
On Matrix Multiplication and Polynomial Identity

Testing

Robert Andrews

Department of Computer Science

University of Illinois Urbana-Champaign

Urbana, IL, USA

Email: rgandre2@illinois.edu

Abstract—We show that lower bounds on the border rank of
matrix multiplication can be used to non-trivially derandomize
polynomial identity testing for small algebraic circuits. Letting
R(n) denote the border rank of n×n×n matrix multiplication,
we construct a hitting set generator with seed length O(

√
n ·

R−1(s)) that hits n-variate circuits of multiplicative complexity
s. If the matrix multiplication exponent ω is not 2, our generator
has seed length O(n1−ε) and hits circuits of size O(n1+δ) for
sufficiently small ε, δ > 0. Surprisingly, the fact that R(n) � n2

already yields new, non-trivial hitting set generators for circuits
of sublinear multiplicative complexity.

Keywords—matrix multiplication; polynomial identity testing

I. INTRODUCTION

Matrix multiplication is a fundamental algorithmic problem

in theoretical computer science. Starting with the work of

Strassen [1], who gave an algorithm to multiply two n × n
matrices in O(nlog2 7) time, a long line of work [2]–[16]

has produced faster algorithms to multiply matrices. Progress

on this task is usually measured by ω, the exponent of

matrix multiplication, which is the smallest real number such

that matrix multiplication can be performed using O(nω+ε)
arithmetic operations for any positive constant ε > 0. It is

evident that 2 � ω � 3. Strassen’s [1] result can be rephrased as

a proof that ω � log2 7. The present state-of-the-art algorithm

for matrix multiplication is due to Alman and Vassilevska

Williams [13], who proved ω < 2.37286. It is a major open

question to determine whether or not ω = 2.

The complexity of matrix multiplication governs (and in

many cases, is equivalent to) the complexity of numerous

problems in linear algebra, including computing the determinant

and solving systems of linear equations [1], boolean matrix

multiplication [17], QR decomposition [18], LUP decomposi-

tion [19], and computing the coefficients of the characteristic

polynomial of a matrix [20]. Fast matrix multiplication has also

been used to design algorithms for a host of problems in other

areas; examples include recognizing context-free languages

[21], detecting k-cliques [22], and solving linear programs

[23]–[25].

While it is popularly conjectured that ω = 2, progress on

obtaining improved upper bounds on ω has slowed over time.

In the three decades since Coppersmith and Winograd [9]

showed ω < 2.3755, the best-known bound on ω has improved

Supported by NSF grant CAREER 20-47310.

by only ≈ 0.00264. The improvements obtained since then

[10]–[13] apply Strassen’s so-called laser method [8] to powers

of the Coppersmith–Winograd tensor. Recent work [26]–[33]

has shown that this slow progress is no coincidence: there

are unconditional barriers to obtaining improved bounds on ω
using generalizations of this and related techniques.

There is a dual line of work concerned with proving lower

bounds on the complexity of matrix multiplication. This usually

proceeds by proving lower bounds on the rank or border rank

of matrix multiplication, which essentially correspond to the

number of scalar multiplications one needs to perform in order

to compute a matrix product. It is known that ω = 2 if and

only if the rank (or border rank) of matrix multiplication is

bounded from above by n2+o(1). The best-known lower bound

on the rank of matrix multiplication is 5
2n

2−3n by Bläser [34],

with an improvement over finite fields due to Shpilka [35]. For

border rank, an approximate version of rank, the current record

is a lower bound of 2n2 − log2(n)− 1, due to Landsberg and

Michałek [36]. In a somewhat different vein, Raz [37] showed

that any bounded-coefficient circuit computing n×n×n matrix

multiplication must be of size Ω(n2 log n).
Naturally, if ω = 2, one obtains extremely fast algorithms

for matrix multiplication, leading to improved algorithms for a

variety of problems. However, it is not clear if there is a useful

algorithmic consequence of the hypothesis ω > 2. The main

contribution of this work is an application of the assumption

ω > 2 to the design of algorithms. Specifically, we show that

if ω > 2, then one can non-trivially derandomize polynomial

identity testing for small circuits.

Polynomial identity testing (PIT) is the problem of testing

whether an algebraic circuit computes the zero polynomial.

There is a simple, fast randomized algorithm for PIT [38],

[39], but no non-trivial deterministic algorithm is known.

Designing a deterministic polynomial-time algorithm for PIT

is a major goal of algebraic complexity. Typically, this is

done by constructing a hitting set generator, the analogue

of a pseudorandom generator in this setting. There has been

considerable success in derandomizing PIT for restricted classes

of circuits (see, e.g., Shpilka and Yehudayoff [40] and Saxena

[41], [42]). For strong models of computation, like formulas

and circuits, only conditional results in the form of hardness-

to-pseudorandomness results are known [43]–[48] (see also

[49]).

356

2022 IEEE 63rd Annual Symposium on Foundations of Computer Science (FOCS)

978-1-6654-5519-0/22/$31.00 ©2022 IEEE
DOI 10.1109/FOCS54457.2022.00041

Authorized licensed use limited to: University of Illinois. Downloaded on June 30,2023 at 19:42:54 UTC from IEEE Xplore. Restrictions apply.

A. Our Results

We now describe our result in more detail. We construct a

hitting set generator for algebraic circuits that have a small

number of multiplication gates.

Theorem (see Theorem IV.1). Let R(n) denote the border

rank of n× n× n matrix multiplication. There is an explicit

hitting set generator of seed length O(
√
nR−1(s)) that hits

n-variate circuits with s multiplication gates.

In terms of the matrix multiplication exponent ω, our

generator has seed length O(
√
ns1/ω). Thus, if ω > 2, we

obtain a generator of seed length O(n1−ε) that hits circuits of

size O(n1+δ) for sufficiently small ε, δ > 0. Alternatively, one

can phrase this as a win-win result: either ω = 2, giving us

fast algorithms for a large collection of problems; or ω > 2,

in which case we obtain a non-trivial deterministic algorithm

for testing identities given by small circuits.

As R(n) � (2− o(1))n2 [36], this also yields an uncondi-

tional construction of a hitting set generator with seed length

O(
√
ns), which is non-trivial as long as s � εn for sufficiently

small ε > 0. It may seem strange to consider circuits of

complexity much less than n; for many circuit classes, such

circuits are not even capable of reading their entire input.

However, circuits with few multiplication gates are capable of

computing non-trivial polynomials, mainly through the use of

repeated squaring. For example, the polynomial (x1+· · ·+xn)
d

can be computed using only O(log d) multiplication gates.

To the best of our knowledge, nothing is known about

derandomizing PIT for circuits with few product gates. For

very small s, one can obtain non-trivial algorithms by bounding

the sparsity of the computed polynomial and using the Klivans–

Spielman generator [50]. This strategy breaks down when

s � Ω(log n), as the resulting sparsity bound becomes too

large. In contrast, our construction gives a non-trivial algorithm

even when s = εn for ε < 1
192 .

Our result comes within a logarithmic factor of converting

all known unconditional hardness for algebraic circuits into

pseudorandomness. The state-of-the-art in explicit lower bounds

on multiplicative complexity dates back to Baur and Strassen

[51], who showed that the polynomial xd
1 + · · ·+ xd

n requires

Ω(n log d) multiplications to compute. If one could construct

an explicit generator whose seed length remains non-trivial

for multiplicative complexity s � ω(n log n), then this would

provide an explicit family of n-variate multilinear polynomials

of multiplicative complexity ω(n log n). Of course, it remains a

possibility that our generator could be improved to hit circuits

of multiplicative complexity O(n log n) without requiring a

breakthrough in circuit lower bounds.

As mentioned earlier, there is a collection of works on

the hardness-randomness phenomenon in algebraic complexity

[43]–[48]. Because the assumption ω > 2 is inherently a

circuit lower bound, it seems reasonable to expect that one

could instantiate the hardness-randomness connection in order

to directly obtain our result. Though this is the spirit of our

approach, we remark that the known hardness-randomness

framework typically incurs some polynomial overhead in

translating a circuit lower bound into a hitting set generator.

