2022 IEEE 63rd Annual Symposium on Foundations of Computer Science (FOCS) | 978-1-6654-5519-0/22/$31.00 ©2022 IEEE | DOI: 10.1109/FOCS54457.2022.00041

2022 IEEE 63rd Annual Symposium on Foundations of Computer Science (FOCS)

On Matrix Multiplication and Polynomial Identity
Testing

Robert Andrews
Department of Computer Science
University of Illinois Urbana-Champaign
Urbana, IL, USA
Email: rgandre2 @illinois.edu

Abstract—We show that lower bounds on the border rank of
matrix multiplication can be used to non-trivially derandomize
polynomial identity testing for small algebraic circuits. Letting
R(n) denote the border rank of n x n X n matrix multiplication,
we construct a hitting set generator with seed length O(y/n -
R !(s)) that hits n-variate circuits of multiplicative complexity
s. If the matrix multiplication exponent w is not 2, our generator
has seed length O(n'~°) and hits circuits of size O(n'*°) for
sufficiently small £, > 0. Surprisingly, the fact that R(n) > n?
already yields new, non-trivial hitting set generators for circuits
of sublinear multiplicative complexity.

Keywords—matrix multiplication; polynomial identity testing

I. INTRODUCTION

Matrix multiplication is a fundamental algorithmic problem
in theoretical computer science. Starting with the work of
Strassen [1], who gave an algorithm to multiply two n X n
matrices in O(n'°8:7) time, a long line of work [2]-[16]
has produced faster algorithms to multiply matrices. Progress
on this task is usually measured by w, the exponent of
matrix multiplication, which is the smallest real number such
that matrix multiplication can be performed using O(n“*¢)
arithmetic operations for any positive constant € > 0. It is
evident that 2 < w < 3. Strassen’s [1] result can be rephrased as
a proof that w < log, 7. The present state-of-the-art algorithm
for matrix multiplication is due to Alman and Vassilevska
Williams [13], who proved w < 2.37286. It is a major open
question to determine whether or not w = 2.

The complexity of matrix multiplication governs (and in
many cases, is equivalent to) the complexity of numerous
problems in linear algebra, including computing the determinant
and solving systems of linear equations [1], boolean matrix
multiplication [17], QR decomposition [18], LUP decomposi-
tion [19], and computing the coefficients of the characteristic
polynomial of a matrix [20]. Fast matrix multiplication has also
been used to design algorithms for a host of problems in other
areas; examples include recognizing context-free languages
[21], detecting k-cliques [22], and solving linear programs
[23]-[25].

While it is popularly conjectured that w = 2, progress on
obtaining improved upper bounds on w has slowed over time.
In the three decades since Coppersmith and Winograd [9]
showed w < 2.3755, the best-known bound on w has improved

Supported by NSF grant CAREER 20-47310.

978-1-6654-5519-0/22/$31.00 ©2022 IEEE
DOI 10.1109/FOCS54457.2022.00041

by only ~ 0.00264. The improvements obtained since then
[10]-[13] apply Strassen’s so-called laser method [8] to powers
of the Coppersmith—Winograd tensor. Recent work [26]-[33]
has shown that this slow progress is no coincidence: there
are unconditional barriers to obtaining improved bounds on w
using generalizations of this and related techniques.

There is a dual line of work concerned with proving lower
bounds on the complexity of matrix multiplication. This usually
proceeds by proving lower bounds on the rank or border rank
of matrix multiplication, which essentially correspond to the
number of scalar multiplications one needs to perform in order
to compute a matrix product. It is known that w = 2 if and
only if the rank (or border rank) of matrix multiplication is
bounded from above by n2T°(1). The best-known lower bound
on the rank of matrix multiplication is %nQ —3n by Bliser [34],
with an improvement over finite fields due to Shpilka [35]. For
border rank, an approximate version of rank, the current record
is a lower bound of 2n? — log,(n) — 1, due to Landsberg and
Michatek [36]. In a somewhat different vein, Raz [37] showed
that any bounded-coefficient circuit computing n X n X n matrix
multiplication must be of size Q(n?logn).

Naturally, if w = 2, one obtains extremely fast algorithms
for matrix multiplication, leading to improved algorithms for a
variety of problems. However, it is not clear if there is a useful
algorithmic consequence of the hypothesis w > 2. The main
contribution of this work is an application of the assumption
w > 2 to the design of algorithms. Specifically, we show that
if w > 2, then one can non-trivially derandomize polynomial
identity testing for small circuits.

Polynomial identity testing (PIT) is the problem of testing
whether an algebraic circuit computes the zero polynomial.
There is a simple, fast randomized algorithm for PIT [38],
[39], but no non-trivial deterministic algorithm is known.
Designing a deterministic polynomial-time algorithm for PIT
is a major goal of algebraic complexity. Typically, this is
done by constructing a hitting set generator, the analogue
of a pseudorandom generator in this setting. There has been
considerable success in derandomizing PIT for restricted classes
of circuits (see, e.g., Shpilka and Yehudayoff [40] and Saxena
[41], [42]). For strong models of computation, like formulas
and circuits, only conditional results in the form of hardness-
to-pseudorandomness results are known [43]-[48] (see also
[49]).

Authorized licensed use limited to: University of lllinois. Downloaded on June 30,2023 at 19:42:54 UTC from IEEE Xplore. Restrictions apply.

A. Our Results

We now describe our result in more detail. We construct a
hitting set generator for algebraic circuits that have a small
number of multiplication gates.

Theorem (see Theorem IV.1). Let R(n) denote the border
rank of n X n x n matrix multiplication. There is an explicit
hitting set generator of seed length O(\/nR™"(s)) that hits
n-variate circuits with s multiplication gates.

In terms of the matrix multiplication exponent w, our
generator has seed length O(y/ns'/%). Thus, if w > 2, we
obtain a generator of seed length O(n!~¢) that hits circuits of
size O(n'*?) for sufficiently small £, > 0. Alternatively, one
can phrase this as a win-win result: either w = 2, giving us
fast algorithms for a large collection of problems; or w > 2,
in which case we obtain a non-trivial deterministic algorithm
for testing identities given by small circuits.

As R(n) > (2 — o(1))n? [36], this also yields an uncondi-
tional construction of a hitting set generator with seed length
O(4/ns), which is non-trivial as long as s < en for sufficiently
small ¢ > 0. It may seem strange to consider circuits of
complexity much less than n; for many circuit classes, such
circuits are not even capable of reading their entire input.
However, circuits with few multiplication gates are capable of
computing non-trivial polynomials, mainly through the use of
repeated squaring. For example, the polynomial (14 - -+,)¢
can be computed using only O(log d) multiplication gates.

To the best of our knowledge, nothing is known about
derandomizing PIT for circuits with few product gates. For
very small s, one can obtain non-trivial algorithms by bounding
the sparsity of the computed polynomial and using the Klivans—
Spielman generator [50]. This strategy breaks down when
s = Q(logn), as the resulting sparsity bound becomes too
large. In contrast, our construction gives a non-trivial algorithm
even when s = en for € < 55.

Our result comes within a logarithmic factor of converting
all known unconditional hardness for algebraic circuits into
pseudorandomness. The state-of-the-art in explicit lower bounds
on multiplicative complexity dates back to Baur and Strassen
[51], who showed that the polynomial ¢ + - - - + 2 requires
Q(nlog d) multiplications to compute. If one could construct
an explicit generator whose seed length remains non-trivial
for multiplicative complexity s > w(nlogn), then this would
provide an explicit family of n-variate multilinear polynomials
of multiplicative complexity w(n logn). Of course, it remains a
possibility that our generator could be improved to hit circuits
of multiplicative complexity O(nlogn) without requiring a
breakthrough in circuit lower bounds.

