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Abstract
We propose a margin-based loss for tuning joint vision-

language models so that their gradient-based explanations
are consistent with region-level annotations provided by
humans for relatively smaller grounding datasets. We re-
fer to this objective as Attention Mask Consistency (AMC)
and demonstrate that it produces superior visual ground-
ing results than previous methods that rely on using vision-
language models to score the outputs of object detectors.
Particularly, a model trained with AMC on top of standard
vision-language modeling objectives obtains a state-of-the-
art accuracy of 86.49% in the Flickr30k visual grounding
benchmark, an absolute improvement of 5.38% when com-
pared to the best previous model trained under the same
level of supervision. Our approach also performs exceed-
ingly well on established benchmarks for referring expres-
sion comprehension where it obtains 80.34% accuracy in
the easy test of RefCOCO+, and 64.55% in the difficult split.
AMC is effective, easy to implement, and is general as it can
be adopted by any vision-language model, and can use any
type of region annotations.

1. Introduction

Vision-language pretraining using images paired with

captions has led to models that can transfer well to an ar-

ray of tasks such as visual question answering, image-text

retrieval and visual commonsense reasoning [6,18,22]. Re-

markably, some of these models are also able to perform vi-

sual grounding by relying on gradient-based explanations.

While Vision-Language Models (VLMs) take advantage of

the vast amounts of images and text that can be found on

the web, carefully curated data with grounding annotations

in the form of boxes, regions, or segments is consider-

ably more limited. Our work aims to improve the ground-

ing or localization capabilities of vision-language models

further by tuning them under a training objective that en-

courages their gradient-based explanations to be consistent

with human-provided region-based annotations from visu-

ally grounded data when those are available.
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Figure 1. Gradient-based methods can generate heatmaps that ex-

plain the match between images and text for a Vision-language

model (VLM). Our work aims to improve their ability to produce

visual groundings by directly optimizing their gradient-based ex-

planations so that they are consistent with human annotations pro-

vided for a reduced set of images.

Vision-language transformers extend the success of

masked language modeling (MLM) to multi-modal prob-

lems. In vision-language transformers, objectives such

as image-text matching (ITM), and image-text contrastive

losses (ITC) are used in addition to MLM to exploit com-

monalities between images and text [6, 17, 18, 22]. We fur-

ther extend these objectives to include our proposed Atten-

tion Mask Consistency (AMC) objective. Our formulation

is based on the observation that gradient-based explanation

maps obtained using methods such as GradCAM [30], can

be used to explain the image-text matching of a VLM. Our

AMC objective explicitly optimizes these explanations dur-

ing training so that they are consistent with region annota-

tions. Figure 1 illustrates an example input image and text
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Figure 2. Overview of our method. Among other objectives, standard vision-language models are trained to produce a matching score

y given an input image-text pair (V, T ). For inputs containing an extra level of supervision in the form of region annotations (e.g. a

triplet (V, T,M)), where M is a binary mask indicating the regions annotated by a human, we optimize the GradCAM [30] gradient-based

explanations of the model so that the produced explanations are consistent with region annotations using Lamc by maximizing the energy

in the heatmap that falls inside the region annotation and minimizing what falls outside. We accomplish this through soft margin losses as

described in Sec. 3.2.

pair along with a gradient-based explanation obtained from

a VLM model, a region annotation provided by a human,

and an improved gradient-based explanation after the VLM

model was tuned under our proposed objective.

Our work builds particularly upon the ALBEF

model [17] which incorporates a vision-language model

architecture based on transformers [36] and has already

demonstrated off-the-shelf grounding capabilities using

GradCAM. Gradient-based explanations in the form of

heatmaps have been used extensively to explain the areas

of the input images that most impact an output value of

a model. In our formulation we actively leverage these

heatmaps by designing a loss function that encourages most

of the energy in the heatmaps to fall within the areas of the

input image that most align with human provided region

annotations. Figure 2 shows a detailed overview of our

method and objective function. Given an input image and

text pair, our goal is to maximize a soft margin between

the energy of the heatmap inside the region annotation and

the energy of the heatmap outside the region annotation.

