
Understanding Similar Code through Comparative
Comprehension

Justin Middleton, Kathryn T. Stolee
Department of Computer Science, North Carolina State University

{jamiddl2, ktstolee}@ncsu.edu

Abstract—Any problem in code may have multiple solutions
that differ in details large and small. Because modern software
development is characterized by an abundance of searchable and
reusable code, effective developers must be able to judge not
only the meaning of new algorithms but also the differences
between alternatives. Therefore, we use a multi-method study
to explore how developers perform comparative comprehension—
the cognitive activity of understanding how algorithms behave
relative to each other.

To explore how developers compare code, we performed a
controlled experiment with 16 developers in a mixed think-aloud
and interview format and another 95 developers in a survey
format. In this experiment, participants investigated whether a
pair of code snippets would demonstrate equivalent behavior
when run, controlling for differences in behavior, program-
ming languages, algorithmic structures, and meaningful names.
Overall, our results describe how comparison fits into learning,
reviewing, and reusing code. Our task observations shed light
on how developers move between code similarities at different
levels—textual, structural, and schematic—when simultaneously
inspecting multiple snippets. In our experiment, developers made
more accurate conclusions about behavior given similar lan-
guages and structures, with names acting as additional evidence
in interaction with other cues, but they also overestimated
whether behavior is equivalent in many cases. From this, we
identify challenges developers face in comprehending alternatives
and we highlight opportunities to better support developers in
comparison activities.

Index Terms—comparative comprehension, program compre-
hension, code clones, human studies

I. INTRODUCTION

Being a software developer means managing options. If you
are uncertain about how to write code for a problem, you can
explore tutorials in a Google search, consult recommendations
on Stack Overflow, or investigate code in context in codebases
or open-source projects. These resources altogether contain a
massive quantity of diverse applications, but despite this diver-
sity, a significant amount of code contains similar features [1].
This repetition occurs for a variety of reasons: for example,
similar sub-problems reoccur in different contexts [2], de-
velopment communities share linguistic conventions [3], and
developers directly reuse and modify each other’s code [4].
This repetition from a diversity of sources means not only that
a given algorithm may exist somewhere already and be waiting
for discovery, but also that there may exist multiple similar
but divergent alternatives that satisfy the problem. When there
are multiple viable options, developers may have to move

beyond comprehending individual programs into comparing
alternatives for subtle differences.

Comparison is the cognitive activity by which people con-
sider two or more things and identify features that they have in
common and contrast those they do not. Any two things can be
compared for more or less insight, but for software developers,
code is the fundamental material of their work and the primary
object of software comprehension research [5]. Given a task,
different code designs have different implications—some may
be faster, more readable, or more prone to error [6]—so the
urgency of understanding code comparison is rooted in how it
serves as fuel for decision making in design. Therefore, we ask
the question: how do developers comprehend the similarities
and differences of code alternatives?

To explore the process of comparison, which we also call
comparative comprehension, we performed a multi-method
study with a controlled experiment, think-aloud observations,
and interviews to observe developer reasoning from multiple
angles. In this paper, we focus on the case of code behavior,
seeing it as one of the fundamental qualities which defines a
program. Therefore, we observe how developers reason about
code snippet pairs that differ in behavior as well as language,
structure, and naming to explore how developers recognize
the same principles at work in different designs. We also
generalize how developers use comparative activities in order
to perform many kinds of software development work.

Our data build a case for comparative comprehension in
contexts like learning, reviewing, and beyond. Altogether,
comparative comprehension builds on processes from singular
comprehension, such as using experience and significant be-
havioral cues to reduce the work of bottom-up comprehension,
but it introduces strategies for moving between alternatives
like searching for and aligning structural analogues. However,
these processes are vulnerable to error. Interview and survey
participants achieve 73% and 65% correctness, respectively, in
comparison tasks that involve identifying differences between
alternatives; the think-aloud tasks reveal various types of
mistakes developers make. Our survey results suggest that
similar features help developers make more accurate conclu-
sions about code behavior—similar algorithmic structures and
shared languages have a positive impact on correctness, and
meaningful names interact with other effects—but they also
suggest that, in our case, developers overestimate the rate at

978-1-6654-4214-5/22/$31.00 ©2022 IEEE

20
22

 IE
EE

 S
ym

po
si

um
 o

n
V

is
ua

l L
an

gu
ag

es
 a

nd
 H

um
an

-C
en

tri
c

C
om

pu
tin

g
(V

L/
H

C
C

) |
 9

78
-1

-6
65

4-
42

14
-5

/2
2/

$3
1.

00
 ©

20
22

 IE
EE

 |
D

O
I:

10
.1

10
9/

V
L/

H
C

C
53

37
0.

20
22

.9
83

31
17

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on July 18,2023 at 22:09:20 UTC from IEEE Xplore. Restrictions apply.

which they think behavior is shared given two similar snippets.
We discuss the implications these results have for theory and
practice, such as in understanding the assumptions developers
make in the contexts of multiple possible alternatives and how
tools can support the discovery of significant differences.

Our research contributions include:
• A definition and qualitative description of comparative

comprehension as a cognitive process, grounded in ob-
servations of task performance from 16 developers, and

• A survey and model from 95 developers, corroborating
the relationship between syntactic similarities and the
comprehension of semantic similarities in code snippets.

II. RESEARCH QUESTIONS

To reiterate, given a landscape of software development with
abundant yet repetitive code, the ability to make insightful
distinctions between similar alternatives can make developers
effective curators of code. We call this ability comparative
comprehension, rather than just comparison, to emphasize it as
an act of human cognition in contrast to comparative analyses
performed by computational tools. Furthermore, rather than
leave unexamined the notion that explicit comparison occurs
because the conditions for comparison occur—more than one
viable option exists for a tasks—we also want to explore if
and in what contexts developers compare code in practice.

Measures of similarity are subjective and diverse, and it is
difficult to say if any two algorithms are ever the “same” [7].
Nevertheless, few qualities are more fundamental to an algo-
rithm than its behavior, or the values or states it produces.
If the behavior does not reasonably address a specific task,
then the developers are more likely to filter it out of focus
rather than fully comprehend it [8]. Therefore, in this paper,
we focus on behavior equivalence, or whether code will
produce the same outputs for the same inputs, as our subject
for comparative comprehension. In code similarity research,
behaviorally similar programs are also called type-4 clones [9],
and our use of “equivalence” is a more exact constraint on
“similar.” Although developers care about other comparable
dimensions like complexity and readability, these concepts are
more difficult to validate [10] compared to output behavior.

Lastly, whereas typical program comprehension studies
often investigate questions of how code fits into a larger
structure [11], our focus supposes similar program excerpts
that are not designed to coexist in the same program at the
same time. Instead, these snippets could ostensibly substitute
for one another in the same structure, and they may imply
design trade-offs which comparative comprehension can infer.
This concept is similar to variants within the work of Srinivasa
Ragavan and colleagues [12].

