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Abstract

Multistep protein-protein interactions underlie most biological processes, but their character-
ization through methods such as isothermal titration calorimetry (ITC) is largely confined to
simple models that provide little information on the intermediate, individual steps. In this
study, we primarily examine the essential hub protein LC8, a small dimer that binds disor-
dered regions of 100+ client proteins in two symmetrical grooves at the dimer interface.
Mechanistic details of LC8 binding have remained elusive, hampered in part by ITC data
analyses employing simple models that treat bivalent binding as a single event with a single
binding affinity. We build on existing Bayesian ITC approaches to quantify thermodynamic
parameters for multi-site binding interactions impacted by significant uncertainty in protein
concentration. Using a two-site binding model, we identify positive cooperativity with high
confidence for LC8 binding to multiple client peptides. In contrast, application of an identical
model to the two-site binding between the coiled-coil NudE dimer and the intermediate
chain of dynein reveals little evidence of cooperativity. We propose that cooperativity in the
LC8 system drives the formation of saturated induced-dimer structures, the functional units
of most LC8 complexes. In addition to these system-specific findings, our work advances
general ITC analysis in two ways. First, we describe a previously unrecognized mathemati-
cal ambiguity in concentrations in standard binding models and clarify how it impacts the
precision with which binding parameters are determinable in cases of high uncertainty in
analyte concentrations. Second, building on observations in the LC8 system, we develop a
system-agnostic heat map of practical parameter identifiability calculated from synthetic
data which demonstrates that the ability to determine microscopic binding parameters is
strongly dependent on both the parameters themselves and experimental conditions. The
work serves as a foundation for determination of multi-step binding interactions, and we out-
line best practices for Bayesian analysis of ITC experiments.
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Author summary

Multi-site protein-protein interactions govern many protein functions throughout the
cell. Precise determination of thermodynamic constants of multi-site binding is a signifi-
cant challenge, however. The application of complex models to multi-step interactions is
difficult and hampered further by complications arising from uncertainty in analyte con-
centrations. To extract binding parameter estimates from minimal and hard-to-obtain
data on these large complicated systems, we utilize Bayesian statistical techniques which
calculate the ‘likelihood’ of parameters giving rise to experimental observations. Bayesian
computations yield probability density distributions for thermodynamic parameters of
binding. To demonstrate the validity of the method and improve our understanding how
the hub protein LC8 promotes dimerization of its 100+ binding partners, we test the pipe-
line on several of these partners and demonstrate that LC8 can bind clients cooperatively,
driving interactions towards a ‘fully bound’ functional state. We additionally examine an
interaction between the dimer NudE and the intermediate chain of dynein, which does
not appear to bind with cooperativity. Our work provides a solid foundation for future
analysis of more complicated binding interactions, including oligomeric complexes
formed between LC8 and clients with multiple LC8-binding sites.

Introduction

Intracellular processes frequently depend on complex, multistep interactions between proteins
or between proteins and small-molecule ligands [1-3]. The hub protein LC8 provides an
extreme example of binding complexity, accommodating over 100 client proteins via two sym-
metrical binding grooves [4,5]-often binding in multivalent fashion with a range of stoichiom-
etries [6-10]. LC8 is found throughout the eukaryotic cell and is involved in a host of cell
functions, with client proteins including transcription factors [7,9], tumor suppressors and
oncogenes [11,12], viral proteins [13-15], and cytoskeletal proteins [6,16].

Structurally, LC8 forms a small 20 kDa homodimer (Fig 1A), with two identical binding
grooves formed at the dimer interface [4,5]. These binding sites induce a beta-strand structure
in a well-characterized linear motif anchored by a TQT amino acid sequence within disor-
dered regions of client proteins [6,9]. Despite extensive study [9,16,17], the mechanistic ther-
modynamics of LC8 binding are still not fully understood, due to the difficulty of
deconvoluting a multiplicity of microscopic states in its binding processes.

While published isothermal titration calorimetry (ITC) experiments fit LC8-client interac-
tions to a simple model [9,16,17], binding in fact occurs in two distinct steps (Fig 1A). Evi-
dence of this was first observed in nuclear magnetic resonance (NMR) titrations of peptides
into LC8, where, for some clients, a partially bound intermediate state was observable. Popula-
tions for each state were fit to a two-site model, which suggested weak cooperativity in binding,
although statistically rigorous investigation was not undertaken [18]. Further evidence that
LC8 binding cannot be explained by a simple model emerged from ITC experiments that
exhibit non-sigmoidal behavior, where rather than forming a plateau, early injections dip in
heat per injection, forming a U shape at the beginning of the titration (Fig 1B) [9]. Single-site
models, such as the identical sites model in Origin software [19], return strictly sigmoidal
binding curves and do not fit the U shape in such isotherms. Although isotherms of LC8 bind-
ing partners [9] were fit to an identical sites model, that study did not probe details of binding
thermodynamics. The observed non-sigmoidal behavior clearly raises the possibility that these

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi. 1011059  April 21, 2023 2/28


https://doi.org/10.1371/journal.pcbi.1011059

PLOS COMPUTATIONAL BIOLOGY

Bayesian modeling of multisite binding

(b)

LC8-GLCCI NudE-IC
9 69 1?0 ? 3.0 69 9.0
0.0 TyyyIITTTTTITTT 1 001 yrmyrTTTTYTTT
. | T | < T
~
E oal | -0.24 g
= -0.44
0 ——
£ 4 ra 1 .
< - 2 "
© r
L %
0 1 2 B 1 2
Molar Ratio Molar Ratio

Rotationally Symmetric

Fig 1. LC8 binds clients through a two-site mechanism. (a) Diagram of LC8-client binding, showing a structure of apo LC8 on the left, and a fully bound
structure (PDB 3E2B) on the right. Intermediates are boxed to indicate they are symmetric and indistinguishable species. (b) Example isotherms for binding

between dimeric LC8 and client peptide taken from GLCCI (left) and between the coiled-coil protein NudE and its client, the intermediate chain (IC) of dynein
(right).

https://doi.org/10.1371/journal.pcbi.1011059.9001

isotherms may fit well to a two-site model of binding more representative of expectations for
LC8’s two client sites [20].

The use of ITC to interrogate complex systems and multisite binding is challenging, as ITC
data are of relatively low information, and individual isotherms often fit well to varied model
parameters [20,21]. Despite this, ITC experiments can measure cooperativity [22,23], entropy-
enthalpy compensation [17,24], changes in protonation state [25,26], and competition between
multiple ligands [27,28]. In general, these studies rely on fitting data globally to a model that
includes several isotherms collected at varied conditions to reduce ambiguity of fit parameters
[20,21], or a ‘divide and conquer’ type approach, where subsections of a complex binding net-
work can be isolated and examined [16,22].

Concentration uncertainty is a critical concern in analysis of ITC data. In principle, accu-
rate determination of protein and ligand concentration is a prerequisite for obtaining reliable
thermodynamic quantities, yet these values are challenging to obtain for many systems [29-
33]. The most common software package for fitting ITC data, built into the data analysis and
fitting software Origin, and distributed with calorimeters, attempts to account for this uncer-
tainty in several models through the stoichiometric parameter n, which can fit to non-integer
values to correct for error in macromolecule concentrations [19,34]. However, in addition to
assuming independent sites, this implementation ignores uncertainty in concentration of the
titrant in the syringe, which is treated as a fixed value. The popular and highly flexible fitting
software SEDPHAT greatly improves on Origin’s capabilities, allowing for both explicit or
implicit (i.e. an ‘inactive fraction’ correction) uncertainty corrections [21,35]. As the authors
note, however, allowing for variation in both analyte concentrations makes binding constants
indeterminable within SEDPHAT due to correlative effects among model parameters.

