


STOC ’21, June 21–25, 2021, Virtual, Italy Zander Kelley

A ?-random restriction is de�ned by d := ) [* ,★], where ) ∈

{0, 1}= is a ?-random string (that is, )8 = 1 with probability ? ,

independently in every coordinate), and* is a uniformly random

vector in {0, 1}= , and ★ := ∗= is the vector of all stars.

The Trevisan-Xue Construction. In [33], Trevisan and Xue

employ the generic “iterated pseudorandom restriction” approach

to construct their pseudorandom generator for AC0. This approach,

which was �rst introduced by Ajtai and Wigderson [1], begins by

constructing a pseudorandom restriction g , which is drawn randomly

from some small, e�ciently sampleable set of restrictions. Then, one

proceeds to compose multiple independent copies of g , and then the

output of the generator is� = g (1)◦g (2)◦· · ·◦g (A ) , where A is chosen

large enough so that it is highly likely that all the bits are set. The

advantage of this approach is that, in order to show that E[� (�)] ≈

E[� (* )] ± Y for functions � in some function-class C that is closed

under restriction, it su�ces (by a simple hybrid argument) to show,

for all � ∈ C, that E[� (g ◦ * )] ≈ E[� (* )] ± Y/A for a single

pseudorandom restriction g . This task can be considerably easier

than trying to “set all the bits pseudorandomly in one shot”. The

seedlength of � then is A times the number of random bits needed

to generate each independent copy of g .

For size-< depth-� AC0-circuits, Trevisan and Xue construct

their pseudorandom restriction g by composing roughly � indepen-

dent copies of a more basic pseudorandom restriction. Speci�cally

(in terms of the selection notation introduced above), they de�ne

g :=
(
) 1 ') 2 ' · · · ')�−1

)
[★, - ] .

Here, - ∈ {0, 1}= is chosen to be some basic pseudorandom distri-

bution that fools small-depth decision trees, and each ) 9 ∈ {0, 1}=

is a pseudorandomly-chosen string such that P()8 = 1) ≈ 1/log(<)

in every coordinate, and the “'” operation is a bitwise AND.

After applying a simple hybrid argument, the key to successfully

analyzing this restriction is to choose the selection vectors ) in

such a way that applying a single restriction d := ) [* ,★] to a

DNF or CNF2 formula � is highly likely to cause the restricted

function � (d ◦ G) to collapse to a low-depth decision tree. That

is, if one can show that d = ) [* ,★], where the star-selection

vector ) is pseudorandom and the non-star inputs* are uniformly

random, satis�es the switching lemma, then it can be argued that

an application of d to a circuit of depth � will cause it to collapse

to depth � − 1 by switching all of the depth-2 circuits at the input

layer. For this purpose, Trevisan and Xue prove the following lemma

which is the main technical contribution of their work3. Below, the

notation DT(� ) stands for the depth of the smallest-depth decision

tree that represents the boolean function � , and we use 1(�) to

denote the indicator-random-variable of an event �.

Lemma 1.1 ([33], Implicit in Lemma 7 and its proof). Fix a

DNF � (G) =
∨<
8=1�8 (G) of widthF , and let d = ) [~,★] with ),~ ∈

2Since a CNF formula is functionally equivalent to the negation of a DNF, and since
the negation of a decision tree of depth 3 is also a decision tree of depth 3 , we can
without loss of generality restrict our attention to DNFs in statements and proofs of
the switching lemma, and the corresponding corollaries for CNFs follow easily.
3Actually, Trevisan and Xue prove a more general statement that allows the construc-
tion of restrictions d = ) [.,★] where both) and . are pseudorandom, rather than
just the selection vector) . This extension is important for some applications of their
derandomized switching lemma given by later works, but (due to the use of a hybrid
argument which we have discussed above) this extension is not needed in their original

setting of derandomizing AC0 via the iterated-restriction construction.

{0, 1}= . Then there is a function �~ () ), depending on � and ~, such

that

1
(
DT(�d ) g 3

)
f �~ () ) :=

 ∑

8=1

5
~
8 () ),

where

•  f (4F<)3 ,

• each 5
~
8 is a CNF with at most 2F< clauses,

and furthermore, if ~ is chosen uniformly randomly from {0, 1}= and

) is a truly ?-random string, then

• E~ E) �~ () ) f 23+F (5?F)3 .

By plugging in state-of-the-art pseudorandom generators for

CNFs (see [30]), it is therefore possible to generate pseudorandom

selection vectors) satisfying the following derandomized switching

lemma.

Corollary 1.2. For any ? ∈ [2−=, 1] that is a power of a half,

there is an e�ciently-computable pseudorandom distribution over

vectors ) ∈ {0, 1}= , which can be sampled using only

$ (log= + (3 log(<) + log(1/Y)) · log(<) · log log<)

random bits, with the following property. If d := ) [* ,★] is a random

restriction de�ned by pseudorandom selection ) and uniformly ran-

dom assignment * ∈ {0, 1}= , and � is any DNF with< terms and

widthF f $ (log<), then

P
(
DT(�d ) g 3

)
f <$ (1) · (10?F)3 + Y.

Furthermore, the probability that )8 = 1 is at least ? − Y in every

coordinate.

OurContribution. Since3 must be chosen to be at least¬(log<)

for this to be useful (in the standard setting where ? = Θ(1/F)), we

can summarize the above as achieving a pseudorandom restriction

with seedlength $̃ (log3<) that satis�es the switching lemma on

DNFs of size<. The main result of this paper is an improved de-

randomization of the switching lemma – we show how to generate

restrictions satisfying the switching lemma using only $̃ (log<)

random bits.

Theorem 1.3. For any ? ∈ [2−=, 1] which is a power of a half,

there is an e�ciently computable pseudorandom distribution over

vectors ) ∈ {0, 1}= , which can be sampled using only

$ (log= + (F + 3) · logF + log(1/Y))

random bits, with the following property. If d := ) [* ,★] is a random

restriction de�ned by pseudorandom selection ) and uniformly ran-

dom assignment* ∈ {0, 1}= , and � is any DNF of width at mostF ,

then

P
(
DT(�d ) g 3

)
f $ (?F)3 + Y.

Furthermore, the probability that )8 = 1 is at least ? − Y in every

coordinate.

By combining this with the well-known (and easily derandom-

izable) observation that randomly restricting a constant-fraction

of inputs to a size-< DNF will likely cause it collapse to a DNF of

width at most $ (log<), we recover the corresponding statement

for size-< DNFs with unbounded width.
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Corollary 1.4. There is an e�ciently computable pseudorandom

distribution over vectors ) ∈ {0, 1}= , with seedlength

$ (log= + (3 + log(</Y)) · log log(</Y)),

such that for any DNF � with< terms, the restriction d := ) [* ,★]

satis�es

P
(
DT(�d ) g 3

)
f $ (? log(</Y))3 + Y.