Therefore, we formalize these research questions:
RQ1: In what contexts do developers perform compar-

ative comprehension? This research question grounds our
definitions in real-world applications.

RQ2: What strategies do developers use in comparative
comprehension? We look for the decisions and strategies that

enable developers not only to make sense of each alternative
but also to evaluate them as similar or different.

RQ3: How do designs of code alternatives affect the
accuracy of comparative comprehension? Given that code
design influences comprehension [13], we test whether dimen-
sions of design similarity influence comparison too.

III. METHODOLOGY

With a focus on equivalent behavior in code, we designed
a controlled experiment and implemented two study designs
to execute it: think-aloud tasks with reflective interviews,
and a survey distribution. Think-aloud tasks allow for di-
rect observation and personalized follow-up questions. Survey
tasks, on the other hand, trade specificity of observations for
broader distribution. Nevertheless, we implemented both of
these designs with the same style of comparison tasks, which
we describe in this section.

A. Task Design

The core activity in this study’s tasks is to present de-
velopers with pairs of variably designed snippets and
ask whether the snippets are behaviorally equivalent.
Given that there are two possible answers to this question
(yes and no), our first independent variable (IV) is IV-1: the
ground truth of behavioral equivalence. We call behaviorally
equivalent pairs clones [9]; if not, then they are non-clones.
The dependent variable is whether the developer accurately
identifies the snippets as clones or non-clones.

To explore the impact of variable designs for RQ3, we
identify three dimensions of design from literature that may
influence comparative comprehension:

• IV-2: Programming languages {same or different}: Al-
though each language has a unique syntax, they often
share enough concepts to solve the same problems. De-
velopers often work in multiple languages [14], but trans-
ferring knowledge between them is prone to error [15].

• IV-3: Algorithmic structure {similar or dissimilar}: The
same tasks can be accomplished with different sequences
of control and data features. For example, bubblesort and
mergesort accomplish the same sorting task with different
structures. Furthermore, different approaches in this way
may represent different stages of learning and may be
unequally vulnerable to error [6].

• IV-4: Semantic content of names {meaningful or ob-
fuscated}: Function and variable names are a medium
of communication and influence on comprehension [16],
[17]. Rather than name similarity, however, we focus on
whether names that suggest behavior improve compara-
tive comprehension compared to obfuscated names.

As a baseline of similarity, we constrain our tasks to snippet
pairs with identical type signatures and related semantics but
not identical text. For related semantics, we group tasks into
families for which all snippets can be accurately described
by brief, natural language phrases, but the details of their
outcomes may change. For example, a family may include

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on July 18,2023 at 22:09:20 UTC from IEEE Xplore. Restrictions apply.

Fig. 1. Similar and dissimilar snippet pairs in the same task family with input domains and examples. The left pair is classified [clones, same language,
similar structure, meaningful names]. The right pair is classified [non-clones, different languages, dissimilar structures, obfuscated names].

algorithms that order a list of objects without specifying on
what feature to order them.

A task consists of a side-by-side pair snippets from the
same family, never between families. Our study environment
features this pair exclusively, rather than working in real-world
interfaces where code occurs alongside competing signals like
crowdsourced quality signals, natural language discussion, or
other dissimilar code. Additionally, we defined a domain and
examples of expected input for each family, as in Figure 1, to
avoid issues about the limits of types on specific architectures.

B. Artifact Collection

To improve the naturalness of our tasks, we curated existing
snippets from the web rather than designing new ones. We
set goals for snippet families: snippets should be compact and
single functions (e.g.  25 lines), have nontrivial or branching
logic with no syntactic errors, and rely on built-in features or
standard libraries. To find candidates, we explored code clone
benchmarks [18], [19], [20], [21], [22], code search engines,
open-source platforms like GitHub, and practice websites
like Codewars1 and LeetCode.2 We manually modified some
snippets to control our variables but wrote none from scratch.

We identified the 6 task families in Table I throughout the
aforementioned resources. Treating every independent variable
as binary, we needed 24 = 16 snippet pairs for full coverage.
For behavior, we manually analyzed snippets and made tests
from edge cases and 10,000 randomly generated inputs to
establish a heuristic for our ground truth of behavior similarity.
For language, we focus on Java and Python because of their
popularity, also meaning that any snippets in Python should
be valid for both Python 2 and Python 3. For structure,
our use of cross-language pairs meant we could not use
simple token similarity as our measure. Instead, the first
author manually classified snippets in relation to algorithmic
design choices identified in the Structural Variation column of
Table I. For naming, we ensured the function name represented
the task and otherwise preserved the variable names in the

1https://codewars.com/
2https://leetcode.com/

body as originally found, even if they were abbreviated. To
obfuscate names, we replaced function names with ANON and
reduced variables names to at most four characters. Figure 1
demonstrates our method: the right-side method in each pair is
the same snippet, except that the left instance has meaningful
names and the right is obfuscated.

From the first three variables and six families, we created 48
snippet pairs from 47 unique snippets reused up to three times.
This doubled to 96 pairs overall after obfuscating names.
However, after study execution, we reclassified the structures
of six of the 48 distinct snippet pairs to refine structural
classifications, so the treatments were not perfectly balanced in
the analysis. Furthermore, in case anyone volunteered for both
interview and survey, we also curated 3 partial snippets pairs as
back-ups: algorithms for factoring an integer, generating string
permutations, and checking whether two arrays are circularly
identical. These snippets, along with all the other study data,
are included on our Zenodo repository [23].

C. Think-Aloud Tasks & Interviews
1) Environment: Due to pandemic conditions, we used

Zoom to host, record, and transcribe a draft of the conversa-
tion, which the first author (henceforth the interviewer) refined.
We conducted the interview with a screen-shared slideshow for
all visual content and coordinated it with oral explanation.

2) Protocol: We designed interviews to be 30 minutes.
Every interview had three phases: concept introductions, tasks,
and a reflective interview. For concepts, we defined behavioral
similarity and showed examples of clone and non-clone pairs.
We then explained the think-aloud protocol, specifying our in-
terest in not just conclusions but in impressions, assumptions,
and continuous focus throughout the task. We also clarified
what other actions they could take, such as consulting API
documentation but not rewriting and executing the algorithm.
For tasks, we drew two or three pairs, depending on time
taken, from the first four tasks in Table I, as well as the three
partial families in Section III-B because one participant also
participated in the survey. When a participant concluded their
investigation with a yes or no answer, the interviewer asked
them to reflect on their strategy. After the final pair, we asked

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on July 18,2023 at 22:09:20 UTC from IEEE Xplore. Restrictions apply.

TABLE I
EXPERIMENTAL TASKS WITH MULTIPLE VARIATIONS. ALL STRING INPUTS WERE CAPPED WITH AT MOST 100 CHARACTER LENGTH.