Bayesian analysis offers a natural framework for incorporating uncertainty in concentration
measurements in ITC analysis [32,36,37], and has been successfully applied to measurements
of binding using both ITC and other methods [36,38,39]. In a Bayesian framework, thermody-
namic parameter determination is guided by a mix of experimental data and ‘prior’ informa-
tion, such as uncertainty ranges/models, that weights the overall ‘posterior’ probability of a
given set of thermodynamic parameters. The posterior distribution of estimated binding
parameters generated through Bayesian analysis is a complete description of the probability
range of each model parameter-and correlations among parameters-based on the input data
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and priors. With a meaningful prior description of concentration uncertainty, there is reduced
risk of underestimating uncertainty in thermodynamic binding parameters. The Bayesian
framework accounts for the full-dimensional likelihood of parameter space by construction, in
contrast to maximum-likelihood approaches to uncertainty quantification in multi-parameter
systems which approximate the likelihood function based on optimal parameters [21,40].

We build on earlier applications of Bayesian inference to ITC. Nguyen et al. [32] studied 1:1
binding using a Bayesian statistical framework accounting for concentration uncertainty and
performed sensitivity analysis on concentration priors. Very recently, Nguyen et al. [37] fur-
ther explored systems of high uncertainty, with a focus on determining multiple binding affini-
ties from ITC experiments on enantiomeric mixtures. The work emphasized the importance
of concentrations in uncertainty determination, finding that different priors for concentra-
tions impacted the accuracy of confidence intervals and demonstrated that in some cases mul-
tiple distinct affinities can be determined accurately from a single isotherm. For a two-site
binding model, Duvvuri et al. [39] demonstrated that a Bayesian method can accurately and
precisely determine affinities in two-site models when using global modelling of several iso-
therms, but the work assumes no uncertainty in measured concentrations [39], raising the pos-
sibility that parameter uncertainty is underestimated [21,32]. Cardoso et al.[36] used a
simplified 4-site binding model with a single common binding enthalpy for a set of isotherms
to determine 3 of 4 distinct affinities between protein and ligand, with the fourth being uncer-
tain across a range of several orders of magnitude. Although Cardoso et al.[36] include con-
centrations as model parameters, they greatly narrow concentration priors using a preliminary
‘calibration’ assuming identical sites. We note that such a model is not appropriate for complex
systems, particularly in cases where the identical-sites model does not fit well to the isotherm
shape. A sensitivity analysis regarding concentration uncertainty was not performed in either
multisite study, and neither work probed the information content of single isotherms for mul-
tisite systems.

Here, we report a Bayesian analysis of two-site systems with proper accounting of concen-
tration effects critical for reliable analysis. We show that LC8-client interactions unambigu-
ously exhibit positive cooperativity, driving binding towards a fully bound state. In contrast,
symmetric two-site binding between the coiled coil domain of the dynein cargo adaptor NudE
and the intermediate chain (IC) of dynein [41] shows no significant evidence for cooperativity.

We also provide methodological advances. First, we derive simple mathematical relations
that govern the influence of concentration uncertainties on different binding parameters, pro-
viding a fundamental basis for the previously noted strong sensitivity of enthalpies-but not
free energies—to concentration uncertainty [21]. Second, by using synthetic models, we sys-
tematically characterize the causes of binding-parameter uncertainties in two ways: we demon-
strate that substantial uncertainty can result from mismatch between binding parameters and
experimental conditions; and we also determine the effects of different prior functional forms
and uncertainty ranges in a multisite context, extending the work of Nguyen et al. [32]. Finally,
we outline best practices for determining model parameters and uncertainties in a multisite
Bayesian framework.

Results
A mathematical “degeneracy” in thermodynamic parameters impacts
analysis at any stoichiometry

We first present a simple mathematical analysis that explains previously reported correlation
effects among titrant and titrand concentrations [21], and which significantly impacts the
overall analysis of ITC data. Specifically, when the concentrations are uncertain, as is common
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in analysis of ITC data [21,32], we show below that only the ratio of titrant:titrand concentra-
tions can be estimated, rather than the individual values, and this ambiguity propagates to all
thermodynamic parameters. Hence, there is a “degeneracy” in that multiple solutions (sets of
concentration values and thermodynamic parameters) will equally describe even idealized ITC
data lacking experimental noise (Fig 2).

We first describe the degeneracy for standard 1:1 binding between a macromolecule M and
ligand X, following the scheme

M + X = MX (1)

The heat, Q, of a 1:1 binding system at any titration point can be described using the stan-
dard quadratic binding equation used in the identical sites model [19,42]:

Q mar [ x] K, X K\ AKX
v, 2 HWJWMJ‘\/(”[MﬁMJ) M) @

where [M,] and [X,] are the concentrations of macromolecule and ligand (i.e., cell component
and syringe component) respectively, while K4 and AH are the binding affinity and enthalpy.
The degeneracy is demonstrated by introducing a linear scaling of all parameters by an arbi-
trary number denoted o. Specifically, we apply the following transformations:

[M,] —a[M,]

(X, —o[X)]

t
K,—aK,

AH

Applying this set of transformations, we can rewrite the binding equation:

Q am)a [ ox] ek, dX] 2K, \' o]
Vo 2 ) T e \/ <1+a[M,]+a[M,]> oM @

Regardless of the value of the factor o, all introduced factors cancel leaving Q unchanged.

We emphasize that the factor o is used here as a mathematical tool to analyze the governing
equations, but o is not a parameter in our Bayesian inference pipeline, and we do not assume
analyte concentrations bear any fixed relation to one another in the inference pipeline. In the
Bayesian inference process, parameters can take any values within the ranges allowed by the
priors.

Nearly identical formal considerations apply in the two-site binding model of primary
interest here. As detailed in the Methods, the value of Q is unchanged when both concentra-
tions and both K4 values are multiplied by o and both AH values are divided by o.. The under-
lying model is more complex as it requires solving a system of nonlinear equations (see
Methods for details), but the result is that o is propagated through the nonlinear equation solu-
tions, and once again cancels in the calculation of Q, leaving the heat value unchanged.

To facilitate analysis and discussion of cooperativity below, we parameterize our two-site
model using AG, AAG, AH and AAH. Values are ‘microscopic’ terms corresponding to a single
site-resolved binding step. The AAG and AAH value correspond to the differences between the
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Fig 2. Exact degeneracy in binding isotherms. Based on the scaling relations of Eq (3), for any set of ligand and total
macromolecule concentrations (X;, My), there are infinitely many alternative concentrations (e.g., filled circles) on a
diagonal line in the ([X¢], [M,]) plane which yield exactly equivalent isotherms (inset, isotherms for points 1, 2, and 3
are drawn in distinct colors but overlay exactly) for a fixed set of thermodynamic parameters. For any given point in
parameter space, equivalent degenerate lines can be drawn in a radial manner (e.g. the two additional black lines),
passing through the point and the origin. The plotted synthetic isotherms are for 1:1 binding, but analogous
degeneracy also holds for multivalent binding—see text. Note that no fixed relationship among concentrations is
assumed during Bayesian inference.

https://doi.org/10.1371/journal.pcbi.1011059.9002

first and second microscopic binding steps. Thus Kg; = eAO/RT K, = ACHAAGIRT ' nd AH, -

AH; = AAH. The energy-like formulation allows for easy assessment of cooperativity (AAG
will be zero in the absence of cooperativity and positive or negative for negative or positive
cooperativity, respectively), and AAH is the change in enthalpy between binding steps with
analogous characterization.

The degeneracy and associated scaling relationships in Eq (3) provide important insight
into assessment of thermodynamic parameters inferred from ITC data. We see directly that
binding enthalpy changes proportionately to concentrations of titrant and titrand. That is, a
given percent error in an assumed concentration of either ligand (characterized by alpha)
translates to the same scale of error in AH. On the other hand, the binding free energy AG, is
less sensitive to concentration errors, due to scaling with In(c), rather than being directly mul-
tiplied by o. We note again that o is used only in the formal analysis here and not in our Bayes-
ian inference process where parameters are not assumed to have any fixed relation with one
another.

The scaling relationships of Eq (3) also presage a significant issue in Bayesian inference,
namely, sensitivity to the choice of priors. Within the set of degenerate solutions (diagonal
lines of concentration pairs in Fig 2), the Bayesian ‘likelihood” probability-which describes
how well a parameter set fits the data in the absence of prior information-will be constant, as
solutions are mathematically identical. Thus, within any degenerate set, the assumed prior dis-
tributions for concentrations will determine the overall posterior distributions (see Methods).
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Because the posterior distributions ultimately determine the uncertainty ranges, this is a key
point.

