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ABSTRACT

We prove a new derandomization of Hastad’s switching lemma,
showing how to efficiently generate restrictions satisfying the
switching lemma for DNF or CNF formulas of size m using only
O(log m) random bits. Derandomizations of the switching lemma
have been useful in many works as a key building-block for con-
structing objects which are in some way provably-pseudorandom
with respect to AC%-circuits.

Here, we use our new derandomization to give an improved
analysis of the pseudorandom generator of Trevisan and Xue for
AC-circuits (CCC’13): we show that the generator e-fools size-m,
depth-D circuits with n-bit inputs using only O(log(m/¢)P - log n)
random bits. In particular, we obtain (modulo the loglog-factors
hidden in the O-notation) a dependence on m/e which is best-
possible with respect to currently-known AC?-circuit lower bounds.

CCS CONCEPTS
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1 INTRODUCTION

The switching lemma (originally proved by Hastad [14]) is an im-
portant and well-known tool used to analyze low-depth boolean
circuits. It says if F : {0,1}" — {0, 1} is a DNF (or CNF) formula,
with terms (or clauses) of width at most w, then if we randomly fix,
or “restrict”, all but (roughly) a iw—fraction of inputs to F, then with
high probability the resulting function on the remaining - bits can
be represented as a low-depth decision tree. Since a decision tree of
depth d can be expressed either as a width-d DNF or a width-d CNF,
this shows that random restrictions can be used to “switch” e.g. a
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bounded-width DNF into a bounded-width CNF. Using this fact,
one can argue that iteratively applying D — 1 random restrictions to
a depth-D AC?-circuit will likely cause the entire circuit to collapse
to a small-depth decision tree.

The switching lemma lies at the heart of all strong unconditional
hardness and pseudorandomness! results known for the circuit
class ACO,

e The lemma is used to derive strong correlation bounds for
the parity function against AC®-functions, and plugging this
average-case hard function into the Nisan-Wigderson frame-
work yields a pseudorandom generator with seedlength
O(logZD *6 m) for depth-D ACP circuits of size m [22].

e One can obtain tight bounds on certain Fourier-analytic
properties of ACO-functions using the switching lemma [17,
30]. These Fourier-analytic bounds are crucial in the works
of Bazzi [6] and Braverman [7] (which were subsequently
improved by [9, 13, 23, 30]) that show that AC%-functions
are fooled by log(m)o(D) -wise independent distributions.

o The flexible polarizing-walk framework introduced in [8] can
also utilize these Fourier-analytic bounds to give a generator
with seedlength O(log?P m).

The current best pseudorandom generators for AC?, which obtain
seedlength logD+O(1) m ([28, 30, 33]), stem from the work of Tre-
visan and Xue, whose pseudorandom construction relies on the
switching lemma in the most direct way of all.

Restrictions and Selections. Before we continue, we define
some notation for restrictions. A restriction is a vector p € {0, 1, *}",
which intuitively corresponds to a partial n-bit input, with stars in
the locations which are left unspecified. Two restrictions p and 7 can
be composed to form a new restriction p o 7, defined so that in each
coordinate, (po); = 7; if p; = * and (p o 7); = p; otherwise. Given
a boolean function F : {0,1}" — {0, 1}, the restricted function F,
is defined via Fy(x) := F(p o x). Often, we wish to imagine the
process of choosing a restriction p € {0, 1, *}" as first choosing a
set on which to place the stars, and then deciding how to set the
bits in the non-star coordinates using some independent process.
For this purpose, for T € {0,1}" and p, 7 € {0, 1, *}", we introduce
the selection notation T[p, 7], which is defined so that

| opin fTi=0
T[psT]l‘_{ 7, Ile=l }

LA pseudorandom generator (PRG) is an explicit, efficiently computable mapping
G : {0,1}* — {0,1}" that stretches £-bit truly-random seeds into n-bit inputs
which are indistinguishable from random to some function class. The correspond-
ing pseudorandom distribution D is the uniform distribution over the (multi-) set
G({0,1}"). We say that D &-fools a function F if | E[F(D) | —=E[F(U)]| < &, where
U is the uniform distribution over {0, 1}". Sometimes we simply say that D fools F
without specifying an error parameter — by this we mean that D e-fools F for some
£ <1/3.
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A p-random restriction is defined by p := T[U, x|, where T €
{0,1}" is a p-random string (that is, T; = 1 with probability p,
independently in every coordinate), and U is a uniformly random
vector in {0, 1}", and « := =" is the vector of all stars.

The Trevisan-Xue Construction. In [33], Trevisan and Xue
employ the generic “iterated pseudorandom restriction” approach
to construct their pseudorandom generator for AC®. This approach,
which was first introduced by Ajtai and Wigderson [1], begins by
constructing a pseudorandom restriction r, which is drawn randomly
from some small, efficiently sampleable set of restrictions. Then, one
proceeds to compose multiple independent copies of 7, and then the
output of the generatoris G = tWor@o...or(" where ris chosen
large enough so that it is highly likely that all the bits are set. The
advantage of this approach is that, in order to show that E[F(G)] ~
E[F(U)] + ¢ for functions F in some function-class C that is closed
under restriction, it suffices (by a simple hybrid argument) to show,
for all F € C, that E[F(r o U)] =~ E[F(U)] + ¢/r for a single
pseudorandom restriction 7. This task can be considerably easier
than trying to “set all the bits pseudorandomly in one shot”. The
seedlength of G then is r times the number of random bits needed
to generate each independent copy of 7.

For size-m depth-D ACP-circuits, Trevisan and Xue construct
their pseudorandom restriction 7 by composing roughly D indepen-
dent copies of a more basic pseudorandom restriction. Specifically
(in terms of the selection notation introduced above), they define

ri= (T1 AT? A A TD‘I) [, X].

Here, X € {0, 1}" is chosen to be some basic pseudorandom distri-
bution that fools small-depth decision trees, and each T/ € {0, 1}"
is a pseudorandomly-chosen string such that P(T; = 1) ~ 1/log(m)
in every coordinate, and the “A” operation is a bitwise AND.