Task Family Behavioral Variation (IV-1) Structural Variation (IV-3) Input Domain

1 Bubblesort
Sort an array of integers.

• In ascending order
• In descending order

Does it manage looping with:
• nested for-loops
• one for-loop and a while-loop

one integer array: 1M items be-
tween ±1B

2 CamelCaser
Convert snake case to CamelCase.

• Capitalize first character
• Ignore first character

Does it
• iterate over characters
• split by underscore and iterate over words

one string: alphanumeric and un-
derscores

3 Interleave

Combine letters from strings
• Append excess characters
• Omit excess characters
• Throw exception

Is it:
• a single-loop solution for two strings
• a double for-loop for indefinite strings
• while+for loop solution for indefinite strings

two strings: alphanumeric, punc-
tuation, and spaces

4 Deduplicate

Deduplicate adjacent characters
• Replace all duplicates (‘aaaa’ ! ‘a’)
• Replace pairs of two (‘aaaa’ ! ‘aa’)
• Remove pairs of two (‘aaaa’ ! ‘’)

Does it:
• iterate over adjacent characters
• store the last unique character

one string: alphanumeric, punctu-
ation, underscores and spaces

5
Anagram

(Survey Only)

True if two strings are exact anagrams
• Case sensitive
• Case insensitive

Does it:
• compare sorted strings
• count character frequency?

two strings: alphanumeric ands
spaces

6
Balanced

(Survey Only)

True if all brackets are closed, in order
• Match exact bracket type
• Ignore bracket type
• Allow unclosed

Does it:
• build a hash-map of bracket characters
• use an if-else sequence or switch statements?

string: characters in ”{}[]()”

them on their strategies overall and where they employ these
strategies in practical software development contexts.

3) Recruitment: We distributed our study and consent in-
formation at software companies, social media like Twitter
and LinkedIn, and university mailing lists. Undergraduate
participants received extra credit in a university course for
participation, but we did not offer further compensation.

4) Population: We had 16 total participants, as listed in
Table II: four undergraduate students (U1 – U4), five graduate
students (G1 – G5), and seven professionals (P1 – P7). Their
years of programming experience ranged from 2 to 20, as
shown in the Years Exp. column.

5) Analysis: To answer RQ1 and RQ2, we analyzed the
think-aloud scripts from the interviews for how the partici-
pant’s narration focused on and moved between the snippets in
the pair. Additionally, the interviewer used open card sorting to
organize statements to common questions by primary themes.
To partially address RQ3, the tasks were analyzed in terms of
correctness with our ground truth, although we did not fit these
data into a statistical model because of our low sample size
compared to number of factors. Table II also shows all tasks,
treatments, and outcomes. For example, participant U1 had
three tasks, including a pair of Java snippets (J) with similar
structures (S) and meaningful names (N) which were indeed
clones (C), yielding the shorthand (J S N C). In this case,
U1 labeled them as non-clones, but this was incorrect () by
our definition.

D. Survey
1) Environment: We designed the survey to be 45 minutes

on Qualtrics,3 a survey platform that can randomize task order
and balance treatments. The survey contains four sections:
screening questions, conceptual introductions, tasks, and exit
questions. The screening questionnaire comprised the consent
form, self-assessments of Java and Python experience, and two
questions about snippets in each language to test comprehen-
sion. Participants continued if they reported some experience
in both languages and got at least two code questions correct.

The conceptual introduction defined behavioral code clones
as “programs that give the same output for all of a given range
of inputs, even if they don’t follow the same algorithm,” and
included interactive examples. A task includes an image of a
randomly selected pair of snippets from one of the families
in Table I and as many as four questions: are they clones
for the valid domain and for an unrestricted domain, which
inputs demonstrate difference in output, and what were the
most significant cues. Each participant completed an initial
set of four tasks in a random order and an attentional task
to filter out low-quality responses, and they had the option to
complete two more experimental tasks. At the end, participants
optionally reflected on their overall strategies.

2) Recruitment: We piloted the study with eight volunteers
from a graduate school and a software engineering conference.
After refining the study, we then reached out to populations
available to us in discussion boards (CS/SE boards on Reddit,
Gitter), university student mailing lists, social media (Twitter
and LinkedIn), personal connections, and Mechanical Turk.

3https://www.qualtrics.com/

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on July 18,2023 at 22:09:20 UTC from IEEE Xplore. Restrictions apply.

The first 100 participants were awarded a $10 Amazon gift
card, and all participants who submitted emails were entered
into a raffle for a $50 dollar gift card.

3) Population: Altogether, 288 people attempted the quali-
fying questionnaire and 124 qualified. Overall, we excluded 29
participants and their 161 observations for quality issues and
retained 95 participants and 461 observations from the exper-
imental task. Of the participants, 68 were graduate students,
17 were current software professionals, and the rest held other
positions around academia or self-employment.

4) Analysis: To address RQ3, we used a mixed-effects
logistic regression model to fit our binary response variable to
our independent features and control for repeated observations
from the same participant and task families. In the vocabulary
of the R package glmer for mixed-effects models, the formula
(interactions omitted to save space) is the following:

correct ⇠ language + structure + naming

+ clone truth + (language ⇤ structure) + ...

+ (1|participant) + (1|task)

With 461 observations, we pruned higher-level and insignifi-
cant interactions to converge at the model in Table IV.

IV. FINDINGS

In this section, we present data for our research questions
about when, by what strategies, and how accurately developers
compare code.

A. RQ1: When do developers compare code?

Student participants (U4, G1, G3) discussed learning con-
texts: a developer compares programs to discover, evaluate,
and retain techniques to a well-defined problem to improve
personal competency. This can happen in structured lessons
(e.g. U4 learning how to analyze computational complexity)
or as voluntary participation in programming practice commu-
nities (e.g. LeetCode for G1, on Discord for G3). Participants
may first prepare their own algorithm to solve a problem and
compare it to how other developers solved it.

Among professional developers (P2, P5, P6), review also
employs code comparison: the developer compares code to
verify the maintenance or evolution of properties between
versions to improve a software system. P5 illustrates this case
in the question, “does the evolved version do the same thing
when it is supposed to and do the different thing when it’s
supposed to.” Developers in this context often have project-
specific experience that contextualizes code in the review,
along with documentation and testing tools.

Refactoring (P2, P4, P5, P7) and repair (P1, P4, P5, P7)
are two activities that can contextualize reviews and constrain
comparative goals. For refactoring, developers compare code
to verify nonfunctional changes while preserving functional
behavior. P7 details the many judgments in the refactoring
mindset, considering “why the simpler, more beautiful, more
elegant, more efficient version doesn’t actually produce the
same answer, [and] whether it’s a better answer, or worse

answer.” In repair, developers compare code to isolate faulty
functional properties in behavior. P1 describes their experi-
ence: “Frequently [the code versions] look very similar, but
there will be some small change that I have to pick up on.”
Both require comparing code versions to verify evolution.