A soft-margin is important since typical human region

annotations in the form of boxes do not exactly outline

objects of different shapes, and in many cases models

should still be able to ground an input text with multiple

regions across the image.

We compare AMC extensively against other methods

that use the same level of supervision but instead use an

object detector such as Faster-RCNN [10, 11, 17, 23]. Our

method obtains state-of-the-art pointing game accuracy on

both Flickr30k and RefCOCO+. Our contributions can be

summarized as follows: (1) We introduce a new training

objective, AMC, which is effective, simple to implement

and can handle multiple types of region annotations, (2) We

show that AMC can improve the grounding capabilities of

an existing vision-language model – ALBEF, and (3) the

resulting model is state-of-the-art in two benchmarks for

phrase grounding and referring expression comprehension.

2. Related Work

Vision-Language Representation Learning. Followed

by the success of pretraining methods in NLP such as

BERT [8], many transformer-based image-text models have

been proposed to leverage benefits of pretraining on large-

scale unlabeled image-text pairs [13, 18, 20]. While earlier

pretraining methods rely on an object detector to divide an

image into input tokens, some recent works, such as AL-

BEF [17], use an end-to-end vision transformer [9]. These

pretrained models can then be finetuned to obtain impres-

sive performance in a wide variety of vision-language tasks,

such as image-text retrieval, visual question answering, and

visual commonsense reasoning. While these models can

perform some visual grounding by running them on the out-

puts of an object detector or using gradient-based explana-

tions, they are not trained to take advantage of grounded

data. Our AMC objective provides this additional capabil-

ity by leveraging gradient-based explanations that can be

easily obtained for a large variety deep learning models.

Gradient-based Localization. Localizing the most dis-

criminative areas of an image for a given task has been

widely used as a tool to provide visual explanation about a

model. Class activation maps (CAM) [41] were proposed to

provide weighted feature maps for any networks with min-

imal modifications to the model. Gradient-weighted Class

Activation Mapping (GradCAM) [30] improves CAM by

directly using gradients to obtain weighted feature maps
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without the need for model modifications or retraining;

The attention maps generated by these methods can be di-

rectly optimize to guide the model toward solutions that

are more consistent with human-based annotations. Our

proposed method is also based on GradCAM heatmaps.

However, we use GradCAM during training to guide the

generated heatmaps to achieve better consistency with

known region and phrases that describe them. Recently,

Pham et al [26] explored a similar idea by using segmen-

tation masks to guide attention maps to focus on signif-

icant image regions for an attribute prediction task. Sel-

varaju et al [31] use saliency maps generated using Deep-

USPS [24] at training time to guide attention maps in order

to improve self-supervised representation learning. Simi-

larly Pillai et al [27] rely on consistent explanations for

generic representation learning using contrastive objectives.

Our goal in using supervision on top of gradient-based

heatmaps is to directly leverage these heatmaps to evaluate

on visual grounding.

Visual Grounding Methods. Visual Grounding is a task

that requires a model to select the region of an image de-

scribed by a phrase. Several methods have been proposed

to ground phrases to regions of an image, typically a bound-

ing box [10, 11, 17, 23]. Visual grounding has also been

used to improve performance on downstream tasks such as

VQA [32]. These methods take advantage of object detec-

tors which can provide high quality locations. The recently

proposed GLIP model [19] incorporates an object detec-

tion model as part of its grounding objective, effectively

combining vision-language pretraining with bounding box

localization. Our work instead of outputting a box, opti-

mizes its own gradient-based model explanations. Since our

model does not output bounding boxes but heatmaps as an

output it can generate more general groundings for phrases

or objects that can not be mapped to a box such as stuff cat-

egories or references to multiple objects. Moreover, AMC

can be used to improve an existing vision-language model

such as ALBEF [17] without retraining from scratch. As

vision-language models become larger and more robust, our

proposed AMC objective can be readily applied.