Below, we continue to examine the ramifications of the concentration degeneracy, demon-
strating concretely that enthalpy is more impacted by uncertainty in concentrations than free
energy. We also examine the influence of priors on parameter distributions and discuss
parameter distributions determined from isotherms in cases of high concentration
uncertainty.

Validation of Bayesian inference pipeline with synthetic data

To test our Bayesian pipeline (Methods), we generated ‘synthetic’ simulated isotherms using
hand-chosen sets of thermodynamic parameters AG, AAG, AH, AAH (see Fig 1) inserted in
Eq 17 with added Gaussian noise. Following an exploration using synthetic data of how coop-
erativity impacts binding isotherms (e.g. Fig 3A), we selected synthetic model parameters to
mimic the isotherm shape seen in LC8-peptide binding examples. Specifically, slight positive
cooperativity (AAG = -1, AAH = -1.5 kcal/mol) was best-suited to imitating real LC8-peptide
isotherms, along with AG = -7 and AH = -10 kcal/mol. Synthetic noise is taken from a Gauss-
ian distribution with a zero mean and standard deviation o = 0.2 pcal. As shown in Fig 3, we
used our pipeline to sample posterior distributions for these isotherms. For concentrations, we
chose uniform prior distributions within £10% of the true value (which simply limits sampled
concentration values to these ranges). The choice of 10% approximates what we view to be an
attainable level of uncertainty for experimental protein concentrations.

Under these representative conditions, inferred posterior distributions fell around the
known model parameters, and model parameters equate to isotherms which closely matched
the isotherm shape (Fig 3B and 3C). The finite widths of the distributions are due both to syn-
thetic experimental noise and correlative effects from the discussed model degeneracy. The
posterior distribution for AG covers a range of ~1 kcal/mol distributed around the true value
of -7 kcal/mol. Examination of the distribution lets us define a ‘credibility region,’” that con-
tains 95% of the distribution probability (i.e., from the 2.5 to 97.5%ile of the distribution),
which is directly analogous to a confidence interval in frequentist terms. For AG, the 95% cred-
ibility region is -7.5 to -6.4 kcal/mol. Similarly, the 95% credibility region for AAG covers a
range of ~1.5 kcal/mol, evenly distributed around -1 kcal/mol. AH and AAH both have slightly
wider credibility regions, with widths of 2.3 and 3.3 kcal/mol respectively, but both are distrib-
uted around the true values of -10 and -1.5 kcal/mol respectively.

In a “bottom line” assessment of the Bayesian credibility regions, we used synthetic data to
check the percent of times the true value was covered based on multiple independent trials. In
particular, we modeled 100 replicate isotherms each with different measured concentrations
chosen from priors and different synthetic noise. For each parameter, we compared the fre-
quency with which a given interval included the true value against the expectations for the
interval [32,37,38]. For example, a 50% credibility interval should include (“cover”) the
ground-truth value in 50% of the replicates. Plotting the expected credibility against the actual
coverage for our replicates (S2 Fig) returns a nearly straight line, indicating the model is pro-
ducing accurate credibility regions and does not significantly under- or over-estimate parame-
ter uncertainty.

One benefit of Bayesian inference is the ability to examine multi-dimensional likelihood
distributions to obtain correlations between model parameters without approximation. For
example, in our two-dimensional distributions for the thermodynamic parameters, the AG
and AAG values are strongly negatively correlated (Fig 3C), indicating a compensatory effect
in the model, where increases in AG can be compensated by decreases in AAG to arrive at
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Fig 3. Analysis of two-site model using synthetic isotherms. (a) A set of synthetic isotherms for two-site binding with varied AAG parameters demonstrating
how cooperativity changes isotherm shape. Thermodynamic parameters are AG = -7, AH = -10, and AAH = 0. Concentrations are set at 17 and 500 uM for cell
and syringe respectively, and injection volumes are 6 L. (b) A synthetic isotherm (AG = -7, AH = -10, AAG = -1, AAH = -1.5 kcal/mol) with added gaussian
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https://doi.org/10.1371/journal.pcbi.1011059.9003

similar solutions. Resultantly, the distribution for both AG and AAG are broader than the
‘total free energy (i.e., 2AG+AAG), evidence the overall energy of binding can be determined
more precisely than the energy of each step (S3 Fig). Additionally, the mathematical degener-
acy for concentrations described above can clearly be seen in these two-dimensional
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correlations: the two-dimensional marginal distribution for each concentration is a straight
line of a width determined by noise, covering the entire prior range (Fig 3D). Similar correla-
tions can also be seen in two-dimensional distributions for the concentrations plotted against
thermodynamic parameters (S1 Fig), especially in the AH term. The scaling relationship of the
model parameters outlined previously means that each point along these diagonals corre-
sponds to a degenerate solution, i.e., each point has equivalent likelihood based on the data.

Impact of concentration degeneracy on two-site thermodynamic
parameters assessed via synthetic data

Bayesian inference enables determination of distributions for thermodynamic parameters
even in cases of a concentration degeneracy. The net result, as will be seen, is a broadening of
(posterior) parameter distributions based on multiple equally likely solutions, constrained by
the priors used. Despite intrinsic limitations surrounding concentrations, the ratio of concen-
trations can be quantified with relatively high precision even when individual concentrations
are highly uncertain.

To quantify the impacts of the concentration degeneracy within a Bayesian inference pipe-
line, we examined a series of uniform prior distributions for concentrations, ranging from
+1% to £50% for both concentrations. These priors were applied to a synthetic isotherm mim-
icking experimental parameters, as described in the pipeline validation above. The choice of
concentration priors-which embody assumed or estimated experimental uncertainties—greatly
impacts the predicted uncertainty of thermodynamic parameters. The distributions for AG
and AH, not surprisingly, both widen as the prior range is increased (Fig 3E and 3F). As antici-
pated by the degeneracy scaling relations of Eq (3), the width of the distributions for AH and
AAH increases roughly linearly with the concentration prior range, while the distributions for
AG and AAG initially increase linearly at low concentration ranges then increase more slowly
(Fig 3G). This can be explained by the logarithmic relationship between the K4 (which is what
scales with the degeneracy) and free energy. Functionally, high uncertainty in concentrations
therefore only slightly increases uncertainty in binding free energy, while having a more signif-
icant impact on binding enthalpy. This is also apparent when examining two-dimensional dis-
tributions for concentrations plotted against thermodynamic parameters, where AH can be
seen to correlate clearly with concentrations (S1 Fig)

The concentration degeneracy of the model limits the degree to which erroneously deter-
mined individual concentrations can be corrected. As discussed above, the fact that the Bayes-
ian likelihood is uniform at any point along the degeneracy lines (Fig 2) means that the data
have little impact on the posterior distributions for individual concentrations, which instead
takes the shape of the prior used. This can be seen in the model validation example (Fig 3D),
where the posterior distribution is approximately uniform, echoing the uniform prior.

The ratio of concentrations (‘macromolecule’ to ‘ligand’), on the other hand, is a determin-
able parameter, as the ratio does not change along the degenerate line. Posterior distributions
are therefore limited to this ratio. For example, when we sample the posterior for the same iso-
therm, but use a normal (i.e. Gaussian) distribution for one concentration prior and a uniform
distribution for the other, both posteriors take the shape of a normal distribution (S4 Fig). This
is a direct result of the degeneracy identified above. S1 Table shows concentration ratio credi-
bility regions for the experimental systems. Because of the nearly determinative relationship
between the prior and posterior concentration distributions, we elected to use uniform priors
for concentrations throughout this work to avoid undue influence on our results from model
priors.
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For completeness, we also examined 1:1 binding with synthetic data. Overall, the impact of
the concentration degeneracy on model parameters is similar (S5 Fig): binding enthalpy poste-
rior distributions are wider than free energy distributions. In response to changes in concen-
tration prior ranges, the posterior for AG is more impacted than in the two-site model, but the
distribution remains much narrower than that of the enthalpy, as in the two-site model.

