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ABSTRACT. The extension k ֏ µ⊞k of the concept of a free
convolution power to the case of non-integer k ≥ 1 was intro-
duced by Bercovici-Voiculescu and Nica-Speicher, and is related
to the minor process in random matrix theory. In this paper, we
give two proofs of the monotonicity of the free entropy and free
Fisher information of the (normalized) free convolution power
in this continuous setting, and also establish an intriguing vari-
ational description of this process.

1. INTRODUCTION

1.1. Integer-free convolution powers. In this paper we assume familiarity
with noncommutative probability, particularly the concept of free independence
(see, e.g., [37]).

In [31], Voiculescu introduced the notion of the free convolution µ⊞ν of two
compactly supported probability measures µ, ν on R. There are multiple ways to
define this operation. One is to define µ ⊞ ν to be the law of X + Y , where X,Y
are freely independent (real) noncommutative random variables with law µ, ν,
respectively. Another is to define µ ⊞ ν to be the asymptotic empirical spectral
distribution of A+ B as N → ∞, where A,B are classically independent bounded
N × N random Hermitian matrices, each invariant under unitary conjugation,
and whose empirical spectral distribution converges to µ, ν, respectively. A third
way is to introduce the Cauchy transform1 Gµ : C \ supp(µ) → C of a compactly

1One can also write Gµ = −sµ , where sµ(z) :=
∫

R

dµ(x)/(x − z) is the Stieltjes transform of µ;

however, it will be slightly more convenient to work with the Cauchy transform instead of the Stieltjes
transform to reduce the number of minus signs in our formulae.
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supported probability measure µ by the formula

(1.1) Gµ(z) :=
∫

R

dµ(x)

z − x

for z ∈ C\supp(µ) (in particular, one has Gµ(z) = 1/z+O(1/|z|2) as |z| → ∞),
and then define the R-transform Rµ(s) for sufficiently small complex numbers s
by requiring that

(1.2)
1

Gµ(z)
+ Rµ(Gµ(z)) = z

for all sufficiently large z. For sufficiently small s one has the convergent Taylor
expansion

Rµ(s) =
∞∑

n=0

κn+1(µ)s
n,

where

κ1(µ) =
∫

R

x dµ,

κ2(µ) =
∫

R

x2 dµ −
(∫

R

x dµ

)2

,

κ3(µ) =
∫

R

x3 dµ − 3
(∫

R

x dµ

)(∫

R

x2 dµ

)2

+ 2
(∫

R

x dµ

)3

. . .

are the free cumulants of µ.

Example 1.1. If µsc is the semicircular distribution

µsc := 1
2π

(
4− x2

)1/2
+ dx,

then one easily verifies that Rµsc(s) = s, and so κ1(µsc) = 1 and κn(µsc) = 0 for
n > 1.

It is not difficult to see that a compactly supported probability measure µ is
uniquely determined by its R-transform Rµ.

The free convolution µ ⊞ ν is then the unique compactly supported measure
for which Rµ⊞ν(s) = Rµ(s) + Rν(s) for all sufficiently small s, or equivalently
κn(µ ⊞ ν) = κn(µ) + κn(ν) for all n ≥ 1 (see, e.g., [37]); this is a commutative
and associative operation on such measures. If k is a positive integer, one can then
define µ⊞k = µ ⊞ · · · ⊞ µ to be the free convolution of k copies of µ, and one
clearly has

Rµ⊞k(z) = kRµ(z)(1.3)
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for all sufficiently small s, or equivalently

κn(µ
⊞k) = kκn(µ)(1.4)

for all n ≥ 1. One can normalize these free convolutions by defining the dilates
λ∗µ of a probability measure µ by a scaling factor λ > 0 to be the pushforward of
µ by the dilation x ֏ λx (thus, if µ is the law of a random variable X, then λ∗µ
is the law of λX). One easily verifies the scaling laws

Gλ∗µ(z) = λ−1Gµ(z/λ)(1.5)

for all z outside of the support of µ, and

Rλ∗µ(s) = λRµ(λs)

for all sufficiently small s (or equivalently, κn(λ∗µ) = λnκn(µ) for all n ≥ 1);
thus, one has

Rk−1/2
∗ µ⊞k(s) = k

1/2Rµ(k
−1/2s).

Using this relation, Voiculescu [31] established the free central limit theorem: if µ
is a compactly supported probability measure of mean zero and variance one, then

the normalized free convolutions k−1/2
∗ µ⊞k converge in the vague topology to the

semicircular distribution µsc.
In [33], Voiculescu also introduced the free entropy

χ(µ) :=
∫

R

∫

R

log |x −y|dµ(x)dµ(y) + 3
4
+ 1

2
log 2π

and the free Fisher information2

(1.6) Φ(µ) := 4π2

3

∫

R

(
dµ

dx

)3

dx

for compactly supported probability measures µ (with the convention that, if µ
is not absolutely continuous, Φ(µ) = +∞); the two concepts are related by the
derivative

Φ(µ) = 2
d

dt
χ(µ ⊞

√
t∗µsc)

∣∣
t=0

2There appears to be some inconsistency in terms of normalization constants in the definition of
Φ between (and within) Voiculescu’s papers [33, 35]. In particular, there appears to be an unfortunate
typo in the statement and proof of Lemma 3.2 of [33], in which a factor of π2/2 was left off. Our
choice of normalization in the definition of Φ is compatible with its definition via the L2 norm of a free
conjugate variable as in [35] and differs by a factor of 4π2/3 from the definition in [33]. If µ is the
semicircular law with second moment equal to 1 as in Example 1.1, then its free Fisher information
equals 1 in our normalization.
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and the closely associated integral formula

(1.7) χ(µ) = 1
2

∫∞

0

(
1

1+ t − Φ(µ ⊞
√
t∗µsc)

)
dt + 1

2
log 2πe.

In [25], it was shown that these quantities were monotone with respect to normal-
ized free convolution powers in the sense that

χ
((
k+ 1

)−1/2
∗ µ⊞k+1) ≥ χ(k−1/2

∗ µ⊞k)(1.8)

and

Φ
((
k+ 1

)−1/2
∗ µ⊞k+1) ≤ Φ(k−1/2

∗ µ⊞k)(1.9)

for all compactly supported µ, and all k ≥ 1. This was the free analog of a
corresponding result proven in [3] for the Shannon entropy and classical Fisher
information, answering a question of Shannon [24].

As is customary, if X is a real noncommutative random variable with law µ, we
write GX := Gµ, RX := Rµ, κn(X) := κn(µ), Φ(X) := Φ(µ), and χ(X) := χ(µ).

1.2. Fractional free convolution powers. Observe that the righthand sides
of (1.3), (1.4) make sense for any real number k. This raises the question of
whether one can define fractional powers µ⊞k for non-integer choices of k. This
is indeed true, according to the statement below.

Proposition 1.2 (Existence of fractional free convolution powers). Let µ be
a compactly supported probability measure on R, and let k ≥ 1 be real. Then, there
exists a unique compactly supported probability measure µ⊞k on R such that

Rµ⊞k(s) = kRµ(s)(1.10)

for all sufficiently small s, or equivalently,

κn(µ
⊞k) = knκn(µ)

for all n ≥ 1.

Thus, for instance, µ⊞ksc = k1/2
∗ µsc for any k ≥ 1.

Proposition 1.2 was first established for sufficiently large k by Bercovici and
Voiculescu [9], and then for all k ≥ 1 by Nica and Speicher [23]; a complex anal-
ysis proof using subordination was given by Belinschi-Bercovici [6, 7] and Huang
[17]. (See also the recent paper [5] for further study of the subordination functions
associated with these measures, [17], [38] for further regularity and support prop-
erties of the µ⊞k, and [2], [26] for an extension to the case when k is a completely
positive map and µ takes values in a C∗-algebra.)

From (1.10) and the invertibility of the R-transform, we have the semigroup
law

(µ⊞k)⊞ℓ = µ⊞kℓ(1.11)
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for any real k, ℓ ≥ 1, and similarly

µ⊞k ⊞ µ⊞ℓ = µ⊞k+ℓ.

Thus, one can now view k ֏ µ⊞k as a continuous one-parameter semigroup.
There are also connections between fractional free convolution powers and free
multiplicative convolution (see [8] and below).

The proof of Proposition 1.2 by Nica and Speicher [23] also gave the follow-
ing free probability interpretation of such powers. Let (A, τ) be a noncommu-
tative probability space (that is to say, a complex associative unital ∗-algebra A
equipped with a unital tracial positive linear functional τ), and let p ∈ A be
a self-adjoint projection of trace 1/k for some k ≥ 1 (thus, p∗ = p2 = p and
τ(p) = 1/k). Then, we can form another noncommutative probability space
(Ap, τp) by defining Ap = [pAp] to be a copy3

Ap := {[pXp] : X ∈A}

of pAp := {pXp : X ∈ A}, and

(1.12) τp([pXp]) := kτ(pXp) = kτ(pX) = kτ(Xp)

for any X ∈ A. It is not difficult to verify that (Ap , τp) is a noncommutative
probability space. We have a “minor map” or “compression map” π : A → Ap

defined by π(X) := [pXp]; this map is ∗-linear, surjective, and maps the unit 1
of A to the unit 1 = [p] of Ap. The minor map π is not an algebra homomor-
phism nor is it trace preserving, but one does at least have homomorphism-like
identities

(1.13) π(X)π(Y) = π(pXpYp) = π(XpYp) = π(pXpY) = π(XpY)

for any X,Y ∈A, and from (1.12) we have

(1.14) τp(π(X)) := kτ(pXp)

for any X ∈ A.

Example 1.3. Let k be a rational number k = N/M > 1, A= MN(C) be the
space of N ×N matrices with trace τ(X) := (1/N)Tr(X), and

p =
(

IM 0M×N−M
0N−M×M 0N−M×N−M

)

3Thus, for instance, [pXp][pYp] = [pXppYp] = [p(XpY)p] and [pXp] + [pYp] =
[pXp + pYp] = [p(X + Y)p]. The brackets [ ] are a formal symbol, which we introduce in or-
der to distinguish the algebraic structures of Ap from that of A. In particular, the unit 1 = [p] of
Ap needs to be distinguished from the non-unit p of A, and the invertibility of an element [pXp]
of Ap does not imply the invertibility of the corresponding element pXp of A.
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be the orthogonal projection to the span of the first M standard basis vectors.
Then, Ap can be identified with MM(C) (with trace τp(X) := (1/M)Tr(X)).
With this identification, π(X) is the upper left M ×M minor of X.

We then have the following interpretation of fractional free convolution pow-
ers as a normalized free minor process.

Proposition 1.4 (Fractional free convolution powers from free minors). If
(A, τ) is a noncommutative probability space, k ≥ 1 is real, p is a real projection of
trace 1/k, and X ∈ A has some law µ and is freely independent of p, then kπ(X)
has law µ⊞k. Thus,

Rkπ(X)(s) = kRX(s),
or equivalently,

Rπ(X)(s) = RX(s/k)(1.15)

for all sufficiently small s; in terms of free cumulants, this becomes

κn(π(X)) = k1−nκn(X)

for n ≥ 1.

