
ARTICLE

Morphodynamical cell state description via live-cell
imaging trajectory embedding
Jeremy Copperman 1✉, Sean M. Gross1, Young Hwan Chang 1,2, Laura M. Heiser 1,2✉ &

Daniel M. Zuckerman 1,2✉

Time-lapse imaging is a powerful approach to gain insight into the dynamic responses of

cells, but the quantitative analysis of morphological changes over time remains challenging.

Here, we exploit the concept of “trajectory embedding” to analyze cellular behavior using

morphological feature trajectory histories—that is, multiple time points simultaneously,

rather than the more common practice of examining morphological feature time courses in

single timepoint (snapshot) morphological features. We apply this approach to analyze live-

cell images of MCF10A mammary epithelial cells after treatment with a panel of micro-

environmental perturbagens that strongly modulate cell motility, morphology, and cell

cycle behavior. Our morphodynamical trajectory embedding analysis constructs a shared cell

state landscape revealing ligand-specific regulation of cell state transitions and enables

quantitative and descriptive models of single-cell trajectories. Additionally, we show that

incorporation of trajectories into single-cell morphological analysis enables (i) systematic

characterization of cell state trajectories, (ii) better separation of phenotypes, and (iii) more

descriptive models of ligand-induced differences as compared to snapshot-based analysis.

This morphodynamical trajectory embedding is broadly applicable to the quantitative analysis

of cell responses via live-cell imaging across many biological and biomedical applications.
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In normal and diseased tissues, cells are continually exposed to
a wide variety of extracellular stimuli, including growth factors
and cytokines, that modulate morphological and phenotypic

states. However, quantitative assessment of complex morpholo-
gical states remains a challenging problem. Single timepoint
measurements provide some information about cell state but do
not capture how responses evolve over time. Live-cell imaging has
been deployed to characterize dynamical changes in cell mor-
phology, or cellular morphodynamics1,2. Recent advances in live-
cell imaging technologies have enabled unprecedented assessment
of the behavior and interactions of cellular populations3–6. To
date, however, most analyses of live-cell image data have been
primarily based upon classification of cell morphology observed
in individual time points and do not directly examine the rich
dynamic landscape of cell morphology trajectories7–9.

Here we describe a generalizable morphodynamical trajectory
embedding method to analyze live-cell imaging datasets com-
posed of unlabeled phase-contrast microscopy images. Analysis
methods directly based upon trajectory features that are aggre-
gated over multiple time points have been used to classify mitosis
and apoptosis10, and also to monitor signaling responses via
reporter molecules11. We show here that mapping the multiple-
time-point trajectory space of cells, rather than examining single-
cell time courses built from snapshots, can increase the infor-
mation extracted from live-cell imaging experiments and improve
the quantitative description of cellular responses.

Live-cell imaging provides temporal information not available
from other single-cell and omic measures. Single-cell RNA
sequencing can assay thousands of molecular read-outs across
thousands or hundreds of thousands of cells. A common data
analysis procedure is the extraction of cell states, including con-
tinuous low-dimensional cell state spaces, from high-dimensional
molecular data12. Because sequencing is a destructive readout,
single-cell trajectories in this space can only be inferred indirectly
through population time-series modeling13–16 or pseudo-time
approaches17,18; however, approaches such as “RNA velocity”19,20

have been used to infer cell state dynamics. In contrast, live-cell
imaging enables cellular and phenotypic responses to be assayed
over multiple time points.

In a live-cell imaging experiment, cell responses to a pertur-
bation, such as the addition of a signaling ligand to the cell cul-
ture medium, can be examined. Cells with shared response
patterns can be assigned to distinct cell states that can then be
tracked over time to quantify response dynamics. Cell states can
be discrete, as for cell-cycle states G0-G1-G2-M, or continuous as
for epithelial-to-mesenchymal transition (EMT). Live-cell ima-
ging has been used to develop gene-level functional annotation,
including in RNAi gene knockout screens and drug screening7,
and also to study how single-cell trajectories evolve in a cell state
space that represents distinct cell-cycle phases8. Gordonov et al.
developed an unsupervised approach to characterize live-cell
state, analyze cell shape space, and obtain models of cell responses
that included three distinct cell states21. This workflow of live-cell
imaging, segmentation, featurization, and tracking has been used
to describe cell state as a continuum22 and to develop a cell
trajectory-based description of EMT23 in the space of single-
timepoint snapshot features. Heryanto et al. utilized 3D shape
descriptors to explore the relationship between 3D shape and cell
motility24. Trajectory information, including combined motility
and morphological features computed as averages over single-cell
trajectories, have also been used to define and identify cell state
space in microglia and neural progenitor cells25.