However, when asked about where they compared code, our
participants also discussed situations where they did not have
two concrete alternatives of code (as in our tasks), but instead
an abstract goal and an instance of concrete code as a tentative
reference point. For example, while constructing new code
from a model, developers implement new features by using
existing code as an example of what they want to write without
directly copying it (U1, U3, G2, G3, G4, P3):

(P3) I’m trying to do a very similar thing, but there
are subtle differences...I use what I have as a guide but
I’m constantly comparing it to what I’m writing to make
small changes to fit my problem.

We also discussed Q&A websites like Stack Overflow or code
search engines like that on GitHub with several participants.
Although multiple snippets co-exist in the same interfaces,
participants detail an opportunistic strategy which prefers
surface signals rather than a deep comparison of options:

(G5) I first check for the green checkmark [on Stack
Overflow]. Okay, this is a good answer and then, if it
doesn’t work, then just moving on to the next one and see
how that works. But not a direct comparison for each one.

This is more akin to recognizing satisfactory snippets by
mentally held requirements than it is to concrete code features.

RQ1: Code comparison supports learning contexts by clar-
ifying the impact of different designs and review contexts
by verifying code evolution. In example-driven construction
and search contexts, developers also consider indirect com-
parisons with requirements instead of code.

B. RQ2: With what strategies do developers compare code?
By definition, comparative comprehension over code in-

volves two types of movement for the developer’s focus: first,
between features within a single snippet to form a behavioral
understanding; second, between snippets to estimate similar-
ity. On this foundation, we elaborate other phenomena that
characterized the interpretation of difference.

The shape of code hints at challenge and influences the
starting point. Participants commented on both extreme visual
similarity (G4: “This looks like two people tried to copy each
other’s code”) and extreme difference (P2: “It’s three times
as long as the one on the right.”). Starting a task, participants
most often refer to the left snippet alone or similar elements
from both, but in four out of 45 instances, participants focused
on the right snippet first when some property made it more
accommodating. For example, participants G2, P5 and P7 saw
the same pair of camel-casing algorithms (naming aside), but
whereas G2 and P7 began with the right snippet because of it
was shorter than the left snippet, P5 began on the left because
they disliked the list comprehension in the right. Another
reason for choosing a particular starting point was in the
preference for a particular language over the other.

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on July 18,2023 at 22:09:20 UTC from IEEE Xplore. Restrictions apply.

TABLE II
ALL INTERVIEW TASKS WITH CORRECTNESS. WITHIN EACH PARTICIPANT, TASK ORDER WAS RANDOM.

*: A PARTIAL TASK DESCRIBED IN SECTION III-B.

Years
Position Exp. Bubblesort CamelCase Interleave Duplicates Circular* Permute* Factors*

U1 Undergraduate 2- 5 J S N C x s n c P S N C
U2 Undergraduate 2- 5 J S n c x s N C x S N C
U3 Undergraduate 2- 5 x S n C J S N C x S n C
U4 Undergraduate 2- 5 J S N c x S n C
G1 Graduate 2- 5 P s n C P S N c

G2 Graduate 5-10 x S n C P s N c

G3 Graduate 2- 5 J s n c P s n c x s N c

G4 Graduate 5-10 J S N C J S n C x s N c

G5 Graduate 2- 5 P s N C P S n C x s N c

P1 Professional 2- 5 P s N C P S n C P S n c

P2 Professional 5-10 x S N C J S n C x s N c

P3 Professional 5-10 J S n C J S N C x s n c

P4 Professional 2- 5 J s N c P S N C x s n c

P5 Professional �20 P s n c ? P s n c P S N C
P6 Professional 10-20 x s N C P s n C x s n c

P7 Pro., non-SE �20 P s N c P s N c P S n C

Format: {Language Structure Names Clone-Truth Correctness}
Language [Java | Python | x: crossed] Names [N: meaningful | n: obfuscated]
Structure [S: similar | s: dissimilar] Clone-Truth [C: clones | c: non-clones]

Correctness [: correct | : correct for wrong reasons | : incorrect | ?: unresolved]

Meaningful names inform expectations which serve as a
foundation for comprehension and comparison. Names can
transform the initial task from “What do these do?” to “How
does this meet my expectations?” P1 explains, “When I saw
it was called bubblesort I immediately knew what to expect,
versus when they’re ANON and I don’t know what to expect.”
Developers may nevertheless recognize obfuscated code as a
familiar schema, and this realization may recontextualize the
comparison. In one instance of obfuscated bubblesort algo-
rithms, participant G1 initially concluded that two algorithms
were non-clones because one defined a loop variable without
using its value, whereas the other used all variables. However,
further investigation triggered their recollection of bubblesort
algorithms, and G1 reevaluated the other snippet’s variables
not in terms of value but in terms of why the loop had to iterate
even if it did not use the indexing variable in calculations.

Developers may delay moving between snippets to com-
prehend one entire snippet first. A major decision of a com-
parison is when to switch focus. However, some participants
established a foundation by comprehending the first snippet
exclusively, at least broadly, whereas others cross repeatedly.
In our 45 observations, 29 tasks began with narrations of an
exclusive focus on one snippet, whereas the other 16 mixed
elements from both before reaching the end of either.

Developers move between snippets to map and evaluate
similar features. From our analysis of participants’ narrated
thoughts, we note three general strategies for alternating focus:
textual, structural, and schematic comparison.

1) In textual comparison, developers rapidly switch between
characters or tokens of highly similar pairs. Developers can
eschew the effort of comprehending identical statements, as
P4 demonstrates with similar camelcase algorithms: “since it
was identical I didn’t even bother trying to figure out what this

was doing.” If variable names differ, developers can maintain
a mental map of corresponding variables.

2) In structural comparison, developers switch focus often to
map structural features. When the developer comprehends a
chunk of tokens as discrete behavior, they search the other
snippet for a corresponding chunk. If no matching feature
is found, the developer must test the significance of the
difference.

3) In schematic comparison (as in the “schema” of an algo-
rithm), developers switch infrequently, understanding algo-
rithms holistically rather than as mappable features. In pairs
of extreme difference—no overlapping structural features or
different paradigms—this is the primary option.

Furthermore, the type of comparison can be influenced in
response to similarities in the code. For example, G3 narrated
moving between schematic and textual styles:

(G3) Those [loops] don’t look similar at all, so I can’t
compare them directly, I have to compare them with a
mental model. Whereas the two if-statements I was like,
‘Oh hey, these are almost identical, they are only a little
bit different. What’s the difference?”’

Likewise, if the developer discovers code chunks that may
be analogues through structural comparison, they may narrow
their focus to those program parts in a style of smaller-scoped
schematic comparison.

Developers recognize that multiple differences can
compensate for each other to create similar behav-
ior overall. For example, when U2 structurally compared
character-deduplication algorithms, they note that the Java def-
inition String result = "" + orig.charAt(0); in-
cludes behavior that the corresponding Python definition
res = "" does not. However, separate differences in the

return statements compensate for initial differences: Java’s
return result; vs Python’s return orig[0] + res .