Proof. See [23, Corollary 1.14]. For the convenience of the reader, we also
give a self-contained proof in Appendix A. ❐

Remark 1.5. By the asymptotic free independence of independent unitar-
ily invariant large matrices (see appendix to [23]), one can also define µ⊞k for
any real k ≥ 1 as the asymptotic empirical distribution of the M × M random
matrix kAM×M as N → ∞, where A is an N × N bounded random Hermitian
matrix, invariant under unitary conjugation, whose empirical law converges to µ,
M := ⌈N/k⌉, and AM×M is the upper left M × M minor of A. There is a simi-
lar interpretation of fractional free convolution powers in terms of the asymptotic
distribution of large random Young tableaux, drawn uniformly from all tableaux
of a given shape (see [10]).

One can investigate the dynamic of fractional free convolution powers as fol-
lows. From (1.10), (1.2) one has

(1.16)
1

Gµ⊞k(z)
+ kRµ(Gµ⊞k(z)) = z

for all k ≥ 1 ranging in a compact set and all sufficiently large z. In particular,
from the inverse function theorem, Gµ⊞k(z) varies smoothly in k, z in this regime.
Applying the first-order differential operator

∂zGµ⊞k(z) ∂k − ∂kGµ⊞k(z) ∂z,
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which annihilates Gµ⊞k(z) as well as any autonomous function of Gµ⊞k(z), to both
sides of (1.16), we conclude that

(∂zGµ⊞k(z))Rµ(Gµ⊞k(z)) = −∂kGµ⊞k(z),

which when combined with (1.16) to eliminate the Rµ(Gµ⊞k(z)) factor yields the
Burgers-type equation

(1.17) (k ∂k + z ∂z)Gµ⊞k(z) =
∂zGµ⊞k(z)

Gµ⊞k(z)

for k ≥ 1 in a fixed compact region and sufficiently large z. From (1.5), we have

Gk−1/2
∗ µ⊞k(z) = k

1/2Gµ⊞k(k
1/2z),

so after some calculation we can also write this equation in renormalized form as

(1.18)
(
k∂k +

1
2
z ∂z

)
Gk−1/2

∗ µ⊞k(z) =
∂zGk−1/2

∗ µ⊞k(z)

Gk−1/2
∗ µ⊞k(z)

+ 1
2
Gk−1/2

∗ µ⊞k(z).

This in turn gives a differential equation for k−1/2
∗ µ⊞k (see (3.6)).

It is now natural to ask whether the properties of integer-free convolution
powers µ⊞k, k ∈ N extend to the fractional counterparts µ⊞k, k ∈ R. For instance,
the fractional convolution power allows us to make sense of the law of central limit

sums Yk := k−1/2
∑k
j=1Xj of free independent, identically distributed copies Xj of

a centered bounded random variable X. If X has law µ, then YN has law k−1/2
∗ µ⊞k.

The free central limit theorem states that the law of Yk converges to the semicircle
law as k→∞ along positive integers. It is easy to see that the R-transform proof of

the free central limit theorem (see, e.g., [37]) shows also that k−1/2
∗ µ⊞k converges

to the semicircle law as k →∞ along the positive reals.
Now we turn to the monotonicity of free entropy and free Fisher information,

which is the first main result of our paper.

Theorem 1.6 (Monotonicity of free entropy and free Fisher information).

Let µ be a compactly supported finite probability measure. Then, χ(k−1/2
∗ µ⊞k) is

monotone non-decreasing and Φ(k−1/2
∗ µ⊞k) is monotone non-increasing in k for real

k ≥ 1.
Specializing to the case of integer k, we recover the previous results (1.8)

and (1.9).
We prove this theorem in Section 2. Our argument relies on the characteri-

zation of fractional free convolution powers in Proposition 1.4, together with the
fundamental fact that free independence is preserved by taking (free) minors. This
proof also allows for an extension to several variables (see Theorem 2.4). In fact,
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as was shown to us by David Jekel, by applying a similar argument to the classi-
cal entropy and Fisher information of random matrix models, the argument can
be adapted to a microstate setting, allowing one to also prove monotonicity for
Voiculescu’s multivariable microstates free entropy introduced in [34] (see Appen-
dix B). Our argument shows that equality in Theorem 1.6 only holds when µ is a
rescaled version of semicircular measure µsc (see Proposition 2.6).

By computing all of the quantities that appear explicitly or implicitly in the
proof given in Section 2, we were able to extract a complex analytic proof of The-
orem 1.6 using the differential equation (1.17), at least if one assumes additional
regularity on the original measure µ (we present a streamlined (but somewhat
unmotivated) version of this proof in Section 3).

The fact that the flow (1.17) enjoys some monotonicity properties suggests
that it has an interpretation as a gradient flow. We were not able to obtain such an
interpretation, but we instead were able to find a (formal) Lagrangian interpreta-
tion of this flow, when viewed in “Gelfand-Tsetlin coordinates”. In particular, let
µ be a compactly supported probability measure on R, let ∆ denote the “Gelfand-
Tsetlin pyramid”

∆ := {(s,y) : 0 < s < 1, 0 < y < s},

and for any (s,y) ∈ R, let λ(s,y) denote the real number for which

(1.19) µ⊞1/s((−∞, λ(s,y)/s]) = y/s.

Under suitable non-degeneracy assumptions on µ, λ(s,y) will be well defined and
vary smoothly with s,y . This function λ(s,y) has the following random matrix
interpretation. Let N be a large natural number parameter, and let A be a random
Hermitian N×N matrix, invariant under unitary conjugation, and with empirical
spectral distribution converging to µ as N → ∞. Then, the ⌈yN⌉th smallest
eigenvalue of the ⌈sN⌉ × ⌈sN⌉ minor will be concentrated around λ(s,y). In
Section 4 we establish the following result.

Theorem 1.7 (Variational formulation). Formally, λ is a critical point of the
Lagrangian

(1.20)
∫

∆
L(∂sλ, ∂yλ)ds dy

where the Lagrangian density L is given by the formula

(1.21) L(λs , λy) := logλy + log sinπ
λs
λy
.

We do not have a satisfactory interpretation of this Lagrangian density L.
In [22] it is shown that random Gelfand-Tsetlin patterns formed by taking eigen-
values of successive minors asymptotically have the law of the Boutillier bead
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process [11], so it seems reasonable to conjecture4 that the Lagrangian density
L(λs , λy) is proportional to the entropy of this process (with density proportional
to 1/λy , and drift velocity proportional to λs/λy ).

2. PROOF OF MONOTONICITY

We now prove Theorem 1.6. We will rely on two main tools. The first is the fact
that free independence is preserved by taking free minors, as follows.

Lemma 2.1. Let (A, τ) be a noncommutative probability space, and let p ∈A
be a real projection. If B1, . . . , Bn ∈ A are unital algebras such that B1, . . . , Bn, p are
free in A, then π(B1), . . . , π(Bn) are free in Ap.

Proof. See [23, Corollary 1.12]. ❐

Next, we recall the notion of free score (also called free conjugate variable) from
[35]. If (A, τ) is a noncommutative probability space, X ∈ A, and B is a unital
subalgebra of A, we define the free score J(X : B) of X relative to B (if it exists) to
be the unique element in the L2(τ) closure of the algebra Alg(X, B) generated by
X and B with the property that

(2.1)
d

dε
τ(ZP(X + εZ, Y1, . . . , Yn))

∣∣
ε=0 = τ(J(X : B)P(X, Y1, . . . , Yn))

for any Y1, . . . , Yn ∈ B and any noncommutative polynomial P(X,Y1, . . . , Yn) in
n+ 1 variables, where Z is a noncommutative random variable of mean zero and
variance one that is freely independent of X,B (such a variable always exists if one
is willing to extend the noncommutative space (A, τ).) An equivalent definition
(see [35, Proposition 3.4]) is that

(2.2) τ ⊗ τ(∂P(X, Y1, . . . , Yn)) = τ(J(X : B)P(X, Y1, . . . , Yn))

where ∂ : Alg(X, B) → L2(τ ⊗ τ) is the unique derivation such that ∂X = 1 ⊗ 1
and ∂Y = 0 for all Y ∈ B (see [35]). If B is the trivial algebra C, we abbreviate
J(X : C) as J(X). It is known that the free Fisher information Φ(X) is finite if
and only if the score exists, in which case [35]

(2.3) Φ(X) =
∥∥J(X)

∥∥2
L2(τ) = τ(J(X)2);

4Note added in proof: the recent calculations of local entropy (or “surface-tension”) of the bead
process in [29] (see also [19]) seem to strongly support this conjecture. We thank Istvan Prause for
these references. Furthermore, it was pointed out to us by Vadim Gorin (private communication)
that the random Gelfand-Tsetlin process is a continuous version of a random lozenge tiling [15], for
which a variational description was provided in [13], and that the calculation in [29] can be viewed
as a careful evaluation of the continuum limit of the theory in [13]. A very similar conjecture in the
context of random Young tableaux has recently been proposed in [14].
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indeed, this can be viewed as the “true” definition of the free Fisher information.
Specializing (2.1) to the case P = 1, we see that the score, if it exists, is always
trace-free:

(2.4) τ(J(X : B)) = 0.

We have the following basic fact from [35].

Lemma 2.2 (Free extensions do not affect free score). Let (A, τ) be a non-
commutative probability space, let B, B′ be unital subalgebras of A, and X ∈ A be
such that X,B are free from B′. The score J(X : B) exists if and only if the score
J(X : B, B′) exists, and the two scores are equal:

J(X : B) = J(X : B, B′).

Here, we use B, B′ to denote the algebras generated by B and B′.

Proof. See [35, Proposition 3.6]. ❐

We now come to a basic identity.

Proposition 2.3 (Free score and minors). Let (A, τ) be a noncommutative
probability space, let p ∈ A be a real projection of trace k−1 for some k ≥ 1, let
X ∈ A, and let B be a unital subalgebra of A. Assume that X,B are free of p and
that the free score J(X : B) exists. Then, the free score J(π(X) : π(B)) exists and is
equal to

J(π(X) : π(B)) = kE(π(J(X : B))|π(X),π(B))

where E(·|π(X),π(B)) denotes the orthogonal projection (or conditional expectation)
in L2(τp) to the subalgebra of Ap generated by π(X) and π(B).

Proof. Let Z be a noncommutative random variable in A of mean zero and
variance 1 that is free from X,B; such a variable exists after extending A if neces-
sary. From Lemma 2.1, k1/2π(Z) ∈Ap has mean zero and variance 1, and is free
from π(X),π(B). By the definition of free score, it thus suffices to establish the
identity

d

dε
τp(k

1/2π(Z)P(π(X)+ k1/2επ(Z),π(B)))
∣∣
ε=0

= τp(kE(π(J(X : B))|π(X),π(B))P(π(X),π(B)))

for any polynomial P(π(X),π(B)). By the chain rule we may cancel the factors
of k1/2, k, and as P(π(X),π(B)) lies in the range of the orthogonal projection
E(·|π(X),π(B)) we may delete the projection; thus, we now need to show

d

dε
τp(π(Z)P(π(X)+ επ(Z),π(B)))

∣∣
ε=0

= τp(π(J(X : B))P(π(X),π(B))).
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By using the definition of τp and π and the idempotent nature of p, this is
equivalent to

d

dε
τ(π(Z)P(p(X + εZ)p,pBp))

∣∣
ε=0

= τ(J(X : B)P(pXp,pBp)).