Trajectories are the natural space from which to classify a
system out of equilibrium, such as a living cell26,27. Leveraging
such a framework, however, requires that the state space of the
system can be measured. Floris Takens’ seminal trajectory

embedding theorem28 states that in a deterministic dynamical
system, there is a 1:1 correspondence between the space of the full
dynamical system and that formed by concatenating incomplete
observations of the system across time—the “trajectory embed-
ding” space, also referred to as delay-embedding. For cell mor-
phodynamics, the incomplete observations are single-cell
morphological features (snapshots) and concatenating features
across time forms morphodynamical feature trajectories, which
we refer to as “trajectories.” For Nf features and nτ trajectory
timepoints, the trajectory of a cell can be considered a vector of
dimensionality Nf × nτ . In stochastic systems or systems of suf-
ficient complexity, such as a cell, a comprehensive map enabling
perfect prediction of the dynamical system is not necessarily
achievable, but trajectory embedding can still lead to an improved
characterization of the dynamical behavior29–31. Trajectory
embedding methodology has been applied in fields as diverse as
weather prediction32, economics33, and molecular dynamics34–36,
but to our knowledge has not yet been applied to examine cell
states observable in live-cell imaging assays.

Here, we develop and apply the morphodynamical trajectory
embedding method in a dataset of MCF10A mammary epithelial
cells perturbed with a set of six ligands that target three signaling
pathways (PI3K/AKT, MAPK/ERK, and SMAD) and induce
distinct cellular responses, including changes to cell proliferation,
differentiation state, and motility and which are known to be
important in mammary tissues37. The live-cell imaging data are
part of a broader data collection effort through the Library of
Integrated Network-Based Cellular Signatures (LINCS)
consortium38,39 MCF10A project37 where the molecular and
phenotypic responses to these ligand perturbations were assessed.
Molecular and cellular responses indicate changes in multiple
pathways and initiation of unique cellular responses in each
ligand condition37. Our live-cell imaging cell-trajectory-based
analysis was developed to characterize the morphodynamical
changes associated with molecular responses. By directly ana-
lyzing morphological feature trajectories, rather than single-
timepoint features or averaged features over time, we leverage the
additional information contained in the time-ordered single-cell
trajectory information.

Results
We applied our trajectory embedding analysis to systematically
characterize cell state from live-cell imaging of MCF10A mam-
mary epithelial cells treated with a panel of ligands that induce
distinct phenotypic responses: PBS (no ligand; control), EGF,
HGF, OSM, BMP2+ EGF, IFNG+ EGF, and TGFB+ EGF. Cells
were assessed via phase-contrast microscopy over 48 h, with
images collected every 30 min, as part of the LINCS MCF10A
project37. Single-cells were segmented, featurized, and tracked
through time as described in Methods. In our “trajectory
embedding” approach, time-sequences of features for the trajec-
tory length under consideration were concatenated and used for
UMAP40 dimensionality reduction as the basis for further ana-
lysis. The single-cell trajectories are the set of extracted single-
cells and their tracks, or linkages between frames. An overview of
the live-cell imaging trajectory embedding workflow is shown in
Fig. 1. The quantification of morphodynamical cell states
demonstrates the biological information intrinsic to cellular tra-
jectories in a broadly applicable and relatively simple imaging
assay.

Comparing morphodynamical trajectories between the differ-
ent ligand treatments requires the construction of a shared cell
state space, which we created by analyzing all of the trajectories
from the full set of treatments through the dimensionality
reduction pipeline together. The single-cell trajectories we use for
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a trajectory embedding of length nτ consist of all possible tra-
jectory snippets of length nτ in the full trajectory set; for example,
a single cell that is tracked over 12 frames will have 5 possible
trajectory snippets of length 8 in a sliding window manner
(frames 1–8, 2–9, 3–10, 4–11, 5–12). Unless otherwise indicated,
we used all available trajectory snippets over the 48-h experiment.
Snippets mapped to the same location in the reduced-
dimensionality cell state space share qualitatively similar
morphologies across trajectory timepoints and across all treat-
ments (Supplementary Fig. 2). In this shared morphodynamical
trajectory space, ligand treatments alter the distribution of mor-
phodynamical cell states (Fig. 2).

Separation of unique and shared cell state under ligand per-
turbation. Ligand perturbation can induce time-dependent mor-
phologic and phenotypic changes, including cycling rate, motility,
and cytoskeletal features. Cells in the control condition (PBS, no
ligand) did not proliferate, while cell populations grown in the other
treatments display changes in proliferation and morphology as early
as 6 h (Fig. 2a). For example, TGFB+ EGF ligand treatment
increased cell spacing and induced large lamellopodia, while OSM
treatment induced tightly packed cell clusters; see Gross et al.37 for
further phenotypic assessment. These changes motivate our interest
in quantitative analysis of morphodynamical trajectories.