After applying a simple hybrid argument, the key to successfully
analyzing this restriction is to choose the selection vectors T in
such a way that applying a single restriction p := T[U, ] to a
DNF or CNF? formula F is highly likely to cause the restricted
function F(p o x) to collapse to a low-depth decision tree. That
is, if one can show that p = T[U, %], where the star-selection
vector T is pseudorandom and the non-star inputs U are uniformly
random, satisfies the switching lemma, then it can be argued that
an application of p to a circuit of depth D will cause it to collapse
to depth D — 1 by switching all of the depth-2 circuits at the input
layer. For this purpose, Trevisan and Xue prove the following lemma
which is the main technical contribution of their work>. Below, the
notation DT(F) stands for the depth of the smallest-depth decision
tree that represents the boolean function F, and we use 1(E) to
denote the indicator-random-variable of an event E.

LeEmMmA 1.1 ([33], IMPLICIT IN LEMMA 7 AND ITS PROOF). Fix a
DNF F(x) = V12, Ai(x) of width w, and let p = T[y, *] with T,y €

ZSince a CNF formula is functionally equivalent to the negation of a DNF, and since
the negation of a decision tree of depth d is also a decision tree of depth d, we can
without loss of generality restrict our attention to DNFs in statements and proofs of
the switching lemma, and the corresponding corollaries for CNFs follow easily.

3 Actually, Trevisan and Xue prove a more general statement that allows the construc-
tion of restrictions p = T[Y, %] where both T and Y are pseudorandom, rather than
just the selection vector T. This extension is important for some applications of their
derandomized switching lemma given by later works, but (due to the use of a hybrid
argument which we have discussed above) this extension is not needed in their original
setting of derandomizing AC? via the iterated-restriction construction.
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{0, 1}™. Then there is a function BY(T), depending on F and y, such
that

K
1DT(F,) > d) < BY(T) = )" £(T),
i=1

where
e K < (4¥m)4,
e each fiy is a CNF with at most 2¥m clauses,

and furthermore, if y is chosen uniformly randomly from {0, 1}"* and
T is a truly p-random string, then

o By, Er By(T) < 27 (5pw)?.

By plugging in state-of-the-art pseudorandom generators for
CNFs (see [30]), it is therefore possible to generate pseudorandom
selection vectors T satisfying the following derandomized switching
lemma.

COROLLARY 1.2. For any p € [27",1] that is a power of a half,
there is an efficiently-computable pseudorandom distribution over
vectors T € {0, 1}", which can be sampled using only

O (logn + (dlog(m) +log(1/¢)) - log(m) - loglog m)

random bits, with the following property. If p := T[U, ] is a random
restriction defined by pseudorandom selection T and uniformly ran-
dom assignment U € {0,1}", and F is any DNF with m terms and
width w < O(logm), then

P(DT(F,) > d) < mOW - (10pw)? +¢.

Furthermore, the probability that T; = 1 is at least p — ¢ in every
coordinate.

Our Contribution. Since d must be chosen to be at least Q(log m)
for this to be useful (in the standard setting where p = ©(1/w)), we
can summarize the above as achieving a pseudorandom restriction
with seedlength 5(log3 m) that satisfies the switching lemma on
DNFs of size m. The main result of this paper is an improved de-
randomization of the switching lemma — we show how to generate
restrictions satisfying the switching lemma using only o (log m)
random bits.

THEOREM 1.3. For any p € [27", 1] which is a power of a half,
there is an efficiently computable pseudorandom distribution over
vectors T € {0,1}", which can be sampled using only

O(logn+ (w+d) -logw +log(1/¢))

random bits, with the following property. If p := T[U, ] is a random
restriction defined by pseudorandom selection T and uniformly ran-
dom assignment U € {0,1}", and F is any DNF of width at most w,
then

P(DT(F,) > d) < O(pw)? +¢.

Furthermore, the probability that T; = 1 is at least p — ¢ in every
coordinate.

By combining this with the well-known (and easily derandom-
izable) observation that randomly restricting a constant-fraction
of inputs to a size-m DNF will likely cause it collapse to a DNF of
width at most O(log m), we recover the corresponding statement
for size-m DNFs with unbounded width.
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COROLLARY 1.4. There is an efficiently computable pseudorandom
distribution over vectors T € {0, 1}", with seedlength

O(logn + (d +log(m/e)) - loglog(m/e)),

such that for any DNF F with m terms, the restriction p := T[U, %]
satisfies

P(DT(F,) > d) < O(plog(m/e))? +e.
Furthermore, the probability that T; = 1 is at least p — ¢ in every
coordinate.

In fact, we show that in order to satisfy the switching lemma, the
pseudorandom selection vector T must merely possess the follow-
ing weak pseudorandomness property we call p-boundedness; this
simple, “one-sided” property is much coarser than the requirement
that T fool CNFs, or even certain more basic pseudorandom prop-
erties such as k-wise independence or §-bias (see Section 2), which
still require fine, “two-sided” control on the behavior on small sets
of coordinates.

DEFINITION 1.5. Say that a distribution over vectors T € {0, 1}"
is k-wise p-bounded if; for every set S C [n] of size s < k, we have

E| [T <p’.
2 mi<r
THEOREM 1.6. Suppose that T is a (w + d)-wise p-bounded dis-
tribution over {0,1}", and U is uniform over {0,1}". If p < ﬁ,
then for any DNF F of width at most w, the restriction p := T[U, x|
satisfies
P(DT(F,) > d) < 2- (8pw)<.

1.1 Proof Technique

When we imagine the task of derandomization with respect to a
particular application, the setting is typically as follows. We have
some bad event B, depending on some random choices x € {0, 1}",
and we must show (say, in order to show that some randomized
algorithm is likely to succeed) that the probability of B occurring is
small. Suppose we have a proof which does indeed establish such a
bound. Now, identify the event B with its own indicator function
B : {0,1}"* — {0, 1}. To derandomize this statement, we can try
to peer into our proof and see how B(x) depends on the choices
x. If the dependence is simple enough — for instance maybe the
proof is just a union-bound over some local events involving at
most k variables at a time — we are in luck and we can instead draw
x from some merely k-wise independent distribution and inherit
the same probability-of-success guarantee. However, if the proof is
not simple enough, then it seems that we would need to look for
some other, simpler way to bound the probability of B, which is
unfortunate since we potentially miss out on the power of more
sophisticated proof techniques.

The crucial observation of Trevisan and Xue is that this need
not be the case. Indeed, if one can show that the event B can be
expressed as a simple function (e.g. a sum of CNFs as in Lemma 1.1)
that can fooled by some pseudorandom distribution X, then we can
bound E[B(X)] in two distinct steps: first, show that E[B(X)] ~
E[B(U)] by some “simple” argument, and only then show that
E[B(U)] is small via some separate “complicated” argument. This
is especially important for derandomizing the switching lemma
because both of the well-known proofs of the switching lemma
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(i.e. Hastad’s original conditioning-based proof [14] as well as
Razborov’s alternative encoding-based proof* [24]) seem hopelessly
sophisticated and extremely fragile from a direct-derandomization
point-of-view.