Otherwise, the difference may be insurmountable, and the de-

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on July 18,2023 at 22:09:20 UTC from IEEE Xplore. Restrictions apply.

TABLE III
NUMBER OF CORRECT SURVEY ANSWERS (X) PER RESPONSES IN TREATMENT (Qs)

IV-2 IV-3 IV-4 Clones Nonclones All
Language Structure Names Qs X % Qs X % Qs X %

Meaningful 24 22 0.92 23 12 0.52 47 34 0.72Similar
Obfuscated 35 32 0.91 15 9 0.60 50 41 0.82
Meaningful 28 25 0.89 33 15 0.45 61 40 0.66

Same
Dissimilar

Obfuscated 23 19 0.83 36 15 0.42 59 34 0.58

Meaningful 33 32 0.97 25 9 0.36 58 41 0.71Similar
Obfuscated 26 20 0.77 28 14 0.50 54 34 0.63
Meaningful 35 29 0.83 34 13 0.38 69 42 0.61

Different
Dissimilar

Obfuscated 28 20 0.71 35 12 0.34 63 32 0.51

Total 232 199 0.86 229 99 0.43 461 298 0.65

TABLE IV
EFFECTS IN LOGISTIC REGRESSION MODEL PREDICTING CORRECT

RESPONSES. 461 OBSERVATIONS FROM 95 PARTICIPANTS AND 6 TASKS.
An odds ratio of 1.8 for similar structures means that the odds a participant
will respond correctly given similarly structured code is estimated to be 1.8
times the odds of a correct answer given dissimilar structures, all other
factors held constant.

Odds
Fixed Effects Ratio Est. Std Err p-value

(Intercept) -0.719 0.288 0.013 *
True Clones 5.833 1.764 0.343 <0.001 ***

Similar Structures 1.829 0.604 0.251 0.016 *
Same Languages 1.665 0.510 0.242 0.035 *

Meaningful Names 0.833 -0.183 0.302 0.545
Interactions

Clones:Names 3.016 1.104 0.521 0.034 *

Random Effects Variance

Participant 0.361
Task 0.076

*: p < .05, **: p < .01, ***: p < .001

veloper is confident that behavior diverges even if a exhaustive
understanding of the code has not been reached.

RQ2: When viewing code alternatives, developers attend to
initial cues of similarity like size and complexity. They can,
but do not have to, build an initial foundation by reading
names or a full snippet in isolation before comparison. In
response, they can perform comparison at multiple layers—
at text, structure, or the schema—in order to pinpoint differ-
ences and evaluate their significance.

C. RQ3: What factors impact accuracy?

1) Think-Aloud: As in Table II, 33 of 45 tasks were
answered correctly (73.3%), 11 incorrectly (24.4%), and one
was unresolved because the participant felt they lacked infor-
mation. However, in four of the correct answers, participants
narrated erroneous reasoning that aligned with the correct
binary choice. Counting these cases and the unresolved task
as incorrect answers, the rate of correctness is 29 of 45
(64.4%). We grouped them 16 wrong answers by the apparent
misunderstandings that explain their inaccuracy:

• Control flow misunderstanding (6): The participant inaccurately
predicts which branch a program will take or how often it
takes it. Example: U1 misinterprets i <= length - 2 and
i < length - 1 as different loop limits.

• API misunderstanding (2): The participant inaccurately antic-
ipates a function call’s effect. Example: P1 expects python
range(x) to iterate from 1 to x instead of 0 to x.

• Data misunderstanding (2): The participant has an inaccurate
belief about a variable’s value. Example: G5 mistakes a one-
space string literal for an empty literal.

• Multiple misunderstandings (2): The error comes from multi-
ple misconceptions. Example: G4 misinterprets what the Java
substring(x) method does and misinterprets how many

times it is called in a loop.
• Overlooked feature differences (2): The participant anticipates

equivalent behavior and never mentions important structural
differences. Example: G1 misses that two algorithms substitute
min and max for string length calculations.

• Overlooked input case (2): The participant does not consider an
input that would demonstrate difference. Example: P3 correctly
identifies that two snippets are clones when given sequences of
2 letters but does not consider sequences of 3+.

Of these errors, the misunderstandings stymie the comprehen-
sion of individual snippets and therefore stymie comparison
as consequence. Overlooking features or input cases, however,
deal directly with how developers look for distinctions.

2) Survey: Table III displays the proportion of correct
answers for each treatment. For example, when the snippets
were clones, the language was the same, the structures similar,
and the names meaningful, of the 24 responses (Qs), 22 (92%)
were correct (X). For nonclones with the same treatment
otherwise, 12 responses out of 23 (52.2%) are correct. The
lowest correctness rate occurs when all features are dissimilar
or obfuscated. The overall correctness was 64.6%, but with a
substantial difference between when the algorithmic task had
true clones (85.8%) versus when they did not (43.2%).

In Table IV, five terms of our model in Section III-D4 have
significant influence (↵ = .05) on the outcome: the intercept,
clone truth, structural similarity, shared languages, and the
interaction between clone truth and clear names. Table IV also
shows the variance that our model estimated for each random
effect: variance in participant differences (.361) is more than in
task differences (.076). Clone truth has the highest odds ratio:

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on July 18,2023 at 22:09:20 UTC from IEEE Xplore. Restrictions apply.

the odds a participant answers correctly changes by a factor
estimated to be 5.836 between non-clones and clones when
all other factors are held constant. Although the inclusion of
meaningful names did not itself have a significant effect, the
clone-name interaction did. Specifically:

• For non-clones, participants are correct 43% of the time
with meaningful names versus 44% when obfuscated.

• For clones, participants are correct 90% of the time with
meaningful names and 81% when obfuscated.

RQ3: In think-aloud tasks, participants accurately compared
snippets in 73% of tasks, although at times with incorrect
reasoning. The most common errors affected predicting
control flow. In survey tasks, participants were correct in
65% of tasks, but significantly less correct for non-clones
than clones. Answers were more often correct when snippets
were similar and more incorrect when dissimilar. Clone truth,
structure, and language significant impacted participants’
correctness, and names interacted with clone truth.

V. DISCUSSION

In this section, we interpret results across research questions
and generalize their implications for industry and research.

A. Impact of Design and Context

Table IV shows that differences in the algorithms’ syntactic
appearance—which structure and language affect—interfere
with the ability to judge behavior. However, the largest effect
on correctness comes from the ground truth of behavior.
This result raises questions because participants did not have
direct access to this factor, and since our correctness was
binary, it suggests that our participants overestimate how many
pairs are behaviorally equivalent. One interpretation is that
the assumptions of our environment incline developer towards
clones as a default hypothesis. Comprehending code is time-
consuming, and in non-experimental contexts, developers have
to explore many programs that do not stand as alternatives for
their case [24]. Because of this effort, developers are often
satisfied with “close-enough” rather than perfect fit [25], [8].
However, the question in our case was not close-enough but
equivalence, and given that our snippets were curated by virtue
of their existing similarities, participants may have terminated
investigation there rather than continue exhaustively.

