + () — 0,0 C )
1€ Yy — (g oy g K, Cr ™ + (. g) = 0y (6N L")
+ O(tl/z)

B oIt 10 T

Iw](g) (h, g)|* + 4] Y,
Thus, ifh;éa)j,wehave

_ G| 1

(12¢t (CPy*y > 2| o(t

(V25 (€)= So— + 0.

where

K = sup min 4y ”%
ih & loj(g)—(h g)I?

where C is some constant that only depends on G.
We can now compute, using that ¢ = t_l/zEMl (C)),

liminf ¢ ) [ J(¥; + ViCj: (Yi:i € IN{)) U (ug + ViCy g € GY));

= Csup || ;3.
J

jel
—hmlnf (tV/? H (tV2ehy = liminf Y (¢V/2¢L, CF)
t—o00 J t—00 J
JGI jeI
. =(h
= 111t1l)1(§1f Z Z(tl/zé‘;, (Cj( Ny + 0(/?)
heG J€l
> 211G - DG A + 1) + lim nf D IGITIEN3 + o)
jel

>2/I|(IG| = 1)|G| ' A+ k) +21||G| " = |G|718*(Yi =i € 1)
=2/I|(1+ k) P =2|I|G]7 A + k)L +2|1||G|7 = |G|716*(Y; :i € 1)
=2I|(1+k)" = |G Yi:ie )+ 2G| (1= +x)7h).
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Putting all this together gives us

§((Vi:i e U (ug : g € G)) =2|I| +2|G]|

—11?2(1)1f|:ZHJ(Yj +Vi1C) (Y ii € IN{j}) U (ug + ViCy 1 g € G)Hi

jel

+ 2 (g + Vi€ (Yi i € INGY U (ugr + ViCyr 18" € G\{g}))l\i}

geG
<2 +2|G| =21+ &)+ G718 (Y i e I) =21 |G| ™ (1= (1 +x)7Y)
—2|G|+1—-|G|™!
=G YiieD+1— |G +21|(1—-|GITH)(1—-(1+x)7").

Thus,

§*((Yi:iel)U(ug:g€G))—1
<|G|7'8*Yi:ie)— |G +2I|(1—-|G|T)(Q1 -1 +x)7")
=|GI7'¢*Yizie - +2I|(1-|GI™)1 -1 +x)7").

Suppose now we rescale Y; by replacing Y; with AY;. Then
8*(Y;:iel)=8"(AY; :i €l),
so that we get

§*((AY; :iel)U(ug:g€G))—1
<|GI7'8*(Y; i e )= 1) +2/I|(1 = |G|7") (1 — (1 + A%6) 7).

Thus, choosing A small enough, we can ensure that
*(AY;:i€e)U(ug:g€G)—1 <G| (§*Xi:iel)—1) +e,
as claimed. ]

Let Z4,..., Z, be generators of a tracial von Neumann algebra, it would be natural
to expect that §*(Z1, ..., Z,) is an algebraic invariant: if Z/, ..., Z;, is another set
of generators for the (non-closed) algebra x-alg(Z, ..., Zy,), then §*(Zy,...,Z,) =
*Z,....Z ;l,). In particular, one expects that for any non-zero numbers Aq, ..., A,,

(2.3) §(Z1,....Zy) =8"(MZ1,.... \nZy).
If this were true, then we could combine the inequality in Theorem 3 with the equality

§*(AYi:ie)U(ug :g€G)) =68 (Y;:i €I)U (ug: g €G))



D. SHLYAKHTENKO 392

to deduce that
S*((Yi:iel)U(ug:g€G)—1<|G|'(*Yi:iel)—1)+e¢
for all ¢ > 0, and conclude that
§*(Yi:iel)U(ug:g€G))—1=<|G|7'(8*(Yi:iel)—1).

However, to our embarrassment, we could not find a proof of (2.3). Note, however, that
when x-alg(Z1, ..., Z,) is isomorphic to a group algebra, then algebraic invariance
holds [13].

The difficulty in the proof of Theorem 3 arises from the complicated form that the
relation uz, Yiugy =w;(g)Y; takes when we substitute u g 4 \/?Cé’, forug andY; + J1C;
for Y;. If we instead redefine M; as W*(M;,ug : g € G) and set {‘]’ = t_l/zEM[ (C)),
then it is easy to show that

—(h o
157713 =2:7"lGI
if h # ;. Indeed, since now u, € M, we see that
Mt Sug(Yi + \/ch)”z —wi(g)(Y; + \/;Cg) = \/;(”gcguzr —wi(g)Cy),

so that u gCgu; —w;(g)Cq € M,. Decomposing into orthogonal components accord-
ing to h € G then gives that ((h, g) — w; (g))éj(h) € M;, so that Ej(h) € M; whenever
h # wj; thus

=t,(h — ~(h — ~(h

;W = T2EL (C)) = 172C M),

and the claimed equality on the norm follows from ||C j(h) |3 = 2|G|~!. Note also that,
using Lemma 2,