We characterized changes to cell morphodynamics under the
different ligand treatments by quantifying the similarity between
distributions of morphodynamical trajectories between ligand
conditions (Fig. 2b–d). We found similar ligand-specific distribu-
tions in the embedding space of morphological snapshots, with
increased ligand-specific uniqueness observed in the embedding
space of morphological trajectories. At the snapshot level, which
excludes trajectory information, Fig. 2b shows that over the course
of the experiment cells occupy broad distributions in the embedding

space. For example, we observed distinct shifts in occupancy that
separate OSM and TGFB+ EGF from other conditions, which is
consistent with the distinct morphologies associated with these two
treatments (Fig. 2a). At a trajectory length of 8 steps (3.5 h), these
broader relationships are preserved but the cell state distributions in
the embedded space become more condensed and display distinct
peaks (Fig. 2c). The uniqueness of cell state distributions between
ligand treatments is reflected in a monotonic reduction in the
shared area, or overlap, between cell state probability distributions
with increasing trajectory length (Fig. 2d). The pairwise overlap
decreased more rapidly than in a null model in which cell features
were randomly scrambled within treatment (Fig. 2d). Thus, the
trajectory embedding that leveraged information across timepoints
yielded improved description of the ligand-specific morphodyna-
mical responses as compared to snapshot analysis.

Improved cell state description from morphodynamical tra-
jectories. Cell states can be defined by identifying metastable
regions of the morphodynamical trajectory embedding space
where trajectories remain localized for extended time periods. To
compare cell states and their relationships, we extracted the
single-cell dynamics in the embedding space, i.e., the space of
trajectory snippets defined in a sliding window. If there are T
timepoints in a full single-cell trajectory, then there are T-nτ þ 1
snippets of length nτ , each of which is a point in the embedding
space. Together, these points trace out a trajectory in the
embedding space with T-nτ transitions between snippets (e.g.,
from the snippet consisting of frames 1–8 to the snippet con-
sisting of frames 2–9). We used the dynamical information about
snippet-to-snippet transitions to calculate dynamics in the mor-
phodynamical cell state space. The average of all cell state
trajectories passing through a local region in the landscape yields
the cell state “flow”, which in a Markovian picture of a continuous
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Fig. 1 Live-cell imaging analysis and trajectory embedding pipeline. The data analysis pipeline starts from 48 h image stacks and proceeds to the
morphodynamical trajectory analysis. Image processing steps include a preprocessing, b cell segmentation, c featurization (z-normalized phase-contrast
pixel values colored red positive to blue negative), d tracking (cell boundaries at t, t+ 30min with cell centers connected by black arrows), e extracting
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trajectory snippets of length 3 shown in green, red, and blue), f trajectory embedding (UMAP), and g cell state and trajectory analysis in the trajectory
embedding (UMAP) space using trajectories longer than the trajectory embedding length.
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stochastic process41,42, is proportional to the effective force
“pushing” a cell from one morphodynamical state to another.
These cell state force-fields are visualized in Fig. 3. In the snap-
shot landscape, cell state trajectories appear highly random with
little systematic variation between treatments (Fig. 3, left col-
umn). In the trajectory embedding landscape, however, the cell
state force-field displays treatment-specific convective flows
(Fig. 3, center column). These flows indicate stabilization in the
unique regions of density peaks between treatments, providing
direct evidence for the paradigm of metastable attractors in a
landscape of cell state. Individual single-cell trajectories in the
embedded space can stay partly localized to these metastable cell
states for extended time periods. Over the timescale of 10 or more
hours, cell state changes reveal the transition pathways between
metastable cell states (Fig. 3, single-cell trajectories shown as blue
to green lines, image sequences in the right column). Trajectories
that appear random when observed via single-timepoint snapshot
features unfold43,44 and become systematic in the trajectory
embedding space.

The utility of a single-cell trajectory depends upon how well it
characterizes cell state transitions and transition dynamics. We
measured how systematic and predictable the trajectories are by

quantifying the randomness of the trajectories in the embedding
space. We defined the predictability of a trajectory as a locality

ratio l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx t þ 30minð Þ � x tð ÞÞ2� �q

=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx � xh iÞ2� �q

between

the root-mean-square (RMS) displacement in the embedding
space after one timestep (30 min) and the standard deviation in
the displacement over the full population. Angled brackets <···>
indicate averages over all trajectories and timepoints t. In a
completely random trajectory, this ratio is 1 because the variance
in a single timestep and the full population is identical. In a
deterministic trajectory, all trajectories emanating from the same
point are identical and have no variance after a single
timestep–the only contribution to the ratio is the relative average
displacement in the time interval. In a continuous, stochastic
description of the trajectories in the embedded space41,42, this
locality ratio is related to the effective diffusion rate. Figure 4a
shows that this locality ratio systematically decreases with
trajectory embedding length in contrast with the null model,
indicating that trajectories are increasingly less random and more
predictable with increasing trajectory embedding length.