Future work should explore how assumptions of similarity
impact comparative comprehension, especially when alterna-
tives are not as neatly extracted from their original context
as here. Additionally, future models of comparative compre-
hension should consider additional sources of variation, such
as developer experience, which has been shown to influence
individual comprehension [26]. We can also improve the
current factors, such as algorithmic structure, which our binary
classification treats broadly. A more quantitative approach like
cross-language AST similarity [27], or the decomposition of
the structure into small features, could refine results.

B. Comparison’s Relationship to Comprehension

Although superficial comparison can start an investigation,
behavioral comparison builds on code comprehension of indi-
vidual snippets, although not necessarily total comprehension.
For participants to understand behavior, our results highlight
strategies that correspond to bottom-up and top-down inves-
tigation from comprehension literature [28]. For examples
of top-down comprehension, meaningful names establish ex-
pectations which change the question of investigation, and
understanding one algorithm in full can also influence the
expectations for the other. However, given no cues to code
behavior before the task, participants also had to construct
programs from small features from the bottom up as well.

However, comprehension strategies in this experiment also
included making associations between analogical features in
snippets. This activity is similar to the process of alignment
within pedagogical literature, where learners draw associations
between common features of examples of a principle [29]. In
our case, individual comprehension could be supplemented or
even interrupted by a sudden switch between snippets to search
out whether a feature was shared and to create that mapping
or association if so. If not, that could inform a conclusion
of non-clones, but developers must also consider whether the
differences could accumulate into the same behavior once fully
understood and translated. In this way, even when snippets
are in the same language, there are concerns of knowing
how to translate between representations, which is an effortful
and error-prone process [15]. Tools that clarify transfer issues
could avoid misconceptions and reduce effort.

C. Implications for Research

Comparative comprehension resonates with challenges in
program verification, validation, and dynamic differentiation.
For example, one goal of testing is to catch regression er-
rors in evolving programs, where behavior changes when
the developer intended to preserve it [30]. Our results may
emphasize the issues in comparing over similar texts that
make these bugs difficult to detect manually. Furthermore,
efficiently finding inputs which demonstrate difference is a
topic of interest in program synthesis literature [31]. Tool
that generate differentiating input could address challenges in
comparison by supporting the developer with concrete cases,
thus saving them the search and reasoning work.

Future work should also extend this research to facilitate
multiple dimensions of comparison. While input-output behav-
ior is essential to describing what a program does, it does not
represent all that developers care about. Runtime complexity
and memory consumption distinguishes algorithms even when
behavior is equivalent, and the impact of reusable code alter-
natives on the maintainability or reusability of programs can
be difficult to anticipate [32].

Lastly, if comparison works by connecting similarities in
and beneath text, future studies should attend to the physical
arrangement of code. As alignment is important for case
comparison in pedagogy [33], styling code to physically align

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on July 18,2023 at 22:09:20 UTC from IEEE Xplore. Restrictions apply.

analogical parts may highlight implicit similarities. Experi-
mental interfaces like Bragdon and colleagues’ Code Bubbles,
suggest that proximity helps comprehension beyond simply
reducing navigation [34].

VI. THREATS

a) Construct threats: We model variation in four factors
but more may exist that influence comparative comprehension.
For example, we measured structure through qualitative assess-
ment which does not capture every design choice. There are
also different ways to obfuscate names to remove meaning.

b) Internal threats: We may have misclassified obser-
vations in our qualitative protocols or classifications in our
quantitative protocols since we used a single-coder approach.
Additionally, think-aloud protocols capture the participant’s
approximation of their reason but not the full set of influences
and distraction. The survey methodology removes the pressure
of observation of think-aloud tasks but also removes our ability
to clarify misunderstandings and observe attention.

c) External threats: Our survey disproportionately at-
tracted graduate students on the mailing list, skewing our rep-
resentation from populations estimated in other sources [35].
We had fewer than 10 programmatic tasks; this does not totally
cover the range of snippets developers encounter in the wild.
Lastly, our choice of programming languages represents two
very popular language with similar capabilities but it does not
fully represent paradigmatic diversity.

VII. RELATED WORK

In this section, we summarize research in comprehension,
comparison, and clones that is the foundation to our work.

a) Code Comprehension: Numerous theories model how
developers bridge text and behavior. For example, von
Mayrhauser and Vans combine top-down strategies, which ap-
ply when the developer is verifying expectations, and bottom-
up strategies, which apply in unfamiliar territory [28]. Soloway
and colleagues’ experiment with typical and atypical programs
suggests that developers can draw from repertoires of pro-
gramming plans, or mental representations of the elements
and order of a program [26]. Additionally, many studies
focus on the influence of specific textual features on com-
prehensibility, such as identifier style [36], [17] or structural
complexity [37], [38], although Scalabrino and colleagues
suggest that many current metrics are insufficient for drawing
clear conclusions [10]. We draw on studies like these to set
a foundation for program comprehension, but our focus on
structurally unrelated snippets complicates models in which
developers looking for a unified picture of a single system.

b) Code Comparison: Two practical contexts of com-
parison are education and reuse. In education, Alfieri and
colleagues’ meta-analysis of science and math pedagogical
literature confirms that case comparison—showing multiple
examples of a principle and supporting students to discover
their commonalities—is an effective teaching strategy, and
they deconstruct the activity into a pedagogical model [29].

Patitsas and colleagues demonstrated its application to com-
puter science education: students who study two algorithms
side-by-side had greater increases in procedural knowledge
and flexibility compared to students who study them sequen-
tially [33]. Although these studies focus on classrooms, their
evidence motivates our case of comparison more broadly.

In the context of reuse, Détienne frames reusing code in
terms of mapping between known approaches and abstract
needs [39]. Other directions focus on navigating similarity
amid larger bodies of code. Working from Information For-
aging Theory (IFT) [40], research by Ragavan and colleagues
observes developers in a repository of similar versions [24],
as Kuttal and colleagues do for end-user programmers [41].
They demonstrate that the awareness of code similarity better
predicts how developers forage [12]. Though this research ex-
plores comparison too, it does so in the context of navigation,
whereas we focus more on local comparison strategies.

Because of applications in review and reuse, some research
supports comparison with tools. Many algorithms exist to an-
alyze and highlight differences in text [42] or parse trees [43].
Some tools, such as Cottrell and colleagues’ GUIDO [44] or
Glassman and colleagues’ EXAMPLORE [45], build interfaces
to explore varied examples, and other tools record edit events
in the IDE to explain differences in program evolution [46],
[47]. Our empirical data, which shows that comparison is non-
trivial, motivate advancements on tool design such as these.

c) Code Cloning: We refer to significantly similar code
excerpts as “clones,” and the literature outlines several types
of clones: clones types 1 through 3 refer to a spectrum of
syntactically similar code, and Type-4 clones, or semantic
clones, perform the same operation [9]. Manual verification of
clones is nontrivial, as Walenstein and colleagues [48], [49]
as well as Kasper and colleagues [50] both uncover issues
of experts disagreeing on definitions of clones. Furthermore,
Charpentier and colleagues’ experiment discovered not only
that it was difficult for judges to disagree with each other but
also themselves over time [51]. Our research complements
the challenge of clone recognition: even within a settled
definition of clone, there are inherent difficulties to accurately
understanding the behavioral differences from its text.