Application to 2:2 LC8:IDP Systems

We applied the Bayesian analysis pipeline to a set of 7 experimental isotherms of binding
between LC8 and client peptides, all of which bind in a 2:2 ratio. Note that the two LC8’s form
a strong homodimer (Ky ~ 60 nM)[43] and this initial homodimer formation is excluded from
our analysis. Client peptides were chosen based on a K of less than 5 pM when fit to an identi-
cal-sites model, and deviation from the standard sigmoidal isotherm shape [9]. As noted
above, the user-supplied uncertainties for concentrations may impact uncertainty in other
parameters. Following analysis with priors of £10% and +20% of the measured LC8 concentra-
tion as determined by absorbance at 280 nm, we have elected to focus on results at £10%
(Table 1), as using +20% does not greatly alter the posterior distributions (S2 Table). The high
degree of purity of LC8 (>95%) and high absorbance at 280 nm, due to the presence of 6 chro-
mophores (1 Trp, 5 Tyr) allow for a high signal-to-noise ratio for the absorbance, reducing
uncertainty in the measurement. Comparatively, because of the difficulty in accurately mea-
suring concentration for peptides with few or no chromophores [30,44] (1 Tyr residue for the
peptides discussed here [9]), we used a prior of increased width for the peptide concentration,
up to a limit of £50% of the initially measured value estimated by absorbance at 280 nm. As
discussed above, the posterior distributions processed through the Bayesian pipeline are lim-
ited by the most restrictive prior used, owing to the concentration ratio being well defined (S2
Table). As a result, this approach ensures that posterior distributions are limited to the range
around the measured concentration of LC8, allowing us to effectively infer the uncertain pep-
tide concentration.

Bayesian analysis of the seven systems reveals significant heterogeneity in the precision
with which binding parameters can be determined (Table 1). As will be described in detail
below, this is only partially reflective of apparent data quality (e.g., noise level). Instead, certain
binding parameters, particularly binding enthalpies, are intrinsically more difficult to charac-
terize. Variations in precision do not stem from inadequate sampling in the Bayesian pipeline:
triplicate runs are performed to confirm sampling quality (see Methods) (example in S6 Fig).

In particularly tractable cases, such as for SPAGS5 binding in Fig 4, the analysis provides
marginal distributions of similar precision to those seen with synthetic data. For binding
between a peptide from the protein SPAG5 and LC8, Bayesian analysis yields a 95% credibility

Table 1. Ranges for thermodynamic parameters for LC8-client binding. Values delineate 95% Bayesian credibility regions from sampled posterior distributions in
kcal/mol, which are akin to 95% confidence intervals. Previously published binding parameters from an identical-sites model for these isotherms are available in S3 Table.

Peptide

Min
SPAG5 -6.9
BSN (I) -5.6
BSN (II) -7.1
SLC9A2 -6.8
VP35 -7.4
GLCCI -6.1
BIM -9.5

AG

Max
-6.2
-4.9
-6.5
-5.5
-6.8
-5.1
-7.1

Min
-2.1
-2.1
-1.2
-2.6
-1.7
-2.6
-2.0

https://doi.org/10.1371/journal.pcbi.1011059.t001

AAG AH AAH -TAS -TAAS
Max Min Max Min Max Min Max Min Max
-1.1 -18 -14 -1.8 3.6 6.9 11 -5.7 0.6
-0.9 -37 -14 0.1 45 8.8 32 -51 -2.6
-0.4 -5.8 -4.8 -9.1 -7.0 -1.9 -1.0 6.1 8.3
-0.5 -24 -10 -5.0 23 3.7 18.3 -26 44
-0.9 -14 -11 -0.7 1.5 4.0 6.7 -3.0 -0.2
-1.0 -27 -9.7 -0.5 36 3.7 22 -39 -0.5
0.8 -12 -10 -0.5 2.9 14 44 -0.7 2.2
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region of -6.9 to -6.2 kcal/mol for AG (Table 1), equivalent to a range for K4; of 8.7 uM to
27 uM. The 95% credibility region for AAG, the allosteric difference between the first and sec-
ond binding event, is -2.1 to -1.1 kcal/mol, roughly equivalent to a 6 to 30-fold increase in
affinity for the second binding step relative to the first. The change in binding enthalpy
between first and second events, AAH, is distributed around zero (Fig 4B), with uncertainty
>2 kcal/mol for all cases, meaning we are unable to discern conclusively if there is any change
in enthalpy between binding steps. From AG and AH values for both binding steps, we can
additionally calculate -TAS and -TAAS, for the entropy of binding and the change in entropy
across binding steps respectively. Although the marginal distributions for these terms are
broad (Fig 4D), the -TAAS mostly sits at negative values, indicating that binding enhancement
has a greater probability of being entropically driven. See Table 1 for the full set of credibility
regions.

Some general conclusions about cooperativity are apparent from the full set of data
(Table 1). In all cases except one (binding to BIM), the distribution for AAG is negative, indi-
cating that all isotherms exhibit some positive cooperativity. Even for BIM, which has the wid-
est AAG distribution, the range predominantly covers negative values. All isotherms exhibit
precisely determined free energies: 95% credibility regions cover a range of 2 kcal/mol or less
for all cases except BIM. A common feature among some isotherms, seen clearly in the middle
and right examples in Fig 5, is an apparent loss of precision in our ability to determine model
enthalpies, as both show wide distributions for AH and AAH. For these isotherms (e.g.,
SLC9A2, GLCCI, and BIM), the two-dimensional marginal distribution for AH and AAH
shows a clear correlative effect (S7 Fig.), and the one-dimensional distribution for the ‘total’
enthalpy (i.e. 2AH+AAH) is narrower than the individual parameter distributions (S1 Table).
In sum, the wide enthalpy distributions represent an inability to precisely determine
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Fig 4. LC8 binding to a peptide from the protein SPAG5. (a) Experimental titration isotherm of SPAGS5 into LC8 (points) with 50 example traces (lines)
drawn from the posterior distribution of thermodynamic parameters and concentrations. (b) One and two-dimensional marginal distributions for
thermodynamic parameters, with contours in the two-dimensional plots set at 95 (yellow), 75 (orange), 50(purple) and 25%(black) credibility. (c) Marginal
distributions for concentrations of LC8 and peptide, showing a line of degenerate solutions, which may be compared to Fig 2. (d) Marginal distributions for
entropy (-TAS) and change of entropy (-TAAS). Plots at the top of each column in panels b,c,d are one-dimensional probability density distributions.

https://doi.org/10.1371/journal.pchi.1011059.g004
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Fig 5. Thermodynamic parameter distributions from 3 LC8-peptide isotherms. Binding between LC8 and peptides from Ebola VP35 (a), SLC9A2 (b) and
motif 1 from BSN (c). Isotherms are shown at the top, and distributions for thermodynamic parameters are shown below. Horizontal axes represent the full
width of the uniform prior range for each parameter to allow for direct comparison between each isotherm.

https://doi.org/10.1371/journal.pcbi.1011059.9005

‘microscopic’ enthalpies for individual binding events. Nevertheless, even in these cases, the
overall enthalpy can be determined with high precision (S1 Table).

Parameter inference from multiple isotherms

The use of additional experimental information is expected to increase the precision of param-
eter determination, and Bayesian inference is readily adapted to employ multiple isotherms,
whether at matching or different experimental conditions [39]. Despite the higher dimension-
ality resulting from additional nuisance parameters (see Methods), we found it relatively easy
to sample the parameter space for a two-site model including two-isotherms for several of our
LC8-client interactions (S8 Fig). For GLCCI, for example, the addition of a second isotherm
narrowed posterior distributions, while in others (e.g. BSN motif I) it proved less impactful,
largely just taking the same shape as the distribution for individual isotherms. We note that
the isotherms examined were designed as technical replicates, not as optimized isotherms at
different conditions for a global model. We expect results on multiple isotherms with varied
experimental setups, e.g., different concentrations, to be more consistently valuable. Neverthe-
less, the global models demonstrate our ability to apply the pipeline to multiple isotherms
simultaneously, a key step toward improved precision going forward.