3. Method

Vision-language pretraining consists of exploiting the

structure of each input modality as well as their interac-

tions. Our base model consists of three transformer en-

coders [8,36]: An image encoder φv , a text encoder φt, and

a multimodal fusion encoder φf . An input image V is en-

coded into a sequence of visual tokens {vcls,v1,v2, ...,vn}
and the text encoder encodes the input text T as a sequence

of tokens {tcls, t1, t2, ..., tm}, where vcls and tcls are the

embeddings of the [CLS] token for each transformer re-

spectively. For each image-text pair drawn from a dataset

(V, T ) ∼ D, a binary variable y represents whether the pair

correspond with each other, i.e, whether the text actually

describes the paired image. However, for some images a

triplet (V, T,M) ∼ D might be available, where M addi-

tionally contains a region annotation, in the form of a bi-

nary mask, indicating the part of input image V that text

T describes. In the following section we describe standard

objectives used to capture intra-modality and inter-modality

structure (Sec. 3.1), and then we describe our attention mask

consistency objective (Sec. 3.2).

3.1. Standard Model Training Objectives

Masking Language Modeling (MLM) Originally intro-

duced by BERT [8] in the context of language transformers,

this objective has been adapted to multiple vision-language

pretraining models such as [6, 18, 22] and is inspired by a

long history in NLP of exploiting distributional semantics.

The goal is to capture structure in the text by forcing the

model to infer missing words from the input text. Each to-

ken in the input text is masked randomly with a small prob-

ability (usually 15%) and the model is then optimized to

recover the masked tokens using information from both the

remaining input text and the input image. Assume an input

masked text is represented by T−m, and the masked token

is represented as a one-hot vector tm, the objective will be

expressed as:

Lmlm = E(V,T−m)∼D H
(
tm, φm

f

(
φv(V ), φt(T

−m)
))

,
(1)

where H(·, ·) is the cross-entropy between the missing to-

ken tm and a probability distribution over tokens output by

a function φm
f which augments φf with a linear projection

layer and softmax function over a corresponding output em-

bedding. This objective is optimized over a large sample of

choices for masked tokens and image-text pairs.

Image Text Matching (ITM) Another common objective

inspired by BERT’s next sentence prediction objective, con-

sists of image text matching. The purpose of this loss is to

push the model to learn if a text and an image are matched.

The output of the [CLS] token will be used to generate the

output for this objective by adding a linear layer and a soft-

max activation function. We denote this entire operation as

φcls
f . The objective is therefore defined as follows:

Litm = E(V,T )∼D H
(
y, φcls

f (φv (V ) , φt (T ))
)
, (2)

where y is a one-hot vector with two entries [y, 1− y] in-

dicating whether the drawn sample (V, T ) corresponds to a

matching image-text pair or not.

Image-Text Contrastive Loss (ITC) This objective has

been useful in weakly supervised grounding [11, 17]. We
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follow ALBEF because it uses momentum distillation to

potentially leverage a larger amount of negative image-text

pairs. Assuming that each image-text pair is considered

within a sample batch of K image-text pairs, this loss is

defined as follows:

Litc = E(V,T )∼D
1

2

[
H

(
y, s(V, T )/

K∑
k=1

s(V, Tk)

)
+

H

(
y, s(T, V )/

K∑
k=1

s(T, Vk)

)]
,

(3)

where s(V, T ) = exp(φv(V ) · φt(T )/τ) computes a score

between the output [CLS] token representations for the en-

coder transformer of each modality and τ is a temperature

parameter, and s(T, V ) is defined similarly. The goal of this

loss is to push for matching image-text pairs to have a closer

representation than any non-matching image-text pair.