As mentioned earlier, there is a collection of works on
the hardness-randomness phenomenon in algebraic complexity
[43]-[48]. Because the assumption w > 2 is inherently a
circuit lower bound, it seems reasonable to expect that one
could instantiate the hardness-randomness connection in order
to directly obtain our result. Though this is the spirit of our
approach, we remark that the known hardness-randomness
framework typically incurs some polynomial overhead in

357

translating a circuit lower bound into a hitting set generator.
In particular, for a weak lower bound of the form Q(n!*¢)
(like what is implied by w > 2), these techniques fail to imply
any kind of non-trivial derandomization. We note that work by
Dutta, Saxena, and Thierauf [52] showed that for a particular
class of constant-variate circuits, weak lower bounds can in fact
be used to derandomize PIT. For more on algebraic hardness
versus randomness, see the survey of Kumar and Saptharishi
[49].

B. Our Techniques

We briefly describe our generator and the proof of its
correctness. Throughout, we consider n-variate circuits as
taking as input a matrix X of size v/n x \/n. Let R(n) be the
border rank of n X n X n matrix multiplication. To construct
our generator, we will show that the set of matrices of rank
O(R™*(s)) are a hitting set for circuits with s multiplication
gates. This will imply that such a circuit cannot vanish on the
product of an /7 x O(R ™" (s)) matrix and an O(R ™" (5)) x/n
matrix, which yields our generator. Thus, we are faced with
the task of showing that no small circuit can vanish on the set
of all matrices of rank O(R™*(s)).

Let r € N and let I,, C F[X] be the ideal of F[X] generated
by the r X r minors of the matrix X. It is well-known that
when the field F is algebraically closed, the ideal I, consists
exactly of those polynomials that vanish on matrices of rank
less than . Rephrasing our goal, we need to prove a lower
bound of Q(R(r)) on the number of multiplication gates needed
to compute any nonzero polynomial in the ideal I,.

Using an observation due to Baur and Strassen [51, Corollary
6], a lower bound on the border rank of matrix multiplication
lifts to a lower bound on the border multiplicative complexity
of the polynomial tr(XY Z), where X, Y, and Z are n x n
matrices. Results of Andrews and Forbes [48] allow us to
further lift this lower bound to the ideal I, where r is the
size of the smallest algebraic branching program computing
tr(XY Z). Because tr(XY Z) can be computed by an algebraic
branching program with O(n?) vertices, we obtain a lower
bound of Q(R(+/r)) on the multiplicative complexity of .
This suffices to obtain a hitting set generator of seed length
O(y/nR ™Y (s?)) for circuits with s product gates. However,
such a construction cannot hope to obtain seed length o(n) for
circuits with O(n®) product gates, even if the best-known
upper bound on w is tight.

To improve the dependence on s in the seed length, we
instead lift the lower bound to the ideal I, where r is the size
of the smallest frace algebraic branching program that computes
tr(XY Z). This polynomial can naturally be computed by a
trace ABP of size O(n), which leads to the improved lower
bound of Q(R(r)) on the multiplicative complexity of ..
This immediately translates into the improved seed length
of O(y/nR™(s)) for our hitting set generator.

To perform this improved lifting step, we essentially need
to show that trace ABPs of size s can be expressed as a
determinant of size O(s). We do this using the interpretation

Authorized licensed use limited to: University of lllinois. Downloaded on June 30,2023 at 19:42:54 UTC from IEEE Xplore. Restrictions apply.

of the determinant as a sum of weighted cycle covers in an
ABP, following Valiant [53].

II. PRELIMINARIES

Throughout this work, we take [to be a field of char-
acteristic zero. For n € N a natural number, we write
[n] = {1,2,...,n}. We denote by T = (z1,...,2,) and
X = (% j)ic[n],je[m] a vector of variables and an n x m matrix
of variables, respectively. We write F[Z] for the polynomial
ring in the variables . We use Igfﬁn,r to denote the ideal of
F[X] generated by the r X r minors of a matrix of variables
X. For an n x m matrix A and subsets R C [n] and C' C [m],
we write Ar ¢ for the submatrix of A obtained by selecting

the rows indexed by R and the columns indexed by C.

A. Algebraic Circuits

We briefly recall the notions of algebraic circuits, algebraic
branching programs, and trace algebraic branching programs.
For a more thorough treatment of algebraic circuit complexity,
we refer the reader to Shpilka and Yehudayoff [40] and
Saptharishi [54]. We begin with the definition of an algebraic
circuit.

Definition I1.1. An algebraic circuit is a directed acyclic graph
in which every vertex has in-degree zero or two. Vertices of
in-degree zero are called input gates and are labeled by either
a field constant or a variable z; ;. Vertices of in-degree two
are called internal gates and are labeled either as addition
or multiplication gates. The gates of the circuit compute
polynomials in F[X] in the natural way. We allow each edge e
of the circuit to be labeled by a field constant o, € F, which
has the effect of multiplying the value carried by that edge by
a.. We measure the size of a circuit by the number of gates
appearing in the circuit. The multiplicative complexity of a
circuit is the number of multiplication gates appearing in the
circuit. O

We will also require the notions of algebraic branching
programs (ABPs) and trace algebraic branching programs (trace
ABPs).

Definition II.2. A (single-source, single-sink) algebraic
branching program (ABP) is a layered directed acyclic graph
G (V,E) with a single source vertex s and a single
sink vertex ¢t. By layered, we mean that there is a partition
V = VouVilU- - -UVy such that Vo = {s}, Vg = {t}, and every
edge in G goes from layer V;_; to V; for some i € [d]. Every
edge e of G is labeled by a linear polynomial ¢.(Z) € F[z].
Let P, ; be the set of s-t paths in G. The ABP computes the

polynomial given by
S [T
PEPs,t e€P

The size of the ABP is |V|, the number of vertices in G. The
width of the ABP is max;¢(q |V3|.

Equivalently, an ABP is given by a collection of matrices
My (Z), ..., My(T) whose entries are linear polynomials in
F[z]. The polynomial computed by the ABP is the (1,1) entry

358

of the matrix product M; (T) - - - My(T), where the dimensions
of the matrices M;(T) are such that the resulting product is
defined. O

A trace ABP endows an ABP with multiple sources
S1,...,Sm and sinks 1, ...,¢,. Whereas an ABP computes
a sum over all source-to-sink paths, a trace ABP sums over all
s;-t; paths for all choices of 7 € [m], allowing the ABP to reuse
intermediate vertices for these different sums. Alternatively,
when viewing an ABP as a matrix product, a trace ABP
corresponds to taking the trace of the resulting matrix product
instead of extracting the (1,1) entry.

Definition I1.3. A trace algebraic branching program (trace
ABP) is a layered directed acyclic graph G = (V, E) with
source vertices Si,..., S, and sink vertices ti,...,t,. By
layered, we mean that there is a partition V = VouViU---UVy
such that Vo = {s1,...,8m}, Va = {t1,...,tm}, and every
edge in G goes from layer V;_; to V; for some i € [d]. Every
edge e of G is labeled by a linear polynomial ¢.(Z) € F[z]. Let
P, . be the set of s;-t; paths in G. The trace ABP computes
the polynomial given by

> Y e

i=1 PEP,, s, e€P

The size of the ABP is |V|, the number of vertices in G. The
width of the ABP is max;¢(q) |Vil.

