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To make a future run by renewable energy possible, we must design our power system to seamlessly
collect, store, and transport the Earth's naturally occurring flows of energy — namely the sun and the
wind. Such a future will require that accurate representations of wind and solar resources and their
associated variability permeate power systems planning and operational tools. Practically speaking, we
must merge weather and power systems modeling. Although many meteorological phenomena that
affect wind and solar power production are well-studied in isolation, no coordinated effort has sought to
improve medium- and long-term power systems planning using numerical weather prediction (NWP)

Keywords: .

So{ar energy models. One modern open-source NWP tool — the weather research and forecasting (WRF) model —
Wind energy offers the complexity and flexibility required to integrate weather prediction with a power systems
WRF model model in any region. However, there are over one million distinct ways to set up WRF. Here, we present a

methodology for optimizing the WRF model physics for forecasting wind power density and solar
irradiance using a genetic algorithm. The top five setups created by our algorithm outperform all of the
recommended setups. Using the simulation results, we train a random forest model to identify which
WREF parameters contribute to the lowest forecast errors and produce plots depicting the performance of

Genetic algorithm

key physics options to guide energy researchers in quickly setting up an accurate WRF model.

© 2022 Elsevier Ltd. All rights reserved.

1. Introduction

Propelled by the Paris Climate Agreement in 2016 and the ur-
gent need to reduce greenhouse gas emissions, the world's capacity
to produce electricity from renewable energy grew by 184 GW in
2019 alone [1]. This increase comprises nearly 80% of all growth in
electricity production, dwarfing that of fossil fuels. The vast ma-
jority of global new additions harvest energy from wind and solar
accounting for 118 GW (64%) and 61 GW (33%), respectively.
However, electricity generated by these sources is both intermit-
tent and variable, as we cannot control where the wind blows nor
when the sun will shine. Accordingly, numerical weather pre-
dictions (NWPs) are becoming indispensable ingredients in the
cocktail of electricity systems operations and planning [2—4].

One NWP tool in particular—-the Weather Research and Fore-
casting (WRF) model [5]—- is the favored tool for wind and solar
across scales. For example, WRF underlies operational forecasting
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systems tuned for both wind [6] and solar [7], provided the forecast
system to create NREL's wind tool kit [8], and helped uncover the
costs of uncoordinated wind farm development [9]. Developed
under the guidance of the National Center for Atmospheric
Research (NCAR), WRF is a mesoscale, non-hydrostatic NWP
modeling system that produces forecasts by numerically inte-
grating the dynamical equations of fluid flow — the Euler equations.
However, since turbulence exists across many scales in the atmo-
sphere, WRF cannot explicitly resolve all of the dynamics even at a
grid spacing on the kilometer scale; thus, sub-grid scale processes
must be parameterized — i.e., specified using empirical relations or
simplified physical models [10]. Microphysics, radiation, the plan-
etary boundary layer (PBL), the land surface, and cumulus clouds
are all parameterized. A number of parameterization schemes for
each process have been designed and painstakingly tailored to a
broad range of applications. Operationalizing the WRF model from
scratch for use in a different region or for a different application is
no small task. There are in excess of one million different combi-
nations of the parameterization schemes that dictate how sub-grid
scale processes are represented within the WRF model framework.
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To make matters worse, while some parameterization schemes are
compatible with others, many combinations cause WREF to fail.

In more recent releases of WRF, NCAR has included example
“physics option sets”, but warns that these are merely meant as
starting points for testing the model for a given application (WRF
ARW User's Guide v4.2). In the absence of an existing WRF physics
option set, new users are left to scour the literature in hopes of
finding works with similar applications or in regions to their own.
Rarely do these articles document in detail the lengthy process by
which they arrived at their final setup for WRF, and fewer still
compare distinctly different physics option sets. This complexity
puts operationalizing a WRF model out of reach for many potential
users.

Testing all plausible combinations of WRF parameterization
schemes remains impossible. Accordingly, studies typically conduct
sensitivity analyses with one or more schemes (e.g. Refs. [11—18]).
Stergiou et al. even use multi-criteria decision analysis to aid in
assessing sensitivity to model physics [19]. To reduce systematic
bias from poor parameterization scheme choices, we propose a
comprehensive methodology for operationalizing a WRF model
that works in any region for any application of interest.

Recently, researchers have adopted algorithms that mimic
evolution to “breed” optimal solutions to computational problems.
Collectively, these optimization strategies are called “evolutionary
algorithms” (EAs) [20]. A subset of EAs, called “genetic algorithnms”
(GAs), act as a digital-analog to natural selection by encoding var-
iables as “genes” which combine to form an “individual” [21]. Each
individual achieves a fitness score based upon how well it performs
with respect to a user-defined objective. Applying this approach,
we develop and evaluate a GA for breeding an optimal WRF model
configuration to predict wind and solar energy integration in the
Northeastern US. The parameterization schemes comprising WRF
are analogous to the genetic material comprising DNA; changes to
the WREF code affect its macroscale behavior just as changes to the
genetic material of an organism will affect its macroscale structure.
These genes are mixed and matched between sequential “genera-
tions” of configurations, and the “fittest” configurations are then
hybridized with each other to produce a new generations of con-
figurations. We will refer to this approach as “OptWRF” for the
remainder of this manuscript.