Furthermore, the probability that )8 = 1 is at least ? − Y in every

coordinate.

In fact, we show that in order to satisfy the switching lemma, the

pseudorandom selection vector ) must merely possess the follow-

ing weak pseudorandomness property we call ?-boundedness; this

simple, “one-sided” property is much coarser than the requirement

that ) fool CNFs, or even certain more basic pseudorandom prop-

erties such as :-wise independence or X-bias (see Section 2), which

still require �ne, “two-sided” control on the behavior on small sets

of coordinates.

Definition 1.5. Say that a distribution over vectors ) ∈ {0, 1}=

is :-wise ?-bounded if, for every set ( ¦ [=] of size B f : , we have

E
)

∏

8∈(

)8 f ?
B .

Theorem 1.6. Suppose that ) is a (F + 3)-wise ?-bounded dis-

tribution over {0, 1}= , and * is uniform over {0, 1}= . If ? f 1
16F ,

then for any DNF � of width at mostF , the restriction d := ) [* ,★]

satis�es

P
(
DT(�d ) g 3

)
f 2 · (8?F)3 .

1.1 Proof Technique

When we imagine the task of derandomization with respect to a

particular application, the setting is typically as follows. We have

some bad event �, depending on some random choices G ∈ {0, 1}= ,

and we must show (say, in order to show that some randomized

algorithm is likely to succeed) that the probability of � occurring is

small. Suppose we have a proof which does indeed establish such a

bound. Now, identify the event � with its own indicator function

� : {0, 1}= → {0, 1}. To derandomize this statement, we can try

to peer into our proof and see how �(G) depends on the choices

G . If the dependence is simple enough – for instance maybe the

proof is just a union-bound over some local events involving at

most : variables at a time – we are in luck and we can instead draw

G from some merely :-wise independent distribution and inherit

the same probability-of-success guarantee. However, if the proof is

not simple enough, then it seems that we would need to look for

some other, simpler way to bound the probability of �, which is

unfortunate since we potentially miss out on the power of more

sophisticated proof techniques.

The crucial observation of Trevisan and Xue is that this need

not be the case. Indeed, if one can show that the event � can be

expressed as a simple function (e.g. a sum of CNFs as in Lemma 1.1)

that can fooled by some pseudorandom distribution - , then we can

bound E[�(- )] in two distinct steps: �rst, show that E[�(- )] ≈

E[�(* )] by some “simple” argument, and only then show that

E[�(* )] is small via some separate “complicated” argument. This

is especially important for derandomizing the switching lemma

because both of the well-known proofs of the switching lemma

(i.e. Håstad’s original conditioning-based proof [14] as well as

Razborov’s alternative encoding-based proof4 [24]) seem hopelessly

sophisticated and extremely fragile from a direct-derandomization

point-of-view.

Of course, the drawback of this abstract approach is that we

can not hope to obtain from it pseudorandom restrictions with

seedlength any better than our best PRGs for CNFs. As we discuss

further in Section 1.2, obtaining a PRG with seedlength $̃ (log</Y)

for size-< CNFs (which is what would be required to obtain an

“ideal” derandomization of the switching lemma) would require a

major breakthrough in circuit-complexity. Here, we sidestep this

barrier by analyzing (a suitable modi�cation of) a recent new proof

of the switching lemma (which we would describe as “coupling-

based”) due to Rossman [25]. We show by a careful analysis that it

is amenable to direct-derandomization.

Originally, the purpose of Rossman’s alternative approach was

to prove the switching lemma directly for size-< DNFs with un-

bounded width. This is in contrast to the more standard two-step ar-

gument, where one �rst shows that randomly restricting a constant-

fraction of the inputs causes the DNF to collapse to width F f

$ (log<), and then argues (via the proof of Håstad or Razborov)

that further restricting this width-F DNFwith aΘ(1/F)-random re-

striction will cause it to collapse to a small-depth decision tree. Ross-

man’s argument gives a better bound (for a certain range of parame-

ters) than this two-step argument. Rossman describes his own proof

as “entropy-based”, because the calculations which are required in

order to handle DNFs of unbounded width resemble the calculations

one would make to prove the bound
∑<
8=1 c8 · log(1/c8 ) f log(<)

for arbitrary probability distributions c ∈ R< .

Here, we use the approach of Rossman for a completely di�erent

purpose, in a completely di�erent setting. Speci�cally, we apply the

approach in the setting of width-F DNFs that have unbounded size.

We do not use any of the calculations which Rossman describes

as “entropy-based”, and so we describe the core of the remaining

argument, a key re-randomization and coupling step, as “coupling-

based”. It is our understanding that, prior to our work, it was not

known that Rossman’s proof o�ered any advantage over the ear-

lier proofs of Håstad or Razborov in the setting of bounded-width

DNFs. An important message of our work is that the coupling-

based approach indeed has a substantial advantage in the context

of derandomization (and, as we discuss further in Section 1.3, we

believe this advantage could be relevant to applications beyond the

switching lemma).

The coupling-based approach leads to a proof of the switching

lemma that is in many ways more “explicit” in how the bad event

depends on the restriction d than earlier proofs. Unfortunately, this

explicitness comes at the price of some fairly elaborate notation. So,

for the bene�t of the reader, we include a section explaining how the

coupling-based approach can be used to prove (and derandomize)

the fact that a ?-random restriction applied to a width-F DNF will

cause the DNF to become identically equal to a constant, except with

probability$ (?F) – this fact is sometimes referred to as the “baby”

switching lemma. This section (Section 3) can be freely skipped as

it is not critical to any of our results. However we advise against

this, as understanding the derandomization in this simpler setting

4See also the expositions by [16, 32].
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is enough to grasp the key aspects of the technique; in particular, is

su�cient to understand why direct-derandomization can succeed

here while it has failed before.

1.2 Applications

Various works that construct objects which are in some way pseu-

dorandom with respect to AC0-circuits often rely on some kind of

derandomization of the switching lemma. Examples of such con-

structions include the pseudorandom generators of [1, 4, 10, 28, 33],

the quanti�ed derandomizations of [11, 31], the stochastic list-

decodable codes of [29], and the non-malleable codes of [5].

However, the type of guarantee given by the derandomized

switching lemma proved in this work does not universally suf-

�ce for all of these applications; in particular, some applications

require restrictions d = ) [.,★], where both ) and . are gener-

ated pseudorandomly, while we construct pseudorandom-selection

distributions ) such that the restriction d = ) [* ,★] satis�es the

switching lemma when * is uniformly random. We discuss two

applications where this type of derandomization is su�cient, and

explain how our improved derandomization leads to more e�cient

solutions than were previously known.