To determine the capability of themorphodynamical embeddings
to characterize single-cell morphodynamical trajectories, we first
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Fig. 2 Trajectory embedding increases the distinguishability of cell states induced by ligand perturbation. a Representative background subtracted
phase-contrast images (size 1.6 mm× 1.9 mm with z-normalized phase-contrast pixel values colored red (positive phase contrast) to blue (negative phase
contrast) in the set of ligand conditions (top to bottom) at 0, 6, 12, 24, and 48 h (left to right). b, c Distributions of cells in trajectory embedding space over
the 48 h of imaging. b Snapshot space (trajectory embedding length= 1), and c trajectory embedding length= 8. d Average pairwise overlap over all
treatment pairs (shared area under probability distributions) as a function of the morphodynamical feature trajectory length used in the embedding (log2
x-axis scale), comparing trajectory embedding (blue dashed lines) and null model with randomly scrambled time labels within treatments (red dashed
lines), averaging over results obtained by dividing data into three sets by field of view (diamonds), with error bars from a bootstrapped 95% confidence
interval over the three data splits. A trajectory length of 1 corresponds to a snapshot description.
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Fig. 3 Trajectory embedding enables the determination of metastable cell states and pathways across ligand treatments. Left and middle column:
average displacement proportional to the effective force (orange arrows), and cell density (grayscale) for snapshot embedding (left: snapshot, trajectory
snippet length= 1, right: trajectory snippet length= 8). Representative cell morphodynamical trajectories capturing cell state transitions (blue to green line
with arrows showing the direction of motion in the embedding space) from t0 to tf determined by the available cell tracks. Right column: Cell images every
hour along the extracted trajectory, with the tracked cell centered in the image frame and neighboring cells moving in and out of view, except in the IFNG
+EGF images where the tracked cell is temporarily clipped at the edge of the microscope field of view.
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used a subset of the data to train a model of trajectory likelihood,
then calculated the average log-likelihood of a held-out test set of
trajectories. The average log-likelihood is a direct measure of the
predictability of the cell trajectories45. Here we used a Markovian
transition matrix likelihood model, trained by counting transitions
between Voronoi states defined by k-means cluster centers on the
landscape46,47. We utilized 100 k-means centers to discretize the
morphodynamical embedding space, which provided sufficient
Voronoi centers to capture the observed patterns of cell state flow
betweenmetastable cell states while still retaining adequate sampling
of state-state transitions. The average log-likelihood increases as a
function of morphodynamical trajectory embedding length and is
higher than in a null model where cell features were randomly
scrambled between treatments, shown in Fig. 4b.

We expect in general that greater trajectory embedding lengths
will increase the descriptive capability of trajectory models, but

only up to the point where the increase in information in the
longer time-ordered trajectories is greater than the loss of
information due to incomplete tracking of cells between frames.
For snippet lengths longer than 10 frames, we did not observe an
increase in ligand-specific trajectories relative to the null model
(Fig. 2d), which likely is related to the decrease in the number of
extracted trajectories longer than 8 frames (Supplementary
Table 2). Thus we chose a trajectory embedding length of 8
(3.5 h) for further analysis. The decreased overlap between ligand-
specific distributions (Fig. 2d), decreased locality ratio (Fig. 4a),
and increased trajectory likelihood (Fig. 4b) indicate that even
partial trajectory information over a timescale of a few hours
substantially improved the representation of cell state.

Morphodynamical transitions precede cell cluster formation.
Ligand treatments displayed characteristic transitions between

Fig. 4 Trajectory embedding increases the predictability of cell trajectories. a Ratio between the single-step (dt= 30min) and full RMS displacement in
the trajectory embedding space as a function of the trajectory length, null model with randomly scrambled features within treatments (reds) and trajectory
embedding (blues), and UMAP embeddings where d is the number of UMAP components. Three replicates are shown per embedding (sea green,
turquoise, teal). b Average log-likelihood per trajectory step from the validation set cell trajectories, as a function of the trajectory length, averages for the
trajectory embedding (blue dashed line) and for the null model (red dashed line), from UMAP d= 2 embeddings. Individual treatments (colors) for the null
model (crosses) and for the trajectory embedding (diamonds).
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cell states (Fig. 5a), indicating ligand-specific regulation of cell
morphodynamics. In general, cell state distributions were more
similar across ligand treatments at early times and became more
condensed and distinct at later times, which is reflected in the
time-dependent morphodynamical cell state distribution (Sup-
plementary Fig. 2).

Cell states in the embedding space were identified using
quantitative methods and refined by visual inspection. We
identified fine-grained metastable states spanning the cell state
landscape from density peaks arising in individual treatments
(Fig. 5a, b), which we divided into 6 states, or groupings, and
assigned qualitatively descriptive labels based upon observed cell
morphology. These labels are intended to be descriptive and aid
interpretation. “Separated epithelial-like” cell states are rounder
cells enriched in EGF condition, while “separated mesenchymal-
like” cell states display more extended cytoskeletal features such
as lamellopodia and are enriched in the TGFB condition. The
“intermediate clusters” cell state represents cells that are mostly
separated from tightly clustered cells. We further divided
multicellular clustered cell states into “bound clusters” which
display a thick border around attached cells that span multiple
cells, “unbound clusters” which lack this border and whose outer
cells have extended cytoskeletal features, and “budding” cells
which consist of semi-round cells attached to the outer border of
a cell cluster.