J(Y; + VIC; Y + ViCiti e I\ {j}})
_ ~(h
= |G|t 1/ZEW*(Yf:ieI)((CJ'( ))*)
_ =1, ()
= |G|l I/ZEW*(Yi+ﬁCi:i€I)(§j I )

so that as in the proof of the theorem

127713 = 1617 T (¥ + VIC) : Y + ViCi i e T\ 1|2
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Using this, we get the following inequality:

2|I|—IZHJ(YZ~+«/;C1'1(YJ' o EI\{I})U(”g3g€G))H§

iel
~t,(h
=211 -t > > 12 ™3
Jel heG
- - <t,(@;)
=21I[—t) Y 27MGIT = ) U3
J€I heG\{w;} Jel

= 2|1 -21|(|G] - 1)IG[™
— 1t Y IGIT (Y + VG (Y + Vi e TN
jel
— |G|—1(2|1| —tZtHJ(Yj +VIC Y + VG i e ] \{j}})”j).
Jel
Taking lim inf of both sides gives us
(2.4) *((Yi:iel)|(ug:g€G)) <I|G|'8*(Y;i:iel),
where we define a kind of “relative non-microstates free entropy dimension”
8*((Yi i el)l(ug:geG))
= 27| liminfr ) [ J(Yi +ViCi: (Y1 j € IN{i}) U(ug:g € )|z
i

Based on the analogy with the behavior of the microstates free entropy dimension [10],
and since §*(uy : g € G) = 1 — |G|~ (see [13]), one would expect that

S ((Yiziel)|(ug:g€G)+(1—|G|™") =68 (Yi:i € I)U (ug: g € G)),

but this equality is not known at present.
Subtracting |G |~! from both sides of (2.4) we arrive at the following:

Remark 4. Let X be an arbitrary generating set for MC, and let X U (@ g) ¢cC be the
generating set for M and X U (u g)g e U (ug)gec be the generating set for M x4 G
as constructed in Section 2.1. Then, with Y; as above, we have

*((Yi:iel)|(ug:g€G)+(1—|GI™")—1=<|GI71(8*(Y; :i el)—1).

3. Some applications

Corollary 5. Suppose that G is a finite abelian group acting properly outer on a
factor M. Suppose that M © is generated by d elements. Then M x4 G has a generating
set S satisfying §o(S) < 2d +2)|G|7! + 1.
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Proof. 1f |G| = 1, there is nothing to prove, so let us assume that |G| > 2. By Theorem 3
we have, for every ¢ > 0, the existence of A > 0 so that

8*(/\X U (/\ﬁg)geé U (ug)geg) -1<|G|™!- [8*(AX U (ﬁh)heé) — 1] + ¢,
where X is any generating set for M ¢. We can thus assume that | X | < d. Moreover,

§*(AX U (@h),eq) < 8*(AX) + 8* () yeg)

since G is abelian [13].

Let ¢ = |G|~!. Then by Theorem 3, there exists some A > 0 so that, if we set
S =XU(u,) ge Y (Ug)gea, then (2.2) holds. Combining this with the remarkable
inequality between microstates and non-microstates free entropy [1] and invariance
of 8y under algebraic changes of variables [24], we obtain

80(S) = 80(AX U (Ailg) g U (Ug)geq)
< 8" (AX U (AMlg) g U (ug)geq)
<IGI7'2d +1 -G ) +1+¢
=2d|G| ' +|G|"' = |G| 2+ 1+ |G|}
<Q2d+2)|G" ' +1=02d+2)|G|" +1.

as claimed. n

Theorem 6. Let M be a finitely generated factor, and assume that M = Mpx> (M)
and that o is a properly outer action of G = (Z/27)®> on M. Then for every & > 0
there exists a finite generating set S for M X, G so that §o(S) < 1 + &.

Proof. Suppose that M is generated by d elements. Choose m so that
27"2d +2m +2) <.

Denote by G, the subgroup of G generated by first m copies of Z/27. Then
MOSm = N % G,,, where N is all; factor, so that Momom (N) 2 M. Thus, by assump-
tion, N = M, so N can be generated by d elements. Thus, M ©7 is generated a set S’
of at most d + m elements. Applying now Corollary 5, we deduce that there exists a
generating set S; for M x G, so that

moreover, S includes the set Sy consisting of generators of G,,.
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The group G is an infinite abelian group whose topological dual is isomorphic to
the Cantor set. Thus the von Neumann algebra of G is generated by a single unitary w.
Let S, be that unitary. Then S = Sy U S1 U 53 is a generating set for M x, G.

By the hyperfinite inequality for 6o [10], we have

<27™2d +2m +2) + 14+ 1—8(So).

Since Sy generates G,,, which is a finite abelian group, §y(Sp) = 1 — |G|~ =
1 —27™ (see [10,23]). Substituting this into the inequality above gives

§0(S) <27"2d +2m+2)+1—(1-27")
=2""2d +2m+2)+1<1+e,

as claimed. n

Acknowledgments. The author is grateful to B. Hayes for showing him the refer-
ence [3], and for useful discussions.

Funding. This research was supported by NSF grant DMS-2054450.