Of course, the drawback of this abstract approach is that we
can not hope to obtain from it pseudorandom restrictions with
seedlength any better than our best PRGs for CNFs. As we discuss
further in Section 1.2, obtaining a PRG with seedlength 6] (logm/e¢)
for size-m CNFs (which is what would be required to obtain an
“ideal” derandomization of the switching lemma) would require a
major breakthrough in circuit-complexity. Here, we sidestep this
barrier by analyzing (a suitable modification of) a recent new proof
of the switching lemma (which we would describe as “coupling-
based”) due to Rossman [25]. We show by a careful analysis that it
is amenable to direct-derandomization.

Originally, the purpose of Rossman’s alternative approach was
to prove the switching lemma directly for size-m DNFs with un-
bounded width. This is in contrast to the more standard two-step ar-
gument, where one first shows that randomly restricting a constant-
fraction of the inputs causes the DNF to collapse to width w <
O(logm), and then argues (via the proof of Hastad or Razborov)
that further restricting this width-w DNF with a ©(1/w)-random re-
striction will cause it to collapse to a small-depth decision tree. Ross-
man’s argument gives a better bound (for a certain range of parame-
ters) than this two-step argument. Rossman describes his own proof
as “entropy-based”, because the calculations which are required in
order to handle DNFs of unbounded width resemble the calculations
one would make to prove the bound »72, ; - log(1/7;) < log(m)
for arbitrary probability distributions = € R™.

Here, we use the approach of Rossman for a completely different
purpose, in a completely different setting. Specifically, we apply the
approach in the setting of width-w DNFs that have unbounded size.
We do not use any of the calculations which Rossman describes
as “entropy-based”, and so we describe the core of the remaining
argument, a key re-randomization and coupling step, as “coupling-
based”. It is our understanding that, prior to our work, it was not
known that Rossman’s proof offered any advantage over the ear-
lier proofs of Hastad or Razborov in the setting of bounded-width
DNFs. An important message of our work is that the coupling-
based approach indeed has a substantial advantage in the context
of derandomization (and, as we discuss further in Section 1.3, we
believe this advantage could be relevant to applications beyond the
switching lemma).

The coupling-based approach leads to a proof of the switching
lemma that is in many ways more “explicit” in how the bad event
depends on the restriction p than earlier proofs. Unfortunately, this
explicitness comes at the price of some fairly elaborate notation. So,
for the benefit of the reader, we include a section explaining how the
coupling-based approach can be used to prove (and derandomize)
the fact that a p-random restriction applied to a width-w DNF will
cause the DNF to become identically equal to a constant, except with
probability O(pw) - this fact is sometimes referred to as the “baby”
switching lemma. This section (Section 3) can be freely skipped as
it is not critical to any of our results. However we advise against
this, as understanding the derandomization in this simpler setting

4See also the expositions by [16, 32].
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is enough to grasp the key aspects of the technique; in particular, is
sufficient to understand why direct-derandomization can succeed
here while it has failed before.

1.2 Applications

Various works that construct objects which are in some way pseu-
dorandom with respect to AC®-circuits often rely on some kind of
derandomization of the switching lemma. Examples of such con-
structions include the pseudorandom generators of [1, 4, 10, 28, 33],
the quantified derandomizations of [11, 31], the stochastic list-
decodable codes of [29], and the non-malleable codes of [5].

However, the type of guarantee given by the derandomized
switching lemma proved in this work does not universally suf-
fice for all of these applications; in particular, some applications
require restrictions p = T[Y, %], where both T and Y are gener-
ated pseudorandomly, while we construct pseudorandom-selection
distributions T such that the restriction p = T[U, x| satisfies the
switching lemma when U is uniformly random. We discuss two
applications where this type of derandomization is sufficient, and
explain how our improved derandomization leads to more efficient
solutions than were previously known.

Pseudorandom Generators for AC®-Circuits. In their paper,
Trevisan and Xue showed that the construction outlined in Sec-
tion 1 gives a PRG that e-fools size-m, depth-D AC -circuits and
has seedlength 5(10g(m/£)D+3 -log(n/¢)). In [30], Tal gives an im-
proved analysis, showing that (a minor alteration of) the Trevisan-
Xue construction achieves seedlength 5(10g(m/ £)P*1.logn). Plug-
ging our improved derandomization of the switching lemma into
the construction yields the following.

THEOREM 1.7. There is an explicit pseudorandom generator that -
fools size-m, depth-D AC-circuits’, and has seedlength O(log(m/e)P-
log n). More specifically, the seedlength is

O(log(m/e))” - log(n) - (loglog(m/e)).

Obtaining this specific dependence on m/¢ is somewhat of a
landmark, as it can be shown (by an easy argument sometimes re-
ferred to as the “discriminator lemma”) that achieving a seedlength
of, say,

O(log(m/e))P~% - 1og(n) O,

would imply a stronger worst-case lower bound against depth-(D +
1) circuits than is currently known for any explicit hard function®.
Thus, modulo the loglog-factors hidden in the 5—notation, the
seedlength we obtain is best-possible without improving upon AC°-
circuit lower-bounds which have remained best-known for over 30
years.

Deterministic Search for CNF Satisfying Assignments. Sup-
pose you have a CNF formula’ for which it is known that at least a
fraction ¢ = 0.01 of all possible inputs are satisfying, and you are
tasked with finding some specific satisfying assignment. It is easy
to give a randomized solution: just try random strings x € {0, 1}"

SHere we assume we are in the standard setting where m > n, where the circuit is
large enough to at least read all of the input bits.

%See [33] for further discussion of this barrier.

"For simplicity, we will in this section restrict our attention to CNFs of size at most
nOW,
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until you find a satisfying assignment. However, it is nontrivial to
give a deterministic solution to this problem.