In particular, for a weak lower bound of the form Ω(n1+ε)
(like what is implied by ω > 2), these techniques fail to imply

any kind of non-trivial derandomization. We note that work by

Dutta, Saxena, and Thierauf [52] showed that for a particular

class of constant-variate circuits, weak lower bounds can in fact

be used to derandomize PIT. For more on algebraic hardness

versus randomness, see the survey of Kumar and Saptharishi

[49].

B. Our Techniques

We briefly describe our generator and the proof of its

correctness. Throughout, we consider n-variate circuits as

taking as input a matrix X of size
√
n×√

n. Let R(n) be the

border rank of n× n× n matrix multiplication. To construct

our generator, we will show that the set of matrices of rank

O(R−1(s)) are a hitting set for circuits with s multiplication

gates. This will imply that such a circuit cannot vanish on the

product of an
√
n×O(R−1(s)) matrix and an O(R−1(s))×√

n
matrix, which yields our generator. Thus, we are faced with

the task of showing that no small circuit can vanish on the set

of all matrices of rank O(R−1(s)).

Let r ∈ N and let Ir ⊆ F[X] be the ideal of F[X] generated

by the r × r minors of the matrix X . It is well-known that

when the field F is algebraically closed, the ideal Ir consists

exactly of those polynomials that vanish on matrices of rank

less than r. Rephrasing our goal, we need to prove a lower

bound of Ω(R(r)) on the number of multiplication gates needed

to compute any nonzero polynomial in the ideal Ir.

Using an observation due to Baur and Strassen [51, Corollary

6], a lower bound on the border rank of matrix multiplication

lifts to a lower bound on the border multiplicative complexity

of the polynomial tr(XY Z), where X , Y , and Z are n× n
matrices. Results of Andrews and Forbes [48] allow us to

further lift this lower bound to the ideal Ir where r is the

size of the smallest algebraic branching program computing

tr(XY Z). Because tr(XY Z) can be computed by an algebraic

branching program with O(n2) vertices, we obtain a lower

bound of Ω(R(
√
r)) on the multiplicative complexity of Ir.

This suffices to obtain a hitting set generator of seed length

O(
√
nR−1(s2)) for circuits with s product gates. However,

such a construction cannot hope to obtain seed length o(n) for

circuits with O(n0.6) product gates, even if the best-known

upper bound on ω is tight.

To improve the dependence on s in the seed length, we

instead lift the lower bound to the ideal Ir where r is the size

of the smallest trace algebraic branching program that computes

tr(XY Z). This polynomial can naturally be computed by a

trace ABP of size O(n), which leads to the improved lower

bound of Ω(R(r)) on the multiplicative complexity of Ir.

This immediately translates into the improved seed length

of O(
√
nR−1(s)) for our hitting set generator.

To perform this improved lifting step, we essentially need

to show that trace ABPs of size s can be expressed as a

determinant of size O(s). We do this using the interpretation

357

Authorized licensed use limited to: University of Illinois. Downloaded on June 30,2023 at 19:42:54 UTC from IEEE Xplore. Restrictions apply.

of the determinant as a sum of weighted cycle covers in an

ABP, following Valiant [53].

II. PRELIMINARIES

Throughout this work, we take F to be a field of char-

acteristic zero. For n ∈ N a natural number, we write

[n] := {1, 2, . . . , n}. We denote by x = (x1, . . . , xn) and

X = (xi,j)i∈[n],j∈[m] a vector of variables and an n×m matrix

of variables, respectively. We write F[x] for the polynomial

ring in the variables x. We use Idetn,m,r to denote the ideal of

F[X] generated by the r × r minors of a matrix of variables

X . For an n×m matrix A and subsets R ⊆ [n] and C ⊆ [m],
we write AR,C for the submatrix of A obtained by selecting

the rows indexed by R and the columns indexed by C.

A. Algebraic Circuits

We briefly recall the notions of algebraic circuits, algebraic

branching programs, and trace algebraic branching programs.

For a more thorough treatment of algebraic circuit complexity,

we refer the reader to Shpilka and Yehudayoff [40] and

Saptharishi [54]. We begin with the definition of an algebraic

circuit.

Definition II.1. An algebraic circuit is a directed acyclic graph

in which every vertex has in-degree zero or two. Vertices of

in-degree zero are called input gates and are labeled by either

a field constant or a variable xi,j . Vertices of in-degree two

are called internal gates and are labeled either as addition

or multiplication gates. The gates of the circuit compute

polynomials in F[X] in the natural way. We allow each edge e
of the circuit to be labeled by a field constant αe ∈ F, which

has the effect of multiplying the value carried by that edge by

αe. We measure the size of a circuit by the number of gates

appearing in the circuit. The multiplicative complexity of a

circuit is the number of multiplication gates appearing in the

circuit. ♦

We will also require the notions of algebraic branching

programs (ABPs) and trace algebraic branching programs (trace

ABPs).

Definition II.2. A (single-source, single-sink) algebraic

branching program (ABP) is a layered directed acyclic graph

G = (V,E) with a single source vertex s and a single

sink vertex t. By layered, we mean that there is a partition

V = V0�V1�· · ·�Vd such that V0 = {s}, Vd = {t}, and every

edge in G goes from layer Vi−1 to Vi for some i ∈ [d]. Every

edge e of G is labeled by a linear polynomial �e(x) ∈ F[x].
Let Ps,t be the set of s-t paths in G. The ABP computes the

polynomial given by
∑

P∈Ps,t

∏

e∈P

�e(x).

The size of the ABP is |V |, the number of vertices in G. The

width of the ABP is maxi∈[d] |Vi|.
Equivalently, an ABP is given by a collection of matrices

M1(x), . . . ,Md(x) whose entries are linear polynomials in

F[x]. The polynomial computed by the ABP is the (1, 1) entry

of the matrix product M1(x) · · ·Md(x), where the dimensions

of the matrices Mi(x) are such that the resulting product is

defined. ♦

A trace ABP endows an ABP with multiple sources

s1, . . . , sm and sinks t1, . . . , tm. Whereas an ABP computes

a sum over all source-to-sink paths, a trace ABP sums over all

si-ti paths for all choices of i ∈ [m], allowing the ABP to reuse

intermediate vertices for these different sums. Alternatively,

when viewing an ABP as a matrix product, a trace ABP

corresponds to taking the trace of the resulting matrix product

instead of extracting the (1, 1) entry.

Definition II.3. A trace algebraic branching program (trace

ABP) is a layered directed acyclic graph G = (V,E) with

source vertices s1, . . . , sm and sink vertices t1, . . . , tm. By

layered, we mean that there is a partition V = V0�V1�· · ·�Vd

such that V0 = {s1, . . . , sm}, Vd = {t1, . . . , tm}, and every

edge in G goes from layer Vi−1 to Vi for some i ∈ [d]. Every

edge e of G is labeled by a linear polynomial �e(x) ∈ F[x]. Let

Psi,ti be the set of si-ti paths in G. The trace ABP computes

the polynomial given by

m∑

i=1

∑

P∈Psi,ti

∏

e∈P

�e(x).

The size of the ABP is |V |, the number of vertices in G. The

width of the ABP is maxi∈[d] |Vi|.
Equivalently, a trace ABP is given by a collection of matrices

M1(x), . . . ,Md(x) whose entries are linear polynomials in

F[x]. The polynomial computed by the trace ABP is the trace

of the matrix product M1(x) · · ·Md(x), where the dimensions

of the matrices Mi(x) are such that the resulting product is

defined. ♦

It is clear that any polynomial computed by an ABP can

be computed by a trace ABP of the same size and width.

Conversely, one can transform a trace ABP into a single-

source, single-sink ABP by duplicating the trace ABP m times,

deleting all but one pair of source and sink vertices in each

copy, and identifying the source vertices and sink vertices in

the resulting copies. To the best of our knowledge, this is

the best-known simulation of trace ABPs by single-source,

single-sink ABPs.