By Lemma 2.2, J(X : B,p) exists and is equal to J(X : B). Applying the definition
of free score to the polynomial P(p(X + εZ)p,pBp), we obtain the claim. ❐

Specializing this proposition to the case when B = C, we conclude that (if the
free score J(X) exists) J(π(X)) = kE(π(J(X))|π(X)), and hence by Pythago-
ras’s theorem,

Φ(π(X)) =
∥∥J(π(X))

∥∥2
L2(τp)

≤ k2
∥∥π(J(X))

∥∥2
L2(τp)

.

As J(X) lies in the closure of the algebra generated by X, it is free of p; thus, by
(1.14) and free independence,

∥∥π(J(X))
∥∥2
L2(τp)

= kτ(pJ(X)pJ(X)p) = k−1τ(J(X)2).

We conclude the inequality Φ(π(X)) ≤ kΦ(X). Using the easily verified scaling

Φ(λX) = λ−2Φ(X)(2.5)

for any λ > 0, we conclude that

Φ(k1/2π(X)) ≤ Φ(X)(2.6)

whenever J(X) exists. Clearly, this inequality also holds when J(X) does not exist,
since the righthand side is infinite. We thus have

Φ(k−1/2
∗ µ⊞k) ≤ Φ(µ)(2.7)

for any k ≥ 1 and any compactly supported µ. Rescaling using (1.11), (2.5), we

obtain the non-increasing nature of Φ(χ(k−1/2
∗ µ⊞k). To obtain the corresponding

monotonicity for free entropy, we use (1.7), (2.5) to compute

χ(k−1/2
∗ µ⊞k) = 1

2

∫∞

0

(
1

1+ t − Φ(k
−1/2
∗ µ⊞k ⊞

√
t∗µsc)

)
dt + 1

2
log 2πe

= 1
2

∫∞

0

(
1

1+ t − Φ(k
−1/2
∗ (µ ⊞

√
t∗µsc)

⊞k)
)
dt + 1

2
log 2πe,

and the non-increasing nature of χ(k−1/2
∗ µ⊞k) then follows from the non-in-

creasing nature of Φ(k−1/2
∗ (µ ⊞

√
t∗µsc)⊞k)) for each t ≥ 0.
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The above argument can also be generalized to obtain analogous monotonic-
ity properties for the (non-microstate) free entropy and free Fisher information
of several variables. We recall from [35] that the relative free Fisher information
Φ∗(X : B) of a noncommutative real random variable X ∈ A relative to an alge-
bra B is given by the formula

Φ∗(X : B) =
∥∥J(X : B)

∥∥2
L2(τ) = τ(J(X : B)2),

and the non-microstate free Fisher information Φ∗(X1, . . . , Xn) of a finite number
of noncommutative real random variables X1, . . . , Xn ∈A is given by the formula

(2.8) Φ∗(X1, . . . , Xn) :=
n∑

i=1

Φ∗(Xi : X1, . . . , Xi−1, Xi+1, . . . , Xn).

The corresponding non-microstate free entropy χ∗(X1, . . . , Xn) is then defined as

χ∗(X1, . . . , Xn) =
1
2

∫∞

0

(
n

1+ t − Φ
∗(X1 + t1/2Z1, . . . , Xn + t1/2Zn)

)
dt

+ n
2

log 2πe

where Z1, . . . , Zn are semicircular elements that are free from each other and from
X1, . . . , Xn.

Theorem 2.4 (Monotonicity for several variables). If X1, . . . , Xn ∈ A,
k ≥ 1, and p is a real projection of trace 1/k that is free from X1, . . . , Xn, one has

Φ∗(k1/2π(X1), . . . , k
1/2π(Xn)) ≤ Φ∗(X1, . . . , Xn)

and

χ∗(k1/2π(X1), . . . , k
1/2π(Xn)) ≥ χ∗(X1, . . . , Xn).

We comment that an easy rescaling gives the equivalent forms

Φ∗(π(X1), . . . , π(Xn)) ≤ kΦ∗(X1, . . . , Xn)

and

χ∗(π(X1), . . . , π(Xn)) ≥ χ∗(X1, . . . , Xn)−
n

2
logk.

of these inequalities.

Proof. It suffices to prove the former inequality, as the latter follows by repeat-
ing the previous arguments. From (2.8), it suffices to show that

Φ∗(k1/2π(Xi) : π(X1), . . . , π(Xi−1),π(Xi+1), . . . , π(Xn))

≤ Φ∗(Xi : X1, . . . , Xi−1, Xi+1, . . . , Xn)
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for each i = 1, . . . , n. Let B be the algebra generated by X1, . . . , Xi−1, Xi+1, . . . ,
Xn; then, we can rewrite this inequality as

k−1
∥∥J(π(Xi) : π(X1), . . . , π(Xi−1),π(Xi+1), . . . , π(Xn))

∥∥2
L2(τp)

≤
∥∥J(Xi : B)

∥∥2
L2(τ).

From Proposition 2.3 and Pythagoras’s theorem, we see that if J(Xi : B) exists,
then so does J(π(Xi) : π(B)) and

∥∥J(π(Xi) : π(B))
∥∥2
L2(τp)

≤ k2
∥∥π(J(X : B))

∥∥2
L2(τp)

= k
∥∥J(X : B)

∥∥2
L2(τ),

where, as before, we use the fact that J(X : B) is in the closure of the algebra
generated by X1, . . . , Xn, and is hence free of p.

The algebra B′ generated by

π(X1), . . . , π(Xi−1), π(Xi+1), . . . , π(Xn)

is a subalgebra of π(B); hence, the score J(π(Xi) : B′) exists and is a projection
of J(π(Xi) : π(B)). By a further application of Pythagoras, we conclude that

∥∥J(π(Xi) : π(X1), . . . , π(Xi−1),π(Xi+1), . . . , π(Xn))
∥∥2
L2(τp)

≤ k
∥∥J(X : B)

∥∥2
L2(τ),

and the claim follows. ❐

Remark 2.5. Appendix B establishes monotonicity of entropy for n-tuples
for the so-called microstates free entropy χ, introduced by Voiculescu in [34].

Returning to the case of a single variable, we can analyze the above proof of
monotonicity further to extract when equality occurs.

Proposition 2.6 (Characterization of equality). Let µ be a compactly sup-
ported real probability measure with Φ(µ) < ∞, and let k > 1. If

Φ(k−1/2
∗ µ⊞k) = Φ(µ),

then µ is the law of α+ βu for some semicircular element u, real α, and β > 0.
Conversely, it is easy to see that if µ is the law of α + βu for a semicircular

u, then k−1/2
∗ µ⊞k is the law of k1/2α + βu, so that Φ(k−1/2

∗ µ⊞k) = Φ(µ). Using
the representation (1.7) we see that we also have an analogous claim with the free
Fisher information Φ replaced by the free entropy χ.

Proof. By translating µ (which does not affect the free Fisher information of

µ or k−1/2
∗ µ⊞k), we may assume µ has mean zero. We can also assume µ is not
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a point mass as the free Fisher information is infinite in that case. Inspecting the
proof of (2.7), we must have

τp((kE(π(J(X))|π(X)))2) ≤ k2τp(π(J(X))
2),

and thus π(J(X)) lies in the L2 closure of the algebra generated by π(X). In
particular, these two variables commute, so that

τp(π(J(X))π(J(X))π(X)π(X)) = τp(π(J(X))π(X)π(J(X))π(X))

(note that both sides are finite by Cauchy-Schwarz); by (1.12), we thus have

τ(pJ(X)pJ(X)pXpX) = τ(pJ(X)pXpJ(X)pX).(2.9)

The variables X, J(X) are free of p (since J(X) lies in the closure of the algebra
generated by X), and have trace zero by hypothesis and (2.4). Splitting p into the
trace 1/k and the trace-free part p′ := p− 1/k, we obtain 24 terms, but from free
independence the only terms that survive are those that involve either zero or two
copies of p′, and in the latter case the p′ terms need to be separated from each
other cyclically by two of the X, J(X) factors. In other words, we have

τ(pJ(X)pJ(X)pXpX)

= k−4τ(J(X)2X2)+ k−2τ(p′J(X)2p′X2)

+ k−2τ(J(X)p′J(X)Xp′X),

and similarly,

τ(pJ(X)pXpJ(X)pX)

= k−4τ(J(X)XJ(X)X)+ k−2τ(p′J(X)Xp′J(X)X)

+ k−2τ(J(X)p′XJ(X)p′X).

Applying these identities to (2.9) and noting that J(X) commutes with X, we
conclude that

τ(p′J(X)2p′X2) = τ(p′J(X)Xp′J(X)X).
From free independence, we see that

τ(p′J(X)2p′X2) = τ((p′)2)τ(J(X)2)τ(X2),

and similarly,

τ(p′J(X)Xp′J(X)X) = τ((p′)2)τ(J(X)X)τ(J(X)X).

Thus, we have

τ(J(X)2)τ(X2) = τ(J(X)X)τ(J(X)X),
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which by the converse to Cauchy-Schwarz applied to the L2(τ) inner product
implies that J(X) is a scalar multiple of X. To finish the proof, we can either
invoke the equality case of the free Stam inequality in [35], or argue as follows.
The identity J(X) = αX for a scalar α implies that, if µ is the law of X,

∫
x

z − x dµ = τ(X(z −X)−1)

= ατ ⊗ τ(∂(z −X)−1)

= α
∫∫

1/(z − s)− 1/(z − t)
s − t dµ(s)dµ(t)

= α
∫∫

1
(z − s)(z − t) dµ(s)dµ(t)

= αGµ(z)2,

where Gµ(z) =
∫
(1/(z − s))dµ(s) is the Cauchy transform. Using the identity

∫
x

z − x dµ(x) =
∫
x − z
z − x dµ(x)+

∫
z

z − x dµ(x) = −1+ zGµ(z),

we deduce that −1 + zGµ(z) = αG2
µ(z). Solving this quadratic equation for Gµ

(recalling that Gµ maps the upper half-plane to the lower half-plane and that µ is
a probability measure) shows that µ is a scalar multiple of the semicircle law. ❐

It remains an interesting open problem to obtain an analogous characteriza-
tion of equality in Theorem 2.4.

3. COMPLEX ANALYTIC PROOF

We now give a direct proof of Theorem 1.6 using the differential equation (1.18).
To avoid technicalities we will work at a somewhat formal level, ignoring some
questions of convergence and regularity, or justifying operations such as integra-
tion by parts, although we will still need to be careful when handling the lim-
iting contribution of singular integrals involving kernels such as 1/(z − w) or

1/(z−w)2 when z,w are close. We will also assume that the measures k−1/2
∗ µ⊞k

take the absolutely continuous form

d(k−1/2
∗ µ⊞k) = fk(x)dx

for k ≥ 1 and x ∈ R, where fk is compactly supported in x for each k and is
assumed to obey sufficient regularity5 in k,x to justify the manipulations in the

5It is likely that these regularity hypotheses can be removed by a limiting argument to re-
cover Theorem 1.6 in full generality. For instance, one can take advantage of the fact that if
dνε = (1/π)(ε/(x2+ε2))dx is the Cauchy distribution with parameter ε > 0, then µ∗νε = µ⊞νε
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sequel. We abbreviate

(3.1) Gk(z) := Gk−1/2
∗ µ⊞k(z) =

∫

R

fk(x)

z − x dx.