Perhaps the most natural approach is to use a pseudorandom
generator that (say) £/2-fools polynomially-sized CNFs - then, one
of the possible outputs of the generator is guaranteed to be satisfy-
ing. Since the best-known generators for poly(n)-sized CNFs have
seedlength 5(logz(n)), this approach yields a deterministic search
algorithm running in time n©{10g")

In [27], Servedio and Tan improve upon this by combining to-
gether two ingredients into a clever “decision-to-search reduction”
type solution to this problem. The first ingredient is a deterministic
approximate-counting algorithm due to [12] that, given a poly(n)-
sized CNF, reports the fraction of satisfying assignments to the CNF
(up to an approximation error +y), and runs in time

[

The second ingredient, which is also due to [12], is a particular de-
randomization of the switching lemma that uses O(log(n)-log log n)
random bits to restrict roughly a p-fraction of the inputs to a
poly(n)-sized CNF in a way that, on average, approximately pre-
serves the fraction of satisfying assignments, where

" )5(1og log n+log(1/y))

1
p= log(n)loglogn'

We observe that by using our new derandomization of the switching
lemma, we can do the same, but with the improved parameter

p = 1/log(n).

THEOREM 1.8. There is an efficiently computable pseudorandom
distribution over vectors T, X € {0, 1}", with total seedlength

O(log n +log(m/y) - loglog(m/y)),

such that for any DNF or CNF F of size m, the restriction p := T[*, X]
satisfies

EEF(poU)-EFU)| <y,
pU(pO)U() y

where U is uniformly distributed over {0, 1}". Furthermore, the proba-
bility that T; = 1 is at least Q(1/log(m)) in every coordinate i € [n].

Servedio and Tan proceed to iterate the following until all input-
bits are fixed (and thus a satisfying assignment has been found):
Given a CNF F : {0,1}" — {0,1} of size m < nO;

e Generate all nO1081081) restrictions p € {0,1,+}" from the
pseudorandom distribution described by [12].

e For each p, use the approximate-counting algorithm of [12]
to estimate the number of satisfying assignments to F, (x).

o Pick the p which resulted in the largest estimate, set all input
bits that are not yet set according the the restriction p, and
continue on the restricted CNF F,,.

In order to fix all the input-bits, this process must be iterated
r ~ log(n)/p times, and since the approximation-error accumulates
from every iteration, the approximate-counting algorithm must
be run with parameter y := ¢/r =~ ep/log(n). Thus, using the
pseudorandom restriction distribution from [12], Servedio and Tan
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sety ~ ¢ - 27 (loglog )’ and obtain a deterministic search algorithm
that runs in time
n\ O(loglog n+log(1/¢))?
(7) -
If we instead plug in the pseudorandom restriction distribution
given by Theorem 1.8, we can afford to set y ~ ¢/log(n)?, and we
obtain an improved deterministic search algorithm running in time

>

11\ O(loglog n+log(1/))
(2)
thus bringing the time required to solve this task in line with
the time required by the best-known algorithms for approximate-
counting,.

THEOREM 1.9. There is a deterministic algorithm that, given any
CNF F : {0,1}" — {0,1} of sizem < nfW for which at least an
e-fraction of all inputs x € {0, 1}" are satisfying, finds such an input
in time _

(E)O(loglog n+log(1/¢))
€

1.3 Open Problems

For future work, we ask whether the approach in this paper can be
used to give high-quality direct-derandomizations in other cases
where this previously seemed impossible. In particular, we highlight
the multi-switching lemma of [15], the robust-sunflower lemma
of [3], and the work on DNF compression due to [19] as potential
candidates.

The multi-switching lemma. The multi-switching lemma,
which is also due to Hastad [15], is a more refined statement con-
cerning the “common-decision-tree complexity” of a sequence of
DNFs that are all hit by the same random restriction. In typical
style, he originally gave a Hastad-type conditioning-based proof of
this result. Alternative Razborov-type encoding-based proofs were
given by [30] and [28] .

In [28], Servedio and Tan prove a Trevisan-Xue-style derandom-
ization of the multi-switching lemma, showing how to generate
restrictions satisfying the lemma with log(m)©(!) random bits.
They use this derandomization to give a pseudorandom generator
for AC? with seedlength

log(m)P*OW log(1/e),

which is incomparable to the seedlength obtained in this work due
to its superior dependence on ¢. We leave it as an open question
whether it is possible to use the approach of this work to obtain a
better derandomization of the multi-switching lemma, and whether
such a derandomization can lead to a pseudorandom generator for
AC? with the best qualities of both works.

Robust-sunflowers, DNF compression, and the power of
p-boundedness. The celebrated robust-sunflower lemma due to
Alweiss, Lovett, Wu, and Zhang [3] is the statement that DNFs
with a certain structural property known as “spreadness” are highly
likely to be satisfied by a random input. Besides its important com-
binatorial applications, the robust-sunflower lemma has recently
been applied to obtain improved lifting theorems in communication
complexity [18, 20]. Lovett has suggested [personal communica-
tion] that in order to push these lifting applications further, what is
needed is an appropriate derandomization of the robust-sunflower
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lemma. More specifically, what is desired is a proof that the robust-
sunflower lemma is true even for input-distributions which merely
possess some natural, “one-sided” weak pseudorandomness prop-
erty similar in spirit to e.g. spreadness or p-boundedness.

In [3], the core of the proof of the robust-sunflower lemma is a
key width-reduction step which is proved using a Razborov-type
encoding argument. We propose that a sensible approach to obtain-
ing an appropriately derandomized robust-sunflower lemma is the
following:

(1) Give a Rossman-type coupling-based proof for this width-

reduction step.

(2) Derandomize this proof using the approach of this work.
However, we suggest to first start by derandomizing the following
(simpler) related statement, which is a key lemma due to Lovett, Wu,
and Zhang in their work on decision-list compression (for simplicity
we state it here only for DNFs). This lemma is also proved by a
Razborov-style encoding argument.

LeEMMA 1.10. Let F(x) = V2, A;j(x) be a DNF of width w, and
let p € {0,1,+}" be a p-random restriction. Say that a term A;(x)
is “useful” in F(x) if there is any input x such that A;j(x) = 1 and
Aj(x) =0 forall j <i. We have the bound

1-p

We observe that we can carry out the first step of our suggested
plan; namely, in Section 5 we include an alternative Rossman-style
coupling-based proof of this lemma (in fact, with the improved
constant 2 instead of 4). However, unlike the situation with the
switching lemma, we do not see how to derandomize this proof;
although we believe it should be possible, it will require new ideas.
Concretely, we ask for a proof or refutation of the following con-
jecture.

m 4 w
EZ 1(A;i(p o x)isuseful in F(p o x)) < (—) .
p 4

i=1

CONJECTURE 1.11. Lemma 1.10 is true even for p = T[U, %],
where U is distributed uniformly over {0,1}", and T is any w-wise
p-bounded distribution over {0, 1}".