NudE-IC binding

To confirm the utility of the Bayesian pipeline for a range of proteins with two sites, we tested
it on binding between the coiled-coil dimer NudE and the intermediate chain (IC) of dynein.
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Binding between NudE and IC can be described by the same model as binding between LC8
and clients—-NudE forms a strong (K4 ~ 200 nM in C. thermophilum [45]) dimeric coiled-coil
structure which then accommodates two chains of monomeric disordered IC for a 2:2 complex
stoichiometry (Fig 6A)[41]. Prior characterization of NudE-IC binding used a simple identi-
cal-sites binding model with a single K4, and thus provides a good system for re-analysis as
well as for comparison to LC8-client binding [41,46].

For NudE-IC binding, a two-site model recapitulates the parameters determined in fits to
identical sites modeling using Origin. For high confidence in model parameters, we applied a
global model, identical to the one used in LC8-client binding, to two titrations of IC into
NudE. Bayesian sampling returns narrow distributions for all thermodynamic parameters,
both for individual-isotherm models (S9 Fig), and for the global, 2-isotherm model (Fig 6).
Neither AAG nor AAH are significantly shifted from a distribution around zero, suggesting lit-
tle, if any, cooperativity in binding. Published work applying an identical-sites model to these
data provides a binding enthalpy of -3.1 kcal/mol, and an affinity of 2.3 uM (i.e. a AG of -7.6
kcal/mol) implying a TAS value of 4.5 kcal/mol [47]. Our two-site model predicts AH and AG
distributions centered near -3 kcal/mol, and -7.5 kcal/mol respectively, aligning well with the
published values. This binding interaction works well as a counterexample to LC8-client bind-
ing: distributions for allosteric terms are centered around zero and determined distributions
match closely to reported values modeled from a simple model.

Limits of precision in binding enthalpies
We exploit synthetic isotherms to systematically survey binding parameters and determine the
extent to which the physical parameters intrinsically lead to lower precision in parameter

inference. This effort was motivated by the disparity between the three example isotherms in
Fig 5 and anecdotal observations that weaker binding, such as between LC8 and BSN I
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https://doi.org/10.1371/journal.pcbi.1011059.9007

(Table 1), was correlated with increased uncertainty, i.e., broader posterior marginals, in bind-
ing parameters, especially AH and AAH. For this purpose, we created a series of synthetic iso-
therms on a grid of AG and AAG values and determined posterior distributions for each
isotherm. Two-dimensional heat maps of the width of these distributions across AG-AAG
space (Fig 7A and 7B) capture trends in our ability to determine model parameters.

Generally, we lose precision in binding enthalpy when binding is weaker, although there
are nuances. Interestingly, the relationship appears to differ somewhat between AH (Fig 7A)
and AAH (Fig 7B). For AH, the primary dependence appears to be on the value of AG, with
precision decreasing when AAG is 0 or negative (top left corner of 7A). However, the precision
for AAH depends strongly on both AG and AAG, with the worst precision found in the top
right quarter of the plot. This trend is largely consistent with a fundamental principle in calori-
metric experimental design based on the experimental parameter c, defined as ¢ = n[cell]/K,
where 7 is the number of binding sites on the titrand, effectively a ratio between the cell con-
centration and the binding affinity. While the importance of ¢ is debated [48], doctrine is that
5<¢<500 is required to determine binding affinities from an isotherm, as binding is either too

weak or too strong for the isotherm to be information-rich outside of the 5-500 range of c.

Consistent with the preferred range for ¢, we see losses in precision as the values of ¢ for our
experiments decrease. Our cell concentration for synthetic isotherms is 17 uM, meaning that ¢
is ~1 at AG = -6.5 kcal/mol. While ¢ is primarily discussed only in the context of binding
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models with a single affinity, with two-site binding we can calculate two separate ¢ values (c;
and c,), for the first and second step of binding, respectively. Regions of the heat map with the
lowest precision where ¢; < 1 are boxed in red in the AH heat map (Fig 7A), and ¢, < 1 is
boxed in the AAH heat map (Fig 7B). The presence of two ¢ values complicates isotherm analy-
sis, in some cases producing isotherms that appear tight-binding by visual inspection (e.g.
SLC9A2, BSN I, Fig 7C), but have one or more values of ¢ outside of the informative range,
consistent with our observation that these isotherms have poorly determined binding
enthalpy.

To examine whether increasing ¢ would improve precision, we generated synthetic iso-
therms to mimic BSN I, at AG = -5.1 and AAG = -1.7 kcal/mol, and applied the model at two
cell concentrations, 17 and 70 uM (Fig 7D). Consistent with our expectations, posterior distri-
butions for binding enthalpies narrowed dramatically (Fig 7E and 7F) at the 70 pM concentra-
tion, although it is worth noting that this improvement in precision is due partly to the
increased signal-to-noise ratio at higher concentrations (S10 Fig). Based on these results, for
isotherms like the SLC9A2 or BSN I titrations, performing additional experiments at increased
analyte concentrations should resolve the poor precision in enthalpy determination. This pro-
vides an example of how microscopic binding parameters influence precision and demon-
strates that future experiments designed to investigate multisite binding will benefit from
consideration of how experimental conditions relate to the energy of each step of a multistep
binding interaction.

Discussion

This work develops binding models for isothermal titration calorimetry (ITC) data of proteins
with two symmetrical sites to extract thermodynamics parameters for each binding event and
thus assess cooperativity. One such protein is the dimeric hub LC8, which binds over 100 client
proteins at the same site. The essential role LC8 plays in regulating a variety of cell functions
[5,9,49] motivates detailed mechanistic understanding of what drives recognition to its diverse
partners. Using a Bayesian framework, we sought to determine precisely how much informa-
tion can be extracted from a single ITC isotherm and examine how uncertainty in analyte con-
centration impacts model parameters, an investigation greatly aided by simulated ‘synthetic’
isotherms with known parameters. Building on prior work [32,36,37,39], we have advanced
Bayesian analysis of binding, and applied it to rigorous biophysical characterization of LC8
dimer binding to short client peptides, as well as binding between the dimeric coiled-coil
domain of NudE and the intermediate chain of dynein. We also used synthetic data to unam-
biguously separate effects of experimental error from system-intrinsic limitations imposed and
define the limits of intrinsic (in)tractability in calorimetry.

Bayesian inference in binding analysis, leveraging synthetic data

“How much information is contained in an ITC isotherm?” is a fundamental biophysics ques-
tion that Bayesian inference is uniquely suited to answer. Building on prior work [32,36,39],
we have improved the ability of the Bayesian approach to account for the intrinsic uncertainty
in both titrant and titrand concentrations. Our approach was motivated in large part by the
recognition of a mathematical “degeneracy” in ITC analysis, i.e., the existence of multiple solu-
tions even in the absence of experimental noise, which prevents inference of a fully unique set
of thermodynamic parameters. This degeneracy holds for simple 1:1 binding and apparently
for arbitrary stoichiometry.

While fitting ITC data to multisite binding and other complex models is challenging, Bayes-
ian inference yields “posterior” joint probability distributions for model parameters, providing
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a full description of parameter uncertainties and correlations consistent with any prior
assumptions. Analogous investigation using traditional least-squares fitting commonly relies
on post-analysis techniques such as the error-surface analysis implemented in SEDPHAT [21],
which employs a series of maximum-likelihood fits that approximate the marginal probability
distribution for a given model dimension being evaluated [40]. While such analyses may be
adequate in many cases, they are not integrated into many fitting pipelines, including Origin,
and only rarely employed. Bayesian inference offers a direct route to uncertainties and correla-
tions between parameters without relying on a maximume-likelihood approximation [40]. The
posterior distributions-the joint distribution over all binding parameters-fundamentally
answer the question of the information contained in an isotherm [32,39].

Our work has benefited greatly from the use of synthetic isotherms. Built from known ther-
modynamic parameters, the value of synthetic isotherms as an aid in experimental design is
well-established [21,32], and our Bayesian pipeline quantifies the relative information content
of each generated isotherm. Synthetic isotherms have allowed us to test and troubleshoot our
pipeline (Fig 3), probe the information content of isotherms under variable conditions of con-
centration and priors (Figs 3 and S5), and examine how thermodynamic parameters them-
selves impact our ability to determine information from isotherms, resulting in the heatmap of
relative tractability (Fig 7). In the context of multi-isotherm modeling, utilizing synthetic data
to design new experiments, similar to what is possible with fitting in the program SEDPHAT
[21,35] will be particularly valuable.