The direction of the cell state flow in the trajectory embedding
space indicates that a group of cells coming together and forming
an attached multicellular cluster proceeds via state 2, “separated
mesenchymal-like” cells with extended cytoskeletal features. This
flow was consistently observed in the cell state “force-fields”
(Fig. 4), cell state transition networks (Fig. 5a), and the time-
dependent cell state distributions (Supplementary Fig. 3), and in
all of the ligand conditions.

Cell cluster formation was most strongly associated with OSM
treatment37, consistent with Fig. 5a showing that in the OSM
treatment the transition probability from the “intermediate
cluster” state 3 into the multicellular clustered state was higher
than the transition probability out of it. Separated cells (states 1
and 2) are separated from cell clusters (states 4 and 5) and cell
cluster formation proceeds through states 2→ 3→ 4 via cells
displaying extended cytoskeletal features and increased cell
border contrast (Fig. 5b).

Discussion
In vivo, cells continually modulate their phenotypic state in
response to changes in local microenvironmental cues38. For
example, during development, cells must precisely control cell
states48, proliferation, and cell motility, and the loss of cell state
control is associated with various diseases, including cancer49.
Dynamic cell behaviors can be observed via live-cell imaging but
quantifying the dynamic relationships between diverse cellular
phenotypes has been challenging. Our morphodynamical “tra-
jectory embedding” provides a method to quantitate dynamic
morphologic behaviors. Trajectory embedding leverages the
unique capability of live-cell imaging to follow single cells in time
and constructs a coordinate space based on time-aggregated
“hyper features” better suited to study cell states and their
dynamical relationships as compared to standard featurization
based on single timepoints.

We observed that cells dynamically transition between mor-
phodynamical cell states and that the transition frequencies are
strongly modulated by ligand treatment. These dynamic cell
state relationships can provide a framework for understanding
cell-cell heterogeneity and heterogenous cell responses to per-
turbation. Live-cell trajectory embedding brings the cell state

landscape paradigm from theoretical biology to direct applica-
tion, where cell states and the transitions between them can be
resolved, validated, and potentially leveraged for actionable
control strategies14,50–55.

Our morphodynamical trajectory embedding procedure
quantifies the space of morphological trajectories directly, leading
to an improved description of dynamical cell state changes
compared to using only morphological snapshots. One limitation
of our analysis is that we did not explicitly consider cell cycle
stage, instead, these processes remain implicitly described via
morphological features. We envision that future studies could
extend our framework by directly identifying cell cycle phase.
Such an extension would provide insight into the coupling of cell
cycling to changes in motility and morphology and the herit-
ability of morphodynamical state from parent to daughter cell.
We chose a broad cell feature set, but many other approaches to
define cell features have been developed, including novel cell
shape descriptors56,57 and machine learning-based approaches58.
Trajectory embedding, in principle, has the capability to map
dynamical information from any reasonable featurization towards
a more complete description of cell state.

The morphodynamical trajectory embedding method can be
applied to any live-cell imaging modality where cells can be
characterized and tracked through time, and in particular,
we expect that this method will be especially powerful for
analysis of live-cell approaches that incorporate genetically-
encoded, fluorescently-labeled reporters, both in vitro59–61 and
in vivo62–64. Practical limitations will always come into play,
nevertheless. For example, we applied our method to unlabeled
phase-contrast imaging of cell cultures that approach
confluence65,66, without paired ground truth labeled images67.
Trajectory data quantity and quality will generally pose a con-
straint on trajectory length used in the morphodynamical tra-
jectory embedding analysis. Even when many very long
trajectories are available, analysis based upon shorter trajectory
lengths might more directly capture processes and relationships
of specific interest, such as the connection between specific
morphological features and cell motility. The approach outlined
here could be used as the foundation for analyses designed to
identify the optimal trajectory lengths.

Biological interpretation and validation of the morphodyna-
mical cell states extracted here will be important, and our find-
ings help to motivate specific hypotheses that could be explored
in future studies. Identification of the molecular programs
associated with particular cell states and cell state transitions
would provide insight into how these processes are mediated in
normal tissues and how they may go awry in diseases. Impor-
tantly, trajectory embedding analysis enables quantification of
cell state transitions and may therefore be useful for gaining
insights into disease progression and therapeutic resistance68–74.
Our observation that cell cluster formation is preceded by a
mesenchymal-like shift in cell state aligns with the maturation of
transverse arc stress fibers as a precursor to stable cell-cell
junctions observed by Rajakylä et al.75 but live-cell imaging
coupled with deeper molecular profiling data—such as multi-
plexed imaging76–79 and single-cell transcriptomics80,81—are
needed in order to gain a more comprehensive understanding of
the underlying biological mechanism beyond the information
obtained from live-cell imaging alone. Manifold-based or
mutual-information approaches have had some success with
single-cell data integration82–84 and may enable integration of
live-cell imaging trajectory embeddings with molecularly
resolved data, a critical data analysis goal needed to provide
insight into the biological relevance of morphodynamical cell
states. With the trajectory embedding method we present here, it
is now possible to study the emergence of metastable attractors
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and the regulation of dynamic cell state changes, via live-cell
trajectories.