3.2. Attention Map Consistency (AMC)

In this section we explain in detail our proposed attention

map consistency loss. Our proposed loss relies on first pro-

ducing explanation heatmaps or “attention maps” using the

GradCAM method [30]. In the context of vision-language

transformers, this method can be used to highlight regions

in the image that contribute to an image matching to an arbi-

trary input text, e.g., given an input image such as the one in

Fig. 2, and an input text such as an empty street, we can gen-

erate a GradCAM visualization of areas in the input image

that contribute to their matching score using Litm.

We assume that for a subset of images in our dataset we

can obtain a triplet (V, T,M) where M ∈ {0, 1}2 is a bi-

nary mask such that Mi,j is 1 if the location i, j is inside

region or 0 otherwise, V is the input image, and T is an in-

put text describing region M . This assumption is generally

fair in comparison to previous works that instead leverage

images annotated with labels and bounding boxes to train

an object detector. In our case, we can easily support this

setup by turning a label annotation, e.g., dog into a region

textual caption by prompt engineering, e.g., an image of a
dog. However, our binary masks are not restricted to being

boxes.

In order to compute a GradCAM heatmap, we first ex-

tract an intermediate feature map Fz in the multimodal fu-

sion transformer φf and denote this function as φz:

Fz = φz (φv(V ), φt(T )) . (4)

Then, we calculate the gradient of Fz with respect to the

matching loss Litm of this individual sample:

Gz = ∇H
(
y, φcls

f (φv (V ) , φt (T ))
)
. (5)

Next, we calculate a GradCAM attention heatmap A using

Fz and Gz as follows:

A = ReLU(Fz �Gz), (6)

where � is an element-wise multiplication. This heatmap

is resized to the resolution of input images, and identifies

which area in the image explains the model decision for its

matching score.

The next step is to leverage the region annotations M so

that the model focuses its heatmap scores in A inside the

region of interest indicated by M . We first propose Lmean

where we optimize a max margin loss so that the mean value

of the heatmap inside of the region of interest is larger than

the mean value of the heatmap outside as follows:

Lmean =

E(V,T,M)∼D

[
max(0,

1

N c

∑
i,j

(1−Mi,j)Ai,j

− 1

N

∑
i,j

Mi,jAi,j +Δ1)

]
,

(7)

where Δ1 is a margin term, and N =
∑

i,j Mi,j is the num-

ber of locations inside the region of interest and N c is the

number of locations outside i.e.
∑

i,j(1 −Mi,j). This loss

aims to ensure that the attention map A contains most of the

scores inside the region M subject to this margin. We also

propose to jointly maximize the margin between the largest

score inside the region of interest M and the largest score

outside the region of interest by a margin Δ2 as follows:

Lmax = E(V,T,M)∼D

[
max(0, max

i,j
((1−Mi,j)Ai,j)

−max
i,j

(Mi,jAi,j) + Δ2)

]
.

(8)

Finally, we combine these two objectives:

Lamc = λ1 · Lmean + λ2 · Lmax, (9)

where λ1 and λ2 are empirically determined weighting co-

efficients. We demonstrate in our experimental section that

this objective effectively encourages model explanations

that provide better grounding support for tasks such as re-

ferring expression comprehension and visual grounding.

4. Experiments
In this section, we describe our training setup and exper-

imental evaluations. Our evaluations revolve around tasks

that require pointing to the location in an image that is re-

ferred by an input text.

4.1. Training Details

Our model follows the architecture and training objec-

tives of the ALBEF model [17] which uses the ALBEF-

14M dataset as source of pretraining. ALBEF-14M is
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Method Detector Flickr30k
RefCOCO+

test A test B

Align2Ground [7] Faster-RCNN (VG) 71.00 - -

12-in-1 [23] Faster-RCNN (VG) 76.40 - -

InfoGround [11] Faster-RCNN (VG) 76.74 39.80 41.11

VMRM [10] Faster-RCNN (VG) 81.11 58.87 50.32

AMC∗ – 86.49 78.89 61.16

AMC (ours) – 86.59 80.34 64.55

Table 1. Visual Grounding results using pointing game accuracy

against the state-of-the-art for methods. For fairer comparisons,

AMC∗ indicates a version of our model restricted to using only

the box and label annotations from Visual Genome (VG) that were

used to train the Faster-RCNN network used in the other methods.