VIII. CONCLUSION

Comparison is relevant as long as there are more than
one way to solve a problem. With that in mind, we ran an
experiment which presented developers with code snippets
pairs and asked them to identify whether their behaviors were
equivalent, controlling for their behavior, language, structure,
and names. Through our interviews and surveys, we captured
how developers’ comparison strategies allow them to piece
together behavior and align the ways two algorithms perform.
However, participants overestimated behavioral equivalence,
and design differences between snippets interfere with the
ability to clarify the underlying behavioral differences. As
we devise new ways to navigate code alternatives, we should
weigh the barriers to comprehension that interfere with devel-
opers choosing within the sea of options.

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on July 18,2023 at 22:09:20 UTC from IEEE Xplore. Restrictions apply.

IX. ACKNOWLEDGMENTS

This work is funded in part by NSF SHF #2006947,
#1749936, and #1714699. Thank you to Emily Griffith for
statistical advice, to all reviewers, Kai Presler-Marshall, Gina
Bai, Nischal Shrestha, Souti Chattopadhyay, and Omar Sheikh
for their writing feedback, to George Mathew for reusable
code, and to all study participants for their cooperation.

REFERENCES

[1] A. Hindle, E. T. Barr, M. Gabel, Z. Su, and P. Devanbu, “On the
naturalness of software,” Communications of the ACM, vol. 59, no. 5,
pp. 122–131, 2016.

[2] V. Käfer, S. Wagner, and R. Koschke, “Are there functionally similar
code clones in practice?” in 2018 IEEE 12th International Workshop on
Software Clones (IWSC). IEEE, 2018, pp. 2–8.

[3] M. Allamanis, E. T. Barr, C. Bird, and C. Sutton, “Learning natural
coding conventions,” in Proceedings of the 22nd ACM SIGSOFT Inter-
national Symposium on Foundations of Software Engineering, 2014, pp.
281–293.

[4] C. V. Lopes, P. Maj, P. Martins, V. Saini, D. Yang, J. Zitny, H. Sajnani,
and J. Vitek, “Déjàvu: a map of code duplicates on github,” Proceedings
of the ACM on Programming Languages, vol. 1, no. OOPSLA, pp. 1–28,
2017.

[5] J. Siegmund, “Program comprehension: Past, present, and future,” in
2016 IEEE 23rd International Conference on Software Analysis, Evolu-
tion, and Reengineering (SANER), vol. 5. IEEE, 2016, pp. 13–20.

[6] K. Fisler, “The recurring rainfall problem,” in Proceedings of the tenth
annual conference on International computing education research, 2014,
pp. 35–42.

[7] A. Blass, N. Dershowitz, and Y. Gurevich, “When are two algorithms
the same?” The Bulletin of Symbolic Logic, pp. 145–168, 2009.

[8] W. Maalej, R. Tiarks, T. Roehm, and R. Koschke, “On the compre-
hension of program comprehension,” ACM Transactions on Software
Engineering and Methodology (TOSEM), vol. 23, no. 4, pp. 1–37, 2014.

[9] C. K. Roy, J. R. Cordy, and R. Koschke, “Comparison and evaluation
of code clone detection techniques and tools: A qualitative approach,”
Science of computer programming, vol. 74, no. 7, pp. 470–495, 2009.

[10] S. Scalabrino, G. Bavota, C. Vendome, M. Linares-Vásquez, D. Poshy-
vanyk, and R. Oliveto, “Automatically assessing code understandability:
How far are we?” in 2017 32nd IEEE/ACM International Conference
on Automated Software Engineering (ASE). IEEE, 2017, pp. 417–427.

[11] M. J. Pacione, M. Roper, and M. Wood, “A novel software visualisation
model to support software comprehension,” in 11th working conference
on reverse engineering. IEEE, 2004, pp. 70–79.

[12] S. S. Ragavan, B. Pandya, D. Piorkowski, C. Hill, S. K. Kuttal, A. Sarma,
and M. Burnett, “Pfis-v: modeling foraging behavior in the presence of
variants,” in Proceedings of the 2017 CHI Conference on Human Factors
in Computing Systems, 2017, pp. 6232–6244.

[13] S. Fakhoury, Y. Ma, V. Arnaoudova, and O. Adesope, “The effect
of poor source code lexicon and readability on developers’ cognitive
load,” in 2018 IEEE/ACM 26th International Conference on Program
Comprehension (ICPC). IEEE, 2018, pp. 286–28 610.

[14] P. Mayer and A. Bauer, “An empirical analysis of the utilization of mul-
tiple programming languages in open source projects,” in Proceedings
of the 19th International Conference on Evaluation and Assessment in
Software Engineering, 2015, pp. 1–10.

[15] N. Shrestha, T. Barik, and C. Parnin, “It’s like python but: Towards
supporting transfer of programming language knowledge,” in 2018
IEEE Symposium on Visual Languages and Human-Centric Computing
(VL/HCC). IEEE, 2018, pp. 177–185.

[16] D. Lawrie, C. Morrell, H. Feild, and D. Binkley, “What’s in a name? a
study of identifiers,” in 14th IEEE International Conference on Program
Comprehension (ICPC’06). IEEE, 2006, pp. 3–12.

[17] J. Hofmeister, J. Siegmund, and D. V. Holt, “Shorter identifier names
take longer to comprehend,” in 2017 IEEE 24th International conference
on software analysis, evolution and reengineering (SANER). IEEE,
2017, pp. 217–227.

[18] S. Bellon, R. Koschke, G. Antoniol, J. Krinke, and E. Merlo, “Com-
parison and evaluation of clone detection tools,” IEEE Transactions on
software engineering, vol. 33, no. 9, pp. 577–591, 2007.

[19] J. Svajlenko, J. F. Islam, I. Keivanloo, C. K. Roy, and M. M. Mia,
“Towards a big data curated benchmark of inter-project code clones,”
in 2014 IEEE International Conference on Software Maintenance and
Evolution. IEEE, 2014, pp. 476–480.

[20] F. Al-Omari, C. K. Roy, and T. Chen, “Semanticclonebench: A semantic
code clone benchmark using crowd-source knowledge,” in 2020 IEEE
14th International Workshop on Software Clones (IWSC). IEEE, 2020,
pp. 57–63.