Lemma II.4. Let f(x) ∈ F[x] be a polynomial computed by a

trace ABP of size s and width w. Then f(x) can be computed

by a single-source, single-sink ABP of size ws and width w2

.

We will make use of the following result of Baur and Strassen

[51] that transforms a circuit that computes a polynomial f(x)
into one that computes all first-order partial derivatives of f(x)
while increasing the circuit size by only a constant factor. We

state the version of their result for multiplicative complexity,

although an analogous statement holds for circuit size. Note

that by taking F = K(ε) where K is a field, this lemma extends

to the setting of border complexity (defined in Subsection II-B).

358

Authorized licensed use limited to: University of Illinois. Downloaded on June 30,2023 at 19:42:54 UTC from IEEE Xplore. Restrictions apply.

Lemma II.5 ([51]). Let f(x) ∈ F[x] be a polynomial computed

by an algebraic circuit of multiplicative complexity s. Then

there is a multi-output algebraic circuit of multiplicative

complexity 3s that computes
{
f(x), ∂f

∂x1
(x), . . . ∂f

∂xn
(x)

}
.

B. Border Complexity

We will crucially make use of border complexity, which is

an approximative version of algebraic computation.

Definition II.6. Let F be a field and ε be an indeterminate. Let

f(x) ∈ F[x] be a polynomial. We say that a circuit Φ over the

field F(ε) border computes f(x) if Φ computes a polynomial

of the form

f(x) + ε · g(x, ε),

where g(x, ε) ∈ F[x, ε]. We frequently abbreviate this by saying

that Φ computes f(x) +O(ε). ♦

Over fields of characteristic zero, one can think of border

computation as computing a polynomial f up to an arbitrarily

small error ε. The definition above extends to fields of positive

characteristic, although this will not be relevant for our work.

Naturally, one can consider the notion of border complexity

for restricted classes of circuits, like formulas or branching

programs.

If C is a class of circuits, we define the closure of C to be the

set of polynomials that can be border computed by a C-circuit.

For example, if C is the class of size-s circuits, the closure of

C consists of all polynomials f(x) such that f(x) +O(ε) can

be computed by a size-s circuit over F(ε).
In the course of our work, we will prove lower bounds by

constructing oracle circuits. The following lemma says that

in the setting of border complexity, one can replace an exact

oracle with an approximate oracle without incurring an increase

in circuit size. This makes our job easier, as we only need

to reason about circuits using exact oracles. This lemma is

a straightforward consequence of [55, Lemma 2.3(1)]; for a

proof, see, e.g., [48, Lemma 2.3].

Lemma II.7. Let f(x), g(x) ∈ F[x] be polynomials. Suppose

f(x) + O(ε) can be computed by a circuit of size s with

g-oracle gates. Let h(x, δ) ∈ F�δ�[x] be a polynomial such

that h(x, δ) = g(x) +O(δ). Then there is some N ∈ N such

that f(x) +O(ε) can be computed by a circuit of size s with

h(x, εN)-oracle gates.

C. Polynomial Identity Testing

We will design polynomial identity testing algorithms

that operate on circuits in a black-box manner; that is, our

algorithms will only evaluate the circuit and will not examine

the internal structure of the circuit. This is equivalent to giving

an explicit construction of a hitting set for the class of circuits

under consideration.

Definition II.8. Let C ⊆ F[x] be a set of polynomials. A set

H ⊆ F
n is a hitting set for C if for every nonzero f ∈ C, there

is some α ∈ H such that f(α) �= 0. ♦

Equivalently, one can attempt to construct a hitting set

generator, which is analogous to a pseudorandom generator in

this setting.

Definition II.9. Let C ⊆ F[x] be a set of polynomials. A

polynomial map G : F� → F
n is a hitting set generator for C

if for every nonzero f ∈ C, we have f(G(y)) �= 0. We call �
the seed length of the generator. The degree of the generator,

denoted by deg(G), is given by maxi∈[n] deg(Gi). ♦

One can translate between hitting sets and hitting set

generators using the Schwartz–Zippel lemma [38], [39] and

polynomial interpolation. We note that if C ⊆ F[X] is a set of

degree-d polynomials and G : F� → F
n is a hitting set generator

for C, one obtains a hitting set of size (d · deg(G) + 1)�. In

contrast, one can always construct a hitting set of size (d+1)n.

Note that a generator with deg(G) � dO(1) and � � o(n)
corresponds to a hitting set of size do(n), which is a super-

polynomial improvement over the trivial hitting set of size

(d+ 1)n.

D. Determinantal Ideals and Matrix Rank

Let X be an n × m matrix of variables. We denote by

Idetn,m,r ⊆ F[X] the ideal of F[X] generated by the r×r minors

of X . We make use the following proposition of Andrews and

Forbes [48], which reduces the task of proving lower bounds

on all polynomials in Idetn,m,r to the task of proving lower

bounds on products of minors. We note that the polynomial

(KÃ|KÃ)(X) appearing in the statement of [48, Proposition

3.5] is exactly the same as the product of determinants that

appears in the proposition below. However, we give a more

direct statement of this proposition to avoid the language of

bitableaux and bideterminants, which is unnecessary for the

results of this work.

Proposition II.10 ([48, Proposition 3.5]). Let f(X) ∈ Idetn,m,r

be nonzero. There is a collection of nm linearly independent

linear functions �i,j(X, ε) ∈ F(ε)[X] indexed by (i, j) ∈ [n]×
[m], an integer q ∈ Z, a nonzero α ∈ F, and natural numbers

σ1, . . . , σp with σ1 � r such that

f(�1,1(X, ε), . . . , �n,m(X, ε))

= εqα

p∏

i=1

detÃi
(X[Ãi],[Ãi]) +O(εq+1).

It is well-known that when the underlying field F is

algebraically closed, the ideal Idetn,m,r consists exactly of those

polynomials which vanish on all matrices of rank less than r.

In particular, proving a lower bound of s on the complexity

of all nonzero polynomials in Idetn,m,r equates to proving that

every polynomial of complexity less than s cannot vanish on

all matrices of rank less than r. There is a natural hitting set

generator whose image contains all low-rank matrices.

Construction II.11. Let n,m, r ∈ N with r � min(n,m).
Define the map Gn,m,r : Fn×r × F

r×m → F
n×m via

Gn,m,r(Y, Z)i,j := (Y Z)i,j .

359

Authorized licensed use limited to: University of Illinois. Downloaded on June 30,2023 at 19:42:54 UTC from IEEE Xplore. Restrictions apply.

It is evident from its definition that the generator of

Construction II.11 contains in its image all n×m matrices of

rank at most r. The connection between matrix rank and the

ideal Idetn,m,r can be used to prove the following lemma. For

the sake of completeness, we provide a proof (the same proof

can be found in the discussion preceding [48, Lemma 2.10]).

Lemma II.12. Let F be any field and let n,m, r ∈ N with

r � min(n,m). Let Idetn,m,r ⊆ F[X] denote the ideal of F[X]
generated by the r × r minors of a generic n×m matrix X
and let f(X) ∈ F[X]. Then f(Gn,m,r−1(Y, Z)) = 0 if and

only if f(X) ∈ Idetn,m,r.

Proof. If f(X) ∈ Idetn,m,r, then we can write f as f(X) =∑N
i=1 gi(X)hi(X) where the polynomials {g1, . . . , gN} are

the r × r minors of X . Because the image of Gn,m,r−1(Y, Z)
is necessarily a matrix of rank at most r− 1, each r× r minor

of Gn,m,r−1(Y, Z) vanishes, i.e., gi(Gn,m,r−1(Y, Z)) = 0 for

all i ∈ [N]. This implies f(Gn,m,r−1(Y, Z)) = 0.