2 PRELIMINARIES

Decision Lists. A decision list is, for the purpose of this paper, a
mathematical operator that takes two boolean vectors a, b € {0, 1}
and produces a single boolean output defined by the following
process: find the smallest index i € [m] such that ¢; = 1, and
output b;. If there is no such index i, the decision list returns a
default value of 0. Thus, the value of a decision list on (a, b) is given

by the summation
Z ai - $i - bi,

1

gi=[[(1-q.

Jj<i
In order to clean up some expressions within this paper, we intro-
duce the notational shorthand

L(a; — by) = Z ai- ;i - bi.

1

where

Restrictions. We use the notation for restrictions introduced
near the beginning of Section 1.
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Small-Bias Distributions. We make use of §-biased distribu-
tions, which are a basic pseudorandomness primitive with efficient
constructions due to [21] and [2]. A distribution X over {0, 1}" is
said to be §-biased if, for every nonzero « € {0,1}", X §-fools the
parity function specified by the bits in a. That is,

E(-1)@X)| <.
| B
Standard constructions of §-biased distributions have seedlength

O(log n +1log 1/5). We make use of the following simple properties
of §-biased distributions X.

ProrosiTION 2.1. If f : {0,1}" —
(logically-consistent) literals, then

‘gfoo (1)

{0,1} is an AND of any k

<6

Proor. The function f(x) can be expressed in the form
£ = (330" (3= 50" (F+ 515,

Expanding this product gives a convex-combination of parity func-
tions. O

ProposITION 2.2. If f : {0,1}" —
variables, then®

{0, 1} depends on at most k

k
I;I;lf(X)—gf(Uﬂ <52~

ProoF. By considering its truth table, the function f(x) can be
expressed as a sum of at most 2¥ ANDs of literals. O

3 PROOF OF THE BABY SWITCHING LEMMA
We begin this section by fixing a DNF F(x) = /12, A;(x), where
each term A; is an AND of at most w literals. For i € [m], we let
Vi C [n] be the set of variables contained in term A;. Also for each
i, fix some vector o; € {0, 1}" which satisfies A;(o;) = 1, and define
the boolean functions
gi(x) = [ [(1-4;(x).
j<i

In this section we prove the following pseudorandom “baby”

switching lemma.

THEOREM 3.1. Let p := T[y, x|, where T is a w-wise p-bounded
distribution over {0, 1}" andy is uniformly random in {0, 1}". If F is
a DNF of width w, then

P(Fp is non—constant) < 4pw.

Proor. If F,(x) := F(p o x) is not identically a constant, then

there is some term A; such that

o A, is the first term that is not falsified by p, and

e A; is not satisfied by p.
Equivalently, we might say (more explicitly) that there is some
index i and some integer s € [1, w] such that

e Ai(pooi) =1,

e $i(pox) =1 as a function of x, and

e |Stars(p) N Vi| =s.

8This error bound can be improved to § - 2k/2 using a Fourier-analytic argument, but
the simple argument given here suffices for most applications.
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This proves the inequality of random variables

1(Fp is non—constant) <

w m

2. 2 Ailpoa) - Ui(p) = 1) WfStars(p) N Vi| =)

s=1i=1
Now, let’s fix an index i and a restriction p such that |Stars(p)NV;| =
s > 1. At this point we want to consider what happens to the
value A;(p o 0;) when we replace o; by a uniformly random input
x € {0,1}™. If p falsifies A;, then the value remains unchanged.
If instead p is consistent with A;, then A;(p o x) is functionally
equivalent to an AND of s literals of x, so

BAi(pon) = (1)

Thus, in any case, we have the inequality A;(p o 0;) < 25Ex Aj(po
x). We conclude that

1 (Fp is non—constant)
w m
< Ai(pooai) - Agi(p) =1) - Y|Stars(p) N Vi| =)

=1

Z @ZAi(p ox) - gi(p) = 1) - (Stars(p) N Vi|

s=

SAM

<

:s)

g»—:

<

D 2B Ailpox) - ¢ilpox)  Wlstars(p) N Vil =)

s=

—_

2ELAi(p o x) — 1|Stars(p) N Vi| =s)
X 1

Ms EME

IE,]I;Ai(T[y,x]) - 1|Ty;| = 5),

»
Il
—_

where x is a uniformly random vector in {0, 1}" which we introduce
purely for the sake of analysis. Averaging over p = T[y, %] gives

w

P(F, i - tant) < 2EEELA;(T|y, 1|Ty,| =s).

(Fp is non-constant) _Zl EEEL A(Tlyx]) - 1|Ty,| =)
Here, we make the key observation that, for any fixed vector T, the
distribution T[y, x] is simply the uniform distribution over {0, 1},
and in particular it does not depend on T. So, the above expression
is equivalent to

>, 78E

s=

w
PEELA((U) — ATy | =5) = ks Z 1|Ty;| = )
s=1 i

=

i

—_

w
- Zzs B(|Ty,| = s),
r=1

where 7; is the probability that, upon uniformly random input
U € {0,1}", A; is the first term with A;(U) = 1. Note of course that
2imi <1

To conclude the calculation, we use the p-boundedness assump-
tion on T to say that

EZHTJ_

se(iyJes

P(ITy,| =)
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Finally, summing over all s gives

w
P(F, is non-constant) < Z

s=1

(Y)(zp)s = (1+2p)¥ -1 <™ -1,

1
We assume that p < T

and so we finish by applying the estimate e < 1+ 2, which is valid
fort € [0,1]. O

since otherwise the desired bound is trivial,

4 PROOF OF THE FULL SWITCHING LEMMA
We begin this section by fixing a DNF F(x) = /12, A;(x), where
each term A; is an AND of at most w literals. For i € [m], we let
Vi C [n] be the set of variables contained in term A;. We will insist
that these sets are presented in increasing order so that we can
refer to the “j-th entry of V;”, which we denote V;[j].

We recall the notion of the canonical decision tree for a DNF.
We use the notation CDT(F, p) to refer to the canonical decision
tree of the restricted function F(p o x). The canonical decision tree
is defined by the simple, greedy, recursive construction described
below. For Q C [n] and « € {0,1} 191 we let Q « a denote the re-
striction which sets the variables in Q according to « in the natural
way, and has stars elsewhere.

CDT(F, p):

If F is empty, return 0.

If A; is satisfied by p, return 1.