[21] M. Kamp, P. Kreutzer, and M. Philippsen, “Sesame: a data set of se-
mantically similar java methods,” in 2019 IEEE/ACM 16th International
Conference on Mining Software Repositories (MSR). IEEE, 2019, pp.
529–533.

[22] G. Mathew, C. Parnin, and K. T. Stolee, “Slacc: Simion-based language
agnostic code clones,” arXiv preprint arXiv:2002.03039, 2020.

[23] Understanding Similar Code through Comparative Comprehension.
Zenodo, Apr. 2022. [Online]. Available: https://doi.org/10.5281/zenodo.
6419729

[24] S. Srinivasa Ragavan, S. K. Kuttal, C. Hill, A. Sarma, D. Piorkowski,
and M. Burnett, “Foraging among an overabundance of similar variants,”
in Proceedings of the 2016 CHI Conference on Human Factors in
Computing Systems, 2016, pp. 3509–3521.

[25] R. Holmes and R. J. Walker, “Systematizing pragmatic software reuse,”
ACM Transactions on Software Engineering and Methodology (TOSEM),
vol. 21, no. 4, pp. 1–44, 2013.

[26] E. Soloway and K. Ehrlich, “Empirical studies of programming knowl-
edge,” IEEE Transactions on software engineering, no. 5, pp. 595–609,
1984.

[27] G. Mathew and K. T. Stolee, “Cross-language code search using static
and dynamic analyses,” in Proceedings of the 29th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, 2021, pp. 205–217.

[28] A. von Mayrhauser and A. M. Vans, “Program understanding behavior
during debugging of large scale software,” in Papers presented at the
seventh workshop on Empirical studies of programmers, 1997, pp. 157–
179.

[29] L. Alfieri, T. J. Nokes-Malach, and C. D. Schunn, “Learning through
case comparisons: A meta-analytic review,” Educational Psychologist,
vol. 48, no. 2, pp. 87–113, 2013.

[30] D. Qi, A. Roychoudhury, and Z. Liang, “Test generation to expose
changes in evolving programs,” in Proceedings of the IEEE/ACM
international conference on Automated software engineering, 2010, pp.
397–406.

[31] A. Solar-Lezama and R. Bodik, Program synthesis by sketching. Cite-
seer, 2008.

[32] S. N. Woodfield, D. W. Embley, and D. T. Scott, “Can programmers
reuse software?” IEEE Software, vol. 4, no. 4, p. 52, 1987.

[33] E. Patitsas, M. Craig, and S. Easterbrook, “Comparing and contrasting
different algorithms leads to increased student learning,” in Proceedings
of the ninth annual international ACM conference on International
computing education research, 2013, pp. 145–152.

[34] A. Bragdon, R. Zeleznik, S. P. Reiss, S. Karumuri, W. Cheung, J. Kaplan,
C. Coleman, F. Adeputra, and J. J. LaViola Jr, “Code bubbles: a
working set-based interface for code understanding and maintenance,” in
Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, 2010, pp. 2503–2512.

[35] Stack Overflow Blog, “Developer survey results,” Retrieved August,
2019. [Online]. Available: https://insights.stackoverflow.com/survey/
2019\#overview

[36] D. Binkley, M. Davis, D. Lawrie, J. I. Maletic, C. Morrell, and B. Sharif,
“The impact of identifier style on effort and comprehension,” Empirical
Software Engineering, vol. 18, no. 2, pp. 219–276, 2013.

[37] A. Mohan, N. Gold, and P. Layzell, “An initial approach to assessing
program comprehensibility using spatial complexity, number of concepts
and typographical style,” in 11th Working Conference on Reverse Engi-
neering. IEEE, 2004, pp. 246–255.

[38] S. Ajami, Y. Woodbridge, and D. G. Feitelson, “Syntax, predicates,
idioms—what really affects code complexity?” Empirical Software
Engineering, vol. 24, no. 1, pp. 287–328, 2019.

[39] F. Détienne, “Reasoning from a schema and from an analog in software
code reuse,” arXiv preprint cs/0701200, 2007.

[40] P. Pirolli and S. Card, “Information foraging in information access
environments,” in Proceedings of the SIGCHI conference on Human
factors in computing systems, 1995, pp. 51–58.

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on July 18,2023 at 22:09:20 UTC from IEEE Xplore. Restrictions apply.

[41] S. K. Kuttal, S. Y. Kim, C. Martos, and A. Bejarano, “How end-
user programmers forage in online repositories? an information foraging
perspective,” Journal of Computer Languages, vol. 62, p. 101010, 2021.

[42] J. W. Hunt and M. D. MacIlroy, An algorithm for differential file
comparison. Bell Laboratories Murray Hill, 1976.

[43] W. Yang, “Identifying syntactic differences between two programs,”
Software: Practice and Experience, vol. 21, no. 7, pp. 739–755, 1991.

[44] R. Cottrell, B. Goyette, R. Holmes, R. J. Walker, and J. Denzinger,
“Compare and contrast: Visual exploration of source code examples,”
in 2009 5th IEEE International Workshop on Visualizing Software for
Understanding and Analysis. IEEE, 2009, pp. 29–32.

[45] E. L. Glassman, T. Zhang, B. Hartmann, and M. Kim, “Visualizing api
usage examples at scale,” in Proceedings of the 2018 CHI Conference
on Human Factors in Computing Systems, 2018, pp. 1–12.

[46] F. Jacob, D. Hou, and P. Jablonski, “Actively comparing clones inside
the code editor,” in Proceedings of the 4th International Workshop on
Software Clones, 2010, pp. 9–16.

[47] K. Huang, B. Chen, X. Peng, D. Zhou, Y. Wang, Y. Liu, and W. Zhao,
“Cldiff: generating concise linked code differences,” in 2018 33rd
IEEE/ACM International Conference on Automated Software Engineer-
ing (ASE). IEEE, 2018, pp. 679–690.

[48] A. Walenstein, N. Jyoti, J. Li, Y. Yang, and A. Lakhotia, “Problems
creating task-relevant clone detection reference data.” in WCRE, vol. 3.
Citeseer, 2003, p. 285.

[49] A. Walenstein, “Code clones: Reconsidering terminology,” in Dagstuhl
Seminar Proceedings. Schloss Dagstuhl-Leibniz-Zentrum für Infor-
matik, 2007.

[50] C. Kapser, P. Anderson, M. Godfrey, R. Koschke, M. Rieger, F. Van Rys-
selberghe, and P. Weißgerber, “Subjectivity in clone judgment: Can we
ever agree?” in Dagstuhl Seminar Proceedings. Schloss Dagstuhl-
Leibniz-Zentrum für Informatik, 2007.

[51] A. Charpentier, J.-R. Falleri, F. Morandat, E. B. H. Yahia, and
L. Réveillere, “Raters’ reliability in clone benchmarks construction,”
Empirical Software Engineering, vol. 22, no. 1, pp. 235–258, 2017.

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on July 18,2023 at 22:09:20 UTC from IEEE Xplore. Restrictions apply.