Equivalently, a trace ABP is given by a collection of matrices
M (T),..., M4(T) whose entries are linear polynomials in
F[z]. The polynomial computed by the trace ABP is the trace
of the matrix product M; (T) - - - My(T), where the dimensions

of the matrices M;(T) are such that the resulting product is
defined. O

It is clear that any polynomial computed by an ABP can
be computed by a trace ABP of the same size and width.
Conversely, one can transform a trace ABP into a single-
source, single-sink ABP by duplicating the trace ABP m times,
deleting all but one pair of source and sink vertices in each
copy, and identifying the source vertices and sink vertices in
the resulting copies. To the best of our knowledge, this is
the best-known simulation of trace ABPs by single-source,
single-sink ABPs.

Lemma IL4. Ler f(T) € F[Z] be a polynomial computed by a
trace ABP of size s and width w. Then f(T) can be computed
by a single-source, single-sink ABP of size ws and width w?

We will make use of the following result of Baur and Strassen
[51] that transforms a circuit that computes a polynomial f ()
into one that computes all first-order partial derivatives of f(Z)
while increasing the circuit size by only a constant factor. We
state the version of their result for multiplicative complexity,
although an analogous statement holds for circuit size. Note
that by taking F = K(e) where K is a field, this lemma extends
to the setting of border complexity (defined in Subsection II-B).

Authorized licensed use limited to: University of lllinois. Downloaded on June 30,2023 at 19:42:54 UTC from IEEE Xplore. Restrictions apply.

Lemma IL5 ([51]). Ler f(T) € F[z] be a polynomial computed
by an algebraic circuit of multiplicative complexity s. Then
there is a multi-output algebraic circuit of multiplicative
{1@.80@... L@}

complexity 3s that computes e (L) 3

B. Border Complexity

We will crucially make use of border complexity, which is
an approximative version of algebraic computation.

Definition IL.6. Let [be a field and € be an indeterminate. Let
f(Z) € F[z] be a polynomial. We say that a circuit ® over the
field F(e) border computes f(T) if & computes a polynomial
of the form

f@) +e-g(z,¢),
where g(Z, ¢) € F[z, £]. We frequently abbreviate this by saying
that ® computes f(T) + O(g). O
Over fields of characteristic zero, one can think of border

computation as computing a polynomial f up to an arbitrarily
small error €. The definition above extends to fields of positive

characteristic, although this will not be relevant for our work.

Naturally, one can consider the notion of border complexity
for restricted classes of circuits, like formulas or branching
programs.

If C is a class of circuits, we define the closure of C to be the

set of polynomials that can be border computed by a C-circuit.

For example, if C is the class of size-s circuits, the closure of
C consists of all polynomials f(Z) such that f(Z) + O(g) can
be computed by a size-s circuit over F(e).

In the course of our work, we will prove lower bounds by
constructing oracle circuits. The following lemma says that
in the setting of border complexity, one can replace an exact
oracle with an approximate oracle without incurring an increase
in circuit size. This makes our job easier, as we only need
to reason about circuits using exact oracles. This lemma is
a straightforward consequence of [55, Lemma 2.3(1)]; for a
proof, see, e.g., [48, Lemma 2.3].

Lemma IL7. Ler f(Z),9(T) € F[Z] be polynomials. Suppose
f(Z) + O(e) can be computed by a circuit of size s with
g-oracle gates. Let h(T,0) € F[0][z] be a polynomial such
that h(Z,d) = g(T) + O(9). Then there is some N € N such
that f(T) + O(e) can be computed by a circuit of size s with
h(z,eN)-oracle gates.

C. Polynomial Identity Testing

We will design polynomial identity testing algorithms
that operate on circuits in a black-box manner; that is, our
algorithms will only evaluate the circuit and will not examine
the internal structure of the circuit. This is equivalent to giving
an explicit construction of a hitting set for the class of circuits
under consideration.

Definition IL1.8. Let C C F[Z] be a set of polynomials. A set
‘H C F™ is a hitting set for C if for every nonzero f € C, there
is some @ € H such that f(a) # 0. O

359

Equivalently, one can attempt to construct a hitting set
generator, which is analogous to a pseudorandom generator in
this setting.

Definition IL9. Let C C F[z] be a set of polynomials. A
polynomial map G : F* — F™ is a hitting set generator for C
if for every nonzero f € C, we have f(G(7y)) # 0. We call £
the seed length of the generator. The degree of the generator,
denoted by deg(G), is given by max;c,) deg(G;). O

One can translate between hitting sets and hitting set
generators using the Schwartz—Zippel lemma [38], [39] and
polynomial interpolation. We note that if C C F[X] is a set of
degree-d polynomials and G : F¢ — F™ is a hitting set generator
for C, one obtains a hitting set of size (d - deg(G) + 1)*. In
contrast, one can always construct a hitting set of size (d+1)".
Note that a generator with deg(G) < d°) and ¢ < o(n)
corresponds to a hitting set of size d°(), which is a super-
polynomial improvement over the trivial hitting set of size
(d+1)"

D. Determinantal Ideals and Matrix Rank

Let X be an n x m matrix of variables. We denote by
I5et, . C F[X] the ideal of F[X] generated by the 7 X r minors
of X. We make use the following proposition of Andrews and
Forbes [48], which reduces the task of proving lower bounds
on all polynomials in IS?fn,T to the task of proving lower
bounds on products of minors. We note that the polynomial
(Ks|K,)(X) appearing in the statement of [48, Proposition
3.5] is exactly the same as the product of determinants that
appears in the proposition below. However, we give a more
direct statement of this proposition to avoid the language of
bitableaux and bideterminants, which is unnecessary for the

results of this work.
c Idet

Proposition IL.10 ([48, Proposition 3.5]). Let f(X) € I, .
be nonzero. There is a collection of nm linearly independent
linear functions {; ;(X,) € F(e)|X] indexed by (3, 7) € [n] x
[m], an integer q € Z, a nonzero o € F, and natural numbers
O1,...,0p With o1 2 1 such that

f(él,l(Xv 8), N ,én,m(Xv E))

P
=cla H deto, (X(o,),(0s]) T O(e™).
=1

It is well-known that when the underlying field F is
algebraically closed, the ideal IS?},M consists exactly of those
polynomials which vanish on all matrices of rank less than 7.
In particular, proving a lower bound of s on the complexity
of all nonzero polynomials in Iﬁ?}n_r equates to proving that
every polynomial of complexity less than s cannot vanish on
all matrices of rank less than r. There is a natural hitting set

generator whose image contains all low-rank matrices.

Construction IL11. Let n,m,r € N with r < min(n, m).
Define the map Gy, . : F"*7 X F7X — F"X™ yig

gn,'m,'r(Ya Z)Z,J = (YZ)’LJ

Authorized licensed use limited to: University of lllinois. Downloaded on June 30,2023 at 19:42:54 UTC from IEEE Xplore. Restrictions apply.

It is evident from its definition that the generator of
Construction II.11 contains in its image all n x m matrices of
rank at most 7. The connection between matrix rank and the
ideal Igefn ~ can be used to prove the following lemma. For

the sake of completeness, we provide a proof (the same proof
can be found in the discussion preceding [48, Lemma 2.10]).