Using synthetic data, our investigation of how concentrations impact model parameters
has shown that uncertainty in concentration induces uncertainty in binding enthalpy, but has
areduced impact on free energy. This agrees well with results from Nguyen et al.[32] on 1:1
binding, indicating that the concentration-enthalpy relationship applies to all binding models.
Thus, while the individual concentrations may be indeterminable from the model alone, the
ratio of concentrations can be readily determined, provided the underlying stoichiometry of
binding is known (S1 Table).

From a single experimental isotherm, we sample marginal posterior distributions with widths
as narrow as 1-2 kcal/mol for a two-site model with four thermodynamic parameters. Uncertain-
ties on this scale are consistent with other Bayesian analyses [36,39]. In addition to uncertainty
due to experimental noise and correlative parameter relationships such as between AG and AAG,
uncertainty arises from our ‘skeptical’ consideration of analyte concentrations (priors of + 10%
for LC8, up to £50% for peptides). While free energy and enthalpy parameters for individual bind-
ing steps cannot always be determined with precision, the total values accounting for both steps
can be determined with less uncertainty (SI Table and S3 Fig). Uncertainty can be reduced by
careful concentration determination through multiple methods, and the use of global models
derived from multiple isotherms at varied concentrations and concentration ratios.

Practical limitations of Bayesian sampling and global modeling

Bayesian statistical analysis relies on Markov chain Monte Carlo (MCMC) sampling, which
requires simulating a sufficient number of steps to adequately explore the parameter space,
potentially including a need to locate and sample multiple probability peaks (akin to energy
basins in conformation space). For our ITC data analysis, simple MCMC sampling methods
proved inadequate to sample the model space, even following sampling times of several days
and over 4 million samples. While the ensemble sampler [50] used by us and others applying
Bayesian models to ITC [36,39] has been robust for our purposes, adequate sampling contin-
ues to be an important limitation, especially when considering analysis of more complex mod-
els. For all work presented here, sampling ran at an average rate of around 7-8 iterations per
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second on four cores, leading to wall-clock sampling times near two hours for models requir-
ing 50,000 samples and 50 chains. This was readily feasible, even with replicates and varying
conditions. More complex models could require significantly more sampling, although there is
no simple scaling law that applies because of the difficult-to-predict nature of the parameter-
space ‘landscape’. Global modeling of multiple isotherms may also require additional sam-
pling: as isotherms are added to a global model, each one brings with it a new set of nuisance
parameters (4 per isotherm in our work—see Methods). In our hands, two-isotherm global
models could be sampled at a similar rate of 7-8 iter/s but required as many as 200,000 samples
and therefore took closer to 8 hours, but nonetheless could be well-sampled within half a day.
While global models of technical replicates may improve signal to noise ratios, ideally, global
experiments should be designed with the intent of covering several experimental conditions
[36,39], and all experiments must be high quality to ensure they contribute to global fits. Effi-
cient sampling of global models is an ongoing research direction for us.

Cooperativity in two-site binding

Our data show that LC8 binds client proteins with positive cooperativity. Of the 7 peptides
examined here, Bayesian analysis for all except one (BIM) yields a negative AAG value, con-
firming our hypothesis that cooperativity drives LC8 binding [18] for these peptides. We addi-
tionally test binding between the intermediate chain (IC) of dynein and cargo adaptor NudE
and find no evidence of cooperativity in the interaction. For the present study, we selected test
LC8-binding isotherms with preference for two criteria we anticipated would leverage model-
ing: (1) tight-binding to LC8 and (2) an isotherm shape that breaks from a strict sigmoid. This
selection process makes it difficult to say with certainty whether the cooperativity we see with
LC8-client binding is unique to these clients or universal to LC8 binding. Nevertheless, we can
draw some conclusions about the mechanism and function of cooperativity.

The mechanism of cooperativity in LC8-client binding appears to be entropically driven.
While entropy is often the term with the widest distribution (Table 1), owing to its dependence
on both the free energy and the enthalpy, there is a clear trend in our results towards positive
TAAS values, which equates to the second binding step being more entropically favorable than
the first. Relatedly, NMR dynamics measurements indicate LC8’s flexible core is rigidified on
binding to clients [17,51]. Since LC8-binding cooperativity necessarily requires some change
in the structural ensemble of LC8, it is possible that the first binding step can be thought of as
‘paying up-front’ for the entropic cost of both binding steps-i.e., rigidifying the whole LC8
core. This mechanism would also allow for variation in cooperativity on a per-peptide basis, as
the degree of rigidification in the core seen by NMR is dependent on client sequence [17].
Future molecular dynamics simulations can examine the differences in rigidity of the LC8 core
in different bound states and across binding to different peptides.

While LC8-client complexes are varied, the putative functional unit of most LC8-client
interactions is a 2:2 bound structure, where LC8 promotes dimerization in client proteins [52-
54]. One possible underlying function of cooperative binding is therefore that it acts as a driver
of the formation of the 2:2 bound state and suppresses the nonfunctional 1:2 intermediate.

LC8 contrasts interestingly with NudE-IC binding in this respect. Recent work has demon-
strated that pre-dimerization by other proteins is essential for the NudE-IC interaction when
measured in context of the full length protein [45]. As such, there is no analogous functional
role for cooperativity to play in IC binding. Prior work has proposed that positive cooperativity
could drive the formation of homologous complexes [18], with the same client bound to each
LC8 motif. This hypothesis suggests that binding at one site essentially promotes binding of
the same client at the second site, through small adjustments along the LC8 dimer interface.
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Future competition assays-titrations of a client into LC8 samples pre-bound with a different
client-may help to answer this question.

New questions arise when considering LC8 clients with multiple binding motifs. Proteins
such as the nucleoporin Nup159 or the transcription factor ASCIZ contain several LC8 motifs
in succession and form large ladder-like complexes with LC8. Complexes between LC8 and
multivalent clients are often highly heterogeneous in both stoichiometry and conformation
[7,55,56], complicating their analysis. Particularly in the case of ASCIZ, the fully bound state is
highly disfavored by negative cooperativity [7,56], thought to be mediated through the linker
sequences between LC8 motif, which ensures that ASCIZ is sensitive to LC8 even at high LC8
concentrations. Investigating the thermodynamics of such complexes necessitates methods
able to dissect the complicated network of binding interactions dependent both on the individ-
ual motifs as well as on the lengths and structures of linkers between motifs. This work repre-
sents a first step towards such investigations and lays a framework upon which analyses of
multivalent LC8 interactions can be built.

Concluding remarks and future steps

Bayesian inference has allowed us to characterize multi-site binding cooperativity with high confi-
dence for two different protein-protein interactions of 2:2 stoichiometry, despite uncertainties in
analyte concentrations and inherent limitations of ITC. Our analysis was enabled by improve-
ments to prior work [32,36,39] in treating concentration uncertainties, and further demonstrates
the value of Bayesian inference to ITC analysis. We used synthetic data to systematically character-
ize the uncertainty landscape for 2:2 binding based on both intrinsic binding properties and
experimental conditions, an approach that can readily be extended to other models.

We examined two dimeric systems, the hub protein LC8 and the coiled coil domain of
NudE. For LCS8, every client peptide studied showed evidence of cooperative binding, confirm-
ing hypotheses from a decade ago [18]. In contrast, the dynein NudE/IC complex showed min-
imal evidence of cooperativity, consistent with the fact that in biological settings, NudE binds
to IC in a dimeric state, suggesting allostery would serve no purpose in the interaction. The
ability to reliably characterize these interactions also serves as an important step toward quan-
titative characterization of multivalent LC8-multivalent client complexes, which, due to their
complexity, evade straightforward investigation.