If A; is falsified by p, return CDT(V ]2, A;(x), p)
Otherwise, let Q = Stars(p) N V; be the set of free variables
in A1, and query all of them. That is, we construct a complete
binary tree of depth |Q|, and to each path « € {0, 11191, we
assign the value CDT(V/IZ, A, p o (Q « a)).

We remark that in the context of the final bullet point above,
the restrictions p o (Q < «) and (Q <« a) o p are in fact the same
since Q C Stars(p). So we can equivalently say that we recurse
on “CDT(V 1, Ai, (Q « @) o p)” — it will be preferable for us to
instead imagine composing the restrictions in this way.

We wish to unpack this recursive definition of the canonical
decision tree so that we can express the event that CDT(F, p) has
depth > d in terms of some more explicit conditions depending
on p. Unfortunately, this will require us to introduce quite a bit
of additional notation; to get started, for a set Q € ([‘;’]), a vector
a € {0,1}}, and an index ¢ € [m], we define the restriction

Qera
so that for all j € Q, j < |Vp|,
(Q ¢ Dy, [j] = ;s

and elsewhere we have (Q «, a); := *. Thus, Q «, « corresponds
to the restriction which fixes a subset of the variables in V;, where
the subset is specified by Q C [w], according to .

Given some sets Q; € ([ri’]), vectors a; € {0,1}%, and indices
t; € [m], we denote the corresponding restrictions by

a; = Q; —y, .
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Lastly, given some sets Q1, Qo, . .
t=(t,0,...,£), define

Q(0) = {Vi[jl - ie[r], j€Qi j<IVil}

that is, Q(f) C UJ_, Vi is a set of variables which is selected based
on the subsets Q; C [w].

.,Qr C [w] and a tuple of indices

LEMMA 4.1. Suppose CDT(F, p) has a path a € {0,1}4"1 that
fails to reach a leaf of the decision tree. Then there exist

o integersr € [d],s € [d,d+w — 1], and s1,...s, = 1 with
S+t =5,
e indices1 <) <...<{t <m,
o setsQ; € ([;j]) foralli € [r], and vectors a; € {0,1}%* for all
ie[r-1],
such that

(1) Foreachi € [r], Ay, is the first term in F that is not falsified
byajo---oaj_10p,
(@) Stars(p) N (UL, Va) = 0(0).

Proor. We simply unpack the recursive definition of CDT(F, p),
following along the path in the decision tree defined by the bits in
«. For each i,

e We record the index ¢; of the first term in F that is not falsified
byajo---oaqj_10p.
e We record the variables queried while processing Ay, (en-
coded as Q; C [w]), and set s; := |Q;],
o If X icisi >d wesetr:=iands:=} ;. s; and terminate.
e Otherwise, we use the next s; bits of a to determine «; and
continue.
In the first item above, it must be the case that such a term exists,
and is not satisfied by a1 o- - - o @j_1 o p, or else we have reached the
end of the path in the decision tree defined by a before reaching
depth d. Thus, s; > 1 for all i. Since we terminate as soon as possible
after reaching depth d, and the terms all have width at most w, we
are guaranteedr < dands <d+w — 1. O

Lemma 4.1 suggests the following approach for bounding the
probability that F, randomly restricted by p, has a canonical decision
tree of depth at least d: first, fix some data r, s, £, Q;, @;; then, bound
the probability that items (1.) and (2.) occur for a particular fixing
of the data, and finally sum over all possibilities for that data to
get an overall bound. Towards this end, given data ¢ = (f1,..., &),
a=(a,...,r—1),and Q = (Qy, ..., Qr), define the functions

,
) =] |Ag@ o 0@y ox).
i=1

We now come to a key trick needed for our proof: we can apply
the function f[Q’a to a random completion of p in order to detect
whether it satisfies the conditions described in (1.) of Lemma 4.1.
Indeed, fix a restriction p and suppose that |Stars(p) N (Ul_, Vz,)

s. Then, as a function of x, ffa’Q(p o x) is either (a) identically zero
(in the case that @j o - - - o @j_1 o p falsifies A; for some i — in this
case say that p is “miss”), or (b) functionally equivalent to an AND
of s literals (in the complement case that p is “hit”). Thus, in any
case we have

1(p is a “hit” w.rt. £,Q, @) < 2° ]Eft,Q’a (pox),
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where x is a uniformly random vector in {0, 1}" which we introduce
purely for the sake of our analysis.

Our next step will be to simplify the event (1.) in Lemma 4.1 by
refactoring quantifiers.

PROPOSITION 4.2. The event (1.) in Lemma 4.1 is equivalent to the
following event:

. ¢ = (f1,...4) is the first (with respect to the lexicographic
ordering on increasing tuples in [m]") tuple such that for all
i € [r], Ay, is not falsified by aj o - - - o ati—1 © p.

Proor. Fix a restriction p and some data r, Q, a. For k € [m],
We introduce a notational shorthand E; (k) to refer the the event
that Ay is not falsified by a3 o - - - o @j—1 0 p.

We consider two different methods for generating an increasing
tuple of indices. First, we define £ = (1, ..., £-) by letting #; be the
first index such that E1 (1), and, for i > 1, letting ¢; be the first index
larger than #;_1 such that E;(#;). Second, we define ¢’ = (¢/,...,£})
as the lexicographically-first increasing tuple such that E;(£;) for
all i.

In the case that either of these tuples are well-defined (i.e. there
is at least one increasing tuple satisfying the conditions), we show
that they are the same. Seeking contradiction, suppose ¢ # ¢, and
let j be the first coordinate in which they differ. If £; < {’jf then we
could get a lexicographically-smaller increasing tuple ¢’ that still
satisfies the conditions by replacing [Jf with ;. On the other hand,
£ > t’jf would clearly contradict our procedure for defining £. O

In order to check that a tuple is indeed the first tuple “hit” by p,
we introduce the function

$rC ) = |- 2%,
<t

where the product is taken over all increasing tuples ¢/ € [m]"
which are lexicographically smaller than ¢. Recalling our discussion
from earlier, we have that, as a function of x, the restricted function
qﬁt,Q’a(p o x) is identically 1 if p is a “miss” with respect to ¢/, Q, «
forall ¢’ < ¢.