As is well known, the limiting values

Gk(y + i0±) := lim
ε→0+

Gk(y ± iε)

for either choice of sign ± are then given (for sufficiently regular f ) by the Plemelj
formulae

Gk(y + i0±) = πHfk(y)∓πifk(y),(3.2)

where

(3.3) Hf(y) := p.v.
1
π

∫

R

f (x)

y − x dx

is the Hilbert transform of f . We recall some basic identities about this Hilbert
transform.

Lemma 3.1 (Hilbert transform identities). If f : R → R is compactly sup-
ported and sufficiently regular, then one has the identities

∫

R

f (y)Hf(y)dy = 0,
∫

R

f (y)(Hf(y))2 dy = 1
3

∫

R

f (y)3 dy,

H(fHf) = (Hf)2 − f 2

2
.

Proof. Setting G(z) :=
∫

R

(f (x)/(z − x))dx, by contour shifting we have

∫

R

G(y + i0+)2 dy = 0 and
∫

R

G(y + i0+)3 dy = 0.

Substituting the Plemelj formulaG(y+i0+) = πHf−πif , and taking imaginary
parts of both identities, we obtain the first two claims. For the final claim, we
square (3.2) to conclude that

Gf (y + i0+)2 = π2(Hf 2 − f 2)− 2πifHf

and compare this function against the function

G2πfHf (y + i0+) = 2π2H(fHf)− 2πifHf ,

and (µ ∗ νε)⊞k = µ⊞k ∗ νkε, so one can apply the arguments in this section to the smooth measure
µ ∗ νε (after carefully taking into account that this measure is no longer compactly supported), and
then taking limits as ε → 0. We leave the details to the interested reader.
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to conclude that the two holomorphic functions G2
f , G2πfHf (that both vanish at

infinity) have identical imaginary parts on the half-plane, and are thus completely
identical, giving the claim. ❐

Remark 3.2. From the identity (yn − xn)/(y − x) =
∑n−1
j=0 x

jyn−1−j for
n ≥ 0, we see that
∫

R

Hf(y)ynf (y)dy = 1
2π

∫

R

∫

R

f (x)f (y)
yn − xn
y − x dx dy

= 1
2π

n−1∑

j=0

(∫

R

f (x)xj dx

)(∫

R

f (y)yn−j−1 dy

)
.

Thus, if X is a random variable with law dµ = f (x)dx for a compactly supported
and sufficiently regular f , then on comparing the above identity with (2.2) we see
that the free score J(X) is given by the formula J(X) = 2πHf(X), and thus from
(2.3), we have

Φ(X) = 4π2
∫

R

f (y)Hf(y)2 dy.

Lemma 3.1 shows that this formula is compatible with (1.6).

We abbreviate f = f1 and G = G1, and introduce the biholomorphic kernel
K(z,w) for z,w ∈ C \R by the formula

(3.4) K(z,w) := 1
G(z)G(w)

(
G(z)−G(w)

z −w +G(z)G(w)
)2

,

noting that there is a removable singularity on the diagonal z = w. This kernel
K emerged after lengthy but rather opaque calculations involving the quantities
appearing in the previous section; it would be desirable to have a conceptual in-
terpretation of this expression.

We can now derive Theorem 1.6 from the following three facts.

Proposition 3.3. Formally at least, we have the following claims:
(i) We have

∂kΦ(k−1/2
∗ µ⊞k)

∣∣
k=1 =

8π2

3

∫

R

f 3 dx + 4π
∫

R

Hf ∂xf − f ∂xHf
(Hf)2 + f 2

f 2 dx.

(ii) We have

lim
ε→0+

∑

α,β∈{−1,+1}

∫

R

∫

R

f (x)f (y)K(xαε, yβε)dx dy(3.5)

= −8π2

3

∫

R

f 3 dx − 4π
∫

R

Hf ∂xf − f ∂xHf
(Hf)2 + f 2

f 2 dx,

where xαε := x + iαε and yβε := y + iβε.
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(iii) The kernel K(z, w̄) is positive semi-definite; thus,

n∑

j=1

n∑

k=1

cjckK(zj , zk) ≥ 0

for all complex numbers z1, . . . , zn ∈ C \R and c1, . . . , cn ∈ C.
Indeed, from (iii) we have that

∑

α,β∈{−1,+1}

∫

R

∫

R

f (x)f (y)K(xαε, yβε)dx dy

=
∑

α,β∈{−1,+1}

∫

R

∫

R

f (x)f (y)K(x + iαε,yβε)dx dy

is non-negative for any ε > 0. Meanwhile, from (i), (ii) we have

lim
ε→0+

∑

α,β∈{−1,+1}

∫

R

∫

R

f (x)f (y)K(xαε, yβε)dx dy = −∂kΦ(k−1/2
∗ µ⊞k)

∣∣
k=1

and hence we get ∂kΦ(k−1/2
∗ µ⊞k)

∣∣
k=1 ≤ 0. From (1.11), (1.9) we then have

∂kΦ(k−1/2
∗ µ⊞k) ≤ 0 for all k ≥ 1, giving the non-increasing nature of Φ(k−1/2

∗ µ⊞k);

then, the non-decreasing nature of χ(k−1/2
∗ µ⊞k) follows from (1.7) as in the pre-

vious section.
It remains to establish the three claims in Proposition 3.3.

We begin with (i). From (1.6) and the chain rule we have

∂kΦ(k−1/2
∗ µ⊞k)k=1 = 4π2

∫

R

f1(x)
2 ∂kfk(x)

∣∣
k=1 dx.

On the other hand, applying (1.18) at z = x + i0+ and using (3.2) and the
Cauchy-Riemann equations, we have

(
k∂k +

1
2
x ∂x

)
(πHfk(x)− iπfk(x))

= ∂x(πHfk(x)− iπfk(x))
πHfk(x)− iπfk(x)

+ 1
2
(πHfk(x)− iπfk(x)),

which, upon taking imaginary parts, gives an integral differential equation for fk:

(3.6)
(
k∂k +

1
2
x ∂x

)
fk =

1
π

Hfk ∂xfk − fk ∂xHfk
(Hfk)2 + f 2

k

+ 1
2
fk.

Multiplying by f 2
k and integrating, we obtain the claim (i) after a routine integra-

tion by parts.
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We now skip ahead to (iii). The Schur product theorem asserts that the pointwise
product of positive semi-definite kernels is again positive semi-definite. Since the
rank one kernel 1/(G(z)G(w̄)) is clearly positive semi-definite, it thus suffices
from (3.4) to show that the kernel

(3.7)
G(z)−G(w̄)

z − w̄ +G(z)G(w̄)

is negative semi-definite. But from (3.1) and the identities
∫
R
f (x)dx = 1 and

− 1
(z−x)(w̄−x) =

1/(z−x)−1/(w̄−x)
z−w̄ , we see after a brief calculation that6

−
∫

R

f (x)

(
1

z − x −G(z)
)(

1
w̄ − x −G(w̄)

)
dx

= G(z)−G(w̄)
z − w̄ +G(z)G(w̄).

Since f (x) is non-negative and the rank-one kernels

(
1

x − z −G(z)
)(

1
x − w̄ −G(w̄)

)

are positive semi-definite, the claim (iii) follows.

It remains to establish the identity (ii), which is the lengthiest calculation. We
expand the lefthand side of (3.5) as A2 + 2A1 +A0, where

A2 := lim
ε→0+

∑

α,β∈{−1,+1}

∫

R

∫

R

f (x)f (y)
(G(xαε)−G(yβε))2

G(xαε)G(yβε)(xαε − yβε)2
dx dy

A1 := lim
ε→0+

∑

α,β∈{−1,+1}

∫

R

∫

R

f (x)f (y)
G(xαε)−G(yβε)

xαε −yβε
dx dy

A0 := lim
ε→0+

∑

α,β∈{−1,+1}

∫

R

∫

R

f (x)f (y)G(xαε)G(yβε)dx dy.

The quantity A0 is easiest to compute, as it factorizes as

∣∣∣∣
∑

±

∫

R

f (x)G(x + i0±)dx
∣∣∣∣

2

.

Applying (3.2) and Lemma 3.1 we conclude that A0 = 0.

6In other words, the quantity (3.7) is the negative of the covariance of (z−X)−1 and (w̄ −X)−1,
where X is a random variable with law µ.
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Now we turn to A1. In order to compute the limit ε → 0+ it will be
convenient to use integration by parts to replace the divergent-looking factor
1/(xαε −yβε) with a tamer singularity. More precisely, we write

1
xαε −yβε

= ∂x Log(xαε − yβε)

where we define the Logz away from the branch cut (−∞,0) to be the branch of
the complex logarithm with imaginary part in (−π,π), and on the branch cut
(−∞,0) we define the averaged limiting value

Log(−x) := 1
2
(Log(−x + i0+)+ Log(−x + i0−)) = log |x|.

The above identity breaks down when xαε −yβε vanishes, but this will not cause
difficulty because of the vanishing of the numerator G(xαε)−G(yβε) in this case.
Integrating by parts, we conclude that

A1 = − lim
ε→0+

∑

α,β∈{−1,+1}

∫

R

∫

R

∂x(f (x)f (y)(G(xαε)−G(yβε))

× Log(xαε −yβε)dx dy.

As ε → 0+, the quantity Log(xαε−yβε) converges7 to log |x −y| + iπ1y>x
α− β

2for x ≠ y , while from (3.2), G(xαε)−G(yβε) converges to

π(Hf(x)−Hf(y)− iαf (x)+ iβf (y)).

For f sufficiently regular, we conclude that

∑

α,β∈{−1,+1}
∂x(f (x)f (y)(G(xαε)−G(yβε)))Log(xαε − yβε)

converges to

4π ∂x(f (x)f (y)(Hf(x)−Hf(y))) log |x −y|
+ 2π2 ∂x(f (x)

2f (y)1y>x + 2π2 ∂x(f (x)f (y)
2)1y>x ,

and hence

A1 = −4π
∫

R

∫

R

∂x(f (x)f (y)(Hf(x)−Hf(y))) log |x −y|dx dy

− 2π2
∫

R

∫

R

∂x(f (x)
2f (y)+ f (x)f (y)2)1y>x dx dy.

7Here, the indicator function 1y>x is defined to equal 1 when y > x and 0 otherwise.
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Integrating by parts, we conclude that

A1 = 4π
∫

R

∫

R

f (x)f (y)(Hf(x)−Hf(y))
x −y dx dy − 4π2

∫

R

f 3 dx.

By symmetry and (3.3), we have

∫

R

∫

R

f (x)f (y)(Hf(x)−Hf(y))
x −y dx dy

= π
∫

R

f (x)Hf(x)Hf(x)dx+π
∫

R

Hf(y)f (y)Hf(y)dy,

and hence by Lemma 3.1 and a brief calculation,

A1 = −
4π2

3

∫

R

f 3 dx.

We can compute A2 in a similar fashion, writing

1
(xαε − yβε)2

= −∂2
x Log(xαε −yβε)

and integrating by parts twice to obtain

A2 = − lim
ε→0+

∑

α,β∈{−1,+1}

∫

R

∫

R

∂2
x

(
f (x)f (y)

(G(xαε)−G(yβε))2

G(xαε)G(yβε)

)

× Log(xαε −yβε)dx dy.