PseudorandomGenerators forAC0-Circuits. In their paper,

Trevisan and Xue showed that the construction outlined in Sec-

tion 1 gives a PRG that Y-fools size-<, depth-� AC0-circuits and

has seedlength $̃ (log(</Y)�+3 · log(=/Y)) . In [30], Tal gives an im-

proved analysis, showing that (a minor alteration of) the Trevisan-

Xue construction achieves seedlength $̃ (log(</Y)�+1 · log=). Plug-

ging our improved derandomization of the switching lemma into

the construction yields the following.

Theorem 1.7. There is an explicit pseudorandom generator that Y-

fools size-<, depth-� AC
0-circuits5, and has seedlength $̃ (log(</Y)� ·

log=). More speci�cally, the seedlength is

$ (log(</Y))� · log(=) · (log log(</Y))3 .

Obtaining this speci�c dependence on </Y is somewhat of a

landmark, as it can be shown (by an easy argument sometimes re-

ferred to as the “discriminator lemma”) that achieving a seedlength

of, say,

$ (log(</Y))�−0.01 · log(=)$ (1) ,

would imply a stronger worst-case lower bound against depth-(� +

1) circuits than is currently known for any explicit hard function6.

Thus, modulo the log log-factors hidden in the $̃-notation, the

seedlength we obtain is best-possible without improving upon AC0-

circuit lower-bounds which have remained best-known for over 30

years.

Deterministic Search forCNF SatisfyingAssignments. Sup-

pose you have a CNF formula7 for which it is known that at least a

fraction Y = 0.01 of all possible inputs are satisfying, and you are

tasked with �nding some speci�c satisfying assignment. It is easy

to give a randomized solution: just try random strings G ∈ {0, 1}=

5Here we assume we are in the standard setting where< g =, where the circuit is
large enough to at least read all of the input bits.
6See [33] for further discussion of this barrier.
7For simplicity, we will in this section restrict our attention to CNFs of size at most

=ċ (1) .

until you �nd a satisfying assignment. However, it is nontrivial to

give a deterministic solution to this problem.

Perhaps the most natural approach is to use a pseudorandom

generator that (say) Y/2-fools polynomially-sized CNFs – then, one

of the possible outputs of the generator is guaranteed to be satisfy-

ing. Since the best-known generators for poly(=)-sized CNFs have

seedlength $̃ (log2 (=)), this approach yields a deterministic search

algorithm running in time =$̃ (log=) .

In [27], Servedio and Tan improve upon this by combining to-

gether two ingredients into a clever “decision-to-search reduction”-

type solution to this problem. The �rst ingredient is a deterministic

approximate-counting algorithm due to [12] that, given a poly(=)-

sized CNF, reports the fraction of satisfying assignments to the CNF

(up to an approximation error ±W ), and runs in time

(
=

W

)$̃ (log log=+log(1/W ))
.

The second ingredient, which is also due to [12], is a particular de-

randomization of the switching lemma that uses$ (log(=)·log log=)

random bits to restrict roughly a ?-fraction of the inputs to a

poly(=)-sized CNF in a way that, on average, approximately pre-

serves the fraction of satisfying assignments, where

? ≈
1

log(=)log log=
.

We observe that by using our new derandomization of the switching

lemma, we can do the same, but with the improved parameter

? ≈ 1/log(=) .

Theorem 1.8. There is an e�ciently computable pseudorandom

distribution over vectors ),- ∈ {0, 1}= , with total seedlength

$ (log= + log(</W) · log log(</W)),

such that for any DNF or CNF � of size<, the restriction d := ) [★, - ]

satis�es ����Ed E* � (d ◦* ) − E* � (* )
���� f W,

where* is uniformly distributed over {0, 1}= . Furthermore, the proba-

bility that )8 = 1 is at least ¬(1/log(<)) in every coordinate 8 ∈ [=].

Servedio and Tan proceed to iterate the following until all input-

bits are �xed (and thus a satisfying assignment has been found):

Given a CNF � : {0, 1}= → {0, 1} of size< f =$ (1) :

• Generate all =$ (log log=) restrictions d ∈ {0, 1, ∗}= from the

pseudorandom distribution described by [12].

• For each d , use the approximate-counting algorithm of [12]

to estimate the number of satisfying assignments to �d (G).

• Pick the d which resulted in the largest estimate, set all input

bits that are not yet set according the the restriction d , and

continue on the restricted CNF �d .

In order to �x all the input-bits, this process must be iterated

A ≈ log(=)/? times, and since the approximation-error accumulates

from every iteration, the approximate-counting algorithm must

be run with parameter W := Y/A ≈ Y?/log(=). Thus, using the

pseudorandom restriction distribution from [12], Servedio and Tan
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set W ≈ Y · 2−(log log=)
2
and obtain a deterministic search algorithm

that runs in time
(=
Y

)$̃ (log log=+log(1/Y))2
.

If we instead plug in the pseudorandom restriction distribution

given by Theorem 1.8, we can a�ord to set W ≈ Y/log(=)2, and we

obtain an improved deterministic search algorithm running in time

(=
Y

)$̃ (log log=+log(1/Y))
,

thus bringing the time required to solve this task in line with

the time required by the best-known algorithms for approximate-

counting.

Theorem 1.9. There is a deterministic algorithm that, given any

CNF � : {0, 1}= → {0, 1} of size< f =$ (1) for which at least an

Y-fraction of all inputs G ∈ {0, 1}= are satisfying, �nds such an input

in time (=
Y

)$̃ (log log=+log(1/Y))
.

1.3 Open Problems

For future work, we ask whether the approach in this paper can be

used to give high-quality direct-derandomizations in other cases

where this previously seemed impossible. In particular, we highlight

the multi-switching lemma of [15], the robust-sun�ower lemma

of [3], and the work on DNF compression due to [19] as potential

candidates.

The multi-switching lemma. The multi-switching lemma,

which is also due to Håstad [15], is a more re�ned statement con-

cerning the “common-decision-tree complexity” of a sequence of

DNFs that are all hit by the same random restriction. In typical

style, he originally gave a Håstad-type conditioning-based proof of

this result. Alternative Razborov-type encoding-based proofs were

given by [30] and [28] .

In [28], Servedio and Tan prove a Trevisan-Xue-style derandom-

ization of the multi-switching lemma, showing how to generate

restrictions satisfying the lemma with log(<)$ (1) random bits.

They use this derandomization to give a pseudorandom generator

for AC0 with seedlength

log(<)�+$ (1) log(1/Y),

which is incomparable to the seedlength obtained in this work due

to its superior dependence on Y. We leave it as an open question

whether it is possible to use the approach of this work to obtain a

better derandomization of the multi-switching lemma, and whether

such a derandomization can lead to a pseudorandom generator for

AC0 with the best qualities of both works.