a large image-text data collection including the follow-

ing datasets: COCO [21], Visual Genome (VG) [16]

(excluding box annotations), SBU [25], CC3M [34] and

CC12M [4]. In this data collection, each image is paired

with one or several image descriptions so that we can

sample pairs (V, T ) ∼ D. Additionally, several vision-

language transformer models such as UNITER [6] or Vi-

sualBERT [18] further leverage box annotations from the

Visual Genome dataset. We use this dataset as an additional

source of triplets (V, T,M) ∼ D. We start with the ALBEF

model and further finetune it for 20 more epochs on Visual

Genome with boxes using our proposed AMC loss. Next,

we describe in detail how we leverage the Visual Genome

dataset to produce triplets (V, T,M) in more detail.

First, we provide a more detailed description of the Vi-

sual Genome dataset. This dataset consists of 108, 077 im-

ages and annotations in multiple formats such as boxes +

region descriptions, boxes + object labels, and boxes + ob-

ject attributes. At a first level, annotators of this dataset

were asked to provide text that describes a region of the

image and to provide a bounding box that covers the re-

gion. For instance, a brown dog playing with a ball. Then,

the region descriptions were shown to other annotators that

were asked to select objects from these regions and pro-

vide tight bounding boxes for selected objects and attributes

e.g. brown dog and ball. Region bounding boxes and ob-

ject+attribute bounding boxes are different for this dataset.

The object detector trained by Anderson et al [2] on the ob-

ject bounding boxes and object attributes of Visual Genome

has been used by several previous visual grounding models.

In order to compare fairly to these methods, we develop a

model using the same training split as [2] and conduct ex-

periments without the use of region descriptions. For com-

pleteness, we also conduct experiments using both boxes

with attributes and boxes with region descriptions.

We construct textual descriptions for object bounding

boxes using prompt engineering templates. For example,

if an image contains an object dog with an attribute brown,

we construct the description as a brown dog. We filter out

bounding boxes smaller than 8% of the whole image. To

further increase the localization capabilities of our method,

we generate prompts with spatial references. For images

with objects that correspond to more than one box, we select

the leftmost/rightmost, top/bottom boxes and assign more

detailed prompts such as [obj] on the left, [obj] on the right,
top [obj] and bottom [obj]. Moreover, if the box falls into

a corner of the image, we further assign them another level

of spatial information such as top left, top right, bottom left
and bottom right.

We conduct experiments on single node with 8 NVIDIA

A40 GPUs. All experiments use a batch size of 512 and

a learning rate of 1e-5 with an Adam optimizer [15]. We

determine empirically based on a small validation set two

margin losses: Δ1 = 0.1 and Δ2 = 0.5 and determine

our weighting coefficient for our losses as λ1 = 0.2 and

λ2 = 0.8, respectively. For data augmentation, we resize

images into a resolution of 256× 256 and apply horizontal

flips, color jittering and random grayscale conversions. Our

code and data are publicly available1.

4.2. Visual Grounding

Visual grounding consists in automatically associating

an area of an image with an arbitrary piece of input text.

A popular benchmark for this task is Flickr30k [28]. We

only use the validation and testing splits for this dataset and

do not use it for training. Each split includes a thousand

images and is used for all of our model selections and eval-

uations. In Flickr30k Entities, each object phrase may pair

with multiple ground truth boxes in the image. Our model

will take the phrase and whole image as inputs, and find the

most related regions corresponding to the phrase.

We report experimental results for Flickr30k Enti-

ties [28] with both detector-based and detector-free meth-

ods. Pointing game accuracy is a widely used metric in pre-

vious works for this task [1, 3, 11, 37], and we follow the

same setting as in [1] to calculate this measure: After ob-

taining a heatmap given an input phrase and an image, we

extract the position of the maximal point of this heatmap,

and if this point falls in the target box, we count this result

as positive. For detector-based methods, we follow [11] to

calculate the pointing game accuracy by first ranking pro-

posals generated by an object detector and then retaining

one box proposal with highest score as the result. If the

center point of the selected box proposal falls within the

target box, this result is counted as positive.