To prove the converse direction, we first work under the

assumption that the field F is algebraically closed. Suppose

that f(Gn,m,r−1(Y, Z)) = 0. Let Jn,m,r−1 ⊆ F[X] be the

ideal of F[X] consisting of polynomials that vanish on the

set of matrices of rank at most r − 1. Because the image of

Gn,m,r−1(Y, Z) contains all matrices of rank at most r−1, we

have f ∈ Jn,m,r−1. To show that f ∈ Idetn,m,r, we will prove

the equality Idetn,m,r = Jn,m,r−1.

The inclusion Idetn,m,r ⊆ Jn,m,r−1 is immediate, as the r× r
minors vanish on matrices of rank less than r. For the inclusion

in the reverse direction, we use the correspondence between

ideals and varieties. Recall that for an ideal I ⊆ F [X], we

denote by V (I) ⊆ F
n×m the variety of I , defined as

V (I) := {A ∈ F
n×m : ∀h(X) ∈ I, h(A) = 0}.

Let V (Idetn,m,r) be the variety over F defined by the ideal

Idetn,m,r and let A ∈ V (Idetn,m,r) be a point in this vari-

ety. By definition, each r × r minor of A vanishes, so

rank(A) � r − 1, which implies A ∈ V (Jn,m,r−1). This

shows V (Idetn,m,r) ⊆ V (Jn,m,r−1). By Hilbert’s Nullstellensatz,

this implies
√
Jn,m,r−1 ⊆

√
Idetn,m,r, where

√
I denotes the

radical of an ideal I . The ideal Idetn,m,r is radical (see, e.g.,

[56, Theorem 2.10 and Remark 2.12]), so we have the desired

inclusion

Jn,m,r−1 ⊆
√
Jn,m,r−1 ⊆

√
Idetn,m,r = Idetn,m,r.

This proves Jn,m,r−1 = Idetn,m,r, hence f(X) ∈ Idetn,m,r as

claimed.

If F is not algebraically closed, we can still consider

f(X) as a polynomial over the algebraic closure F. If

f(Gn,m,r−1(Y, Z)) = 0, the previous argument implies that

f ∈ Idetn,m,r when Idetn,m,r is considered as an ideal over F.

Letting IF and I
F

denote Idetn,m,r when considered as an ideal

over F and F, respectively, we have f ∈ I
F
∩F[x]. Lemma II.13

below shows that I
F
∩ F[x] = IF, so we in fact have f ∈ IF

as desired.

The following is an elementary lemma used in the proof of

Lemma II.12 in the case where F is not algebraically closed.

In the spirit of keeping this work self-contained, we provide a

proof.

Lemma II.13. Let F be a field and let K ⊇ F be an extension

of F. Let {g1, . . . , gm} ⊆ F[x] be a set of polynomials. Let IF
and IK be the ideals generated by {g1, . . . , gm} over F[x] and

K[x], respectively. Then IF = IK ∩ F[x].

Proof. The inclusion IF ⊆ IK ∩ F[X] is immediate. For the

other direction, let {v1, v2, . . .} be a basis of K as a vector space

over F with the additional property that v1 spans F. Consider

the linear projection π : K → F that sends v1 to itself and vi to

zero for i � 2. We extend π to a projection π : K[X] → F[X]
by applying the projection from K to F coefficient-wise. Let

f(X) ∈ IK ∩ F[X] be given by f(X) =
∑N

i=1 gi(X)hi(X).

We claim that f(X) =
∑N

i=1 gi(X)π(hi(X)), which proves

f(X) ∈ IF as desired.

To see this, let m be a monomial and consider the coefficient

Coeffm(f) of m in f . Because Coeffm(f) ∈ F, we have

π(Coeffm(f)) = Coeffm(f). Using the fact that π is F-linear,

this implies

Coeffm(f) = π(Coeffm(f))

=
N∑

i=1

π(Coeffm(gihi))

=
N∑

i=1

∑

m=m1m2

π(Coeffm1
(gi) Coeffm2

(hi))

=
N∑

i=1

∑

m=m1m2

Coeffm1
(gi)π(Coeffm2

(hi))

=
N∑

i=1

Coeffm(giπ(hi)),

where the inner sum is over all monomials m1 and m2 whose

product is m. The equality

π(Coeffm1
(gi) Coeffm2

(hi)) = Coeffm1
(gi)π(Coeffm2

(hi))

follows from the fact that π is F-linear and Coeffm1
(gi) ∈ F.

Thus, f(X) =
∑N

i=1 gi(X)π(hi(X)).

One can use Lemma II.12 to design PIT algorithms for circuit

classes C that are too weak to efficiently compute a nonzero

element of Idetn,m,r. If every small C-circuit cannot compute

a nonzero element of Idetn,m,r, then Lemma II.12 implies that

the map Gn,m,r−1(Y, Z) of Construction II.11 is a hitting set

generator for the class of small C-circuits.

E. Complexity of Matrix Multiplication

This subsection introduces the language of tensors and their

relationship with the complexity of matrix multiplication. For a

more thorough treatment of tensors and matrix multiplication,

we refer the reader to Bürgisser, Clausen, and Shokrollahi [57,

Chapters 14 and 15] and Bläser [58].

360

Authorized licensed use limited to: University of Illinois. Downloaded on June 30,2023 at 19:42:54 UTC from IEEE Xplore. Restrictions apply.

For our purposes, a tensor T of order d is a set-multilinear

polynomial in d disjoint sets of variables X(1), . . . , X(d). The

fact that T is set-multilinear means that every monomial

appearing in T is a product of d variables, where exactly one of

these variables is taken from each of the sets X(1), . . . , X(d).

That is, we can write T as

T (X(1), . . . , X(d)) =

n1∑

i1=1

· · ·
nd∑

id=1

ti1,...,idx
(1)
i1

· · ·x(d)
id

.

We say that a tensor is rank-one if there are linear forms

�1(X
(1)), . . . , �d(X

(d)) such that

T (X(1), . . . , X(d)) = �1(X
(1)) · · · �d(X(d)).

The rank of T , written as R(T), is the minimal r such that T
can be written as a sum of rank-one tensors. The border rank

of T , denoted by R(T), is the minimal r such that T can be

obtained as a limit of rank-r tensors. More explicitly, a tensor

T has border rank r if there are linear forms �i,j(X
(i), ε) ∈

F(ε)[X(i)] such that

r∑

j=1

d∏

i=1

�i,j(X
(i), ε) = T (X(1), . . . , X(d)) +O(ε)

and there is no such expression for T +O(ε) involving fewer

than r rank-one tensors.

We denote by 〈n,m, p〉 the order-3 tensor

〈n,m, p〉 :=
n∑

i=1

m∑

j=1

p∑

k=1

xi,jyj,kzi,k,

which corresponds to the multiplication of an n×m matrix

with an m × p matrix. Note that 〈n,m, p〉 = tr(XY Z�), a

fact that we will use later on.

The complexity of n×n×n matrix multiplication is captured

by the rank of the tensor 〈n, n, n〉 (see, e.g., [57, Proposition

15.1]). We now define ω, the exponent of matrix multiplication.

Definition II.14. ω := inf{τ ∈ R : R(〈n, n, n〉) � O(nÄ)}.

♦

Bini [59] showed that one can equivalently define ω in terms

of the border rank of 〈n, n, n〉.
Lemma II.15 ([59]). ω = inf{τ ∈ R : R(〈n, n, n〉) �

O(nÄ)}.

As mentioned in the introduction, the obvious bounds on ω
are 2 � ω � 3. The best-known upper bound on ω is due to

Alman and Vassilevska Williams [13].

Theorem II.16 ([13]). ω < 2.37286.

It is popularly conjectured that ω = 2. There has been some

progress on lower bounds for R(〈n, n, n〉), with the best-known

lower bound due to Landsberg and Michałek [36].

Theorem II.17 ([36]). R(〈n, n, n〉) � 2n2 − log2 n− 1.