Robust-sun�owers, DNF compression, and the power of

?-boundedness. The celebrated robust-sun�ower lemma due to

Alweiss, Lovett, Wu, and Zhang [3] is the statement that DNFs

with a certain structural property known as “spreadness” are highly

likely to be satis�ed by a random input. Besides its important com-

binatorial applications, the robust-sun�ower lemma has recently

been applied to obtain improved lifting theorems in communication

complexity [18, 20]. Lovett has suggested [personal communica-

tion] that in order to push these lifting applications further, what is

needed is an appropriate derandomization of the robust-sun�ower

lemma. More speci�cally, what is desired is a proof that the robust-

sun�ower lemma is true even for input-distributions which merely

possess some natural, “one-sided” weak pseudorandomness prop-

erty similar in spirit to e.g. spreadness or ?-boundedness.

In [3], the core of the proof of the robust-sun�ower lemma is a

key width-reduction step which is proved using a Razborov-type

encoding argument. We propose that a sensible approach to obtain-

ing an appropriately derandomized robust-sun�ower lemma is the

following:

(1) Give a Rossman-type coupling-based proof for this width-

reduction step.

(2) Derandomize this proof using the approach of this work.

However, we suggest to �rst start by derandomizing the following

(simpler) related statement, which is a key lemma due to Lovett, Wu,

and Zhang in their work on decision-list compression (for simplicity

we state it here only for DNFs). This lemma is also proved by a

Razborov-style encoding argument.

Lemma 1.10. Let � (G) =
∨<
8=1�8 (G) be a DNF of width F , and

let d ∈ {0, 1, ∗}= be a ?-random restriction. Say that a term �8 (G)

is “useful” in � (G) if there is any input G such that �8 (G) = 1 and

� 9 (G) = 0 for all 9 < 8 . We have the bound

E
d

<∑

8=1

1(�8 (d ◦ G) is useful in � (d ◦ G)) f

(
4

1 − ?

)F
.

We observe that we can carry out the �rst step of our suggested

plan; namely, in Section 5 we include an alternative Rossman-style

coupling-based proof of this lemma (in fact, with the improved

constant 2 instead of 4). However, unlike the situation with the

switching lemma, we do not see how to derandomize this proof;

although we believe it should be possible, it will require new ideas.

Concretely, we ask for a proof or refutation of the following con-

jecture.

Conjecture 1.11. Lemma 1.10 is true even for d = ) [* ,★],

where * is distributed uniformly over {0, 1}= , and ) is anyF-wise

?-bounded distribution over {0, 1}= .

2 PRELIMINARIES

Decision Lists. A decision list is, for the purpose of this paper, a

mathematical operator that takes two boolean vectors 0, 1 ∈ {0, 1}<

and produces a single boolean output de�ned by the following

process: �nd the smallest index 8 ∈ [<] such that 08 = 1, and

output 18 . If there is no such index 8 , the decision list returns a

default value of 0. Thus, the value of a decision list on (0, 1) is given

by the summation ∑

8

08 · q8 · 18 ,

where

q8 :=
∏

9<8

(1 − 0 9 ) .

In order to clean up some expressions within this paper, we intro-

duce the notational shorthand

L
8
(08 → 18 ) :=

∑

8

08 · q8 · 18 .

Restrictions. We use the notation for restrictions introduced

near the beginning of Section 1.
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Small-Bias Distributions. We make use of X-biased distribu-

tions, which are a basic pseudorandomness primitive with e�cient

constructions due to [21] and [2]. A distribution - over {0, 1}= is

said to be X-biased if, for every nonzero U ∈ {0, 1}= , - X-fools the

parity function speci�ed by the bits in U . That is,

| E
-
(−1) ïU,- ð | f X.

Standard constructions of X-biased distributions have seedlength

$ (log= + log 1/X). We make use of the following simple properties

of X-biased distributions - .

Proposition 2.1. If 5 : {0, 1}= → {0, 1} is an AND of any :

(logically-consistent) literals, then
����E- 5 (- ) −

(
1
2

): ���� f X.

Proof. The function 5 (G) can be expressed in the form

5 (G) =
(
1
2 ±

1
2 (−1)

Gğ1

) (
1
2 ±

1
2 (−1)

Gğ2

)
· · ·

(
1
2 ±

1
2 (−1)

Gğġ

)
.

Expanding this product gives a convex-combination of parity func-

tions. □

Proposition 2.2. If 5 : {0, 1}= → {0, 1} depends on at most :

variables, then8

| E
-
5 (- ) − E

*
5 (* ) | f X · 2: .

Proof. By considering its truth table, the function 5 (G) can be

expressed as a sum of at most 2: ANDs of literals. □

3 PROOF OF THE BABY SWITCHING LEMMA

We begin this section by �xing a DNF � (G) =
∨<
8=1�8 (G), where

each term �8 is an AND of at most F literals. For 8 ∈ [<], we let

+8 ¦ [=] be the set of variables contained in term �8 . Also for each

8 , �x some vector f8 ∈ {0, 1}
= which satis�es�8 (f8 ) = 1, and de�ne

the boolean functions

q8 (G) :=
∏

9<8

(1 −� 9 (G)) .

In this section we prove the following pseudorandom “baby”

switching lemma.

Theorem 3.1. Let d := ) [~,★], where ) is a F-wise ?-bounded

distribution over {0, 1}= and ~ is uniformly random in {0, 1}= . If � is

a DNF of widthF , then

P
(
�d is non-constant

)
f 4?F.

Proof. If �d (G) := � (d ◦ G) is not identically a constant, then

there is some term �8 such that

• �8 is the �rst term that is not falsi�ed by d , and

• �8 is not satis�ed by d .

Equivalently, we might say (more explicitly) that there is some

index 8 and some integer B ∈ [1,F] such that

• �8 (d ◦ f8 ) = 1,

• q8 (d ◦ G) ≡ 1 as a function of G , and

• |Stars(d) ∩+8 | = B .

8This error bound can be improved to X · 2ġ/2 using a Fourier-analytic argument, but
the simple argument given here su�ces for most applications.

This proves the inequality of random variables

1
(
�d is non-constant

)
f

F∑

B=1

<∑

8=1

�8 (d ◦ f8 ) · 1(q8 (d) ≡ 1) · 1( |Stars(d) ∩+8 | = B) .

Now, let’s �x an index 8 and a restriction d such that |Stars(d)∩+8 | =

B g 1. At this point we want to consider what happens to the

value �8 (d ◦ f8 ) when we replace f8 by a uniformly random input

G ∈ {0, 1}= . If d falsi�es �8 , then the value remains unchanged.

If instead d is consistent with �8 , then �8 (d ◦ G) is functionally

equivalent to an AND of B literals of G , so

E
G
�8 (d ◦ G) =

(
1
2

)B
.