For Align2Ground [7] and 12-in-1 [23], we directly

show the results reported in [3]. For InfoGround [11] we use

1https://github.com/uvavision/AMC-grounding
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Method VG-Boxes Backbone Flickr30k

gALBEF [17] no ALBEF 79.14

GbS [3] no PNASNet 73.39

MG [1] no ELMo + PNASNet 67.60

GAE [5] no CLIP 72.47

WWbL [33] no CLIP + VGG 75.63

GbS+IG [3] yes PNASNet 83.40

GbS+12-in-1 [3] yes PNASNet 85.90

AMC (ours) yes ALBEF 86.59

Table 2. Visual Grounding results using pointing game accuracy

against methods that do not use object detectors or Visual Genome

box supervision, showing that box supervision still makes a signif-

icant difference on this benchmark despite the fact that CLIP uses

hundreds of millions of extra images for training compared to the

ALBEF backbone.

their provided trained models. For VMRM [10], since they

do not provide their trained model, we re-train it using the

official code and their used features and boxes from MMF

[35] and MAF [38]. Align2Ground, 12-in-1 and VMRM

all use image features generated by object detectors trained

on VG boxes and attributes [2]. InfoGround uses image fea-

tures extracted from an object detector trained on VG boxes.

We also compare to methods that do not use any form of box

supervision including our backbone ALBEF as a baseline.

We refer as gALBEF to our baseline which only uses Grad-

CAM in combination with ALBEF as described in [17]. We

additionally compare to MG [1], GbS [3] which report re-

sults on Flickr30k. Results for GAE [5] as well as WWbL

are taken directly from [33]. In addition to fairly compare

with GbS, we additionally report their results when ensem-

bled with detector-based methods InfoGround and 12-in-1.

Our main comparison results for methods relying on Vi-

sual Genome boxes are summarized in Table 1 and results

comparing against methods that are weakly supervised and

hence do not use box information are shown in Table 2.

4.3. Referring Expression Resolution

Referring expressions are textual descriptions that refer

unambiguously to an object or region of an image. Users

are explicitly prompted to write a textual description to re-

fer to a specific object. However the setup is similar to the

visual grounding setup and as such, many previous meth-

ods compare their results across both benchmarks. We

adopt the same pointing game accuracy metric and com-

pare our results against previous methods in two bench-

mark datasets: RefCOCO+ [14, 40] and ReferIt [14]. We

compare against the same set of methods as in the visual

grounding task except for Align2Ground [7] and 12-in-

1 [23] which do not provide results for RefCOCO+. Ad-

ditionally, InfoGround [11] does not report results for Ref-

COCO+, therefore, we use their provided bounding boxes

for COCO images [21] to perform this evaluation.

We describe in more detail each benchmark. Ref-

COCO+ [40] is a widely used referring expression dataset

including 20K images from the COCO dataset [21]. The ex-

pressions in RefCOCO+ were collected so that they do not

allow words such as left or right, making it slightly more

challenging. From this dataset, we only use its validation

and testing splits. The testing split of this dataset is further

divided into two subsets: test A and test B, in which

the former only includes people as the target objects and

the latter includes all objects. The total number of testing

images is 1.5K. Results for referring expression compre-

hension on RefCOCO+ are included in Table 1.

4.4. Box Recall Evaluation

Pointing game accuracy has been previously used for

both detector-based [11] and detector-free [1, 3] methods.