Lemma I1.12. Let F be any field and let n,m,r € N with
r < min(n, m). Let T3¢ F[X] denote the ideal of F[X]

n,m,r —

generated by the r X r minors of a generic n X m matrix X

and let f(X) € F[X]. Then f(Gnmr—1(Y,Z)) =0 if and
only if f(X) € I, ..
Proof. If f(X) € I3%, . then we can write f as f(X) =

Z?;l 9i(X)h;(X) where the polynomials {g1,...,gn} are
the 7 x r minors of X. Because the image of G, , »—1(Y, 2Z)
is necessarily a matrix of rank at most » — 1, each 7 X r minor
of Gnm,r—1(Y, Z) vanishes, i.e., g;(Gn,mr—1(Y,Z)) =0 for
all ¢ € [N]. This implies f(Gy m—1(Y,Z)) =0.

To prove the converse direction, we first work under the
assumption that the field I is algebraically closed. Suppose
that f(Gnmr—1(Y,Z)) = 0. Let Jymr—1 € F[X] be the
ideal of F[X] consisting of polynomials that vanish on the
set of matrices of rank at most » — 1. Because the image of
Gn.m,r—1(Y, Z) contains all matrices of rank at most r — 1, we
have f € Jy m,r—1. To show that f € I3% . we will prove
the equality Idet

n,m,r

n,m,r—1-

The 1nclu510n Igefn + © Jnm,r—1 is immediate, as the r X r
minors vanish on matrices of rank less than 7. For the inclusion
in the reverse direction, we use the correspondence between
ideals and varieties. Recall that for an ideal I C F[X], we

denote by V(I) C F"*™ the variety of I, defined as

V({I) = {A € F"™™ . vh(X) € I, h(A) = 0}.

Let V(I3) be the variety over F defined by the ideal
I;}efnr and let A € V(Isef,”) be a point in this vari-

ety. By definition, each r x 7 minor of A vanishes, so
rank(A) < r — 1, which implies A € V(Jy,m,r—1). This
shows V(I3) C V(Jy, mr—1)- By Hilbert’s Nullstellensatz,

n,m,r
this implies /Jy mr—1 C where /I denotes the
is radical (see, e.g.,

radical of an ideal I. The ideal I,‘%Cfn ,
[56, Theorem 2.10 and Remark 2.12]), so we have the desired
inclusion

Idet

n,m,r?

T/ det
nmr 1€ Jnmr 1€ Igertnr_lnemr
This proves Jymr—1 = I3, .. hence f(X) € I3 . as

claimed.

If F is not algebraically closed, we can still consider
f(X) as a polynomial over the algebraic closure F. If
f(Gnmr—1(Y,Z)) = 0, the previous argument implies that
fe Ige,i, . When It is considered as an ideal over F.
Letting Ir and I denote Igcfn » when considered as an ideal
over F and T, respectlvely, we have f € IzNF[z]. Lemma II.13
below shows that Iz N F[z] = Ir, so we in fact have f € Iy
as desired. O

360

The following is an elementary lemma used in the proof of
Lemma II.12 in the case where I is not algebraically closed.
In the spirit of keeping this work self-contained, we provide a
proof.

Lemma IL.13. Let F be a field and let K O F be an extension
of F. Let {g1,...,9m} C F[Z] be a set of polynomials. Let Iy
and I be the ideals generated by {g, ..., gm} over F[T] and
K[z], respectively. Then Iz = Ix N F[Z].

Proof. The inclusion Iy C Ix NF[X] is immediate. For the
other direction, let {vy, ve, ...} be a basis of K as a vector space
over IF with the additional property that v; spans [F. Consider
the linear projection 7 : K — I that sends v; to itself and v; to
zero for i > 2. We extend 7 to a projection 7 : K[X] — F[X]
by applying the projection from K to [F coefficient-wise. Let
f(X) € Ix NF[X] be given by f(X) = SN | g;(X)hi(X).
We claim that f(X) = Zf\il 9:(X)m(h;(X)), which proves
f(X) € Iy as desired.

To see this, let m be a monomial and consider the coefficient
Coeff,,,(f) of m in f. Because Coeff,,(f) € F, we have
m(Coeft,,(f)) = Coeff,,(f). Using the fact that 7 is F-linear,
this implies

Coeff,, () W(Coeﬁm())

m(Coeff, (gihi))
m(Coeff,, (g;) Coeff, (1))
Coeff, (9;)m(Coefl , (hs))

Coeft,, (gim(hs)),

where the inner sum is over all monomials m; and ms whose
product is m. The equality

m(Coeff,,, (9;) Coeff,,, (hi)) = Coeft,,, (g;)m(Coeft,,, (hs))

follows from the fact that 7 is F-linear and Coeft,,, (g;) € F.
N
Thus, £(X) = S0, g3(X)m(i (X)), O

One can use Lemma I1.12 to design PIT algorithms for circuit
classes C that are too weak to efficiently compute a nonzero
element of I,‘fefn - If every small C-circuit cannot compute
a nonzero element of Ige,tn »» then Lemma II.12 implies that
the map G,, p r—1(Y, Z) of Construction I.11 is a hitting set
generator for the class of small C-circuits.

E. Complexity of Matrix Multiplication

This subsection introduces the language of tensors and their
relationship with the complexity of matrix multiplication. For a
more thorough treatment of tensors and matrix multiplication,
we refer the reader to Biirgisser, Clausen, and Shokrollahi [57,
Chapters 14 and 15] and Blaser [58].

Authorized licensed use limited to: University of lllinois. Downloaded on June 30,2023 at 19:42:54 UTC from IEEE Xplore. Restrictions apply.

For our purposes, a tensor 1" of order d is a set-multilinear
polynomial in d disjoint sets of variables X1 ..., X(@ The
fact that T' is set-multilinear means that every monomial
appearing in T is a product of d variables, where exactly one of
these variables is taken from each of the sets X1, ... X (),
That is, we can write T as

ny Nd
1
TXO, XDy = 37 3ty

i1=1

(d)
xy,
iq=1

We say that a tensor is rank-one if there are linear forms
L(X M) Lg(X D) such that

TXD, XDy = (XD) o gy(X D),

The rank of 7', written as R(7'), is the minimal r such that T
can be written as a sum of rank-one tensors. The border rank
of T, denoted by R(T), is the minimal r such that T can be
obtained as a limit of rank-r tensors. More explicitly, a tensor
T has border rank 7 if there are linear forms ¢; ;(X @, ¢) €
F(e)[X®)] such that

r d
S (xDe) =1(xM,... . XD) + 0(e)

j=1i=1

and there is no such expression for 7'+ O(¢) involving fewer
than r rank-one tensors.
We denote by (n,m,p) the order-3 tensor

n m 4
(n,m,p) =Y @i Y5 ki,

i=1j=1k=1
which corresponds to the multiplication of an n x m matrix
with an m x p matrix. Note that (n,m,p) = tr(XYZ"), a
fact that we will use later on.

The complexity of n xn x n matrix multiplication is captured
by the rank of the tensor (n,n,n) (see, e.g., [57, Proposition
15.1]). We now define w, the exponent of matrix multiplication.

Definition IL.14. w = inf{r € R : R({(n,n,n)) < O(n")}.
¢

Bini [59] showed that one can equivalently define w in terms
of the border rank of (n,n,n).

Lemma IL15 ([59]). w = inf{r € R : R((n,n,n))
Oo(n")}.

As mentioned in the introduction, the obvious bounds on w
are 2 < w < 3. The best-known upper bound on w is due to
Alman and Vassilevska Williams [13].

Theorem I1.16 ([13]). w < 2.37286.

<

~

It is popularly conjectured that w = 2. There has been some
progress on lower bounds for R({n, n,n)), with the best-known
lower bound due to Landsberg and Michatek [36].