One can also consider the multiplicative complexity of

matrix multiplication, where we do not restrict ourselves to

computing variable-disjoint products of the form �1(X)�2(Y),
but instead consider products �1(X,Y)�2(X,Y) of arbitrary

linear polynomials. The following lemma shows that for matrix

multiplication, border rank and border multiplicative complexity

differ by at most a factor of 2. In the case of (exact) rank and

multiplicative complexity, this is a well-known fact (see, e.g.,

[57, Eqn. 14.8] and the discussion preceding it). The proof for

the case of border computation is nearly identical.

Lemma II.18 (cf. [57, Eqn. 14.8]). Let L(n) denote the border

multiplicative complexity of n× n× n matrix multiplication.

Then L(n) � R(〈n, n, n〉) � 2L(n).

III. LIFTING BORDER RANK LOWER BOUNDS TO

DETERMINANTAL IDEALS

In this section, we will show that lower bounds on the border

rank of matrix multiplication can be lifted to lower bounds on

the border multiplicative complexity of any nonzero polynomial

in the ideal Idetn,m,r ⊆ F[X]. Letting R(n) := R(〈n, n, n〉) be

the border rank of n× n× n matrix multiplication, our goal

will be to prove a lower bound of order R(r) on the border

multiplicative complexity of the ideal Idetn,m,r. To do this, we

make use of tools recently developed by Andrews and Forbes

[48] to prove lower bounds on the complexity of polynomials

in this ideal.

We now state and prove our main technical lemma, which

is an analogue of [48, Lemma 3.6] for trace ABPs.

Lemma III.1. Let F be a field of characteristic zero. Let

X(1), . . . , X(m) be matrices of variables, where X(i) is an

ni × ni+1 matrix and n1 = nm+1. Let N :=
∑m+1

i=1 ni.

Let σ = (σ1, . . . , σp) be a non-increasing sequence of

natural numbers with σ1 � N . Then there is a matrix

M ∈ F(ε)[X(1), . . . , X(m)]Ã1×Ã1 where each entry Mi,j is

either a constant or a scalar multiple of a variable and we

have

p∏

i=1

det(M[Ãi],[Ãi]) = 1 + ε tr(X(1) · · ·X(m)) +O(ε2).

Proof. Without loss of generality, it suffices to consider the

case where σ1 = N . If instead σ1 > N , we extend the matrix

M to a σ1×σ1 matrix by placing ones along the main diagonal

and zeroes elsewhere.

Let G be the underlying directed graph of the trace ABP

that computes tr(X(1) · · ·X(m)). We modify G as follows:

• Add a self-loop of weight 1 to every vertex of G.

• Let s1, . . . , sn1
denote the sources of G and t1, . . . , tn1

the corresponding sinks. Add an edge of weight ε from

ti to si for every i ∈ [n1].

361

Authorized licensed use limited to: University of Illinois. Downloaded on June 30,2023 at 19:42:54 UTC from IEEE Xplore. Restrictions apply.

Let G′ denote the resulting graph and let M ′ be the adjacency

matrix of G′, i.e.,

M ′ :=

»
¼¼¼¼¼¼¼¼¼½

In1
X(1) 0 0 · · · 0 0

0 In2
X(2) 0 · · · 0 0

0 0 In3
X(3) · · · 0 0

0 0 0 In4
· · · 0 0

...
...

...
...

. . .
...

...
0 0 0 0 · · · Inm−1

X(m)

εIn1
0 0 0 · · · 0 Inm

¾
¿¿¿¿¿¿¿¿¿À

.

We will first determine
∏p

i=1 det(M
′
[Ãi],[Ãi]

), after which we

will modify M ′ to obtain the desired matrix M .

Fix some k ∈ [N]. If k �
∑m−1

i=1 ni, then it is clear that

det(M ′
[k],[k]) = 1, as M ′

[k],[k] is an upper triangular matrix with

ones along the diagonal. For k in the range N −nm < k � N ,

we compute det(M ′
[k],[k]) using the cycle cover interpretation

of the determinant.

Let G′
k denote the graph whose adjacency matrix is M ′

[k],[k].

Recall that det(M ′
[k],[k]) can be computed as

det(M ′
[k],[k]) =

∑

C∈C (G′

k
)

(−1)even(C)π(C),

where C (G′
k) is the set of all cycle covers in G′

k, even(C) is

the number of even cycles in C, and π(C) is the product of

the weights on the edges appearing in the cycle cover C. We

partition the set of cycle covers of G′
k into three sets: those

containing no edges of weight ε, those containing exactly one

edge of weight ε, and those containing two or more edges of

weight ε. In each case, we determine the contribution of these

cycle covers to det(M ′
[k],[k]).

• Suppose C is a cycle cover with no edges of weight ε.

The construction of G′
k implies that C must be the cycle

cover consisting entirely of self-loops. This cycle cover

contributes 1 to det(M ′
[k],[k]).

• Let C be a cycle cover containing exactly one edge labeled

ε. By the construction of G′
k, the cycle in C containing

the edge labeled ε must correspond to a path from si to

ti in G for some i ∈ [k− (N − nm)] together with the ε
edge from ti to si. Because every non-trivial cycle in G′

k

must use an edge labeled ε, the remaining cycles in C
consist of self-loops. Thus, C contributes a term of the

form

(−1)m+1εX
(1)
i,i2

X
(2)
i2,i3

· · ·X(m−1)
im−1,im

X
(m)
im,i.

to det(M ′
[k],[k]), where the factor of (−1)m+1 accounts

for the parity of the length of the non-trivial cycle. There is

exactly one such cycle cover for every i ∈ [k−(N−nm)]
and every path from si to ti in Gk. This implies that the

set of all cycle covers containing exactly one edge of

weight ε contributes

(−1)m+1ε

N−nm+k∑

i1=1

∑

i2,...,im

X
(1)
i1,i2

X
(2)
i2,i3

· · ·X(m)
im,i1

= (−1)m+1ε tr((X(1) · · ·X(m))[k−(N−nm)],[k−(N−nm)])

to det(M ′
[k],[k]).

• Finally, consider the case when C is a cycle cover

containing two or more edges labeled by ε. By definition,

this cycle cover contributes an O(ε2) term to det(M ′
[k],[k]),

which we consider negligible.

In summary, we have

det(M ′
[k],[k])

= 1 + (−1)m+1ε tr((X(1) · · ·X(m))[k−(N−nm)],[k−(N−nm)])

+O(ε2).

Using this, we now determine
∏p

i=1 det(M
′
[Ãi],[Ãi]

). Let ai :=
|{j ∈ [p] : σj = i}| count the number of elements of σ equal

to i. The analysis above implies

p∏

i=1

det(M ′
[Ãi],[Ãi]

)

=
N∏

k=1

det(M ′
[k],[k])

ak

=

nm∏

�=1

det(M ′
[N−nm+�],[N−nm+�])

aN−nm+�

=

nm∏

�=1

(
1 + (−1)m+1ε tr((X(1) · · ·X(m))[�],[�])

+O(ε2)
)aN−nm+�

=

nm∏

�=1

(
1 + (−1)m+1εaN−nm+� tr((X

(1) · · ·X(m))[�],[�])

+O(ε2)
)

= 1 + (−1)m+1ε

nm∑

�=1

aN−nm+� tr((X
(1) · · ·X(m))[�],[�])

+O(ε2)

= 1 + (−1)m+1ε

nm∑

i=1

[(
nm∑

�=i

aN−nm+�

)
(X(1) · · ·X(m))i,i

]

+O(ε2).

We now perform a change of variables to transform the

matrix M ′ into the desired matrix M . Let A be the diagonal

matrix given by

Ai,i =
1∑nm

�=i aN−nm+�
.

(Note that the entries of A are well-defined, since aN � 1 and

ai � 0 for all i ∈ [N].) Let M be the image of M ′ under the

change of variables X(1) �→ (−1)m+1AX(1). Then we have
(

nm∑

�=i

aN−nm+�

)
((−1)m+1AX(1) · · ·X(m))i,i

= (−1)m+1A−1
i,i Ai,i(X

(1) · · ·X(m))i,i

= (−1)m+1(X(1) · · ·X(m))i,i,

362

Authorized licensed use limited to: University of Illinois. Downloaded on June 30,2023 at 19:42:54 UTC from IEEE Xplore. Restrictions apply.

so
p∏

i=1

det(M[Ãi],[Ãi]) = 1 + ε

nm∑

i=1

(X(1) · · ·X(m))i,i +O(ε2)

= 1 + ε tr(X(1) · · ·X(m)) +O(ε2).