However, another metric that can be considered is Recall@k
from detector-based methods [10, 11]. For Recall@k, a

model will rank all the box proposals generated by an ob-

ject detector, and select the top-k boxes as results. If a

selected box and the ground truth box have an intersec-

tion over union (IoU) ≥ 0.5, then the selected box will be

counted as positive. Table 3 shows results when we eval-

uate our method by using it to choose boxes from differ-

ent bounding box proposals methods by selecting the boxes

with high attention heatmap scores. We use boxes gener-

ated by the FasterRCNN [29] from Gupta et al [11] and the

MaskRCNN [12] from Yu et al [39]. Using the MaskRCNN

proposals, our method obtains consistently better results

than VMRM, which is the current stats-of-the-art. How-

ever, we find this metric is influenced by the quality of

boxes. For example, using the MaskRCNN proposals will

get much better results than using the FasterRCNN propos-

als for VMRM [10].

Method Boxes
RefCOCO+

test A test B

VMRM [10] FasterRCNN 30.04 30.78

VMRM [10] MaskRCNN 46.63 40.52

gALBEF [17] MaskRCNN 61.70 42.83

AMC MaskRCNN 68.04 46.55

Table 3. We show recall@1 results on the RefCOCO+ validation

and testing sets to complement our results using pointing game

accuracy.
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Method Overall People Animals Vehicles Instrum. Bodyparts Clothing Scene Other

MG [1] 69.2 75.6 87.6 83.8 57.5 44.9 58.3 68.2 59.8

GbS [3] 74.5 83.6 89.3 92.1 83.3 53.2 50.1 71.3 66.7

gALBEF [17] 79.1 80.1 89.8 89.8 83.3 63.3 85.5 83.8 70.2

Align2Ground [7] 71.0 - - - - - - - -

12-in-1 [23] 76.4 85.7 82.7 95.5 77.4 33.3 54.6 80.7 70.6

InfoGround [11] 76.7 83.2 89.7 87.0 69.7 45.1 74.5 80.6 67.3

VMRM [10] 81.1 88.0 92.3 94.3 66.7 55.1 79.8 85.1 69.9

AMC 86.6 89.7 95.2 93.8 86.4 69.8 89.0 91.4 77.7

Table 4. Breakdown of results by category for pointing game accuracy on Flickr30K entities visual grounding.

4.5. Discussion of Results

Table 1 contains the main results of our paper when

compared to several other methods that rely on vision-

language models coupled with box-level supervision from

Visual Genome through an object detector – FasterRCNN

trained on Visual Genome. Our results show a large advan-

tage on all benchmarks but especially on RefCOCO+. We

report more fine-grained results in Table 4 for Flickr30K

Entities. There are eight categories in this dataset. We eval-

uate on each category and report the pointing game accu-

racy for them separately. For MG and Gbs, we report results

when trained on COCO because their models achieved their

best performances on Flickr30k Entities under this setting.

In general, our method obtains better results for almost all

the categories. For the category vehicle our method ob-

tains 93.8%, which is only 1.7% lower than the best result

from the best method (12-in-1).

In Table 2 we observe that methods that use box super-

vision still exhibit considerable better performance on vi-

sual grounding on Flickr30k Entities. Our method obtains

86.59%, which is 10.6% higher than WWbL, which is the

best method that does not use box supervision from Visual

Genome – however in terms of number of training images

it relies on CLIP which was trained on 400M images with

text compared to our method which uses 14M images with

text plus 100k images with boxes. In addition we compare

to GbS [3] when ensembled with detector-based methods

InfoGround and 12-in-1. Our method is still superior when

compared to these two strong baselines.

In Figure 3 we show and compare visual explana-

tions obtained by our model against those obtained by

VMRM [10] and GradCAM heatmaps generated by gAL-

BEF. The text input for VMRM is the whole caption and

a phrase and it produces a bounding box prediction. The

model locates the positions of the phrase in the caption and

selects boxes corresponding to the phrase with context in-

formation. For gALBEF and our method, the text input is

only a phrase. We found our method can get more accu-

rate and more complete objects from phrases. For exam-

Data Flickr30k ReferIt
RefCOCO+

test A test B

object boxes 86.49 62.65 78.89 61.16

region boxes 85.14 59.16 77.89 61.26

both 86.59 64.27 80.34 64.55

Table 5. We conduct an ablation study to evaluate the effect of

using ”box” annotations corresponding to box + object labels +

object attributes from Visual Genome, and ”region” annotations

corresponding to region boxes + region descriptions from Visual

Genome.