While our focus here has been on two-step symmetric-site binding systems, Bayesian meth-
ods can be applied to other complex models investigated by ITC. Measurement of complex
multivalent systems, enthalpy-entropy compensation, and ternary complexes or competition
binding are all likely to benefit from analysis under a Bayesian framework. Although there is a
limit on how much information can be gained from individual isotherms, investigation utiliz-
ing synthetic data can guide design, to help determine experimental conditions that maximize
gain from additional ITC experiments within a given system.

Methods
1:1 binding

For 1:1 binding, we used the quadratic model as described in Eqs 1 and 2 in the results above.
The heat of each injection i, (dQ;) was calculated using the following equation:

Qi - Qi—l

Vi
dQ,-—Qi+70( 5

) —Q,_, +AH, (5)
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Where V; is the volume of injection i. This binding model is identical to the model used in
Origin’s identical sites model when n = 1. AHy is a correction term to account for heat of dilu-
tion, buffer mismatch, and other effects that may apply a flat shift to binding heat.

Two-site binding

Two-site binding is modeled in a standard fashion, such as in the binding polynomial model
[57] as:

M+ X = MX+X= MX, (6)

Under this scheme, each binding affinity is as follows:

|
_ X][MX]
2Kd2* [MXZ] (8)

where Ky; and K, are the affinities for the first and second microscopic, site-resolved binding
steps. Factors of % and 2 represent adjustments between the individual site-resolved affinities
for either symmetric indistinguishable binding step and the ‘macroscopic’ binding constants
(i.e. Kinacro1 = ¥ K41). Here and throughout, we refer to binding affinities and energies by their
microscopic value. The total concentrations of X and M can be written as:

[M] = [M] + [MX] + [MX,] (©)
[X,] = [X] + [MX] + 2[MX,] (10)

Through rearrangement and substitution of Eqs 7 and 8, the total concentration equations
can be rewritten only in terms of [M] and [X], the concentrations of free macromolecule and

ligand:
] = o+ 2200 B (1)
)] = [x] + 2 [XILT] +2 [glg‘i] (12)

This system of equations is solved numerically for each given injection point to determine
the unbound concentrations [M] and [X]. In our implementation, numerical solutions are cal-
culated using the ‘optimize.root’ function in the scipy python library, using a Levenberg-Mar-
quardt least-squares optimization. With both free concentrations determined, the system heat
can be calculated:

Vg = AH} [MX} + (AHI + AHZ)[MXZ] (13)

0
where AH; and AH, are the enthalpies of binding step one and two respectively. The
concentrations of each bound state can be calculated from [X] and [M] and Eqs 7 and 8. As in
the 1:1 binding model, Eq 5 is used to calculate the observed heat of injection, dQ,, for each
injection.
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Degeneracy in two-step binding

When protein concentrations are included as model parameters, degenerate solutions are intro-
duced. As outlined in the manuscript, the degeneracy is exposed from the following transformation:

[M,] —a[M)]
| —alX)]

K, —oK,
AG,—AG, + RTlogu
K, —aK,,
AG,—AG, + RTlogx

AH,

AH,—

AH,

AH,— (14)
Here, o can be any positive number. Following this transformation, the equations used to

calculate [X] and [M] (Eqs 7 and 8) are transformed:

(X]M] | [X]'[M]

= [M]+ 2 15
J =M oKy +°‘2K41Kdz (15)

oM,

XM, XPM]

X | =X +2
X =W+ aKy a?K Ky

(16)

In these transformed concentration-sum equations, the new solutions for both [X] and [M]
are exactly the previous solutions multiplied by o, as can be verified by substitution. Finally,
applying the transformed values into the equation for Q yields

Q _ ,AH, o[X]o[M] | (AH, +AH,) o[ M](2[X])* (17)
V, o oKy, o o?K, K,
As in the 1:1 binding model, cancellation of o shows there is no change in the value of Q for
any o value. This demonstrates the degeneracy for 2:2 binding, which we can expect to gener-
alize to higher stoichiometries.

Bayesian inference

Bayesian inference is a method to calculate a “posterior” distribution of model parameter val-
ues based on prior assumptions (encoded as prior distributions for parameters presumed to
hold in the absence of data) and the data. In general, as more data is analyzed, the influence of
the prior will decrease [58,59]. The posterior distribution of parameters provides rich informa-
tion such as the parameter means and confidence intervals (technically “credibility regions”),
in addition to correlation information regarding whether and how parameters vary together.
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Bayesian inference is based on Bayes’ rule [58,60] which enables us to infer a distribution of
parameters 0 (e.g., binding free energy and enthalpy, etc.) consistent with a given set of data D
(e.g., ITC isotherms):

P(0|D) = P(D|0)P(0)/P(D) (18)

where P(0|D) is the (posterior) probability distribution of the model parameters, 6, given the
data, D; P(D|0) (the likelihood) is the probability distribution of the data given the model
parameters and is given below; P(0) (the prior) is the probability of the model parameters,
specified below; and P(D) (the evidence) is the probability of the data. For a given set of data,
the unknown denominator P(D) is constant, independent of parameters, so it does not affect
the inference of posteriors. Typically, it is not possible to analytically solve Bayes’ rule, so
numerical methods such as Markov chain Monte Carlo are used to determine the target (pos-
terior) distribution [61-63]. Details of our implementation are given below.

Bayesian model

Following prior work [30,39], we assume the data has Gaussian noise with a mean of zero and
an unknown standard deviation. The ITC model parameters 0 include concentration terms
(XinitiabMinitia1) and thermodynamic terms (AG, AAG, AH, AAH), as well as the nuisance
parameters (AH, and o) for heat of dilution and Gaussian noise. We use uniform prior distri-
butions for the model parameters specified below and the unknown noise standard deviation
unless otherwise stated. For global models (e.g. Figs S8 and 6), while it may be possible to
assume a global noise or concentration model, we instead elected to apply global models with
an additional set of concentration and nuisance parameters for each additional isotherm
(bringing the total parameter count up to 12 for two-isotherm models). Uniform prior ranges
for thermodynamic parameters were identical for all models, listed in S4 Table. For nuisance
parameters AH, and o, uniform priors of -10 to 10 pcal and 0.001 to 1 pcal respectively were
used in all models.

The likelihood for a set of data D = {x,, x,,. . .}, denoted (p(D|0)), is the product of the prob-
abilities at all data points x; based on a normal distribution of standard deviation o centered
around y;(0), the calculated value of point i for the binding model and parameters 6. It there-
fore takes the following form:

1 x, — )’
p010) = T] e - 5 (19

and we note that o is assumed unknown and sampled as part of the Bayesian inference process.
When the priors are uniform, as we most often assume, the posterior is simply proportional to
the likelihood given here.

Sampling

We use an affine-invariant Markov chain Monte Carlo sampling method [64] to perform
Bayesian inference, as also used by Duvvuri et al. [39] and Cardoso et al. [36]. The affine-
invariant sampler is an ensemble-based method in which multiple walkers move through the
sample space in a correlated fashion. We empirically found this method to sample significantly
better than the standard Metropolis-Hastings [61,62] sampler for our model. In our hands, the
Metropolis-Hastings method was unable to converge on the target distribution after 4,000,000
sampling steps, whereas the affine-invariant sampler was able to converge after 100,000 sam-
pling steps.
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Implementation

We used the EMCEE package [50] in Python to perform the affine sampling, using a 20%:80%
mix of the “differential evolution” and “stretch” move sets with 25-50 walkers. For each exper-
iment, 3 replicas are run for 50,000-200,000 sampling steps/replica until convergence. Each
replica converged, as determined by the autocorrelation time, where sampled steps must be
greater than 50x the autocorrelation. Convergence was additionally assessed through examina-
tion of posterior distributions from model replicas, which were nearly identical in all cases (S6
Fig). This implementation runs at ~8 samples for each walker per second on 4 cores of a node
on the Oregon State College of Science computing cluster, leading to sampling times of around
1 hour and 40 minutes for models requiring only 50,000 samples and up to 7 hours for models
requiring 200,000 samples. Additional discussion of the sampling method and it’s implementa-
tion can be found in our best practices supplement (S1 Document).