Remark III.2. In the proof of the preceding lemma, suppose

we were to add edges of weight 1 from ti to si for each i
and add self-loops of weight 1 to all vertices. To compute

tr(X(1) · · ·X(d)) using the cycle cover interpretation of the

determinant, we want to restrict ourselves to only count cycle

covers containing a single edge ti-si edge. We accomplish this

by multiplying the weight of each such edge by a factor of

ε, which guarantees that the linear term of the determinant of

the adjacency matrix corresponds to cycle covers using exactly

one ti-si edge. In fact, we get more: the coefficient of εk in

the determinant of the adjacency matrix corresponds to cycle

covers using exactly k such edges.

A similar idea is used in algorithms for “exact” problems

in combinatorial optimization. For example, the algorithms

of Barahona and Pulleyblank [60] for counting exact arbores-

cences and exact perfect matchings in planar graphs modify

the edge weights of the graph in a manner similar to what we

do in the proof of Lemma III.1. By exploiting the notion of

border complexity, we avoid an interpolation step used in these

combinatorial algorithms. ♦

Using the preceding lemma, we establish an analogue of

[48, Theorem 3.8] for trace ABPs.

Proposition III.3. Let F be a field of characteristic zero. Let

f(X) ∈ Idetn,m,r be a nonzero polynomial and let h(X, ε) ∈
F�ε�[X] be any polynomial such that h(X, ε) = f(X)+O(ε).
Let g(y) ∈ F[y] be a polynomial in the border of layered trace

algebraic branching programs with at most r vertices. Then

there is a depth-three h-oracle circuit Φ defined over F(ε)
such that the following hold.

1) Φ has nm addition gates at the bottom layer, a single

h-oracle gate in the middle layer, and a single addition

gate at the top layer.

2) Φ computes g(y) +O(ε).

Proof. By Lemma II.7, it is sufficient to consider the case

where the oracle gates compute f(X) exactly. Using Proposi-

tion II.10, there are nm linear functions {�i,j(X, ε) ∈ F(ε)[X] :
(i, j) ∈ [n] × [m]}, an integer q ∈ Z, a nonzero α ∈ F, and

a sequence σ = (σ1, . . . , σp) of natural numbers with σ1 � r
such that

f(�1,1(X, ε), . . . , �n,m(X, ε))

= εqα

p∏

i=1

det(X[Ãi],[Ãi]) +O(εq+1).

By assumption, there is a polynomial g̃(y, ε) ∈ F(ε)[y] such

that g̃(y, ε) = g(y) +O(ε) and that g̃(y, ε) can be computed

by a layered trace ABP on s vertices for some s � r. That is,

there are matrices of variables Z(1), . . . , Z(m), where Z(i) is

an ni × ni+1 matrix, we have n1 = nm+1, and
∑m+1

i=1 = s,

along with a projection ϕ : Z(1) ∪ · · · ∪Z(m) → y∪F(ε) such

that tr(ϕ(Z(1)) · · ·ϕ(Z(m))) = g̃(y, ε).
Applying Lemma III.1 to the matrices Z(1), . . . , Z(m) and

the sequence (σ1, . . . , σp), we obtain a matrix M(Z, ε) ∈
F(ε)[Z(1), . . . , Z(m)]r×r such that

p∏

i=1

det(M(Z, ε)[Ãi],[Ãi]) = 1 + ε tr(Z(1) · · ·Z(m)) +O(ε2).

We now compose f(X), the linear functions �i,j(X, ε), the

matrix M(Z, ε), and the projection ϕ : Z → y ∪ F(ε). Let

h(y, ε, δ)

:= f(�1,1(M(ϕ(Z), δ), ε), . . . , �n,m(M(ϕ(Z), δ), ε)).

The preceding discussion implies

h(y, ε, δ)

= εqα ·
p∏

i=1

det(M(ϕ(Z), δ)[Ãi],[Ãi]) +O(εq+1)

= εqα ·
(
1 + δ tr(ϕ(Z(1)) · · ·ϕ(Z(m))) +O(δ2)

)

+O(εq+1)

= εqα+ εqδαg̃(y, ε) +O(εqδ2) +O(εq+1).

Performing the substitution ε �→ ε2 and δ �→ ε, we obtain

h(y, ε2, ε) = ε2qα+ ε2q+1αg̃(y, ε2) +O(ε2q+2)

= ε2qα+ ε2q+1αg(y) +O(ε2q+2).

The desired f -oracle circuit is then given by

Φ(y) :=
h(y, ε2, ε)− ε2qα

ε2q+1α
= g(y) +O(ε).

We now use Proposition III.3 to lift lower bounds on the

border rank of matrix multiplication to lower bounds on the

border multiplicative complexity of the ideal Idetn,m,r.

Theorem III.4. Let F be a field of characteristic zero.

The border multiplicative complexity of any nonzero polyno-

mial in Idetn,m,r is bounded from below by 1
6 R(r/4), where

R(n) := R(〈n, n, n〉) is the border rank of n× n× n matrix

multiplication.

Proof. Let Φ be a circuit of border multiplicative complexity s
computing a nonzero polynomial in Idetn,m,r. Let X , Y , and Z be

r/4×r/4 matrices of variables. The polynomial tr(XY Z) can

naturally be computed by a layered trace ABP on r vertices.

Applying Proposition III.3 to the circuit Φ yields a circuit

Ψ of multiplicative complexity s that computes tr(XY Z) +
O(ε). We then apply Lemma II.5 to Ψ to obtain a circuit of

multiplicative complexity 3s that simultaneously computes all

first-order partial derivatives of tr(XY Z) +O(ε).
Observe that the partial derivative of tr(XY Z) with respect

to zj,i is, up to the O(ε) error term, the (i, j) entry of the

matrix product XY . Thus, we have a circuit of multiplicative

complexity 3s that approximates the product of two r/4× r/4
matrices. By Lemma II.18, this implies that the border rank of

r/4× r/4× r/4 matrix multiplication is bounded from above

363

Authorized licensed use limited to: University of Illinois. Downloaded on June 30,2023 at 19:42:54 UTC from IEEE Xplore. Restrictions apply.

by 6s. That is, we have R(r/4) � 6s. This yields the claimed

lower bound on the multiplicative complexity of any nonzero

polynomial in Idetn,m,r.

Combining Theorem II.17 with Theorem III.4 yields the fol-

lowing unconditional lower bound on the border multiplicative

complexity of all nonzero polynomials in the ideal Idetn,m,r.

Corollary III.5. The border multiplicative complexity of any

nonzero polynomial in Idetn,m,r is bounded from below by 1
48r

2−
1
6 log2 r +

1
6 .

IV. CONSTRUCTING A HITTING SET GENERATOR

In this section, we use Theorem III.4 to design hitting set

generators for the closure of circuits of small multiplicative

complexity. Letting R(n) := R(〈n, n, n〉) be the border rank

of n × n × n matrix multiplication, we will construct a

generator with seed length O(
√
nR−1(s)) for n-variate circuits

of multiplicative complexity s. We stress that the correctness

of this generator is unconditional.

Theorem IV.1. Let F be a field of characteristic zero. Let

R(n) := R(〈n, n, n〉) be the border rank of n× n× n matrix

multiplication. Then there is an explicit degree-two hitting set

generator of seed length 8
√
nR−1(6s+1) that hits the closure

of n-variate circuits of multiplicative complexity s.