Methods
Live-cell imaging of MCF10A cells. Data used in this study were recently
described by Gross et al.37 In brief, MCF10A cells were plated at 75,000 cells/well
on collagen-coated 8-well plates. After an 8 h attachment period in growth media
containing EGF and insulin and a 12 h period in media lacking EGF and insulin,
cells were treated with 7 different ligand treatments (PBS, EGF 10 ng/ml, HGF
40 ng/ml, OSM 10 ng/ml, BMP2 20 ng/ml+ EGF 10 ng/ml, IFNG 20 ng/ml+ EGF
10 ng/ml, TGFB 10 ng/ml+ EGF 10 ng/ml). Wells were imaged every 30 min for
48 h via bright-field phase contrast with an Incucyte microscope (1020 × 1280, 1.49
μm/pixel), with the initial frame coinciding with the addition of the ligands and
fresh imaging media. 6 image stacks were collected for each ligand treatment and
imaged simultaneously, see Gross et al.37 for a discussion of batch effects and

experimental replicates. Experimental protocols can be found in detail at the
publicly available Synapse database85.

Image preprocessing. Foreground (cells) and background pixel classification was
performed using manually trained random forest classifiers using the ilastik
v1.3.3 software86. Images were z-normalized (mean subtracted and normalized by
standard deviation) and background pixel values were set to a value of 0. In cell images,
these z-normalized pixel values are shown from red to blue (positive to negative).

Cell segmentation. Single-cells were segmented from the preprocessed images using
the cytoplasm model of the Cellpose87 v0.6.5 software, a deep learning approach
trained broadly across cell types and imaging modalities. The Cellpose algorithm
requires estimating the size of the cells before segmentation; due to the variability in
sizes and shapes of the MCF10A cells, segmentation was performed iteratively over
multiple rounds allowing the Cellpose algorithm to determine a new cell size at each

Fig. 5 Trajectory embedding resolves pathway of cell cluster formation via mesenchymal-like intermediate. a Cumulative distribution of all cells under
all treatments (grayscale) with labeled fine-grained density peaks (A–S), and qualitative cell states (mauve dashed circles) with numeric labels (1–6), and
cell state transition networks with arrow weight proportional to conditional transition probability, not overall transition flows, with transition probabilities
<3% not drawn. b Representative trajectory snippets (embedding length= 8= 3.5 h) extracted at density peak locations (A.–S.) with the treatment
condition of the representative trajectory snippet, grouped by macrostate with morphologically descriptive macrostate labels (right of images).

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-023-04837-8

8 COMMUNICATIONS BIOLOGY |           (2023) 6:484 | https://doi.org/10.1038/s42003-023-04837-8 | www.nature.com/commsbio

www.nature.com/commsbio


round until no more new cells were found (pixels of previously segmented cells set at
each round to the background value of 0). Image preprocessing and segmentation
scripts can be found on the github repository, see data and code availability. The
unlabeled, bright-field phase-contrast imaging used here leads to image analysis
challenges, particularly for cell segmentation. It is difficult to judge the quality of many
extracted cell segmentations when local cell density is high, see Supplementary Table 1
and Supplementary Fig. 1 for manual validation.

Cell featurization. Three classes of features were used to characterize individual
cells: (i) texture features, (ii) shape features, and (iii) features characterizing
adjacent cells. As preliminary steps, segmented cells were extracted, and mask-
centered into zero-padded equal sized arrays larger than the linear dimension of
the biggest cell (in each treatment); then the long axis was defined by the non-
mass-weighted moment of inertia of the cell mask and aligned along a reference
axis. (i) Two types of internal cell features were calculated. Zernike moments (49
features) were used to characterize the overall spatial phase contrast signal and
Haralick texture features (13 features) were used to characterize the phase contrast
texture; these were calculated in the Mahotas88 image analysis package. The sum
average Haralick texture feature was discarded due to normalization concerns. (ii)
Shape features (15 features) were calculated as the absolute value of the frequency
coefficients of the Fourier transform of the distance to the boundary as a function
of the radial angle around cell center89, with the sum of shape features normalized
to 1. (iii) The cell environment was featurized in a similar fashion, where an
indicator function with value 0 if the cell boundary was in contact with the
background mask (no neighboring cell), and value 1 if in contact with the cell
foreground mask. The absolute values of the Fourier transform coefficient of this
indicator as a function of radial angle around the cell-center then featurized the
local cell environment (15 features), with the sum of cell environment features
normalized to 1. Note the first component of the cell environment features is
practically the fraction of the cell boundary in cell-cell contact. Additional infor-
mation regarding the cell featurization can be found in Supplementary Fig. 4A.