Loss Flickr30k ReferIt
RefCOCO+

test A test B

Lcosine 84.85 61.21 76.41 60.81

Lmean 82.83 57.63 75.34 56.90

Lmax 86.56 62.79 80.34 64.47

Lamc 86.59 64.27 80.34 64.55

Table 6. We conduct an ablation study to evaluate the contribution

of Lmax and Lmean to our final accuracy and an alternative loss

based on cosine similarities Lcosine.

ple, in the last row, our method can provide a more precise

heatmap for the referred object for traditional asian cloth-
ing than gALBEF, and in this case, VMRM is confused by

the clothing from the woman instead of the boy. Addition-

ally, in the second row, when the model is asked to find

“the guitar”, our method can accurately cover the guitar,

but gALBEF covers several unrelated regions that probably

contribute to the detection of guitar but do not provide an

explanation that aligns with what a human would annotate

for this image. We provide more qualitative results in our

supplementary material.
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A small child wearing a green long-sleeved top lays with her head on a pillow.

The bearded man keeps his blue bic pen in hand while he plays the guitar.

A small asian boy is walking down the street in traditional asian clothing looking back at 
a lady dressed in high heels and a beige skirt.

VMRM gALBEF AMC VMRM gALBEF AMC VMRM gALBEF AMC

VMRM gALBEF AMC VMRM gALBEF AMC VMRM gALBEF AMC

VMRM gALBEF AMC VMRM gALBEF AMC VMRM gALBEF AMC

Figure 3. Qualitative comparison of the generated explanations for various images and input phrases. First column: original images from

Flickr30k Entities; in each colored area from left to right: bounding boxes selected by VMRM; heatmaps generated by gALBEF; heatmaps

generated by our method. On the top of each group of images, we show the caption and target phrases.

4.6. Ablation Studies

In this section, we present ablations against several

choices in our model and contributing factors. Particularly

we investigate how large is the effect from box supervision

from Visual Genome both from object boxes, and region

boxes.

Box Supervision. As described in section 4.1, VG [16]

includes regions with descriptions and objects with at-

tributes. We evaluate our method on each separately. For

Flickr30k Entities and the ReferIt dataset, boxes with gener-

ated descriptions using attributes lead to better results than

regions with descriptions. We believe this is caused by ac-

curate localization information provided by boxes and spa-

tial information from box descriptions. For RefCOCO+ test

B, regions with descriptions perform slightly better than

boxes with attributes. By combining boxes, regions and

two kinds of descriptions, we obtain better alignment be-

tween phrases and image subareas. Our full set of results

from this experiment are in Table 5.

Loss Choices. Instead of calculating our margin loss as

in Eq. 9, we calculate and minimize the cosine distance be-

tween M and A. Therefore, the generated heatmap will

be closer to the box mask. Results for all of our choices

that we considered in our objective function are presented

in Table 6. For all datasets, our method outperforms this

cosine distance loss Lcosine, proving our method is a better

way to use box information than a perhaps more straightfor-

ward dot product optimization. Furthermore, we evaluate

two components in Eq. 9: Lmean and Lmax. We find Lmax

is very significant in AMC, but Lmean also provides com-

plementary information, especially for the ReferIt dataset.

In general, combining two terms leads to a more compre-

hensive grounding ability but using Lmax alone is also very

competitive.

5. Conclusion

In this paper, we proposed Attention Map Consistency

(AMC). From the intuition that a model should focus on

meaningful regions guided by location information, we de-

sign an objective function that optimizes gradient-based ex-

planation maps. Our approach achieves superior results on

visual grounding compared to other methods with a simi-

lar level of supervision. It particularly surpasses methods

relying on an object detector pretrained on Visual Genome.
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