Using Lemma 4.1, Proposition 4.2, and the recent discussion, we
have that for fixed datar, s, Q, a,

1(p satisfies events (1.) and (2.) w.r.t. Q, )
< Z 1(p is a “hit” w.r.t. £, Q, @) - 1(p is a “miss” for ¢’ < ¢) -
¢

-
\(Stars(p) N U Ve,
i=1

l

= é(f))

< Z ZSIE'fo’a(P ox) - d;[ ,a(p ox)- I(Stars(p) 2 é(f))
l

= Zs]gl%f[ F(pox) — l(Stars(p) 2 Q([)),

where the sum is over all increasing tuples £ € [m]”. Thus, we
have proved the main technical lemma of this section (which can
be compared with Lemma 1.1):
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LEmMMA 4.3. Let F(x) = \/2, Ai(x) by a DNF of width w. Then
for any restriction p € {0, 1, %}",

1(CDT(F, p) has depth > d) < B;(p) :=
d+w-1 d

> 2 L2 ELfR(pox) - fstars(p) 2Q(0)).

s=d r=1Q,a

where the inner summation is over all Q = (Q1,...Qr) C ([:r]) X
cx (W andalla = (a1, ar1) € {0,135 x .. {0,111, for
all choices of s1,...sr > 1 such that s; + - -+ + s, = s. The decision
list is indexed over the set of all increasing tuples £ € [m]", which is
ordered lexicographically.

The important features of the bounding expression B, are sum-
marized by the next two claims.

PROPOSITION 4.4. The expression By(p) from Lemma 4.3 is the
sum of at most (8w)&" functions of the form

EL fi(p ox) — XStars(p) 2 Si),

where x is a uniformly random vector in {0, 1}", each S; is a set of
size at most d + w, and each f; is an AND of at most wd literals.

Proor. For each s, we count the number of choices for the data
r, Q, a, and also account for the scaling factor 2°. There are at most
25 choices for r, s1, ... sy such that s; + - - - + s, = s. Finally, There
are at most 2° choices for «, and at most w! - - - w’ = w® choices
for Q. Summing over s, we get

d+w—1

Z (8w)® < (8w)d+w.
s=d

The claims about the form of S; and f; correspond the the facts

that by construction, é(t’) is a set of size s < d + w, and fo’a isa
product of (restrictions of) r < d terms from F. O

PROPOSITION 4.5. Suppose p € {0, 1,*}" is a p-random restriction

with p < ﬁ. Then

EBy(p) < 2- (8pw)?

ProoFr. We first argue for a single function of the form Ex L; f; (po
x) — 1(Stars(p) 2 S;) such that |S;| = s for all i, and then sum.

We imagine sampling p by first making a random selection to
determine the locations of the stars, and then randomly setting the
non-star coordinates to 0 or 1 using a separate random process.
That is, let p = T[y, x], where T is a p-random string in {0, 1}" and
y is a uniformly random vector in {0, 1}". Averaging over p gives
EEL fi(pox) — X(Stars(p) 2 S;) = EEEL fi(T[y,x]) — 1_[ T;.
pxi Tyxi JES;
At this point, we make the key observation that for any fixed vector
T, the distribution T [y, x] is simply the uniform distribution over

{0,1}". In particular, it does not depend on T. So, letting U be a
uniformly random vector in {0, 1}", the above is equivalent to

IY@ISH;fi(U) - l_l T; =IYE;ZIG HTJ=Zﬂi17@H T;,

JjES;i i JE€S; i JjeS;i
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where 7; is the probability, that upon random input U, i is the first
index such that f;(U) = 1. We conclude this estimate by noting that
Er [1jes; Tj = p°, and so 3; mip® < p°.
Summing this bound over all summands in the expression By (p)
gives
d+w-1

BB < ) () p° < (spw)? Y (spw) = LY
s=d i=0

1-8pw’

We observe that the argument above is robust to the use of
less-than-perfect random selection procedures.

THEOREM 4.6. Let F(x) = \/%; Ai(x) by a DNF of width w. Sup-
pose T is a (d +w)-wise p-bounded distribution over {0, 1}"*, and y is
a random vector in {0, 1}. Ifp < ﬁv, Then the random restriction
p =Ty, %] satisfies

P(CDT(F, p) has depth > d) <EBy(p) <2- (8pw)d.
p

Proor. We follow the proof of Proposition 4.5 exactly, except
that we use the p-boundedness assumption to say that

. S
PlAn=r
j€eS

whenever S is a set of size |S| =s < d +w.

5 FURTHER PROOFS
Proof of Theorem 1.3

Proor. Let t := log(1/p). We first generate Y € ({0,1}/)" =
{0, 1}!™ according to a 5-biased distribution. We define the selection
vector T in every coordinate via T; := Y;1 AYia A -+ AYs.

Now, we follow the proof of Proposition 4.5 exactly, except that
we use the §-bias assumption to say that

. s
175;]__[ T, <p*+6
jes
whenever S is a set of size s. For the restriction p := T[U, %], this
yields

P(CDT(F, p) has depth > d) < 2- (8pw)? +5 - (8w)@*".
Setting 6 = ¢/(8w)@*" results in the desired seedlength
O(log(nt) +1og(1/8)) = O(logn + (w+d) - logw +log(1/¢)). O
Proof of Corollary 1.4

PrROOF. We first restrict according to a selection vector T! €
{0,1}" which we draw directly from a §-biased distribution. Let
p! = T'[U, %]. By a simple union bound over all terms, the proba-
bility that F(p! o x) has a surviving term of width at least w is at
most

((3/9)™ + 6)m.

We then compose with a restriction p? that satisfies the switching
lemma on DNFs of width w as given by Theorem 1.3. The overall
restriction is p := pl o p? = TL AT?[U, *|. and the overall selection
vector is T := T! A T?. By picking parameters § = O(e/m) and
w = O(log(m/e)), we can obtain overall error ¢ and obtain the
overall desired seedlength. O
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Proof of Theorem 1.7

Proor SKETCH. The construction of the pseudorandom genera-
tor is essentially the construction we outline in Section 1. Specifi-
cally, the output of the generator is given by

G (2) =t or@o...0rN oz

where Z is a 8-biased distribution and each r(?) is an independent
copy of a pseudorandom restriction defined as follows. We set
pO := X and pj = T/ [, pj_l],

and 7 := pP = TV A --- A TP[*,X], where T! and X are (inde-
pendently) drawn from a §-biased distribution, and for j > 2 we
(independently) generate each T/ according to a §-biased distribu-
tion Y € ({0, 1}*)™ in the manner described in the proof of Theorem
1.3.