After computing the raw features as described, the high-dimensional cell feature
space was dimensionally reduced using principal component analysis (PCA),
retaining the largest 3 eigen-components of the feature covariance matrix
(spanning all treatments and image stacks) which captured >90% of the variability.
More PCA components can be retained with only a small computational cost in the
dimensionality reduction step (here UMAP) which typically scales linearly with the
data vector length. Additional information regarding the cell feature PCA
reduction can be found in Supplementary Fig. 4B.

Cell tracking. Segmented cells were tracked between live-cell imaging frames to
extract the set of single-cell trajectories. Image stacks were first registered trans-
lationally without allowing rotational or general affine transformation using the
pystackreg implementation of subpixel registration90. Cell centers were recorded as
the equally weighted center of mass of the single-cell masks. Cells were tracked
between frames by first separating each contiguous cluster of cells as defined by
connected sets of the foreground/background cell mask. If cell clusters occupied
less than 10,000 pixels (typical cell very roughly 30 × 30 pixels), cells were simply
tracked by minimum distance with a cutoff of 45 pixels. Tracking cells by mini-
mum distance refers to linking a cell at frame t to the cell at frame t+ 1 which has
the minimum distance between cell centers. For larger cell clusters, clusters were
first tracked by minimum distance with a cutoff of 300 pixels. Tracked cell clusters
were each individually registered rotationally and translationally (again using
pystackreg), and individual cells in the clusters were tracked between frames by
maximum overlap with a cutoff of 10 pixels. The ligand panel yields differential
impacts on cell proliferation, with a typical cell division time of ~12–20 h. In a
correctly tracked cell division event, a parent cell will be linked to two daughter
cells, which in turn will lead to two separate trajectories sharing a common initial
history prior to mitosis. In our analysis, two or more cells may have the same
parent cell as the closest cell in the previous frame. This can be the result of a cell
division event, or can be the result of a missed track or missed cell segmentation.
We do not separate cell division events into their own category, but simply use the
cell tracks, or linkages between frames, to identify the unique cell trajectory history.
Where trajectories are split as in a cell division, trajectories are not truncated and
begun anew, but rather each daughter is tracked backward in time leading to two
trajectories which are treated separately, see cell image sequences from HGF and
TGFB+ EGF conditions in Fig. 3 for examples. That is, daughter cells will have
overlapping or shared history from the parent cell.

Morphodynamical trajectory embedding. High-dimensional time-sequences of
features are used as the input to dimensionality reduction algorithms as the basis
for morphodynamical cell state analysis. Extracted cell linkages were constructed
from available cell tracks. These cell linkages are not complete, that is incomplete
segmentation/tracking means that some cells cannot be traced all the way back to
an initially plated progenitor cell. The available cell history is the unique backwards
trace of any extracted single-cell through time. Of the total 476,855 cells extracted
here; 137,845 could be traced back only one step, while 36,919 could be traced back
10 steps, see Supplementary Table 2. We consider the set of all cells (from possibly
different experimental time points) with cell history equal to or longer than a given

length, the trajectory snippet set, see Supplementary Fig. 5 for a graphical
description. Note there is a large amount of duplication in this sliding
window division of available cell trajectories. Cell trajectories that are longer
than the trajectory snippet length used in the trajectory embedding allow for
the determination of cell states and pathways. From the linkages, all cell
trajectory snippets of length nτ (all possible cell histories with length nτ ) were
extracted in a sliding window manner. The number of available trajectory snippets
for each treatment is shown in Supplementary Table 2. The PCs of each cell

in the trajectory snippet were then concatenated together (e.g. for 2 PCs fX
*
nτ g ¼

fPCA1ðt0Þ;PCA2ðt0Þ; ¼ ; PCA1ðt1Þ;PCA2ðt1Þ; ¼ ; PCA1ðtnτ Þ;PCA2ðtnτ Þg to form
the trajectory snippet supervector, which we define as the morphodynamical fea-
ture trajectory of length nτ (with N features, the feature trajectory for each cell is
N × nτ ). These morphodynamical feature trajectories (spanning all image stacks
and all treatments) are flattened into vectors and then embedded using UMAP91

into a space of dimension d. Changing UMAP embedding hyperparameters will
alter fine details regarding the trajectory embedding landscape, but we find our
overall results to be robust with very little change in the measured overlap between
ligand populations or trajectory likelihood as shown in Supplementary Fig. 6. The
trajectory embedding analysis allows for the robust and systematic characterization
of cell state trajectories even in this challenging data analysis regime with many
missing and partially segmented cells.

Overlap coefficient. To compare the similarity of two probability distributions
over a shared space, we use the overlap coefficient92 defined by the sum of the
minimum value of two probability distributions. The overlap is 0 for completely
distinct non-overlapping distributions, and 1 for identical distributions.