Theorem I1.17 ([36]). R((n,n,n)) > 2n? —log,n — 1.

One can also consider the multiplicative complexity of
matrix multiplication, where we do not restrict ourselves to

361

computing variable-disjoint products of the form ¢ (X)¢5 (Y),
but instead consider products ¢1(X,Y)l5(X,Y) of arbitrary
linear polynomials. The following lemma shows that for matrix
multiplication, border rank and border multiplicative complexity
differ by at most a factor of 2. In the case of (exact) rank and
multiplicative complexity, this is a well-known fact (see, e.g.,
[57, Eqn. 14.8] and the discussion preceding it). The proof for
the case of border computation is nearly identical.

Lemma IL.18 (cf. [57, Eqn. 14.8]). Let L(n) denote the border
multiplicative complexity of n X n X n matrix multiplication.
Then L(n) < R({n,n,n)) < 2L(n).

III. LIFTING BORDER RANK LOWER BOUNDS TO
DETERMINANTAL IDEALS

In this section, we will show that lower bounds on the border
rank of matrix multiplication can be lifted to lower bounds on
the border multiplicative complexity of any nonzero polynomial
in the ideal I, . C F[X]. Letting R(n) := R((n,n,n)) be
the border rank of n X n X n matrix multiplication, our goal
will be to prove a lower bound of order R(r) on the border
multiplicative complexity of the ideal Ig,efn_r. To do this, we
make use of tools recently developed by Andrews and Forbes
[48] to prove lower bounds on the complexity of polynomials

in this ideal.

We now state and prove our main technical lemma, which
is an analogue of [48, Lemma 3.6] for trace ABPs.

Lemma IIL.1. Let F be a field of characteristic zero. Let

X® . X™) be matrices of variables, where X s an
. 1

n; X n;11 matrix and ny = Ng,i1. Let N = Z:ZJ; .

Let 0 = (01,...,0p) be a non-increasing sequence of

natural numbers with o1 > N. Then there is a matrix
M € F(e)[XM, ..., X(M]71X91 ywhere each entry M, is
either a constant or a scalar multiple of a variable and we
have

p
[det(Mp0.) = 1+ etr(XD . X)) 4 O(e2).

i=1

Proof. Without loss of generality, it suffices to consider the
case where 01 = N. If instead 01 > N, we extend the matrix
M to a 01 X 01 matrix by placing ones along the main diagonal
and zeroes elsewhere.

Let G be the underlying directed graph of the trace ABP
that computes tr(X ™ ... X (™)) We modify G as follows:

o Add a self-loop of weight 1 to every vertex of G.

e Let s1,...,s,, denote the sources of G and ty,...,t,,
the corresponding sinks. Add an edge of weight ¢ from
t; to s; for every i € [nq].

Authorized licensed use limited to: University of lllinois. Downloaded on June 30,2023 at 19:42:54 UTC from IEEE Xplore. Restrictions apply.

Let G’ denote the resulting graph and let M’ be the adjacency
matrix of G, i.e.,

L, XM o 0 0 0

0 I, X® o 0 0

0 0 I, X® 0 0

M/ = 0 O 0 1714 O 0
0 0 0 0o - I, _, X
el,, 0 0 0o - 0 I,

We will first determine []5_, det(M (4],[))» after which we
will modify M’ to obtain the desired matrix M.

Fix some k € [N]. If & < 327" n,, then it is clear that
det(M[’k]ﬁ[k]) =1,as M [lk’],[k] is an upper triangular matrix with
ones along the diagonal. For k in the range N —n,, < k < N,
we compute det(M[’k],[k]) using the cycle cover interpretation
of the determinant.

Let G}, denote the graph whose adjacency matrix is M, [/k]’[k].

Recall that det(M, [’k],[k]) can be computed as

Z (_:l)ezverl(c’)ﬂ_(cf)7

CeB(GY)

where % (G7,) is the set of all cycle covers in G, even(C) is
the number of even cycles in C, and 7(C) is the product of
the weights on the edges appearing in the cycle cover C'. We
partition the set of cycle covers of G} into three sets: those
containing no edges of weight ¢, those containing exactly one
edge of weight ¢, and those containing two or more edges of
weight €. In each case, we determine the contribution of these
cycle covers to det(M [lk],[k])'

« Suppose C' is a cycle cover with no edges of weight e.
The construction of G, implies that C' must be the cycle
cover consisting entirely of self-loops. This cycle cover
contributes 1 to det(M[’ka]).

o Let C be a cycle cover containing exactly one edge labeled
e. By the construction of G, the cycle in C containing
the edge labeled ¢ must correspond to a path from s; to
t; in G for some i € [k — (N — n,,)] together with the ¢
edge from ¢; to s;. Because every non-trivial cycle in G,
must use an edge labeled ¢, the remaining cycles in C'
consist of self-loops. Thus, C' contributes a term of the
form

. X‘(m—l) X(m)

T —1,8m ™ 2

(1) lex) x®

2,12 12,13
to det(Mfy;), where the factor of (=1)™*! accounts
for the parity of the length of the non-trivial cycle. There is
exactly one such cycle cover for every i € [k — (N —ny,)]
and every path from s; to ¢; in G. This implies that the
set of all cycle covers containing exactly one edge of
weight ¢ contributes

N—n,,+k
m-+1 (1) (2) (m)
(1) € Z Z X in Xl X iy

i1=1 d9,eim

= (=)™ etr(XM - X)) N) e (N =)

to det(Mpy 1)-

« Finally, consider the case when C' is a cycle cover
containing two or more edges labeled by ¢. By definition,
this cycle cover contributes an O(£2) term to det (M [’k]’[k])s
which we consider negligible.

In summary, we have

=1+ (=)™ e (XD X))o (V) fo- (V=)
+ O(£%).
Using this, we now determine [[%_; det(M[’Ui] [Ui]). Let a; :=

[{j € [p] : 0; = i}| count the number of elements of o equal
to 7. The analysis above implies

P
[T det(r],))
i=1

N
= [] det(My)

k=1
MNm,

= H det(M{y_p. 4t [N—nm)"
=1
=TT (14 (et (XD X))
=1
+0(52)) N—nyp+£

Nom

= (1 + (=)™ eann,, 1o tr(XD - X0 10)
(=

—

+0(%))
=1+ (—1)m+15§: AN (XD X))
+0(e%) -
=1+ (*1)m+15§ﬂ: ann aNn,,,,+e> (x®... X(m))m}
+0(£%). o

We now perform a change of variables to transform the
matrix M’ into the desired matrix M. Let A be the diagonal
matrix given by

1
= Xfm :
D0 AN =yt

(Note that the entries of A are well-defined, since ay > 1 and
a; > 0 for all ¢ € [N].) Let M be the image of M’ under the
change of variables X (") — (—1)"*+1AX (1) Then we have

Aii

)

(Z aN_w) (1) AX® . x),
=i

— (*1)m+1AZilAi,i(X(1) .. X(m>)i,i
= (=) x® . xm)y,

Authorized licensed use limited to: University of lllinois. Downloaded on June 30,2023 at 19:42:54 UTC from IEEE Xplore. Restrictions apply.

SO

Nm

Hdet M[U][U]) —1+EZ X(l)

XM+ 0(e?)