References

[1] P. Biang, M. CapiTaINE and A. GUioNNET, Large deviation bounds for matrix Brownian
motion. Invent. Math. 152 (2003), no. 2, 433-459. Zbl 1017.60026 MR 1975007

[2] A.Conngs and D. SHLYAKHTENKO, L2-homology for von Neumann algebras. J. Reine
Angew. Math. 586 (2005), 125-168. Zbl 1083.46034 MR 2180603

[3] D. GaBoriau, Coilt des relations d’équivalence et des groupes. Invent. Math. 139 (2000),
no. 1,41-98. Zbl 0939.28012 MR 1728876

[4] — Invariants /2 de relations d’équivalence et de groupes. Publ. Math. Inst. Hautes Etudes
Sci. (2002), no. 95, 93—-150. Zbl 1022.37002 MR 1953191

[5] A. GuionnET, V. F. R. JonEs and D. SHLYAKHTENKO, Random matrices, free probability,
planar algebras and subfactors. In Quanta of maths, pp. 201-239, Clay Math. Proc. 11,
Amer. Math. Soc., Providence, RI, 2010. Zbl 1219.46057 MR 2732052

[6] — A semi-finite algebra associated to a subfactor planar algebra. J. Funct. Anal. 261
(2011), no. 5, 1345-1360. Zbl 1230.46054 MR 2807103

[7]1 B. Hayes, 1-bounded entropy and regularity problems in von Neumann algebras. Int.
Math. Res. Not. IMRN (2018), no. 1, 57-137. Zbl 1415.46039 MR 3801429



[8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

(19]

[20]

[21]

[22]

[23]

[24]

D. SHLYAKHTENKO 396

V. F. R. JonEs, Index for subfactors. Invent. Math. 72 (1983), no. 1, 1-25.
Zbl 0508.46040 MR 696688

K. Jung, Some free entropy dimension inequalities for subfactors. 2004,
arXiv:math/0410594

— A hyperfinite inequality for free entropy dimension. Proc. Amer. Math. Soc. 134 (2006),
no. 7,2099-2108. Zbl 1100.46039 MR 2215780

— Strongly 1-bounded von Neumann algebras. Geom. Funct. Anal. 17 (2007), no. 4,
1180-1200. Zbl 1146.46034 MR 2373014

W. Lick, L2-invariants: theory and applications to geometry and K -theory. Ergeb. Math.
Grenzgeb. (3) 44, Springer, Berlin, 2002. Zbl 1009.55001 MR 1926649

I. MiNeYEV and D. SHLYAKHTENKO, Non-microstates free entropy dimension for groups.
Geom. Funct. Anal. 15 (2005), no. 2, 476-490. Zbl 1094.46039 MR 2153907

S. Pora, Markov traces on universal Jones algebras and subfactors of finite index. /nvent.
Math. 111 (1993), no. 2, 375-405. Zbl 0787.46047 MR 1198815

S. Pora and D. SHLYAKHTENKO, Universal properties of L (Foo) in subfactor theory. Acta
Math. 191 (2003), no. 2, 225-257. Zbl 1079.46043 MR 2051399

F. RApuLEscu, Random matrices, amalgamated free products and subfactors of the von
Neumann algebra of a free group, of noninteger index. Invent. Math. 115 (1994), no. 2,
347-389. Zbl 0861.46038 MR 1258909

D. SHLYAKHTENKO, Some applications of freeness with amalgamation. J. Reine Angew.
Math. 500 (1998), 191-212. Zbl 0926.46046 MR 1637501

— Von Neumann algebras of sofic groups with §2) = 0 are strongly 1-bounded. J.
Operator Theory 85 (2021), no. 1, 217-228. Zbl 07606458 MR 4198970

H. Takar, On a duality for crossed products of C *-algebras. J. Functional Analysis 19
(1975), 25-39. Zbl 0295.46088 MR 0365160

M. TakEesaxki, Duality for crossed products and the structure of von Neumann algebras of
type Ill. Acta Math. 131 (1973), 249-310. Zbl 0268.46058 MR 438149

A. Taom, L2-Betti numbers for subfactors. J. Operator Theory 61 (2009), no. 2, 295-299.
Zbl 1212.46094 MR 2501006

D. VoicuLescu, The analogues of entropy and of Fisher’s information measure in free
probability theory. IL. Invent. Math. 118 (1994), no. 3, 411-440. Zbl 0820.60001
MR 1296352

— The analogues of entropy and of Fisher’s information measure in free probability
theory. III. The absence of Cartan subalgebras. Geom. Funct. Anal. 6 (1996), no. 1, 172—
199. Zbl 0856.60012 MR 1371236

— A strengthened asymptotic freeness result for random matrices with applications to
free entropy. Internat. Math. Res. Notices (1998), no. 1, 41-63. Zbl 0895.60004
MR 1601878



An inequality for free dimension 397

[25] — The analogues of entropy and of Fisher’s information measure in free probability
theory. V. Noncommutative Hilbert transforms. Invent. Math. 132 (1998), no. 1, 189-227.
Zbl 0930.46053 MR 1618636

(Regu le 22 janvier 2022)

Dimitri SHLYAKHTENKO, Department of Mathematics, UCLA, Los Angeles, CA 90095, USA;
e-mail: shlyakht@math.ucla.edu