We expand

(G(xαε)−G(yβε))2

G(xαε)G(yβε)
= G(xαε)

G(yβε)
− 2+ G(yβε)

G(xαε)

= G(xαε)G(yβε)

|G(yβε)|2
− 2+ G(yβε)G(xαε)|G(xαε)|2

,

and hence by (3.2) this quantity converges to

(Hf(x)− iαf (x))(Hf(y)+ iβf (y))
Hf(y)2 + f (y)2

− 2

+ (Hf(y)− iβf (y))(Hf(x)+ iαf (x))
Hf(x)2 + f (x)2

as ε → 0+.
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We can then evaluate A2 as before (for f sufficiently regular) as

A2 = −4
∫

R

∫

R

∂2
x

(
f (x)f (y)

(
Hf(x)Hf(y)

Hf(y)2 + f (y)2
− 2+ Hf(x)Hf(y)

Hf(x)2 + f (x)2

))

× log |x −y|dx dy

− 2π
∫

R

∫

R

∂2
x

(
f (x)f (y)

(
f (x)Hf(y)

Hf(y)2 + f (y)2
− f (x)Hf(y)

Hf(x)2 + f (x)2

))

× 1y>x dx dy

− 2π
∫

R

∫

R

∂2
x

(
f (x)f (y)

(
f (y)Hf(x)

Hf(y)2 + f (y)2
− f (y)Hf(x)

Hf(x)2 + f (x)2

))

× 1y>x dx dy .

From the fundamental theorem of calculus we have
∫

R

∫

R

∂2
x

(
f (x)f (y)

f (x)Hf(y)

Hf(y)2 + f (y)2

)
1y>x dx dy

=
∫

R

∂y(f (y)
2)

f (y)Hf(y)

Hf(y)2 + f (y)2
dy.

Using the distributional identity ∂2
x1y>x = ∂2

y1y>x and integrating by parts re-
peatedly, we also have

∫

R

∫

R

∂2
x

(
f (x)f (y)

f (x)Hf(y)

Hf(x)2 + f (x)2

)
1y>x dx dy

=
∫

R

∫

R

∂2
y

(
f (x)f (y)

f (x)Hf(y)

Hf(x)2 + f (x)2

)
1y>x dx dy

= −
∫

R

∂x(f (x)Hf(x))
f (x)2

Hf(x)2+ f (x)2
dx.

Similar computations give
∫

R

∫

R

∂2
x

(
f (x)f (y)

f (y)Hf(x)

Hf(y)2 + f (y)2

)
1y>x dx dy

=
∫

R

∂y(f (y)Hf(y))
f (y)2

Hf(y)2+ f (y)2
dy

and ∫

R

∫

R

∂2
x

(
f (x)f (y)

f (y)Hf(x)

Hf(x)2 + f (x)2

)
1y>x dx dy

= −
∫

R

∂x(f (x)
2)

f (x)Hf(x)

Hf(x)2 + f (x)2
dx.
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Next, we integrate by parts, then use Lemma 3.1 and the fact that H commutes
with derivatives to compute

∫

R

∫

R

∂2
x

(
f (x)f (y)

Hf(x)Hf(y)

Hf(y)2 + f (y)2

)
log |x −y|dx dy

= −
∫

R

(
p.v.

∫

R

∂x(f (x)f (y))
Hf(x)Hf(y)

Hf(y)2 + f (y)2

dx

x −y

)
dy

= π
∫

R

H ∂y(fHf)(y)
f (y)Hf(y)

Hf(y)2+ f (y)2
dy

= π
2

∫

R

∂y((Hf)
2 − f 2)(y)

f (y)Hf(y)

Hf(y)2 + f (y)2
dy.

From ∂2
x log |x − y| = ∂2

y log |x − y|, integration by parts, and symmetry, we
then have

∫

R

∫

R

∂2
x

(
f (x)f (y)

Hf(x)Hf(y)

Hf(x)2 + f (x)2

)
log |x −y|dx dy

=
∫

R

∫

R

∂2
y

(
f (x)f (y)

Hf(x)Hf(y)

Hf(x)2+ f (x)2

)
log |x −y|dx dy

= π
2

∫

R

∂x((Hf)
2 − f 2)(x)

f (x)Hf(x)

Hf(x)2 + f (x)2
dx.

Finally,

∫

R

∫

R

∂2
x(f (x)f (y)) log |x −y|dx dy

= −
∫

R

(
p.v.

∫

R

∂x(f (x)f (y))
dx

x −y

)
dy

= π
∫

R

H ∂yf (y)f (y)dy.

Putting all this together, we conclude that

A2 = 2π
∫

R

−∂x((Hf)2 − f 2)
fHf

(Hf)2 + f 2

+ 4(H ∂xf )f − ∂x((Hf)2 − f 2)
fHf

(Hf)2 + f 2
dx

− 2π
∫

R

∂x(f
2)

fHf

(Hf)2 + f 2
+ ∂x(fHf)

f 2

(Hf)2+ f 2
dx

− 2π
∫

R

∂x(f
2)

fHf

(Hf)2 + f 2
+ ∂x(fHf)

f 2

(Hf)2+ f 2
dx,
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which, upon applying the Leibniz rule, the commutativity of H and ∂x , and col-
lecting terms, simplifies to

A2 = −4π
∫

R

Hf ∂xf − f ∂xHf
(Hf)2 + f 2

f 2 dx,

and the claim (ii) follows.

4. VARIATIONAL FORMULATION

We now prove Theorem 1.7. Our calculations here will be completely formal.
Similar calculations appear in the recent paper [20, Section 5] in the context of
studying random Young tableaux from a variational perspective8.

We assume that the measures µ⊞k are absolutely continuous with

dµ⊞k = fk(x)dx

for k ≥ 1. Applying (3.2) at x + i0+ together with (1.17), we conclude that

(k ∂k + x ∂x)(πHfk −πifk) =
∂x(Hfk − ifk)
Hfk − ifk

= ∂x log(Hfk − ifk),

and hence on taking real and imaginary parts, we have

(k ∂k + x ∂x)Hfk =
1
π
∂x log((Hfk)2 + f 2

k )
1/2

and

(k ∂k + x ∂x)fk =
1
π
∂x arctan

fk
Hfk

(where we use the branch of arctan taking values in [0, π]) and thus by the change
of variables k = 1/s and abbreviating f := f1/s ,

(−s ∂s + x ∂x)Hf =
1
π
∂x log((Hf)2 + f 2)1/2(4.1)

and

(−s ∂s + x ∂x)f =
1
π
∂x arctan

f

Hf
(4.2)

for 0 < s < 1. We comment that this latter equation was also formally derived in
[27] in the context of the derivative process, which is an averaged version of the
minor process as established in [21, Lemma 1.16].

8The authors thank Istvan Prause for this reference.
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Meanwhile, for (s,y) ∈ ∆, we have from (1.19) that

(4.3)
∫ λ/s

−∞
f (x)dx = y

s
,

where we abbreviate λ = λ(s,y) and f = f1/s . If we differentiate this in y using
the fundamental theorem of calculus, we see that

∂yλ

s
f (λ/s) = 1

s
;

thus,

(4.4) f (λ/s) = 1
∂yλ

.

If instead we differentiate in s, we conclude that

(
∂sλ

s
− λ

s2

)
f (λ/s)+

∫ λ/s

−∞
∂sf (x)dx = −

y

s2
,

and thus by (4.4) and multiplying by s, we have

∂sλ

∂yλ
− λ

s ∂yλ
+
∫ λ/s

−∞
s ∂sf (x)dx = −

y

s
.

By (4.2) we have

s ∂sf = x ∂xf −
1
π
∂x arctan

f

Hf
,

and hence by integration by parts and (4.3), (4.4),

∫ λ/s

−∞
s ∂sf (x)dx =

λ

s
f (λ/s)− 1

π
arctan

f (λ/s)

Hf(λ/s)
−
∫ λ/s

−∞
f (x)dx

= λ

s ∂yλ
− 1
π

arctan
f (λ/s)

Hf(λ/s)
− y
s
,

and thus
∂sλ

∂yλ
= 1
π

arctan
f (λ/s)

Hf(λ/s)
.

We comment that this gives the pointwise inequalities 0 ≤ ∂sλ ≤ ∂yλ, which in
the random matrix formulation corresponds to the Cauchy interlacing inequali-
ties. We rewrite this equation using (4.4) as

(4.5) Hf(λ/s) = cot(π ∂sλ/∂yλ)

∂yλ
,
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and hence

log((Hf)2 + f 2)1/2(λ/s) = log
cosec(π ∂sλ/∂yλ)

∂yλ
.

Differentiating in y using the chain rule, we conclude

∂yλ

s
(∂x log((Hf)2 + f 2)1/2)(λ/s) = ∂y log

cosec(π ∂sλ/∂yλ)

∂yλ
,

and similarly by differentiating (4.5) in y , s we have

∂yλ

s
(∂xHf)(λ/s) = ∂y

cot(π ∂sλ/∂yλ)

∂yλ

and

(∂sHf)(λ/s)+
(
∂sλ

s
− λ

s2

)
(∂xHf)(λ/s) = ∂s

cot(π ∂sλ/∂yλ)

∂yλ
,

so that

(∂sHf)(λ/s) =
(
∂s −

∂sλ

∂yλ
∂y +

λ

s∂yλ
∂y

)
cot(π ∂sλ/∂yλ)

∂yλ
.

Inserting these identities into (4.1) evaluated at λ/s, we obtain a differential equa-
tion for λ in the variables s,y :

−s
(
∂s −

∂sλ

∂yλ
∂y

)
cot(π ∂sλ/∂yλ)

∂yλ
= 1
π

s

∂yλ
∂y log

cosec(π ∂sλ/∂yλ)

∂yλ
.

Multiplying by −π ∂yλ/s, we obtain

(∂yλ∂s − ∂sλ∂y)
π cot(π ∂sλ/∂yλ)

∂yλ
= ∂y

(
log ∂yλ+ log sin

(
π
∂sλ

∂yλ

))

which we write in divergence form using (1.21) as

∂s

(
∂yλ

π cot(π ∂sλ/∂yλ)

∂yλ

)
+

+ ∂y
(
−∂sλ

π cot(π ∂sλ/∂yλ)

∂yλ
− L(∂sλ, ∂yλ)

)
= 0.
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Since the partial derivatives of

L(λs , λy) := logλy + log sin

(
π
λs
λy

)

are given by

Lλs =
π

λy
cot

(
π
λs
λy

)

and

Lλy =
1
λy

− πλs
λ2
y

cot

(
π
λs
λy

)
,

we can rewrite the above equation as

∂s(∂yλLλs(∂sλ, ∂yλ))+ ∂y(∂yλLλy (∂sλ, ∂yλ)− L(∂sλ, ∂yλ)) = 0.

From the chain rule we have

∂yL(∂sλ, ∂yλ) = (∂y ∂yλ)Lλy (∂sλ, ∂yλ)+ (∂s ∂yλ)Lλs (∂sλ, ∂yλ);

inserting this into the previous equation and using the product rule and then
cancelling the ∂yλ factor, we conclude that

∂sLλs (∂sλ, ∂yλ)+ ∂yLλy (∂sλ, ∂yλ) = 0,

which is the Euler-Lagrange equation for the Lagrangian (1.20), and the claim
follows.