Thus, in any case, we have the inequality�8 (d ◦f8 ) f 2B EG �8 (d ◦

G). We conclude that

1
(
�d is non-constant

)

f

F∑

B=1

<∑

8=1

�8 (d ◦ f8 ) · 1(q8 (d) ≡ 1) · 1( |Stars(d) ∩+8 | = B)

f

F∑

B=1

2B E
G

∑

8

�8 (d ◦ G) · 1(q8 (d) ≡ 1) · 1( |Stars(d) ∩+8 | = B)

f

F∑

B=1

2B E
G

∑

8

�8 (d ◦ G) · q8 (d ◦ G) · 1( |Stars(d) ∩+8 | = B)

=

F∑

B=1

2B E
G
L
8
�8 (d ◦ G) → 1( |Stars(d) ∩+8 | = B)

=

F∑

B=1

2B E
G
L
8
�8 () [~, G]) → 1

(
|)+ğ | = B

)
,

where G is a uniformly random vector in {0, 1}= which we introduce

purely for the sake of analysis. Averaging over d = ) [~,★] gives

P
(
�d is non-constant

)
f

F∑

B=1

2B E
)
E
~
E
G
L
8
�8 () [~, G]) → 1

(
|)+ğ | = B

)
.

Here, we make the key observation that, for any �xed vector) , the

distribution ) [~, G] is simply the uniform distribution over {0, 1}= ,

and in particular it does not depend on ) . So, the above expression

is equivalent to

F∑

B=1

2B E
)
E
*
L
8
�8 (* ) → 1

(
|)+ğ | = B

)
=

F∑

B=1

2B E
)

∑

8

c8 · 1
(
|)+ğ | = B

)

=

∑

8

c8 ·

F∑

A=1

2B · P
(
|)+ğ | = B

)
,

where c8 is the probability that, upon uniformly random input

* ∈ {0, 1}= ,�8 is the �rst term with�8 (* ) = 1. Note of course that∑
8 c8 f 1.

To conclude the calculation, we use the ?-boundedness assump-

tion on ) to say that

P
(
|)+ğ | = B

)
f E
)

∑

( ∈(Ēğ
ĩ
)

∏

9 ∈(

)9 f

(
F

B

)
· ?B .
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Finally, summing over all B gives

P
(
�d is non-constant

)
f

F∑

B=1

(
F

B

)
(2?)B = (1+2?)F −1 f 42?F −1.

We assume that ? f 1
2F , since otherwise the desired bound is trivial,

and so we �nish by applying the estimate 4C f 1+2C , which is valid

for C ∈ [0, 1]. □

4 PROOF OF THE FULL SWITCHING LEMMA

We begin this section by �xing a DNF � (G) =
∨<
8=1�8 (G), where

each term �8 is an AND of at most F literals. For 8 ∈ [<], we let

+8 ¦ [=] be the set of variables contained in term �8 . We will insist

that these sets are presented in increasing order so that we can

refer to the “ 9-th entry of +8 ”, which we denote +8 [ 9].

We recall the notion of the canonical decision tree for a DNF.

We use the notation CDT(�, d) to refer to the canonical decision

tree of the restricted function � (d ◦ G). The canonical decision tree

is de�ned by the simple, greedy, recursive construction described

below. For & ¦ [=] and U ∈ {0, 1} |& | , we let & ← U denote the re-

striction which sets the variables in& according to U in the natural

way, and has stars elsewhere.

CDT(�, d):

• If � is empty, return 0.

• If �1 is satis�ed by d , return 1.

• If �1 is falsi�ed by d , return CDT(
∨<
8=2�8 (G), d)

• Otherwise, let & = Stars(d) ∩+1 be the set of free variables

in�1, and query all of them. That is, we construct a complete

binary tree of depth |& |, and to each path U ∈ {0, 1} |& | , we

assign the value CDT(
∨<
8=2�8 , d ◦ (& ← U)).

We remark that in the context of the �nal bullet point above,

the restrictions d ◦ (& ← U) and (& ← U) ◦ d are in fact the same

since & ¦ Stars(d). So we can equivalently say that we recurse

on “CDT(
∨<
8=2�8 , (& ← U) ◦ d)” – it will be preferable for us to

instead imagine composing the restrictions in this way.

We wish to unpack this recursive de�nition of the canonical

decision tree so that we can express the event that CDT(�, d) has

depth g 3 in terms of some more explicit conditions depending

on d . Unfortunately, this will require us to introduce quite a bit

of additional notation; to get started, for a set & ∈
( [F ]
C

)
, a vector

U ∈ {0, 1}C , and an index ℓ ∈ [<], we de�ne the restriction

& ←ℓ U

so that for all 9 ∈ &, 9 f |+ℓ |,

(& ←ℓ U)+ℓ [ 9 ] := U 9 ,

and elsewhere we have (& ←ℓ U)8 := ∗. Thus,& ←ℓ U corresponds

to the restriction which �xes a subset of the variables in +ℓ , where

the subset is speci�ed by & ¦ [F], according to U .

Given some sets &8 ∈
( [F ]
Bğ

)
, vectors U8 ∈ {0, 1}

Bğ , and indices

ℓ8 ∈ [<], we denote the corresponding restrictions by

Ũ8 := &8 ←ℓğ U8 .

Lastly, given some sets &1, &2, . . . , &A ¦ [F] and a tuple of indices

ℓ = (ℓ1, ℓ2, . . . , ℓA ), de�ne

&̃ (ℓ) := {+8 [ 9] : 8 ∈ [A ], 9 ∈ &8 , 9 f |+8 |},

that is, &̃ (ℓ) ¦
⋃A
8=1+8 is a set of variables which is selected based

on the subsets &8 ¦ [F].

Lemma 4.1. Suppose CDT(�, d) has a path U ∈ {0, 1}3−1 that

fails to reach a leaf of the decision tree. Then there exist

• integers A ∈ [3], B ∈ [3,3 + F − 1], and B1, . . . BA g 1 with

B1 + · · · + BA = B ,

• indices 1 f ℓ1 < . . . < ℓA f <,

• sets &8 ∈
( [F ]
Bğ

)
for all 8 ∈ [A ], and vectors U8 ∈ {0, 1}

Bğ for all

8 ∈ [A − 1],

such that

(1) For each 8 ∈ [A ], �ℓğ is the �rst term in � that is not falsi�ed

by Ũ1 ◦ · · · ◦ Ũ8−1 ◦ d ,

(2) Stars(d) ∩
(⋃A

8=1+ℓğ
)
= &̃ (ℓ).

Proof. We simply unpack the recursive de�nition of CDT(�, d),

following along the path in the decision tree de�ned by the bits in

U . For each 8 ,

• We record the index ℓ8 of the �rst term in � that is not falsi�ed

by Ũ1 ◦ · · · ◦ Ũ8−1 ◦ d .