Proof. Let Φ be an n-variate circuit of multiplicative com-

plexity s that computes Φ(x) + O(ε) for some nonzero

polynomial Φ(x). Let r := 4R−1(6s + 1). Arrange the

input variables of Φ(x) into a
√
n × √

n matrix. Let

Gn,m,r(Y, Z) be the generator of Construction II.11. We

claim that the generator G√
n,

√
n,r−1(Y, Z) hits Φ(x), i.e., that

Φ(G√
n,

√
n,r−1(Y, Z)) �= 0.

To see this, suppose instead that Φ(G√
n,

√
n,r−1(Y, Z)) = 0.

Lemma II.12 implies that Φ(x) ∈ Idet√
n,

√
n,r

\ {0}. As Φ(x)
has border multiplicative complexity s, it follows from Theo-

rem III.4 that 6s � R(r/4). However, our choice of r implies

R(r/4) = 6s+ 1 > 6s, a contradiction. Thus, it must be the

case that in fact G√
n,

√
n,r−1(Y, Z) hits Φ(x). Since Φ was

an arbitrary n-variate circuit of multiplicative complexity s,

we conclude that G√
n,

√
n,r−1(Y, Z) hits all polynomials in

the closure of n-variate circuits of multiplicative complexity

s. Finally, note that the definition of G√
n,

√
n,r−1(Y, Z) im-

mediately implies the claimed bounds on the seed length and

degree of the generator.

Combining Theorem IV.1 with Theorem II.17, we obtain the

following corollary. To the best of our knowledge, this is the

first non-trivial hitting set generator for circuits of multiplicative

complexity s � o(n).

Corollary IV.2. There is an explicit hitting set generator of

seed length (8
√
3+o(1))

√
ns that hits the closure of n-variate

circuits of multiplicative complexity s.

One can also state Theorem IV.1 as a win-win result: either

there are extremely fast algorithms for n × n × n matrix

multiplication, or there is a non-trivial deterministic algorithm

for testing polynomial identities given by small circuits.

Corollary IV.3. Let F be a field of characteristic zero and let

ω denote the exponent of matrix multiplication over F. At least

one of the following is true.

1) ω = 2.

2) For any positive constants ε, δ > 0 that satisfy 2ωε+2δ <
ω − 2, there is an explicit hitting set generator of seed

length O(n1−ε) that hits n-variate algebraic circuits of

multiplicative complexity O(n1+δ). If these circuits are

also restricted to have degree nO(1) and size nO(1), then

this yields a deterministic algorithm to test identities given

by such circuits that runs in exp(O(n1−ε log n)) time.

ACKNOWLEDGMENTS

We thank Shubhang Kulkarni for telling us about the work of

Barahona and Pulleyblank [60]. We also thank the anonymous

reviewers for comments that helped improve the presentation

of this work.

REFERENCES

[1] V. Strassen, “Gaussian elimination is not optimal,” Numerische Mathe-

matik, vol. 13, pp. 354–356, 1969.

[2] V. Y. Pan, “Strassen’s algorithm is not optimal. Trilinear technique of
aggregating, uniting and canceling for constructing fast algorithms for
matrix operations,” in Proceedings of the 19th Annual IEEE Symposium

on Foundations of Computer Science (FOCS 1978). IEEE, Long Beach,
Calif., 1978, pp. 166–176.

[3] D. Bini, M. Capovani, F. Romani, and G. Lotti, “o(n2.7799) complexity
for n× n approximate matrix multiplication,” Information Processing

Letters, vol. 8, no. 5, pp. 234–235, 1979.

[4] V. Y. Pan, “New fast algorithms for matrix operations,” SIAM J. Comput.,
vol. 9, no. 2, pp. 321–342, 1980.

[5] A. Schönhage, “Partial and total matrix multiplication,” SIAM J. Comput.,
vol. 10, no. 3, pp. 434–455, 1981.

[6] F. Romani, “Some properties of disjoint sums of tensors related to matrix
multiplication,” SIAM J. Comput., vol. 11, no. 2, pp. 263–267, 1982.

[7] D. Coppersmith and S. Winograd, “On the asymptotic complexity of
matrix multiplication,” SIAM J. Comput., vol. 11, no. 3, pp. 472–492,
1982.

[8] V. Strassen, “Relative bilinear complexity and matrix multiplication,” J.

Reine Angew. Math., vol. 375/376, pp. 406–443, 1987.

[9] D. Coppersmith and S. Winograd, “Matrix multiplication via arithmetic
progressions,” J. Symbolic Comput., vol. 9, no. 3, pp. 251–280, 1990.

[10] A. M. Davie and A. J. Stothers, “Improved bound for complexity of
matrix multiplication,” Proc. Roy. Soc. Edinburgh Sect. A, vol. 143, no. 2,
pp. 351–369, 2013.

[11] V. Vassilevska Williams, “Multiplying matrices faster than Coppersmith-
Winograd,” in Proceedings of the 44th Annual ACM Symposium on

Theory of Computing (STOC 2012). ACM, New York, 2012, pp. 887–
898.

[12] F. Le Gall, “Powers of tensors and fast matrix multiplication,” in
Proceedings of the 2014 International Symposium on Symbolic and

Algebraic Computation (ISSAC 2014). ACM, New York, 2014, pp.
296–303.

[13] J. Alman and V. Vassilevska Williams, “A refined laser method and faster
matrix multiplication,” in Proceedings of the 32nd Annual ACM-SIAM

Symposium on Discrete Algorithms (SODA 2021). Society for Industrial
and Applied Mathematics (SIAM), Philadelphia, PA, 2021, pp. 522–539.

[14] H. Cohn and C. Umans, “A group-theoretic approach to fast matrix
multiplication,” in Proceedings of the 44th Annual IEEE Symposium on

Foundations of Computer Science (FOCS 2003), 2003, pp. 438–449.

[15] H. Cohn, R. Kleinberg, B. Szegedy, and C. Umans, “Group-theoretic
algorithms for matrix multiplication,” in Proceedings of the 46th Annual

IEEE Symposium on Foundations of Computer Science (FOCS 2005),
2005, pp. 379–388.

364

Authorized licensed use limited to: University of Illinois. Downloaded on June 30,2023 at 19:42:54 UTC from IEEE Xplore. Restrictions apply.

[16] H. Cohn and C. Umans, “Fast matrix multiplication using coherent con-
figurations,” in Proceedings of the 24th Annual ACM-SIAM Symposium

on Discrete Algorithms (SODA 2013). SIAM, Philadelphia, PA, 2013,
pp. 1074–1087.

[17] M. J. Fischer and A. R. Meyer, “Boolean matrix multiplication and
transitive closure,” in 12th Annual Symposium on Switching and Automata

Theory (SWAT 1971), 1971, pp. 129–131.
[18] A. Schönhage, “Unitäre Transformationen grosser Matrizen,” Numer.

Math., vol. 20, pp. 409–417, 1973.
[19] J. R. Bunch and J. E. Hopcroft, “Triangular factorization and inversion

by fast matrix multiplication,” Math. Comp., vol. 28, pp. 231–236, 1974.
[20] W. Keller-Gehrig, “Fast algorithms for the characteristic polynomial,”

Theoret. Comput. Sci., vol. 36, no. 2-3, pp. 309–317, 1985.
[21] L. G. Valiant, “General context-free recognition in less than cubic time,”

J. Comput. System Sci., vol. 10, pp. 308–315, 1975.
[22] J. Nešetřil and S. Poljak, “On the complexity of the subgraph problem,”

Comment. Math. Univ. Carolin., vol. 26, no. 2, pp. 415–419, 1985.
[23] M. B. Cohen, Y. T. Lee, and Z. Song, “Solving linear programs in the

current matrix multiplication time,” J. ACM, vol. 68, no. 1, jan 2021.
[24] J. van den Brand, “A deterministic linear program solver in current

matrix multiplication time,” in Proceedings of the 31st Annual ACM-

SIAM Symposium on Discrete Algorithms (SODA 2020). USA: Society
for Industrial and Applied Mathematics, 2020, pp. 259–278.