The code, data, and an example notebook are available at: https://github.com/
ZuckermanLab/Bayesian_ITC

Synthetic isotherms

Synthetic isotherms for 1:1 and two-site binding were generated following Eq 2 for 1:1 binding
and Eqs 11, 12, and 10 for two-site binding. Parameters were chosen to mimic typical experi-
mental conditions employed in our group. For 1:1 binding (S5 Fig), we used AG and AH values
of -8 and -12 kcal/mol respectively, and concentrations of 34 pM in the cell and 500 uM in the
syringe. For two-site binding, varied thermodynamic parameters were used (e.g. Figs 3 and 7),
but concentrations were fixed at 17 uM in the cell and 500 pM in the syringe. Synthetic iso-
therms used a cell volume of 1.42 mL and a temperature of 25 C. For synthetic isotherms, we
simulated one injection of 2pL followed by 34 injections of either 6 pL (Isotherms in Figs 3, S1,
S4 and S5) or 10 uL (BSN mimic isotherms, Figs 7D-7H and S10). All isotherms were calcu-
lated with a AH, of 0 pcal, and added synthetic noise from a Gaussian distribution with a
mean of 0 and standard deviation 0.2 pcal (except the high noise BSN I isotherm, S10 Fig). To
accurately replicate experimental conditions, we eliminated the first injection when applying
models to this data.

Validation of model credibility regions

To validate the model’s credibility regions, we generated replicate isotherms each with new
random noise, and we sampled posterior distributions for each (S2 Fig). For the full model
including concentrations we used 100 replicates, and for the reduced model without concen-
trations we used 50. Isotherms were generated from the experimental parameters used in the
isotherm in Fig 3B (AG = -7, AH = -10, AAG = -1, AAH = -1.5 kcal/mol) at fixed concentrations
of 17 uM in the cell and 500 pM in the syringe, standard deviation of 0.2 pcal for injection
heat. For the full model, to simulate experimental conditions, we randomly selected ‘measured’
concentrations from the +10% uniform prior. Uncertainties in the credibility values presented
in S2 Fig are standard deviations of 1000 bootstrapped samples.

Supporting information

S1 Fig. MCMC traces and marginal distributions for all model parameters for a synthetic
isotherm. (a) MCMC traces consisting of 50 chains for all model parameters for a synthetic
isotherm (Fig 3B). Chains are thinned by a factor of 50 for visibility. (b) One and two-dimen-
sional marginal distributions for all model parameters for a synthetic isotherm (Fig 3B), with
contours in the two-dimensional plots set at 95 (yellow), 75 (orange), 50(purple) and 25%
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(black) confidence. Red lines and dots indicate true values for the synthetic isotherm. Correla-
tions between some parameters are apparent, including between concentrations, as well as
between each concentration and the thermodynamic parameters, especially AH.

(PDF)

S$2 Fig. Validation of uncertainty in credibility regions. Plots of predicted versus observed
credibility for each thermodynamic parameter and analyte concentrations for our test syn-
thetic isotherm conditions (Figs 3B and S1). Black circles are the complete model including
concentrations, while red circles are from a simplified model with concentrations removed.
Error bars are standard deviations across 1000 bootstrapped samples.

(PDF)

S3 Fig. Distributions of thermodynamic parameters plotted with total free energies and
enthalpies. Each plot shows a set of either AG and AAG or AH and AAH, along with the ‘total’
value for that parameter, i.e. 2AG+AAG or 2AH+AAH. The distributions for this sum value are
often narrower than the individual parameters, as the total enthalpy and free energy of binding
can be determined with higher precision from a given isotherm than the individual values. AG,
AH are the energy and enthalpy of binding step 1, while AG+AAG,AH+AAH are the energy
and enthalpy of binding step 2, making the total values reported here the energy and enthalpy
of both binding steps combined.

(PDF)

$4 Fig. Marginal distributions comparing models with uniform and normal-distribution
priors. Distributions are taken from models on an identical synthetic isotherm generated
from parameters AG = -7, AAG = -1, AH = -10, AAH = - 1.5, [peptide];nitial = 500, [LC8]initial =
17, AH, = 0 and sigma = 0.2. All priors are identical except for [peptide]initial, where the uni-
form prior model (red) was run with a +10% of stated value uniform prior, and the normal
prior model (black) was run with a normal distribution prior with standard deviation = 1% of
stated value.

(PDF)

S5 Fig. Effect of concentration priors on marginal posterior distributions for thermody-
namic parameters in a 1:1 binding model. Distributions are taken from models on an identi-
cal synthetic isotherm generated from parameters AG = -8, AH = -12, [X];pitia1 = 500, [M]initial
= 34, AH, = 0 and sigma = 0.2. Model priors arOe uniform distributions of varied width in
each plot for [X]initia and [M]inisiar, varied from +1% to £50%.

(PDF)

S6 Fig. Example marginal distributions of replicate models for the LC8-SPAGS5 interac-
tion. Each model replicate is run on an identical isotherm with a different random seed dictat-
ing random starts for MCMC chains and trial move selections. Each model returns near-
identical marginal distributions.

(PDF)

S7 Fig. two dimensional marginal distributions of enthalpy for selected isotherms. Mar-
ginal distributions for BSN I, SLC9A2, and GLCCI are shown, each of which has wide 1D dis-
tributions for both AH and AAH. Enthalpy parameters are closely correlated, resulting in a
diagonal two-dimensional distribution within the enthalpy space.

(PDF)

S8 Fig. Marginal distributions for thermodynamic parameters for individual and global
models for three LC8-peptide interactions. Distributions for each individual isotherm and
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distributions for the global model are shown in purple, orange and green respectively. While
the global model improves precision in determined parameters in some cases (e.g. GLCCI), in
others it appears to follow the shape of the distributions for individual isotherms (e.g. BSN I).
(PDF)

S9 Fig. Marginal distributions for thermodynamic parameters for IC-NudE binding iso-
therms. Distributions for each individual isotherm and distributions for the global model are
shown in green, orange, and purple respectively.

(PDF)

$10 Fig. Marginal distributions for thermodynamic parameters for BSN-like synthetic iso-
therms. (a) one-dimensional distributions for thermodynamic parameters for synthetic iso-
therms (AG = -5.1, AAG = -1.7, AH = -11, AAH = -2) generated with cell concentrations of 17
(orange) and 70 uM (blue and green). Syringe concentrations are 900 uM and 2000 uM respec-
tively. The orange and blue isotherms are generated with noise taken from a gaussian distribu-
tion of width ¢ = 0.2 pcal, while the green is generated with o = 0.8 ucal. (b) two-dimensional
marginal distributions for the same models as (a), in the AH-AAH dimension. Contours are
drawn at 95 and 50% probability density. While raising the synthetic experimental concentra-
tion dramatically improves precision in all model parameters, much of this is due to the
increased S/N ratio associated with the higher concentration. Scaling synthetic model noise
with the increase in cell concentration reduces the precision of model enthalpies, although
they are still narrower than the distributions for the low concentration isotherm.

(PDF)

S1 Table. Credibility regions for ‘sum’ thermodynamic parameters and ratios of concen-
trations. 95% credibility region from sampled posterior distributions for the AG sum(2AG
+AAG) and dH sum(2AH+AAH) as well as the ratio of concentrations ([peptide]/[LC8]). Cred-
ibility regions for AG and AH sums are frequently narrower than the credibility regions for
individual parameters (Table 1).

(PDF)

S2 Table. Ranges for thermodynamic parameters for LC8-client binding when modeled
with +20% LC8 concentration. Table 1 in the main text contains equivalent information at
+10% LC8 concentration. Values delineate 95% Bayesian credibility regions from sampled
posterior distributions, when modeled with +20% priors for LC8 concentration. Distributions
are largely very similar to those presented in Table 1, with a slight decrease in precision. BSN I,
for which posterior distributions are significantly broader, is the only notable exception.
(PDF)

$3 Table. Binding parameters determined from identical sites model fits, as published in
Jespersen et. al. (2019) [9].
(PDF)

$4 Table. Model priors and sampling lengths for all isotherms.
(PDF)

S1 Document. Best practices for the application of Bayesian statistical models to isother-
mal titration calorimetry.
(PDF)
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