=1+ atr(X(l) XM L 0E?). O

Remark III.2. In the proof of the preceding lemma, suppose
we were to add edges of weight 1 from t; to s; for each ¢
and add self-loops of weight 1 to all vertices. To compute
tr(X ™) ... X (@) using the cycle cover interpretation of the
determinant, we want to restrict ourselves to only count cycle
covers containing a single edge ¢;-s; edge. We accomplish this
by multiplying the weight of each such edge by a factor of
€, which guarantees that the linear term of the determinant of
the adjacency matrix corresponds to cycle covers using exactly
one t;-s; edge. In fact, we get more: the coefficient of ¢*
the determinant of the adjacency matrix corresponds to cycle
covers using exactly k£ such edges.

A similar idea is used in algorithms for “exact” problems
in combinatorial optimization. For example, the algorithms
of Barahona and Pulleyblank [60] for counting exact arbores-
cences and exact perfect matchings in planar graphs modify
the edge weights of the graph in a manner similar to what we
do in the proof of Lemma III.1. By exploiting the notion of
border complexity, we avoid an interpolation step used in these
combinatorial algorithms. O

Using the preceding lemma, we establish an analogue of
[48, Theorem 3.8] for trace ABPs.

Proposition II1.3. Let F be a field of characteristic zero. Let
f(X) € I3 | be a nonzero polynomial and let h(X,e) €
Fle][X] be any polynomial such that h(X,e) = f(X)+ O(g).
Let g(y) € F[y] be a polynomial in the border of layered trace
algebraic branching programs with at most r vertices. Then
there is a depth-three h-oracle circuit ® defined over F(e)

such that the following hold.

1) ® has nm addition gates at the bottom layer, a single
h-oracle gate in the middle layer, and a single addition
gate at the top layer.

2) ® computes g(y) + O(e).

Proof. By Lemma IL.7, it is sufficient to consider the case
where the oracle gates compute f(X) exactly. Using Proposi-
tion IL.10, there are nm linear functions {¢; ;(X,¢) € F(e)[X] :
(i,7) € [n] x [m]}, an integer q € Z, a nonzero « € F, and
a sequence o = (01,...,0,) of natural numbers with o1 > r
such that

f(él 1(X E)

=cla H det(X[fn‘],[
i=1

+ln.m(X,€))

o) + O™,

By assumption, there is a polynomial (7,) € F(e)[g] such
that g(y,e) = g(y) + O(e) and that g(g,e) can be computed
by a layered trace ABP on s vertices for some s < 7. That is,
there are matrices of variables Z (1) A (M) where Z(is

1
an n; X n;y1 matrix, we have ny = ng,11, and Z"” =3,

363

along with a projection ¢ : ZM U- ..U Z(™) — FUF(e) such
that tr(p(Z1M) - p(2(M)) = §(7,).

Applying Lemma IIL1 to the matrices Z(V, ..., Z(™) and
the sequence (o4,...,0,), we obtain a matrix M(Z,¢) €
F(e)[ZzW),. .., Z™] %" such that

H det(M

We now compose f(X), the linear functions ¢; ;(X,¢), the
matrix M (Z,¢), and the projection ¢ : Z — 5 UTF(g). Let

h(y,e,0)
= f(gll(M(‘P(Z)v 5)75)7 oo
The preceding discussion implies
h(7,¢,0)
p
=cla- [[det(M(2(Z2),0)0,),0) + O™
i=1
— . (1 Fotr(p(zM). .
+ 0
= ela +90ag(7,) + O(e96?) + O (7).

M(Z,€)[0.,j0:) = 1 +etr(ZzW ... Z2M)Y) 4+ O(e?).

s ln.m(M(0(2),0),€)).

(20M)) +0(5?))

Performing the substitution € — €2 and § — &, we obtain
Wy, e, e) = e+ 2 ag(y, %) + O(e*71?)
_ E2qoz +€2q+1ag() + O(2q+2).

The desired f-oracle circuit is then given by

2
a(p) =

h(y,e2,¢) — e
g2a+ly

We now use Proposition II1.3 to lift lower bounds on the

border rank of matrix multiplication to lower bounds on the

border multiplicative complexity of the ideal 74

n,m,r*

=9(@) +0(e). N

Theorem IIl4. Let F be a field of characteristic zero.
The border multiplicative complexity of any nonzero polyno-
mial in I3, . is bounded from below by & R(r/4), where

R(n) = ((n n,n)) is the border rank of n x n X n matrix

multiplication.

Proof. Let ® be a circuit of border multiplicative complexity s
computing a nonzero polynomial in 7, ge;n - Let X, Y, and Z be
r/4 x /4 matrices of variables. The polynomlal tr(XY Z) can
naturally be computed by a layered trace ABP on r vertices.
Applying Proposition III.3 to the circuit ® yields a circuit
¥ of multiplicative complexity s that computes tr(XY Z) +
O(g). We then apply Lemma IL.5 to ¥ to obtain a circuit of
multiplicative complexity 3s that simultaneously computes all
first-order partial derivatives of tr(XY Z) + O(e).

Observe that the partial derivative of tr(XY Z) with respect
to z;,; is, up to the O(e) error term, the (i,j) entry of the
matrix product XY. Thus, we have a circuit of multiplicative
complexity 3s that approximates the product of two r/4 x r/4
matrices. By Lemma II.18, this implies that the border rank of
r/4 X r/4 x r/4 matrix multiplication is bounded from above

Authorized licensed use limited to: University of lllinois. Downloaded on June 30,2023 at 19:42:54 UTC from IEEE Xplore. Restrictions apply.

by 6s. That is, we have R(r/4) < 6s. This yields the claimed
lower bound on the multiplicative complexity of any nonzero
polynomial in 7d¢t O

n,m,r*

Combining Theorem I1.17 with Theorem III.4 yields the fol-
lowing unconditional lower bound on the border multiplicative
complexity of all nonzero polynomials in the ideal Id°t

n,m,r*

Corollary IILS5. The border multiplicative complexity of any
nonzero polynomial in IS?},W is bounded from below by 41—87"2 —
Llogyr + &

IV. CONSTRUCTING A HITTING SET GENERATOR

In this section, we use Theorem II1.4 to design hitting set
generators for the closure of circuits of small multiplicative
complexity. Letting R(n) := R((n,n,n)) be the border rank
of n X n X n matrix multiplication, we will construct a
generator with seed length O(y/n R ™" (s)) for n-variate circuits
of multiplicative complexity s. We stress that the correctness
of this generator is unconditional.

Theorem IV.1. Let F be a field of characteristic zero. Let
R(n) := R((n,n,n)) be the border rank of n X n X n matrix
multiplication. Then there is an explicit degree-two hitting set
generator of seed length 8./n R (6s+1) that hits the closure
of n-variate circuits of multiplicative complexity s.

Proof. Let ® be an n-variate circuit of multiplicative com-
plexity s that computes ®(Z) + O(e) for some nonzero
polynomial ®(Z). Let r» = 4R™'(6s + 1). Arrange the
input variables of ®(Z) into a /n X y/n matrix. Let
Gnmr(Y,Z) be the generator of Construction IL.11. We
claim that the generator G .1 (Y, Z) hits ®(Z), i.e., that
Gy 1 (Y. 2)) £ 0.