APPENDIX A. FRACTIONAL FREE CONVOLUTION POWERS

FROM THE MINOR PROCESS

In this appendix we prove Proposition 1.4. Let the hypotheses be as in that propo-
sition; our task is to establish (1.15). We follow the arguments from [30, Sec-
tion 2.5.4]. Using the GNS construction we may assume that A is a von Neu-
mann algebra of bounded operators.

We begin with some algebraic identities. For any noncommutative variable E
of operator norm less than 1, define the transform

Ψ(E) := (1− E)−1 − 1 = E + E2 + E3 + · · · .

Lemma A.1 (Algebraic identities).

(i) If Z ∈ A is sufficiently small (in operator norm), then

(1+π(Z))−1 = π((1+ pZ)−1).
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(ii) If Y ∈ A, and E ∈ A is sufficiently small (in operator norm) depending on
Y , then π(YΨ(E)) = Ψ(EpY ), where

(A.1) EpY := π(1− (1− E)(1− (1− pY)E)−1).

Proof. If Z is small enough, then 1+pZ is invertible by Neumann series, and
by (1.13) we have

π((1+ pZ)−1)(1+π(Z)) = π((1+ pZ)−1p(1+ Z)p)
= π((1+ pZ)−1(1+ pZ)p)
= π(p)
= 1,

giving (i). For (ii), we apply (i) with Z := YΨ(E) to conclude that

(1+π(YΨ(E)))−1 = π((1+ pYΨ(E))−1).

Since 1+ pYΨ(E) = (1− (1− pY)E)(1− E)−1, we see from (A.1) that

π((1+ pYΨ(E))−1) = 1− EpY ,

and the claim (ii) then follows after some rearranging. ❐

Now set Y = k. From (A.1) and Neumann series we have

Ekp = [pEp]−
∞∑

n=1

[p((1− kp)E)np]− [pE((1− kp)E)np],

when E is sufficiently small in operator norm. As 1 − kp has trace zero, we con-
clude on taking traces that τp(Ekp) = 0 whenever E has trace zero, is sufficiently
small in operator norm, and is freely independent from p.

This has the following consequence. If z is sufficiently large and s = Gµ(z),
then from (1.1) we have s = τ((z −X)−1), and thus

(A.2) (z −X)−1 = s(1− E(s))

for some trace zero element E(s) ∈ A, which will be small when z is large.
Since X is freely independent of p, E(s) is also. Meanwhile, from (1.2) one has
Rµ(s)+ 1

s = z, which when combined with (A.2) and rearranging gives

X = Rµ(s)−
1
s
Ψ(E(s))
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for all sufficiently small s. Applying kπ , we conclude that

kπ(X) = kRµ(s)−
1
s
π(kΨ(E(s))).

Applying Lemma A.1 (ii), and (1.12), we conclude that

kπ(X) = kRµ(s)−
1
s
Ψ(Ekp(s))

where Ekp(s) ∈ Ap obeys (1.12). If we set z′ := kRµ(s)+ 1/s, we can rearrange
this as (z′−kπ(X))−1 = s(1−Ekp(s)), and then upon taking traces, we conclude

s = τp((z′ − kπ(X))−1) = Gkπ(X)(z).

From (1.2) we then conclude that Rkπ(X)(s) = kRµ(s) for all sufficiently small s,
giving the claim (1.15).

APPENDIX B. MONOTONICITY FOR MICROSTATES FREE ENTROPY

by David Jekel

In this section, we adapt the free probability proof of Theorem 2.4 to the
microstates setting to obtain an analog of that theorem for Voiculescu’s microstates
free entropy χ, introduced in [34]. The main result is as follows.

Theorem B.1 (Monotonicity of microstate free entropy). Let k ∈ [1,∞).
Let (A, τ) be a noncommutative probability space, let X ∈ An

sa (i.e., X is a tuple
(X1, . . . , Xn) of self-adjoint elements of A), and let p be a projection of trace 1/k
freely independent of X. Let π : A → [pAp] be the compression map, and let
Π := k1/2π be the normalized compression. Then, χ(Π(X)) ≥ χ(X).

The first step in the proof is to reformulate χ in terms of the classical entropy
of random matrix approximations of X. The second step is to apply a similar
argument as in Section 2 for the classical entropy and score functions, which results
in an approximate version of (2.7) for the minors of the random matrix models.

We first set up all the notation that we need. We begin by recalling various
classical information theory notions in the general context of random variables
taking values in finite-dimensional inner product spaces9 H.

Definition B.2 (Classical information theory concepts). Let H be a finite-
dimensional inner product space, with inner product 〈u,v〉H and norm ‖u‖H .
We let νH be the Haar measure canonically associated with H (thus ν assigns unit
mass to the unit cube generated by any orthonormal basis in H). We have the
following:

(i) If X is square integrable, then the total variance VarH(X) is given by

VarH(X) := E
∥∥X − EX

∥∥2
H .

9All inner product spaces here will be over the reals.



2580 DIMITRI SHLYAKHTENKO & TERENCE TAO

(ii) If X is a (classical) random variable taking values in H with absolutely
continuous law dµ = ρ dνH , the classical (differential ) entropy hH(X) of

X is given by −
∫

H
ρ logρ dνH . If there is no density ρ, the entropy is

defined to equal −∞. We also write hH(µ) for hH(X).
(iii) A standard Gaussian random variable in H is a Gaussian variable ZH of

mean zero and identity covariance matrix in the sense that

E〈u,ZH〉H〈ZH , v〉H = 〈u,v〉H for all u,v ∈ H;

equivalently, ZH has law (2π)− dim(H)/2e−‖u‖
2
H/2 dνH .

(iv) If X is a random variable taking values in H, then a random variable
JH(X) is said to be a classical score of X (relative to the inner product H)
if it lies in the L2 closure of the algebra generated by X, and

(B.1)
d

dε
E〈f (X + εZH), ZH〉H

∣∣
ε=0 = E〈JH(X), f (X)〉H

for any f ∈ C∞c (H;H), where ZH is a standard Gaussian variable in H
(classically) independent of X (cf. (2.1)). Note that if the classical score
exists, it is unique.

(v) The classical Fisher information of X is IH(X) := E‖JH(X)‖2
H if a classical

score JH(X) exists, and IH(X) = +∞ otherwise.

Example B.3. If H is a standard Euclidean space Rd and if X has a C1

probability density ρ, then the classical score is given explicitly by JRd(X) =
−∇ρ(X)/ρ(X) provided the latter is in L2. The classical Fisher information is

then equal to IRd(X) =
∫

Rd
|∇ρ|2/ρ.

Example B.4. If H is a d-dimensional Hilbert space, ZH is a standard Gauss-
ian variable in H and t > 0; then,

VarH(t
1/2ZH) = td, hH(t

1/2ZH) =
d

2
log(2πet),

JH(t
1/2ZH) = t−1/2ZH , IH(t1/2ZH) =

d

t
.

Thus, we see that with this “standard” choice of normalization, most quantities
scale linearly with the dimension d. Later on we shall switch to a “microstate”
choice of normalization that is better suited for passing to the free probability
limit d→∞.

We now recall some standard properties of the above notions.

Lemma B.5 (Standard classical information theory facts). LetH be a finite-
dimensional inner product space of some dimension d, with canonical Haar measure
νH . Let X be a random variable taking values in H with law µ, and let ZH be a
standard Gaussian random variable in H classically independent of X.
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(i) (Entropy controlled by variance) If X has finite variance, then

(B.2) −∞ < hH(X) ≤
d

2
log(2πeVarH(X)/d).

In particular, each multiple t1/2ZH of ZH maximizes the entropy amongst all
variables of the same variance.

(ii) (Entropy controlled by partition) Let (Sj)∞j=1 be a measurable partition of H.
Then,

hH(µ) ≤
∞∑

j=0

µ(Sj) logνH(Sj)−
∞∑

j=0

µ(Sj) logµ(Sj).

(iii) (Shannon inequality) If Y is a random variable in H classically independent
of X, then hH(X + Y) ≥ hH(X),hH(Y).

(iv) (Stein identity) If t > 0, then the score JH(X+ t1/2ZH) exists and is given by

(B.3) JH(X + t1/2ZH) = E[t−1/2ZH|X + t1/2ZH].

In particular, the Fisher information IH(X + t1/2ZH) is finite.
(v) (de Bruijn identity) If 0 < t0 < t1, we have the identity

(B.4) hH(X + t1/2
1 ZH)− hH(X + t1/2

0 ZH) =
1
2

∫ t1

t0
IH(X + t1/2ZH)dt.

Proof. By using an orthonormal basis one can identify H with a standard Eu-
clidean space Rd. The facts (i), (iv), (v) are then well known and can be found in,
for instance, [28], and (iii) is similarly well known [24]. Now, we prove (ii). If µ
does not have a density, then hH(µ) = −∞ and hence the claim is trivially true.
Assume that µ has a density ρ. Then,

hH(µ) = −
∞∑

j=0

∫

Sj
ρ logρ dνH .

We apply Jensen’s inequality to the concave function −t log t and the probability
measure that is the pushforward by ρ of the uniform distribution on Sj , and thus
obtain

1
νH(Sj)

∫

Sj
−ρ logρ dx ≤ −

(
1

νH(Sj)

∫

Sj
ρ dνH

)
log

(
1

νH(Sj)

∫

Sj
ρ dνH

)

= − µ(Sj)

νH(Sj)
log

µ(Sj)

νH(Sj)
,

which produces the desired estimate. ❐
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We will primarily work in the inner product space MN(C)nsa of n-tuples X =
(X1, . . . , XN) of N ×N Hermitian matrices, with inner product

〈X,Y〉MN(C)nsa :=
n∑

j=1

trN(XjYj)

defined using the normalized trace trN := 1
N Tr. Thus, in particular we have the

normalized Frobenius norms

∥∥X
∥∥2
MN(C)

n
sa
=

n∑

j=1

trN(X
2
j ) =

1
N

n∑

j=1

Tr(X2
j ).

This is an nN2-dimensional inner product space. If ZMN(C)nsa is a standard Gauss-
ian random variable in MN(C)nsa, then ZMN(C)nsa is an ensemble of n (classically)
independent matrices, with each entry having variance N, for a total variance of
VarMN(C)nsa(Z) = nN2. To facilitate taking limits as N → ∞, it is convenient to
introduce the normalized Gaussian variable

Z(N) := 1
N
ZMN (C)nsa .

Thus, Z(N) is an ensemble of n (classically) independent GUE matrices, with
each entry having variance 1/N, converging to an n-tuple of freely independent
semicircular random variables as N → ∞ [32]; we refer to such random variables
Z(N) as GUE tuples in MN(C)nsa. One easily computes the total variance

VarMN(C)nsa(t
1/2Z(N)) = tn,

classical entropy

hMN(C)nsa(t
1/2Z(N)) = nN

2

2
log(2πet)−nN2 logN,

classical score
JMN(C)nsa(t

1/2Z(N)) = N2t−1/2Z(N),

and classical Fisher information

IMN(C)nsa(t1/2Z(N)) = nN
4

t

of multiples t1/2Z(N) of GUE tuples for t > 0. Note that most of the quantities
on the righthand side depend on the matrix dimensionN, which is undesirable for
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the purposes of extracting a meaningful limit as N → ∞. To facilitate the process
of taking such a limit, we therefore introduce the normalized classical entropy

h(N)(X) := 1
N2
hMN(C)nsa(X)+n logN,

the normalized classical score

J(N)(X) := 1
N2
JMN(C)nsa(X),

and the normalized classical Fisher information

I(N)(X) := E
∥∥J(N)(X)

∥∥2
H =

1
N4
IMN(C)nsa(X)

while leaving the variance unchanged:

Var(N)(X) := VarMN(C)nsa(X).