• We record the variables queried while processing �ℓğ (en-

coded as &8 ¦ [F]), and set B8 := |&8 |,

• If
∑
9f8 B8 g 3 , we set A := 8 and B :=

∑
9fA B8 and terminate.

• Otherwise, we use the next B8 bits of U to determine U8 and

continue.

In the �rst item above, it must be the case that such a term exists,

and is not satis�ed by Ũ1 ◦ · · · ◦ Ũ8−1 ◦d , or else we have reached the

end of the path in the decision tree de�ned by U before reaching

depth 3 . Thus, B8 g 1 for all 8 . Since we terminate as soon as possible

after reaching depth 3 , and the terms all have width at mostF , we

are guaranteed A f 3 and B f 3 +F − 1. □

Lemma 4.1 suggests the following approach for bounding the

probability that � , randomly restricted by d , has a canonical decision

tree of depth at least 3 : �rst, �x some data A, B, ℓ8 , &8 , U8 ; then, bound

the probability that items (1.) and (2.) occur for a particular �xing

of the data, and �nally sum over all possibilities for that data to

get an overall bound. Towards this end, given data ℓ = (ℓ1, . . . , ℓA ),

U = (U1, . . . , UA−1), and & = (&1, . . . , &A ), de�ne the functions

5
&,U
ℓ (G) :=

A∏

8=1

�ℓğ (Ũ1 ◦ · · · ◦ Ũ8−1 ◦ G) .

We now come to a key trick needed for our proof: we can apply

the function 5
&,U
ℓ to a random completion of d in order to detect

whether it satis�es the conditions described in (1.) of Lemma 4.1.

Indeed, �x a restriction d and suppose that
��Stars(d) ∩

(⋃A
8=1+ℓğ

) �� =
B . Then, as a function of G , 5

U,&
ℓ (d ◦ G) is either (a) identically zero

(in the case that Ũ1 ◦ · · · ◦ Ũ8−1 ◦ d falsi�es �8 for some 8 – in this

case say that d is “miss”), or (b) functionally equivalent to an AND

of B literals (in the complement case that d is “hit”). Thus, in any

case we have

1(d is a “hit” w.r.t. ℓ,&, U) f 2B E
G
5
&,U
ℓ (d ◦ G),
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where G is a uniformly random vector in {0, 1}= which we introduce

purely for the sake of our analysis.

Our next step will be to simplify the event (1.) in Lemma 4.1 by

refactoring quanti�ers.

Proposition 4.2. The event (1.) in Lemma 4.1 is equivalent to the

following event:

1’. ℓ = (ℓ1, . . . ℓA ) is the �rst (with respect to the lexicographic

ordering on increasing tuples in [<]A ) tuple such that for all

8 ∈ [A ], �ℓğ is not falsi�ed by Ũ1 ◦ · · · ◦ Ũ8−1 ◦ d .

Proof. Fix a restriction d and some data A,&, U . For : ∈ [<],

We introduce a notational shorthand �8 (:) to refer the the event

that �: is not falsi�ed by Ũ1 ◦ · · · ◦ Ũ8−1 ◦ d .

We consider two di�erent methods for generating an increasing

tuple of indices. First, we de�ne ℓ = (ℓ1, . . . , ℓA ) by letting ℓ1 be the

�rst index such that �1 (ℓ1), and, for 8 > 1, letting ℓ8 be the �rst index

larger than ℓ8−1 such that �8 (ℓ8 ). Second, we de�ne ℓ
′
= (ℓ ′1, . . . , ℓ

′
A )

as the lexicographically-�rst increasing tuple such that �8 (ℓ8 ) for

all 8 .

In the case that either of these tuples are well-de�ned (i.e. there

is at least one increasing tuple satisfying the conditions), we show

that they are the same. Seeking contradiction, suppose ℓ ≠ ℓ ′, and

let 9 be the �rst coordinate in which they di�er. If ℓ9 < ℓ ′9 then we

could get a lexicographically-smaller increasing tuple ℓ ′ that still

satis�es the conditions by replacing ℓ ′9 with ℓ9 . On the other hand,

ℓ9 > ℓ ′9 would clearly contradict our procedure for de�ning ℓ . □

In order to check that a tuple is indeed the �rst tuple “hit” by d ,

we introduce the function

q
U,&
ℓ (G) :=

∏

ℓ′<ℓ

(1 − 5
&,U
ℓ′
(G)),

where the product is taken over all increasing tuples ℓ ′ ∈ [<]A

which are lexicographically smaller than ℓ . Recalling our discussion

from earlier, we have that, as a function of G , the restricted function

q
&,U
ℓ (d ◦ G) is identically 1 if d is a “miss” with respect to ℓ ′, &, U

for all ℓ ′ < ℓ .

Using Lemma 4.1, Proposition 4.2, and the recent discussion, we

have that for �xed data A, B,&, U ,

1(d satis�es events (1.) and (2.) w.r.t. &, U)

f
∑

ℓ

1(d is a “hit” w.r.t. ℓ,&, U) · 1
(
d is a “miss” for ℓ ′ < ℓ

)
·

1

(
Stars(d) ∩

(
A⋃

8=1

+ℓğ

)
= &̃ (ℓ)

)

f
∑

ℓ

2B E
G
5
&,U
ℓ (d ◦ G) · q

&,U
ℓ (d ◦ G) · 1

(
Stars(d) § &̃ (ℓ)

)

f
∑

ℓ

2B E
G
5
&,U
ℓ (d ◦ G) · q

&,U
ℓ (d ◦ G) · 1

(
Stars(d) § &̃ (ℓ)

)

= 2B E
G
L
ℓ
5
&,U
ℓ (d ◦ G) → 1

(
Stars(d) § &̃ (ℓ)

)
,

where the sum is over all increasing tuples ℓ ∈ [<]A . Thus, we

have proved the main technical lemma of this section (which can

be compared with Lemma 1.1):

Lemma 4.3. Let � (G) =
∨<
8=1�8 (G) by a DNF of width F . Then

for any restriction d ∈ {0, 1, ∗}= ,

1(CDT(�, d) has depth g 3) f �3 (d) :=

3+F−1∑

B=3

3∑

A=1

∑

&,U

2B E
G
L
ℓ
5
&,U
ℓ (d ◦ G) → 1

(
Stars(d) § &̃ (ℓ)

)
,

where the inner summation is over all & = (&1, . . . &A ) ¦
( [F ]
B1

)
×

· · · ×
( [F ]
BĨ

)
and all U = (U1, . . . , UA−1) ∈ {0, 1}

B1 × . . . {0, 1}BĨ−1 , for

all choices of B1, . . . BA g 1 such that B1 + · · · + BA = B . The decision

list is indexed over the set of all increasing tuples ℓ ∈ [<]A , which is

ordered lexicographically.