To see this, suppose instead that ®(G 5 /m ,—1(Y,2)) = 0.
Lemma II.12 implies that ®(Z) € If‘/‘%ﬁj \ {0}. As ®(7)
has border multiplicative complexity s, it follows from Theo-
rem II1.4 that 6s > R(r/4). However, our choice of r implies
R(r/4) = 6s + 1 > 6s, a contradiction. Thus, it must be the
case that in fact G s/ ,_1(Y, Z) hits ®(Z). Since ¢ was
an arbitrary n-variate circuit of multiplicative complexity s,
we conclude that G 7, 1(Y,Z) hits all polynomials in
the closure of n-variate circuits of multiplicative complexity
s. Finally, note that the definition of G 5 = . 1(Y,Z) im-
mediately implies the claimed bounds on the seed length and
degree of the generator. O

Combining Theorem IV.1 with Theorem II.17, we obtain the
following corollary. To the best of our knowledge, this is the
first non-trivial hitting set generator for circuits of multiplicative
complexity s < o(n).

Corollary IV.2. There is an explicit hitting set generator of
seed length (8v/340(1))/ns that hits the closure of n-variate
circuits of multiplicative complexity s.

One can also state Theorem IV.1 as a win-win result: either
there are extremely fast algorithms for n X n X n matrix

364

multiplication, or there is a non-trivial deterministic algorithm
for testing polynomial identities given by small circuits.

Corollary IV.3. Let F be a field of characteristic zero and let
w denote the exponent of matrix multiplication over F. At least
one of the following is true.

1) w=2.

2) For any positive constants €,6 > 0 that satisfy 2we+26 <
w — 2, there is an explicit hitting set generator of seed
length O(n'~¢) that hits n-variate algebraic circuits of
multiplicative complexity O(n'*°). If these circuits are
also restricted to have degree n°®") and size n°Y), then
this yields a deterministic algorithm to test identities given
by such circuits that runs in exp(O(n'=¢logn)) time.

ACKNOWLEDGMENTS

We thank Shubhang Kulkarni for telling us about the work of
Barahona and Pulleyblank [60]. We also thank the anonymous
reviewers for comments that helped improve the presentation
of this work.

REFERENCES
[1] V. Strassen, “Gaussian elimination is not optimal,” Numerische Mathe-
matik, vol. 13, pp. 354-356, 1969.
V. Y. Pan, “Strassen’s algorithm is not optimal. Trilinear technique of
aggregating, uniting and canceling for constructing fast algorithms for
matrix operations,” in Proceedings of the 19th Annual IEEE Symposium
on Foundations of Computer Science (FOCS 1978). IEEE, Long Beach,
Calif., 1978, pp. 166-176.
D. Bini, M. Capovani, F. Romani, and G. Lotti, “o(n?-7799) complexity
for n X m approximate matrix multiplication,” Information Processing
Letters, vol. 8, no. 5, pp. 234-235, 1979.
V. Y. Pan, “New fast algorithms for matrix operations,” SIAM J. Comput.,
vol. 9, no. 2, pp. 321-342, 1980.
A. Schonhage, “Partial and total matrix multiplication,” SIAM J. Comput.,
vol. 10, no. 3, pp. 434-455, 1981.
F. Romani, “Some properties of disjoint sums of tensors related to matrix
multiplication,” SIAM J. Comput., vol. 11, no. 2, pp. 263-267, 1982.
D. Coppersmith and S. Winograd, “On the asymptotic complexity of
matrix multiplication,” SIAM J. Comput., vol. 11, no. 3, pp. 472492,
1982.
V. Strassen, “Relative bilinear complexity and matrix multiplication,” J.
Reine Angew. Math., vol. 375/376, pp. 406—443, 1987.
D. Coppersmith and S. Winograd, “Matrix multiplication via arithmetic
progressions,” J. Symbolic Comput., vol. 9, no. 3, pp. 251-280, 1990.
A. M. Davie and A. J. Stothers, “Improved bound for complexity of
matrix multiplication,” Proc. Roy. Soc. Edinburgh Sect. A, vol. 143, no. 2,
pp. 351-369, 2013.
V. Vassilevska Williams, “Multiplying matrices faster than Coppersmith-
Winograd,” in Proceedings of the 44th Annual ACM Symposium on
Theory of Computing (STOC 2012). ACM, New York, 2012, pp. 887—
898.
F. Le Gall, “Powers of tensors and fast matrix multiplication,” in
Proceedings of the 2014 International Symposium on Symbolic and
Algebraic Computation (ISSAC 2014). ACM, New York, 2014, pp.
296-303.
J. Alman and V. Vassilevska Williams, “A refined laser method and faster
matrix multiplication,” in Proceedings of the 32nd Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA 2021). Society for Industrial
and Applied Mathematics (SIAM), Philadelphia, PA, 2021, pp. 522-539.
H. Cohn and C. Umans, “A group-theoretic approach to fast matrix
multiplication,” in Proceedings of the 44th Annual IEEE Symposium on
Foundations of Computer Science (FOCS 2003), 2003, pp. 438—449.
H. Cohn, R. Kleinberg, B. Szegedy, and C. Umans, “Group-theoretic
algorithms for matrix multiplication,” in Proceedings of the 46th Annual
IEEE Symposium on Foundations of Computer Science (FOCS 2005),
2005, pp. 379-388.

[3

[4]

(5

[6

[7

=

[9]
[10]

[11

[12

[13

[14]

[15]

Authorized licensed use limited to: University of lllinois. Downloaded on June 30,2023 at 19:42:54 UTC from IEEE Xplore. Restrictions apply.

[16]

[17]

[18]
[19]
[20]
[21]
[22]
[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

H. Cohn and C. Umans, “Fast matrix multiplication using coherent con-
figurations,” in Proceedings of the 24th Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA 2013). SIAM, Philadelphia, PA, 2013,
pp. 1074-1087.

M. J. Fischer and A. R. Meyer, “Boolean matrix multiplication and
transitive closure,” in 12th Annual Symposium on Switching and Automata
Theory (SWAT 1971), 1971, pp. 129-131.

A. Schonhage, “Unitidre Transformationen grosser Matrizen,” Numer.
Math., vol. 20, pp. 409-417, 1973.

J. R. Bunch and J. E. Hopcroft, “Triangular factorization and inversion
by fast matrix multiplication,” Math. Comp., vol. 28, pp. 231-236, 1974.
W. Keller-Gehrig, “Fast algorithms for the characteristic polynomial,”
Theoret. Comput. Sci., vol. 36, no. 2-3, pp. 309-317, 1985.

L. G. Valiant, “General context-free recognition in less than cubic time,”
J. Comput. System Sci., vol. 10, pp. 308-315, 1975.

J. Nesetfil and S. Poljak, “On the complexity of the subgraph problem,”
Comment. Math. Univ. Carolin., vol. 26, no. 2, pp. 415-419, 1985.

M. B. Cohen, Y. T. Lee, and Z. Song, “Solving linear programs in the
current matrix multiplication time,” J. ACM, vol. 68, no. 1, jan 2021.
J. van den Brand, “A deterministic linear program solver in current
matrix multiplication time,” in Proceedings of the 31st Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA 2020). USA: Society
for Industrial and Applied Mathematics, 2020, pp. 259-278.

S. Jiang, Z. Song, O. Weinstein, and H. Zhang, “A faster algorithm
for solving general LPs,” in Proceedings of the 53rd Annual ACM
Symposium on Theory of Computing (STOC 2021). New York, NY,
USA: Association for Computing Machinery, 2021, pp. 823-832.

A. Ambainis, Y. Filmus, and F. Le Gall, “Fast matrix multiplication:
Limitations of the coppersmith-winograd method,” in Proceedings of the
47th Annual ACM Symposium on Theory of Computing (STOC 2015).
New York, NY, USA: Association for Computing Machinery, 2015, pp.
585-593.