[25] S. Jiang, Z. Song, O. Weinstein, and H. Zhang, “A faster algorithm
for solving general LPs,” in Proceedings of the 53rd Annual ACM

Symposium on Theory of Computing (STOC 2021). New York, NY,
USA: Association for Computing Machinery, 2021, pp. 823–832.

[26] A. Ambainis, Y. Filmus, and F. Le Gall, “Fast matrix multiplication:
Limitations of the coppersmith-winograd method,” in Proceedings of the

47th Annual ACM Symposium on Theory of Computing (STOC 2015).
New York, NY, USA: Association for Computing Machinery, 2015, pp.
585–593.

[27] J. Blasiak, T. Church, H. Cohn, J. A. Grochow, E. Naslund, W. F. Sawin,
and C. Umans, “On cap sets and the group-theoretic approach to matrix
multiplication,” Discrete Anal., no. 3, 2017.

[28] J. Blasiak, T. Church, H. Cohn, J. A. Grochow, and C. Umans, “Which
groups are amenable to proving exponent two for matrix multiplication?”
2017.

[29] J. Alman and V. Vassilevska Williams, “Further Limitations of the Known
Approaches for Matrix Multiplication,” in 9th Innovations in Theoretical

Computer Science Conference (ITCS 2018), ser. Leibniz International
Proceedings in Informatics (LIPIcs), A. R. Karlin, Ed., vol. 94. Dagstuhl,
Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2018, pp.
25:1–25:15.

[30] ——, “Limits on all known (and some unknown) approaches to matrix
multiplication,” in Proceedings of the 59th Annual IEEE Symposium on

Foundations of Computer Science (FOCS 2018), 2018, pp. 580–591.
[31] J. Alman, “Limits on the universal method for matrix multiplication,”

Theory of Computing, vol. 17, no. 1, pp. 1–30, 2021.
[32] M. Christandl, P. Vrana, and J. Zuiddam, “Barriers for Fast Matrix

Multiplication from Irreversibility,” in Proceedings of the 34th Annual

Computational Complexity Conference (CCC 2019), ser. Leibniz Inter-
national Proceedings in Informatics (LIPIcs), A. Shpilka, Ed., vol. 137.
Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,
2019, pp. 26:1–26:17.

[33] M. Christandl, F. Le Gall, V. Lysikov, and J. Zuiddam, “Barriers for
rectangular matrix multiplication,” CoRR, vol. abs/2003.03019, 2020.

[34] M. Bläser, “A 5

2
n
2-lower bound for the rank of n× n-matrix multipli-

cation over arbitrary fields,” in Proceedings of the 40th Annual IEEE

Symposium on Foundations of Computer Science (FOCS 1999), 1999,
pp. 45–50.

[35] A. Shpilka, “Lower bounds for matrix product,” SIAM J. Comput., vol. 32,
no. 5, pp. 1185–1200, 2003.

[36] J. M. Landsberg and M. Michałek, “A 2n2
− log2(n)− 1 lower bound

for the border rank of matrix multiplication,” Int. Math. Res. Not. IMRN,
no. 15, pp. 4722–4733, 2018.

[37] R. Raz, “On the complexity of matrix product,” SIAM Journal on

Computing, vol. 32, no. 5, pp. 1356–1369, 2003.

[38] J. T. Schwartz, “Fast probabilistic algorithms for verification of polyno-
mial identities,” J. ACM, vol. 27, no. 4, pp. 701–717, 1980.

[39] R. Zippel, “Probabilistic algorithms for sparse polynomials,” in Pro-

ceedings of the International Symposium on Symbolic and Algebraic

Computation, EUROSAM 1979, 1979, pp. 216–226.
[40] A. Shpilka and A. Yehudayoff, “Arithmetic circuits: A survey of recent

results and open questions,” Foundations and Trends in Theoretical

Computer Science, vol. 5, no. 3-4, pp. 207–388, 2010.
[41] N. Saxena, “Progress on polynomial identity testing,” Bulletin of the

EATCS, vol. 99, pp. 49–79, 2009.
[42] ——, “Progress on polynomial identity testing ii,” in Proceedings of

the Workshop celebrating Somenath Biswas’ 60th Birthday, 2014, pp.
131–146.

[43] V. Kabanets and R. Impagliazzo, “Derandomizing polynomial identity
tests means proving circuit lower bounds,” Computational Complexity,
vol. 13, no. 1-2, pp. 1–46, 2004.

[44] Z. Dvir, A. Shpilka, and A. Yehudayoff, “Hardness-randomness tradeoffs
for bounded depth arithmetic circuits,” SIAM J. Comput., vol. 39, no. 4,
pp. 1279–1293, 2009.

[45] C.-N. Chou, M. Kumar, and N. Solomon, “Closure results for polynomial
factorization,” Theory of Computing, vol. 15, no. 13, pp. 1–34, 2019.

[46] Z. Guo, M. Kumar, R. Saptharishi, and N. Solomon, “Derandomization
from algebraic hardness,” SIAM Journal on Computing, vol. 51, no. 2,
pp. 315–335, 2022.

[47] R. Andrews, “Algebraic Hardness Versus Randomness in Low Charac-
teristic,” in 35th Computational Complexity Conference (CCC 2020), ser.
Leibniz International Proceedings in Informatics (LIPIcs), S. Saraf, Ed.,
vol. 169. Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum für
Informatik, 2020, pp. 37:1–37:32.

[48] R. Andrews and M. A. Forbes, “Ideals, determinants, and straightening:
Proving and using lower bounds for polynomial ideals,” in Proceedings

of the 54th Annual ACM Symposium on Theory of Computing (STOC

2022), 2022, pp. 389–402.
[49] M. Kumar and R. Saptharishi, “Hardness-randomness tradeoffs for

algebraic computation,” Bull. Eur. Assoc. Theor. Comput. Sci., vol. 129,
pp. 56–87, 2019.

[50] A. R. Klivans and D. Spielman, “Randomness efficient identity testing
of multivariate polynomials.” New York, NY, USA: Association for
Computing Machinery, 2001.

[51] W. Baur and V. Strassen, “The complexity of partial derivatives,”
Theoretical Computer Science, vol. 22, no. 3, pp. 317–330, 1983.

[52] P. Dutta, N. Saxena, and T. Thierauf, “A Largish Sum-Of-Squares Implies
Circuit Hardness and Derandomization,” in Proceedings of the 12th

Annual Conference on Innovations in Theoretical Computer Science (ICS

2021), ser. Leibniz International Proceedings in Informatics (LIPIcs),
vol. 185. Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum für
Informatik, 2021, pp. 23:1–23:21.

[53] L. G. Valiant, “Completeness classes in algebra.” New York, NY, USA:
Association for Computing Machinery, 1979.

[54] R. Saptharishi, “A survey of lower bounds in arithmetic circuit complex-
ity,” 2019.

[55] P. Bürgisser, “The complexity of factors of multivariate polynomials,”
Foundations of Computational Mathematics, vol. 4, no. 4, pp. 369–396,
2004.

[56] W. Bruns and U. Vetter, Determinantal rings, ser. Lecture Notes in
Mathematics. Springer-Verlag, Berlin, 1988, vol. 1327.

[57] P. Bürgisser, M. Clausen, and M. A. Shokrollahi, Algebraic complexity

theory, ser. Grundlehren der Mathematischen Wissenschaften [Funda-
mental Principles of Mathematical Sciences]. Springer-Verlag, Berlin,
1997, vol. 315, with the collaboration of Thomas Lickteig.

[58] M. Bläser, Fast Matrix Multiplication, ser. Graduate Surveys. Theory
of Computing Library, 2013, no. 5.

[59] D. Bini, “Relations between exact and approximate bilinear algorithms.
applications,” Calcolo, vol. 17, pp. 87–97, 1980.

[60] F. Barahona and W. R. Pulleyblank, “Exact arborescences, matchings
and cycles,” Discrete Applied Mathematics, vol. 16, no. 2, pp. 91–99,
1987.

365

Authorized licensed use limited to: University of Illinois. Downloaded on June 30,2023 at 19:42:54 UTC from IEEE Xplore. Restrictions apply.