Fix a size-m, depth-D AC®-function F : {0,1}" — {0, 1}, where
we assume m > n. We also assume D > 2, as the D = 1 case simply
corresponds to ANDs and ORs of literals, which is easy.

The probability that, as a function of X, the restricted function
F(7 o U) cannot be expressed as a depth-w decision tree is at most

y1= (/9™ +8) - m+(D-1)-m-(2- (8pw)™ +5 - (8w)*™),
where p = 1/2' and w is a parameter we are free to choose. By
choosing w > Q(log(m)) and t = log(w) + 4, we can say that
y1 <279 4 5., 0,

Now, it is easy to argue that X fools depth-w decision trees with
error § - 2%, since such decision trees can be expressed as a sum
over at most 2 ANDs of literals. So, overall, the distribution 7 o U
fools such functions F with error at most

Y2=n+6-2"< 27" 4 5. yOw)
Now, we bound the overall error of the generator by a simple hybrid
argument:
|EF(G-(2)) ~EF(U)| < [EF(G(2)) —-EF(G-(U))|+

r—1
> [BFGi(p ) ov) ~EF(Gi()
i=0

< [EF(G/(2)) ~EF(G (U] +7- 1.

It remains to bound the error of the base of the hybrid argument,
|[EF(G,(Z2)) —EF(G,(U))|. To do this, we set r large enough so
that, as a function of Z, it is highly likely that F(G,(Z)) depends
only on a few bits of Z, say w. In this case, Z fools F(G,(Z)) with
error at most § - 2%. We can set r = ©(log(n) log(w)/pD_l) and
obtain the following claim, which is proved using standard tail-
bound arguments for d-biased random variables.

CrLAaM 5.1.
P(|Stars(f(1) or@ ooy > W) <
2—Q(W) +5Q(1/D10g w) _WO(DW).
Given this claim, we can bound the overall error of the pseudo-
random generator by
y3 = Z_Q(W) + 5Q(I/Dlog w) | WO(DW) +royp =
2—Q(W) +5Q(1/Dlog w) | WO(DW).
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By choosing w := O(log(m/¢)) and
log(1/8) := ©(D? log(m/¢) (loglog(m/))?),
we get error ¢ with an overall seedlength of

O(r-D-log(1/6)) < O(log(m/s))D -log(n) - (10glog(m/€))3. o

PROOF SKETCH FOR CLAIM 5.1. We set up a matrix of boolean
random variables W with r rows and m columns, corresponding to
Wij = l(j € Stars(r(i)) . We note that each W;; is, as a function
of the underlying §-biased variables used to generate selection
vectors, a negation of an AND of literals. As a result, the product
of any subset of variables from W is in fact a read-once CNF, and it
is shown in [9] that read-once CNFs with ¢ clauses are fooled by
S-biased distributions with error §’ := §2(1/108(¢)) It can also be
shown by an elementary argument (i.e. just expand the product
into 2¢ terms) that such products are also fooled with error & - 2€.
We note that for each variable,

E[W;;] - (1-pP71/2)| < 6.

Define q := pD_l/Z, and note for later that 1/q < O(w)P. We set
r :=4log(n) log(w)/q.

Define ng := n and

n
ni = [Stars(t(V 0 1P 0. .. 0 (D) = Z l_[ Wy j.
j=iv

<i

We argue in two stages that n, ), < wO D) with high probability,
and then (conditioning on this likely event) that n, < w with high
probability.

For the first stage, we use a standard bound on the k-th moment
ofasum Z := Z;’zl Zj of independent, mean-zero random variables
Z; € [-1,+1], (see e.g. the proof of theorem 4 in [26]): for even k
we have EZK < (kn)k/z. Now, if we consider the i-th row in W,
and set Z; := W;j — (1 — q), then we obtain the k-th moment bound
EZk < (kn)k/2 + 5. 2k . nk, Applying a Markov argument, we
derive the probability bound

b g \k2 )
P(ns > (1 g/2ni-y) < (_——2) 8- /gt
ni-1q

Observe that (1 — q/2)'/2 -n < 1, and set k := ©(w). By a simple
union-bound argument, we conclude that we must have n,/; <

wo D), except with probability at most
(r/2) - (279 4 5. yODW)y < 9=QW) 4 5., 0(DW),

Now for the second stage, we fix the first r/2 rows of W, and
condition on the event that n,/, < wO(P) We consider the chance
that there is a set of w columns, among the n,./, columns which are
still live, such that W has all 1’s down each of these w columns. This
event can be expressed as a read-once CNF withc = w-r/2 < wO(D)
clauses. Thus the chance that this event occurs (for a specific set of
w columns) is at most

(1 _q)wAr/Z +5Q(1/10g(c)) < e—wlog(n) log(w) +5Q(1/Dlogw).

We finish the estimate by union-bounding over all (""4{2) < wODw)
choices of w columns. O.
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Proof of Theorem 1.8

Proor. Use Theorem 1.4 with

d = ©(log(1/y)) and p = ©(1/log(m))

to select T. We generate X € {0, 1}" using a §-biased distribution.
We exchange the order of expectations and estimate

EE (EF(T[U,X]) ~BF(T[U, U’])) .

Let 0 := T[U, x]. Now, whenever F; successfully collapses to a
depth-d decision tree, we have

<525

EF X)-EF v’
EF(coX) - EF(aoU)

This is because any decision tree of depth d can be expressed as a
sum of at most 2¢ ANDs of literals (we get one AND for each path
in the decision tree that reaches a leaf which outputs 1). Whenever
Fy fails to collapse, we instead bound this quantity trivially by 1.
We can set log(1/6) := ©(log(1/y)) to get an overall error bound
of y. O
Proof of Lemma 1.10

ProoF. Let F(x) = /12, A;j(x) be a width-w DNF, and let p be a
p-random restriction. For each i, define ¢;(x) := [;<;(1 — Ai(x)),
and let 0; € {0, 1, %}" be the (unique) restriction that sets all the
variables in A; so that A; becomes satisfied, and does not set any

other variables.
We observe that

1(A;(p) is useful in F(p)) = Aj(p o 6;) - Ui (p o 03) % 0)

and, with some consideration, that

IEAI'(P 00j) - Ugi(pooy) £0) <

2 w
(ﬁ) El4i(p) = 1) - Ugi(p) 0).

Thus, the average number of useful terms in F(p) is bounded by

2 \V
(m) ;El(fh‘(l))

since the events in the sum are disjoint.

= 1) (i) 2 0) < (%)W
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