The important features of the bounding expression �3 are sum-

marized by the next two claims.

Proposition 4.4. The expression �3 (d) from Lemma 4.3 is the

sum of at most (8F)3+F functions of the form

E
G
L
8
58 (d ◦ G) → 1(Stars(d) § (8 ) ,

where G is a uniformly random vector in {0, 1}= , each (8 is a set of

size at most 3 +F , and each 58 is an AND of at mostF3 literals.

Proof. For each B , we count the number of choices for the data

A,&, U , and also account for the scaling factor 2B . There are at most

2B choices for A, B1, . . . BA such that B1 + · · · + BA = B . Finally, There

are at most 2B choices for U , and at mostFB1 · · ·FBĨ = FB choices

for & . Summing over B , we get

3+F−1∑

B=3

(8F)B f (8F)3+F .

The claims about the form of (8 and 58 correspond the the facts

that by construction, &̃ (ℓ) is a set of size B f 3 +F , and 5
&,U
ℓ is a

product of (restrictions of) A f 3 terms from � . □

Proposition 4.5. Suppose d ∈ {0, 1, ∗}= is a ?-random restriction

with ? f 1
16F . Then

E
d
�3 (d) f 2 · (8?F)3

Proof. We�rst argue for a single function of the formEG L8 58 (d◦

G) → 1(Stars(d) § (8 ) such that |(8 | = B for all 8 , and then sum.

We imagine sampling d by �rst making a random selection to

determine the locations of the stars, and then randomly setting the

non-star coordinates to 0 or 1 using a separate random process.

That is, let d = ) [~,★], where) is a ?-random string in {0, 1}= and

~ is a uniformly random vector in {0, 1}= . Averaging over d gives

E
d
E
G
L
8
58 (d◦G) → 1(Stars(d) § (8 ) = E

)
E
~
E
G
L
8
58 () [~, G]) →

∏

9 ∈(ğ

)9 .

At this point, we make the key observation that for any �xed vector

) , the distribution ) [~, G] is simply the uniform distribution over

{0, 1}= . In particular, it does not depend on ) . So, letting * be a

uniformly random vector in {0, 1}= , the above is equivalent to

E
)
E
*
L
8
58 (* ) →

∏

9 ∈(ğ

)9 = E
)

∑

8

c8

∏

9 ∈(ğ

)9 =
∑

8

c8 E
)

∏

9 ∈(ğ

)9 ,
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where c8 is the probability, that upon random input * , 8 is the �rst

index such that 58 (* ) = 1. We conclude this estimate by noting that

E)
∏
9 ∈(ğ )9 = ?

B , and so
∑
8 c8?

B f ?B .

Summing this bound over all summands in the expression �3 (d)

gives

E
d
�3 (d) f

3+F−1∑

B=3

(8F)B · ?B f (8?F)3
∞∑

8=0

(8?F)−8 =
(8?F)3

1 − 8?F
. □

We observe that the argument above is robust to the use of

less-than-perfect random selection procedures.

Theorem 4.6. Let � (G) =
∨<
8=1�8 (G) by a DNF of widthF . Sup-

pose) is a (3 +F)-wise ?-bounded distribution over {0, 1}= , and ~ is

a random vector in {0, 1}= . If ? f 1
16F , Then the random restriction

d = ) [~,★] satis�es

P(CDT(�, d) has depth g 3) f E
d
�3 (d) f 2 · (8?F)3 .

Proof. We follow the proof of Proposition 4.5 exactly, except

that we use the ?-boundedness assumption to say that

E
)

∏

9 ∈(

)9 f ?
B

whenever ( is a set of size |( | = B f 3 +F . □

5 FURTHER PROOFS

Proof of Theorem 1.3

Proof. Let C := log(1/?). We �rst generate . ∈ ({0, 1}C )= �

{0, 1}C= according to a X-biased distribution. We de�ne the selection

vector ) in every coordinate via )8 := .8,1 ' .8,2 ' · · · ' .8,C .

Now, we follow the proof of Proposition 4.5 exactly, except that

we use the X-bias assumption to say that

E
)

∏

9 ∈(

)9 f ?
B + X

whenever ( is a set of size B . For the restriction d := ) [* ,★], this

yields

P(CDT(�, d) has depth g 3) f 2 · (8?F)3 + X · (8F)3+F .

Setting X = Y/(8F)3+F results in the desired seedlength

$ (log(=C) + log(1/X)) = $ (log= + (F + 3) · logF + log(1/Y)) . □

Proof of Corollary 1.4

Proof. We �rst restrict according to a selection vector ) 1 ∈

{0, 1}= which we draw directly from a X-biased distribution. Let

d1 = ) 1 [* ,★]. By a simple union bound over all terms, the proba-

bility that � (d1 ◦ G) has a surviving term of width at leastF is at

most

((3/4)F + X)<.

We then compose with a restriction d2 that satis�es the switching

lemma on DNFs of widthF as given by Theorem 1.3. The overall

restriction is d := d1 ◦ d2 = ) 1 ') 2 [* ,★] . and the overall selection

vector is ) := ) 1 ' ) 2. By picking parameters X = Θ(Y/<) and

F = Θ(log(</Y)), we can obtain overall error Y and obtain the

overall desired seedlength. □

Proof of Theorem 1.7

Proof Sketch. The construction of the pseudorandom genera-

tor is essentially the construction we outline in Section 1. Speci�-

cally, the output of the generator is given by

�A (/ ) := g
(1) ◦ g (2) ◦ · · · ◦ g (A ) ◦ /,

where / is a X-biased distribution and each g (8) is an independent

copy of a pseudorandom restriction de�ned as follows. We set

d0 := - and d 9 := ) 9 [★, d 9−1],

and g := d� = ) 1 ' · · · ' )� [★, - ], where ) 1 and - are (inde-

pendently) drawn from a X-biased distribution, and for 9 g 2 we

(independently) generate each ) 9 according to a X-biased distribu-

tion. ∈ ({0, 1}C )= in the manner described in the proof of Theorem

1.3.

Fix a size-<, depth-� AC0-function � : {0, 1}= → {0, 1}, where

we assume< g =. We also assume � g 2, as the � = 1 case simply

corresponds to ANDs and ORs of literals, which is easy.

The probability that, as a function of - , the restricted function

� (g ◦* ) cannot be expressed as a depth-F decision tree is at most

W1 := ((3/4)
F + X) ·< + (� − 1) ·< · (2 · (8?F)F + X · (8F)2F),

where ? = 1/2C and F is a parameter we are free to choose. By

choosingF g ¬(log(<)) and C = log(F) + 4, we can say that

W1 f 2−¬ (F) + X ·F$ (F) .