Stochastic dynamics: locality ratio, cell state force-fields. We employ several
measures motivated by standard concepts of stochastic physics. A measure of the
randomness of motion in stochastic dynamics is the effective diffusion rate defined
at a timescale τ by D � <4x2>τ=τ with here τ the time between frames of 30 min.
We characterize how random trajectories are by the ratio of the single-step RMS
(root-mean-square) displacements to the total RMS displacement, a locality ratio

l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx t þ 30minð Þ � x tð ÞÞ2� �q

=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx � xh iÞ2� �q

where the mean-squared dis-

placements are summed over dimension and the angle brackets ¼h i indicate
averages over all trajectories and time points. For completely random trajectories,
this ratio is 1, and tends to the relative average displacement for a continuous,
deterministic dynamic. If cells are obeying stochastic Markovian dynamics char-

acterized by a diffusion equation, then the average displacement 4 x
*

D E
is pro-

portional to the effective force F
*
ðx*Þ via 4 x

*
D E

¼ γ�1 F
*
ðx*Þ4t with γ the friction.

Cell state clustering and prediction. The cell state dynamics were characterized
by building a fine-grained discretized transition matrix model in the continuous
morphodynamical trajectory embedding space. The embedded space was binned
using k-means clustering with k ¼ 100 clusters. In the discrete space, a transition
matrix between bins was estimated from the observed transition counts Cij from a
microbin i to microbin j as Tij ¼ Cij=Ci and Ci ¼ ∑

j
Cij . This transition matrix is

commonly referred to as a “Markov Model” broadly used in the analysis of
molecular systems46. Note that this transition matrix does not share a steady-state
distribution with the cell populations, as cell birth and death states are not
included. This transition matrix was used as a (highly simplified) model of the
single-step trajectory likelihood.

Trajectory likelihood. To assess the quality of the description of the cell state
dynamics, we adopted a self-consistent measure of how likely a test set of single-cell
trajectories were within a transition matrix model trained from a separate training
set of trajectories. Data were split into a training set (5/6 images stacks per treat-
ment) and a validation set (1/6 image stacks per treatment). The training set was
used to train a transition matrix likelihood model, and the average log-likelihood
per trajectory step was calculated from the test set trajectories using the transition
matrix as <L> ¼ 1

N2
∑

x0¼i;x1¼j
logðTijÞ with N2 the set of all 2-step trajectories in the

validation set (initial point x0 mapped to bin i and next point x1 mapped to bin j.

Cell metastable state extraction and grouping. To capture the broad relation-
ships defined in the continuous trajectory embedding space we defined a small set
of discrete cell “states”. We first picked out all metastable locations on the land-
scape. We identified these metastable locations by local maxima in the population
density, see Fig. 5 and Supplementary Fig. 3. These fine-grained metastable cell
states spanning the trajectory embedding landscape (19 total) were picked via
density peaks in the individual treatments. To group these fine-grained cell states
into broader state groupings, we first utilized an unsupervised kinetic clustering
approach93 which separated three major metastable basins consistent with the
regions of the landscape enriched in the EGF, TGFB+ EGF, and OSM conditions
(respectively lower right, lower left, and upper regions, Fig. 2B, C). We then
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manually refined these regions to distinguish between clustered cell states (states 4,
5, and 6) differentially occupied between ligand treatment. These 6 qualitative cell
states were used to define cell state transition networks (transition matrix, see Cell
state clustering and prediction and Fig. 5a). Cells were mapped into these states by
first finding the closest fine-grained metastable state in the embedding space, and
then assigning the state label accordingly. The morphodynamical trajectory
embedding space indicates a continuum of cell states, thus intermediate metastable
states as indicated by density peaks which are nearest-neighbors but assigned to
different states, such as E and F assigned to the epithelial-like state and G and H
assigned to the mesenchymal-like state, may be very similar and not strictly dis-
tinct. Cell state names are descriptive for ease of interpretation but not based upon
validated biological interpretation.

Statistics and reproducibility. Overlap and locality ratio results were validated by
calculating over 3 replicates of the data, split into 3 groups composed of 2 image
stacks for each treatment. Means over the replicates, and the individual replicate
data points are plotted to allow visual estimation of the robustness of the analysis.
Error bars and 95% confidence intervals are estimated from the data splits by
Bayesian bootstrapping94.

Data availability
All codes and scripts to perform the analysis in this work can be found in the project
github repository. The current version is linked below and an archived release at the time
of publication can be found at (https://doi.org/10.5281/zenodo.7644765), including a
tutorial with instructions to access a portion of the live-cell imaging data available for
download. The full live-cell imaging dataset is available from the authors upon request.
https://github.com/jcopperm/celltraj
LINCS MCF10A Molecular Deep Dive data is available in some formats from the

synapse database85 and additional data is available upon request.
Numerical source data for graphs in Figs. 2 and 4 can be found in Supplementary

Data.
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