Thus, for instance, we have

Var(N)(t1/2Z(N)) = tn,(B.5a)

h(N)(t1/2Z(N)) = n

2
log(2πet),(B.5b)

J(N)(t1/2Z(N)) = t−1/2Z(N),(B.5c)

I(N)(t1/2Z(N)) = n

t
.(B.5d)

Comparing this with Example B.4, we see that these normalizations have lowered
the “effective dimension” of MN(C)nsa from nN2 to n. With these “microstate”
normalizations, the definition (B.1) of the classical score becomes

(B.6)
d

dε
E〈f (X + εZ(N)), Z(N)〉MN(C)nsa

∣∣
ε=0 = E〈J(N)(X), f (X)〉MN(C)nsa ,

the relationship (B.2) between classical entropy and variance becomes

−∞ < h(N)(X) ≤ n
2

log(2πeVar(N)(X)/n),

the Stein identity (B.3) becomes

(B.7) J(N)(X + t1/2Z(N)) = E[t−1/2Z(N)|X + t1/2Z(N)],
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and the de Bruijn identity (B.4) becomes

h(N)(X + t1/2
1 Z(N))− h(N)(X + t1/2

0 Z(N))(B.8)

= 1
2

∫ t1

t0
I(N)(X + t1/2Z(N))dt.

Note how there are no longer any factors of N appearing explicitly in these as-
sertions (other than in the superscripts and subscripts). The reader is invited to
verify that these identities and inequalities are compatible with (B.5). (See, e.g.,
[18, Section 16] for further explanation of these normalizations.)

We now introduce the definitions necessary to define microstate entropy.

Definition B.6 (Microstates free entropy, cf. [34, Section 2.1]). Let n ≥ 1
and R > 0, let (A, τ) be a noncommutative probability space, and let X ∈An

sa be
ann-tuple of self-adjoint elements with operator norm ‖X‖op :=maxj ‖Xj‖op ≤ R.

(i) Let C〈x1, . . . , xn〉 be the ∗-algebra of noncommutative polynomials in
formal self-adjoint variables x1, . . . , xn. We define Σn,R as the space of
tracial positive linear functionals λ : C〈x1, . . . , xn〉 → C such that for all
i1, . . . , iℓ ∈ {1, . . . , n}, we have |λ(xi1 . . . xiℓ)| ≤ Rℓ. We equip Σn,R
with the weak-∗ topology.

(ii) We define the noncommutative law of X in Σn,R to be the linear functional
λX ∈ Σn,R defined by

λX(p) := τ(p(X)).

In particular, in the case where A is MN(C) and τ is the normalized trace
trN := (1/N)Tr, we have λY (p) = trN(p(Y)) for any p ∈ C〈x1, . . . , xn〉
and anyn-tuple (Y1, . . . , Yn) ∈MN(C)nsa of self-adjoint matrices inMN(C).

(iii) For an open set U ⊆ Σn,R, we define the microstate space10

Γ (N)R (U) :=
{
Y ∈ MN

(
C
)n

sa : λY ∈ U
}
.

(iv) For λ ∈ Σn,R, we define11

χR(λ) := inf
U∋λ

lim sup
N→∞

1
N2
(logνMN(C)nsa(Γ

(N)
R (U))+n logN),

where the infimum is taken over all neighborhoods U of λ in Σn,R.
(v) We define χ(λ) := supR′≥R χR′(λ). If (A, τ) is a noncommutative prob-

ability space and X ∈ An
sa, then we also define χ(X) := χ(λX).

10The condition Y ∈ Γ (N)R (U) entails that λY ∈ Σn,R, and hence ‖Y‖op ≤ R.
11The corresponding definition in [34] uses 1

2n logN instead of n logN, but this is due to the use
of the un-normalized trace Tr instead of the normalized trace trN to define the Haar measure νMN(C)nsa .
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The next proposition expresses the microstate entropy χ in terms of the nor-
malized classical entropies h(N) introduced previously.

Proposition B.7 (Random matrix interpretation of microstates free en-
tropy). Let X be an n-tuple of self-adjoint noncommutative random variables from
(A, τ). Then, χ(X) is the supremum of

lim sup
ℓ→∞

h(Nℓ)(X(ℓ))

over all sequences of natural numbers (Nℓ)ℓ∈N tending to∞, and all sequences random
variables (X(ℓ))ℓ∈N from MNℓ(C)

n
sa satisfying the following conditions:

(1) λX(Nℓ) converges in probability to λX .
(2) For some R > 0, we have lim supℓ→∞ ‖X(ℓ)‖op ≤ R in probability, where

‖X‖op denotes the supremum of the operator norms ‖Xi‖op of the components
X1, . . . , Xn of X.

(3) There exist some constants C > 0 and K > 0 such that

(B.9) P(‖X(ℓ)‖MNℓ (C)nsa ≥ C + δ) ≤ e
−KN2

ℓδ
2

for all δ > 0.

Furthermore, the supremum (if it is > −∞) is witnessed by random matrices which are
uniformly bounded in operator norm and unitarily invariant in distribution.

Proof. First, let (X(ℓ))ℓ∈N be a sequence of random matrices as described
above, and let µ(ℓ) be the associated probability measure. Fix R′ > R. Let U be a
neighborhood of the noncommutative law of X in Σn,R′ . We apply Lemma B.5 (ii)

with the partition S(ℓ)j , j ≥ 0, of MN(C)nsa defined by

S(ℓ)0 := Γ (Nℓ)R′ (U),

S(ℓ)1 := B(0, C + 1) \ Γ (Nℓ)R′ (U),

S(ℓ)j := B(0, C + j) \ B(0, C + j − 1) for j ≥ 2,

where B(0, r ) denotes the ball of radius r in MN(C)nsa, to obtain

h(Nℓ)(X(Nℓ)) ≤
∞∑

j=0

H(ℓ)
j ,

where

H(ℓ)
j

:= µ(ℓ)(S(ℓ)j )

(
1

N2
ℓ

logνMNℓ (C)
n
sa(S

(ℓ)
j )+n logN

)

− µ(ℓ)(S(ℓ)j )
1

N2
ℓ

logµ(ℓ)(S(ℓ)j ).
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We have

H(ℓ)
0 = µ(ℓ)(Γ (Nℓ)R′ (U))

(
1

N2
ℓ

logνMNℓ (C)
n
sa(Γ

(Nℓ)
R′ (U))+n logNℓ

)

− µ(ℓ)(S(ℓ)0 )
1

N2
ℓ

logµ(ℓ)(S(ℓ)0 ).

As ℓ →∞, the second term on the righthand side goes to zero (bounding−t log t ≤
1/e for any t > 0). From Definition B.6, we thus see that for any ε > 0 one can
find U for which

lim sup
ℓ→∞

H(ℓ)
0 ≤ χ(X)+ ε.

Next, to estimate H(ℓ)
1 , we observe from a routine application of Stirling’s formula

(identifying the inner product space MNℓ(C)
n
sa with a standard nN2

ℓ -dimensional
Euclidean space) that

(B.10)
1

N2
ℓ

logνMNℓ (C)
n
sa(B(0, r )) = −n logNℓ +n log r +O(n)

for any r > 0. By the inequality νMNℓ (C)
n
sa(S

(ℓ)
1 ) ≤ νMNℓ (C)

n
sa(B(0, C + 1)), we

conclude that
lim sup
ℓ→∞

H(ℓ)
1 ≤ 0.

For the terms j ≥ 2, we see from (B.10), (B.9), and the fact that −t log t is
increasing for t ≤ 1/e that

lim sup
ℓ→∞

∞∑

j=2

H(ℓ)
j ≤ lim sup

ℓ→∞

∞∑

j=2

e−KN
2
ℓ(j−1)2

(n log j +O(n) +K(j − 1)2) = 0.

Putting all these bounds together, and sending ε to zero, we conclude that

lim sup
ℓ→∞

h(Nℓ)(X(ℓ)) ≤ χ(X).

Hence, the supremum of the lim sup of classical entropies is thus less than or equal
to χ(X).

For opposite inequality, assume without loss of generality that χ(X) > −∞
since otherwise the inequality is trivial. Fix R > ‖X‖op. Let (Uℓ)ℓ∈N be a se-
quence of nested neighborhoods of λX in Σn,R shrinking to λX as ℓ → ∞. For
each ℓ, choose a number Nℓ such that

1

N2
ℓ

logνMNℓ (C)
n
sa(Γ

(Nℓ)
R (Uℓ))+n logNℓ

> lim sup
N→∞

(
1
N2

logνMN(C)nsa(Γ
(N)
R′ (U))+n logN

)
− 1
ℓ
.
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We can arrange thatNℓ+1 > Nℓ and hence Nℓ →∞. Define µ(ℓ) to be the uniform

measure on Γ (Nℓ)R (Uℓ), and let X(ℓ) be a random matrix tuple with distribution
µ(ℓ). Then,

h(Nℓ)(µ(ℓ)) = 1

N2
ℓ

logνMNℓ (C)
n
sa(Γ

(Nℓ)
R (Uℓ))+n logNℓ.

Hence,

lim sup
N→∞

h(Nℓ)(µ(ℓ))

≥ lim sup
ℓ→∞

(
lim sup
N→∞

(
1
N2

logνMN(C)nsa(Γ
(N)
R′ (U))+n logN

)
− 1
ℓ

)

= χR(µ) = χ(µ),

where the last equality follows from [34, Proposition 2.4]. Moreover, it is clear
that this choice of random matrix models is unitarily invariant and bounded in
operator norm. ❐

Remark B.8. Note that, if ‖X(ℓ)‖MN(C)nsa ≤ C, assumption (3) is trivially
satisfied. It is also true of any random matrix models which satisfy Herbst’s con-
centration inequality with a suitable normalization depending on the dimension
Nℓ (which in turn follows from a normalized log-Sobolev inequality). In partic-
ular, this applies when X(ℓ) = t1/2Z(ℓ) for a GUE tuple Z(ℓ) from MNℓ(C)

d
sa and

any fixed t > 0. See [16] and [1, Section 4.4.2]. Herbst’s concentration inequality
also implies that (2) holds for some R by [18, Lemma 11.5.2].

Remark B.9. Compare Proposition B.7 to the more explicit connections be-
tween microstates free entropy and classical entropy that occur for special random
matrix models in [34] and [18, Proposition 16.1.4].

Remark B.10. It was pointed out to us by Ben Hayes (private communica-
tion) that a similar idea to Proposition B.7 has already been used in the context of
sofic entropy. Bowen expressed the entropy of algebraic actions of residually finite
groups as the supremum of the limits of classical entropies of certain measures on
the model spaces (finitary approximations) (see Definition 4 and Theorem 4.1 in
[12]). Similarly, Austin used this approach to define a version of sofic entropy in
a more general context [4].

Now, we give an analog of Proposition 2.3.