J. Blasiak, T. Church, H. Cohn, J. A. Grochow, E. Naslund, W. F. Sawin,
and C. Umans, “On cap sets and the group-theoretic approach to matrix
multiplication,” Discrete Anal., no. 3, 2017.

J. Blasiak, T. Church, H. Cohn, J. A. Grochow, and C. Umans, “Which
groups are amenable to proving exponent two for matrix multiplication?”
2017.

J. Alman and V. Vassilevska Williams, “Further Limitations of the Known
Approaches for Matrix Multiplication,” in 9th Innovations in Theoretical
Computer Science Conference (ITCS 2018), ser. Leibniz International
Proceedings in Informatics (LIPIcs), A. R. Karlin, Ed., vol. 94. Dagstuhl,
Germany: Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018, pp.
25:1-25:15.

, “Limits on all known (and some unknown) approaches to matrix
multiplication,” in Proceedings of the 59th Annual IEEE Symposium on
Foundations of Computer Science (FOCS 2018), 2018, pp. 580-591.

J. Alman, “Limits on the universal method for matrix multiplication,’
Theory of Computing, vol. 17, no. 1, pp. 1-30, 2021.

M. Christandl, P. Vrana, and J. Zuiddam, “Barriers for Fast Matrix
Multiplication from Irreversibility,” in Proceedings of the 34th Annual
Computational Complexity Conference (CCC 2019), ser. Leibniz Inter-
national Proceedings in Informatics (LIPIcs), A. Shpilka, Ed., vol. 137.
Dagstuhl, Germany: Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik,
2019, pp. 26:1-26:17.

M. Christandl, F. Le Gall, V. Lysikov, and J. Zuiddam, “Barriers for
rectangular matrix multiplication,” CoRR, vol. abs/2003.03019, 2020.
M. Bliser, “A %nQ—lower bound for the rank of n X m-matrix multipli-
cation over arbitrary fields,” in Proceedings of the 40th Annual IEEE
Symposium on Foundations of Computer Science (FOCS 1999), 1999,
pp. 45-50.

A. Shpilka, “Lower bounds for matrix product,” SIAM J. Comput., vol. 32,
no. 5, pp. 1185-1200, 2003.

J. M. Landsberg and M. Michatek, “A 2n? — log,(n) — 1 lower bound
for the border rank of matrix multiplication,” Int. Math. Res. Not. IMRN,
no. 15, pp. 4722-4733, 2018.

R. Raz, “On the complexity of matrix product,” SIAM Journal on
Computing, vol. 32, no. 5, pp. 1356-1369, 2003.

>

365

[38]

[39

[40

[41]

[42]

[43

[44

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52

[53]

[54

[55]

[56]

[57

[58

[59

[60]

J. T. Schwartz, “Fast probabilistic algorithms for verification of polyno-
mial identities,” J. ACM, vol. 27, no. 4, pp. 701-717, 1980.

R. Zippel, “Probabilistic algorithms for sparse polynomials,” in Pro-
ceedings of the International Symposium on Symbolic and Algebraic
Computation, EUROSAM 1979, 1979, pp. 216-226.

A. Shpilka and A. Yehudayoff, “Arithmetic circuits: A survey of recent
results and open questions,” Foundations and Trends in Theoretical
Computer Science, vol. 5, no. 3-4, pp. 207-388, 2010.

N. Saxena, “Progress on polynomial identity testing,” Bulletin of the
EATCS, vol. 99, pp. 49-79, 2009.

, “Progress on polynomial identity testing ii,” in Proceedings of
the Workshop celebrating Somenath Biswas’ 60th Birthday, 2014, pp.
131-146.

V. Kabanets and R. Impagliazzo, “Derandomizing polynomial identity
tests means proving circuit lower bounds,” Computational Complexity,
vol. 13, no. 1-2, pp. 1-46, 2004.

Z. Dvir, A. Shpilka, and A. Yehudayoff, “Hardness-randomness tradeoffs
for bounded depth arithmetic circuits,” SIAM J. Comput., vol. 39, no. 4,
pp. 1279-1293, 2009.

C.-N. Chou, M. Kumar, and N. Solomon, “Closure results for polynomial
factorization,” Theory of Computing, vol. 15, no. 13, pp. 1-34, 2019.
Z. Guo, M. Kumar, R. Saptharishi, and N. Solomon, “Derandomization
from algebraic hardness,” SIAM Journal on Computing, vol. 51, no. 2,
pp. 315-335, 2022.

R. Andrews, “Algebraic Hardness Versus Randomness in Low Charac-
teristic,” in 35th Computational Complexity Conference (CCC 2020), ser.
Leibniz International Proceedings in Informatics (LIPIcs), S. Saraf, Ed.,
vol. 169. Dagstuhl, Germany: Schloss Dagstuhl-Leibniz-Zentrum fiir
Informatik, 2020, pp. 37:1-37:32.

R. Andrews and M. A. Forbes, “Ideals, determinants, and straightening:
Proving and using lower bounds for polynomial ideals,” in Proceedings
of the 54th Annual ACM Symposium on Theory of Computing (STOC
2022), 2022, pp. 389-402.

M. Kumar and R. Saptharishi, “Hardness-randomness tradeoffs for
algebraic computation,” Bull. Eur. Assoc. Theor. Comput. Sci., vol. 129,
pp. 56-87, 2019.

A. R. Klivans and D. Spielman, “Randomness efficient identity testing
of multivariate polynomials.” New York, NY, USA: Association for
Computing Machinery, 2001.

W. Baur and V. Strassen, “The complexity of partial derivatives,”
Theoretical Computer Science, vol. 22, no. 3, pp. 317-330, 1983.

P. Dutta, N. Saxena, and T. Thierauf, “A Largish Sum-Of-Squares Implies
Circuit Hardness and Derandomization,” in Proceedings of the 12th
Annual Conference on Innovations in Theoretical Computer Science (ICS
2021), ser. Leibniz International Proceedings in Informatics (LIPIcs),
vol. 185. Dagstuhl, Germany: Schloss Dagstuhl-Leibniz-Zentrum fiir
Informatik, 2021, pp. 23:1-23:21.

L. G. Valiant, “Completeness classes in algebra.”
Association for Computing Machinery, 1979.
R. Saptharishi, “A survey of lower bounds in arithmetic circuit complex-
ity,” 2019.

P. Biirgisser, “The complexity of factors of multivariate polynomials,”
Foundations of Computational Mathematics, vol. 4, no. 4, pp. 369-396,
2004.

W. Bruns and U. Vetter, Determinantal rings, ser. Lecture Notes in
Mathematics. Springer-Verlag, Berlin, 1988, vol. 1327.

P. Biirgisser, M. Clausen, and M. A. Shokrollahi, Algebraic complexity
theory, ser. Grundlehren der Mathematischen Wissenschaften [Funda-
mental Principles of Mathematical Sciences]. Springer-Verlag, Berlin,
1997, vol. 315, with the collaboration of Thomas Lickteig.
M. Bliser, Fast Matrix Multiplication, ser. Graduate Surveys.
of Computing Library, 2013, no. 5.

D. Bini, “Relations between exact and approximate bilinear algorithms.
applications,” Calcolo, vol. 17, pp. 87-97, 1980.

F. Barahona and W. R. Pulleyblank, “Exact arborescences, matchings
and cycles,” Discrete Applied Mathematics, vol. 16, no. 2, pp. 91-99,
1987.

New York, NY, USA:

Theory

Authorized licensed use limited to: University of lllinois. Downloaded on June 30,2023 at 19:42:54 UTC from IEEE Xplore. Restrictions apply.