Now, it is easy to argue that - fools depth-F decision trees with

error X · 2F , since such decision trees can be expressed as a sum

over at most 2F ANDs of literals. So, overall, the distribution g ◦*

fools such functions � with error at most

W2 := W1 + X · 2
F f 2−¬ (F) + X ·F$ (F) .

Now, we bound the overall error of the generator by a simple hybrid

argument:

|E � (�A (/ )) − E � (* ) | f |E � (�A (/ )) − E � (�A (* )) | +

A−1∑

8=0

���E � (�8 (d (8+1) ◦* )) − E � (�8 (* ))
���

f |E � (�A (/ )) − E � (�A (* )) | + A · W2 .

It remains to bound the error of the base of the hybrid argument,

|E � (�A (/ )) − E � (�A (* )) |. To do this, we set A large enough so

that, as a function of / , it is highly likely that � (�A (/ )) depends

only on a few bits of / , sayF . In this case, / fools � (�A (/ )) with

error at most X · 2F . We can set A = Θ(log(=) log(F)/?�−1) and

obtain the following claim, which is proved using standard tail-

bound arguments for X-biased random variables.

Claim 5.1.

P

(
|Stars(g (1) ◦ g (2) ◦ · · · ◦ g (A ) ) | g F

)
f

2−¬ (F) + X¬ (1/� logF) ·F$ (�F) .

Given this claim, we can bound the overall error of the pseudo-

random generator by

W3 := 2−¬ (F) + X¬ (1/� logF) ·F$ (�F) + A · W2 =

2−¬ (F) + X¬ (1/� logF) ·F$ (�F) .
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By choosingF := Θ(log(</Y)) and

log(1/X) := Θ(�2 log(</Y) (log log(</Y))2),

we get error Y with an overall seedlength of

$ (A ·� · log(1/X)) f $ (log(</Y))� · log(=) · (log log(</Y))3 . □

Proof Sketch for Claim 5.1. We set up a matrix of boolean

random variables, with A rows and< columns, corresponding to

,8 9 := 1
(
9 ∈ Stars(g (8) )

)
.We note that each,8 9 is, as a function

of the underlying X-biased variables used to generate selection

vectors, a negation of an AND of literals. As a result, the product

of any subset of variables from, is in fact a read-once CNF, and it

is shown in [9] that read-once CNFs with 2 clauses are fooled by

X-biased distributions with error X ′ := X¬ (1/log(2)) . It can also be

shown by an elementary argument (i.e. just expand the product

into 22 terms) that such products are also fooled with error X · 22 .

We note that for each variable,
���E[,8 9 ] − (1 − ?�−1/2)

��� f X.

De�ne @ := ?�−1/2, and note for later that 1/@ f $ (F)� . We set

A := 4 log(=) log(F)/@.

De�ne =0 := = and

=8 := |Stars(g
(1) ◦ g (2) ◦ · · · ◦ g (8) ) | =

=∑

9=1

∏

8′f8

,8′ 9 .

We argue in two stages that =A/2 f F
$ (�) with high probability,

and then (conditioning on this likely event) that =A f F with high

probability.

For the �rst stage, we use a standard bound on the :-th moment

of a sum / :=
∑=
9=1 / 9 of independent, mean-zero random variables

/8 ∈ [−1, +1], (see e.g. the proof of theorem 4 in [26]): for even :

we have E/: f (:=):/2. Now, if we consider the 8-th row in, ,

and set / 9 :=,8 9 − (1−@), then we obtain the :-th moment bound

E/: f (:=):/2 + X · 2: · =: . Applying a Markov argument, we

derive the probability bound

P(=8 g (1 − @/2)=8−1) f

(
:

=8−1

4

@2

):/2
+ X · (4/@): .

Observe that (1 − @/2)A/2 · = f 1, and set : := Θ(F). By a simple

union-bound argument, we conclude that we must have =A/2 f

F$ (�) , except with probability at most

(A/2) · (2−¬ (F) + X ·F$ (�F) ) f 2−¬ (F) + X ·F$ (�F) .

Now for the second stage, we �x the �rst A/2 rows of , , and

condition on the event that =A/2 f F
$ (�) . We consider the chance

that there is a set ofF columns, among the =A/2 columns which are

still live, such that, has all 1’s down each of theseF columns. This

event can be expressed as a read-once CNFwith 2 = F ·A/2 f F$ (�)

clauses. Thus the chance that this event occurs (for a speci�c set of

F columns) is at most

(1 − @)F ·A/2 + X¬ (1/log(2)) f 4−F log(=) log(F) + X¬ (1/� logF) .

We �nish the estimate by union-bounding over all
(=Ĩ/2
F

)
f F$ (�F)

choices ofF columns. □.

Proof of Theorem 1.8

Proof. Use Theorem 1.4 with

3 = Θ(log(1/W)) and ? = Θ(1/log(<))

to select ) . We generate - ∈ {0, 1}= using a X-biased distribution.

We exchange the order of expectations and estimate

E
)
E
*

(
E
-
� () [* ,- ]) − E

* ′
� () [* ,* ′])

)
.

Let f := ) [* ,★]. Now, whenever �f successfully collapses to a

depth-3 decision tree, we have
����E- � (f ◦ - ) − E* ′ � (f ◦*

′)

���� f X · 2
B .

This is because any decision tree of depth 3 can be expressed as a

sum of at most 23 ANDs of literals (we get one AND for each path

in the decision tree that reaches a leaf which outputs 1). Whenever

�f fails to collapse, we instead bound this quantity trivially by 1.

We can set log(1/X) := Θ(log(1/W)) to get an overall error bound

of W . □

Proof of Lemma 1.10

Proof. Let � (G) =
∨<
8=1�8 (G) be a width-F DNF, and let d be a

?-random restriction. For each 8 , de�ne q8 (G) :=
∏
9<8 (1 −�8 (G)),

and let f8 ∈ {0, 1, ∗}
= be the (unique) restriction that sets all the

variables in �8 so that �8 becomes satis�ed, and does not set any

other variables.

We observe that

1(�8 (d) is useful in � (d)) = �8 (d ◦ f8 ) · 1(q8 (d ◦ f8 ) . 0)

and, with some consideration, that

E
d
�8 (d ◦ f8 ) · 1(q8 (d ◦ f8 ) . 0) f

(
2

1 − ?

)F
E
d
1(�8 (d) ≡ 1) · 1(q8 (d) . 0) .

Thus, the average number of useful terms in � (d) is bounded by
(

2

1 − ?

)F <∑

8=1

E
d
1(�8 (d) ≡ 1) · 1(q8 (d) . 0) f

(
2

1 − ?

)F
,

since the events in the sum are disjoint. □
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