Lemma B.11 (Classical score and minors). Let X be a random element of
MN(C)nsa with finite classical Fisher information (in particular, the normalized classi-
cal score J(N)(X) exists). Let 1 ≤ M ≤ N, and let π (N,M) : MN(C)nsa → MM(C)nsa be
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the compression map that sends a tuple (X1, . . . , Xn) in MN(C)nsa to the tuple consist-
ing of the upper left M ×M minors of X1, . . . , Xn. Define the normalized compression

Π(N,M) := N1/2

M1/2
π (N,M).

Then, Π(N,M)(X) has a normalized classical score in MM(C)nsa given by

J(M)(Π(N,M)(X)) = E[Π(N,M)(J(N)(X))|Π(N,M)(X)].

Proof. Let Z(N) be a GUE tuple in MN(C)nsa (classically) independent of X.
Then, it is easy to see that Π(N,M)(Z(N)) is a GUE tuple in MM(C)nsa (classically)
independent of Π(N,M)(X). By (B.6), it suffices to show that

d

dε
E〈f (Π(N,M)(X)+ εΠ(N,M)(Z(N))),Π(N,M)(Z(N))〉MM (C)nsa

∣∣
ε=0

= E〈E[Π(N,M)(J(N)(X))|Π(N,M)(X)]f (Π(N,M)(X))〉MM(C)nsa

for any smooth f : MM(C)nsa → MM(C)nsa. We can remove the conditional expec-
tation on the righthand side, thus reducing to

d

dε
E〈f (Π(N,M)(X)+ εΠ(N,M)(Z(N))),Π(N,M)(Z(N))〉MM (C)nsa

∣∣
ε=0

= E〈Π(N,M)(J(N)(X)), f (Π(N,M)(X))〉MM(C)nsa .

By embedding MM(C)nsa into MN(C)nsa by padding zero entries to the M ×M ma-
trices to create N ×N matrices, this simplifies further to

d

dε
E〈f (Π(N,M)(X + εZ(N))), Z(N)〉MN(C)nsa

∣∣
ε=0

= E〈J(N)(X), f (Π(N,M)(X))〉MN(C)nsa .

But this follows from (B.6). ❐

As a consequence we can establish a classical analog of (2.7), except that there
is an error coming from the diagonal elements of the matrix (which will end up
going to zero in the limit as N →∞).

Corollary B.12 (Approximate monotonicity of normalized classical Fisher
information). Let the notation and hypotheses be as in Lemma B.11. If the distribu-
tion of X is additionally invariant under unitary conjugation, one has

(B.11) I(M)(Π(N,M)(X)) ≤ I(N)(X)+ N

M
E
∥∥diag(J(N)(X))

∥∥2
MN(C)

n
sa
,

where diag(A) = (diag(A1), . . . ,diag(An)) is the orthogonal projection onto the
space of diagonal matrices of a tuple A ∈ MN(C)nsa.
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Proof. From Lemma B.11, one has

I(M)(Π(N,M)(X)) = E
∥∥E[Π(N,M)(J(N)(X))|Π(N,M)(X)]

∥∥2
MM (C)

n
sa

≤ E
∥∥Π(N,M)(J(N)(X))

∥∥2
MM(C)

n
sa
.

Now, let σ be a random permutation matrix in U(N), drawn using Haar measure,
(classically) independent of X. From the unitary invariance of X we then have

E
∥∥Π(N,M)(J(N)(X))

∥∥2
MM (C)

n
sa
= EXEσ

∥∥Π(N,M)(σJ(N)(X)σ−1)
∥∥2
MM(C)

n
sa

where we use Eσ to denote taking expectation just over σ , and EX to denote
taking expectation over the variable X (which is independent of σ ). For any
(deterministic) tuple A = (A1, . . . , An) in MN(C)nsa, with ak,ij denoting the ij
entry of Ak, direct computation shows that

∥∥A
∥∥2
MN(C)

n
sa
= 1
N

n∑

k=1

∑

1≤i,j≤N
|ak,ij|2

and

Eσ

∥∥Π(N,M)(σAσ−1)
∥∥2
MM(C)

n
sa
= 1
N

N(M − 1)
M(N − 1)

n∑

k=1

∑

1≤i,j≤N:i≠j

|ak,ij|2

+ 1
N

N

M

n∑

k=1

N∑

i=1

|ak,ii|2

and thus (since N(M − 1) ≤ M(N − 1))

Eσ

∥∥Π(N,M)(σAσ−1)
∥∥2
MM(C)

n
sa
≤
∥∥A
∥∥2
MN(C)

n
sa
+ N

M

∥∥diag(A)
∥∥2
MN(C)

n
sa
.

Replacing A = J(N)(X) for each possible value of X and then applying the expec-
tation EX , we conclude

E
∥∥Π(N,M)(J(N)(X))

∥∥2
MM(C)

n
sa

≤ E
∥∥J(N)

∥∥2
MN(C)

n
sa
+ N
M
E
∥∥diag(J(N)(X))

∥∥2
MM(C)

n
sa
,

and the claim follows. ❐

We now integrate this to obtain the following result.

Lemma B.13 (Approximate monotonicity of normalized classical entropy
differences). Let X be a random element of MN(C)nsa with finite variance and uni-
tarily invariant distribution. Let Z(N) be a GUE tuple in MN(C)nsa (classically) inde-
pendent of X, and set Xt := X + t1/2Z(N). Let 1 ≤ M ≤ N, and let Π(N,M) be the
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normalized compression operator from Lemma B.11. Then, for 0 < t0 < t1,

h(M)(Π(N,M)(Xt1))− h(M)(Π(N,M)(Xt0))

≤ h(N)(Xt1)− h(N)(Xt0)+
n

2M
log

t1
t0
.

Proof. Note that

Π(N,M)(Xt) = Π(N,M)(X)+ t1/2Π(N,M)(Z(N))

and that Π(N,M)(Z(N)) is a GUE tuple in MM(C)nsa classically independent of
Π(N,M)(X). Hence, by two applications of (B.8), it suffices to establish the in-
equality

I(M)(Π(N,M)(Xt)) ≤ I(N)(Xt)+
n

Mt

for all t > 0. By (B.11), it suffices to show that

E
∥∥diag(J(N)(Xt))

∥∥2
MN(C)

n
sa
≤ n

Nt
.

By (B.7), we have J(N)(Xt) = E[t−1/2Z(N)|Xt]. In particular,

E
∥∥diag(J(N)(Xt))

∥∥2
MN(C)

n
sa
≤ E

∥∥t−1/2 diag(Z(N))
∥∥2
MN(C)

n
sa
= n

Nt

as required. ❐

Proof of Theorem B.1. Consider a self-adjoint n-tuple X from (A, τ) and a
freely independent projection p of trace 1/k in A. By enlarging (A, τ) if nec-
essary assume it contains a tuple Z = (Z1, . . . , Zn) of semicircular variables freely
independent of each other and of X and p. Set Xt := X + t1/2Z for every t ≥ 0,
and let Π be the normalized compression Π := k1/2π .

We can assume without loss of generality that χ(X) > −∞ since otherwise
the inequality is trivial. By Proposition B.7, there exists a sequence of integers
Nℓ tending to ∞ and random Nℓ × Nℓ matrix tuples X(ℓ) with ‖X(ℓ)‖ ≤ R and
λX(ℓ) → µ in probability, such that

χ(X) = lim sup
ℓ→∞

h(Nℓ)(X(ℓ)).

Let Mℓ := ⌈Nℓ/k⌉, so that Mℓ/Nℓ → 1/k as ℓ → ∞. Let Z(ℓ) be a GUE tuple

in MNℓ(C)
n
sa (classically) independent of X(ℓ), and set X(ℓ)t := X(ℓ) + t1/2Z(ℓ) for

t ≥ 0. Let Π(Nℓ,Mℓ) be the normalized compression operator from Lemma B.11,
and let P (ℓ) ∈ MNℓ(C) be the orthogonal projection matrix onto the span of the
first Mℓ basis vectors.
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It is a standard result in random matrix theory (see, e.g., Theorem 2.2 in
[32], Section 5.5 in [1]) that λZ(ℓ) converges almost surely to λZ . We also have
that λX(ℓ) → λX in probability, and λP (ℓ) → λp. Because of the independence
and unitary invariance of X(ℓ) and Z(ℓ), Voiculescu’s asymptotic freeness theory
[32], [36] implies that λ(X(ℓ),Z(ℓ),P (ℓ)) → λ(X,Z,p) in probability. In particular, this
implies that λΠ(ℓ)(X(ℓ)t )

→ λΠ(Xt) in probability.

Note that for any t0 > 0, the matrix models Π(Nℓ ,Mℓ)(X(ℓ)t0 ) satisfy the hy-

potheses of Proposition B.7. The tail bound hypothesis (3) follows because X(ℓ)

is bounded in operator norm and because Z(ℓ) satisfies these tail bounds using
known concentration inequalities as explained in Remark B.8. Thus, by Proposi-
tion B.7,

χ(Π(Xt0)) ≥ lim sup
ℓ→∞

h(Mℓ)(Π(Nℓ ,Mℓ)(X(ℓ)t0 )).

By Lemma B.13, for any 0 < t0 < t1, we have

h(Mℓ)(Π(Nℓ,Mℓ)(X(ℓ)t0 ))− h
(Mℓ)(Π(Nℓ,Mℓ)(X(ℓ)t1 ))(B.12)

≥ h(Nℓ)(X(ℓ)t0 )− h
(Nℓ)(X(ℓ)t1 )−

n

2Mℓ
log

t1
t0
.

Using Lemma B.5 (iii), and (B.5), we have

h(Mℓ)(Π(Nℓ ,Mℓ)(X(ℓ)t1 )) = h
(Mℓ)(Π(Nℓ,Mℓ)(X(ℓ))+ t1/2

1 Π(Nℓ,Mℓ)(Z(ℓ)))

≥ h(Mℓ)(t1/2
1 Π(Nℓ ,Mℓ)(Z(ℓ)))

= n
2

log(2πet1).

and similarly,

h(Nℓ)(X(ℓ)t0 ) ≥ h
(Nℓ)(X(ℓ)).

Finally, from Lemma B.5 (i) we have

h(Nℓ)(X(ℓ)t1 ) ≤
n

2
log(2πe(Var(Nℓ)(X(ℓ))/n+ t1)).

Substituting these estimates into (B.12) and collecting terms, we obtain

h(Mℓ)(Π(Nℓ ,Mℓ)(X(ℓ)t0 )) ≥ h
(Nℓ)(X(ℓ))−n log

[
2πe

(
1+ Var(Nℓ)(X(ℓ))

nt1

)]

− n

2Mℓ
log

t1
t0
.
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Taking the lim sup as ℓ →∞, we conclude

χ(Π(Xt0)) ≥ χ(X)−n log
[

2πe
(

1+ Var(X)
nt1

)]
,

where

Var(X) :=
n∑

j=1

∥∥X − τ(X)
∥∥2
τ ,

and we have observed that Var(Nℓ)(X(ℓ)) → Var(X) because X(ℓ) is bounded in
operator norm and λX(ℓ) → λX in probability. Taking limits as t1 → ∞, we obtain
χ(Π(Xt0)) ≥ χ(X). Finally, note that Π(Xt0) is bounded in operator norm by
some constant R′, and converges in noncommutative law to Π(X); hence, using
the upper-semicontinuity of χ on Σn,R′ established in [34, Proposition 2.6], we
take the limit of the above inequality as t0 → 0 to conclude

χ(Π(X)) ≥ χ(X)

as required. ❐
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