EAs and GAs have aided in WRF parameter tuning before, but
usually to optimize parameters within a scheme [22,23]. Diaz-Isaac
et al. used a GA to select a subset of a 45-member multi-physics
ensemble based on the flatness of the rank histogram and found
that they could improve the representation of model error vari-
ances with few ensemble members [24]. In a brief study, Oana and
Spataru are the only researchers who have used a GA for initial WRF
parameter selection [25]. They report promising early results for
humidity and temperature forecasts but note that further study is
necessary to assess the utility of using a GA to aid in WRF model
setup.

Although many studies design a WRF model configuration for
wind or solar resources separately, no studies have sought to
optimize — or even assess — WRF's ability to downscale reanalysis
data for the dual purpose of wind and solar. Such a configuration
would immediately halve the computational cost. Among those
concerned with wind energy, researchers have introduced and
benchmarked a wind farm parameterization [26—29] and assessed
WREF's sensitivity to different spatial resolutions, different bound-
ary condition data sources, different PBL schemes [30—32], pa-
rameters within PBL schemes, or some combination of these
[33—36]. Others assessed how well a single WRF physics option set
performs before conducting a wind resource analysis [37]. Some of
these analyses culminated in public meteorological data products
to aid in wind power integration (e.g., NREL's WIND Toolkit [8]).
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Many studies also customize WREF for solar energy. WRF-SOLAR
provides a WRF physics option set for solar energy forecasting [7],
and urban WRF-SOLAR extends this by adding an urban canopy
model and building energy model [38]. Two recent studies assessed
how well the European Centre for Medium-Range Weather Fore-
casts (ECMWEF) Integrated Forecasting System (IFS) and the North
American Model (NAM) Global Forecast System (GFS) performed
for short-term solar forecasting [2,39] and another evaluated the
performance of different shortwave parameterization schemes in
predicting GHI [40]. In this work, we explore the feasibility and
computational cost of choosing an initial physics option set for
combined wind-solar analyses using a GA. Further, we aim to un-
cover — for the first time — the influence that each physics category
and individual parameterization scheme has upon the final model
output. We provide the first database enabling new users to quickly
assess which physics option sets work best for wind and solar an-
alyses in the Northeastern US and how they compare to the sets
recommended as a starting point by NCAR in the WRF User's Guide.

The remainder of this paper is organized as follows: in Section 2
will discuss our methodology for developing and applying the ge-
netic algorithm to WRF model setup, in Section 4 we discuss our
results with an emphasis on the influence of physics options on
WRF output and applying this method to operationalize the WRF
model in an arbitrary location for an arbitrary application, and
finally, Section 5 provides a conclusion and final recommendations
for applying the OptWRF methodology.

2. Method

This method section is divided into two major subsections. We
begin with a description of the WRF model and associated setup
options in Section 2.1, as each setup represents an individual in the
OptWRF GA. The following explanations in Section 2.2 provide
specifics of the GA algorithm operators and control parameters that
produce better WRF forecasts through successive generations.

2.1. The weather research and forecasting model

WRF produces mesoscale forecasts by numerically integrating
the dynamical equations of fluid flow, and parameterizes those
processes that cannot be resolved at the user-defined grid spacing
[5]. Microphysics, radiation (separate schemes handle longwave
and shortwave radiation), planetary boundary layer (PBL), land
surface, and convection (at a horizontal grid spacing above ~4 km
[5]) are parameterized. Through parameterization, WRF attempts
to capture all key couplings that affect the earth system at the
mesoscale resulting in an accurate overall forecast or downscaling
of wind and solar variables.

2.1.1. Model parameterizations

During WRF model initialization, choices for parameterizing
various unresolvable processes must be specified. One scheme is
chosen for each of the six major parameterizations — microphysics,
long and shortwave radiation, PBL, land surface, and cumulus —
that govern how WRF runs. Each unique combination of parameter
choices, therefore, constitutes a new physics option set for WRF.
Note that the surface layer (i.e., the interface layer between the PBL
and the land surface) is parameterized separately in WRF, but as the
scheme choice is heavily constrained by the choice of PBL physics,
we chose to select the surface layer scheme based upon the PBL
scheme. If multiple choices exist, we use the revised MM5 Monin-
Obukhov scheme [41]. See Section Appendix A.3.1 for a full dis-
cussion about dependencies among different parameterization
options and schemes. Parameterization schemes will become the
building blocks — the genes — upon which our genetic algorithm is
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constructed.

Different methods or schemes for parameterization have been
developed over the years sometimes capturing underlying physics
more accurately and other times offering a speed up when
compared with previous parameterization techniques. For this
work, we use parameterizations available in WRF version 4.2.1 [42].
Parameters within each scheme can also be tuned to further
customize the model, which increases the number of possible
unique WRF “instances” by orders of magnitude. Since previous
research has already dealt with optimization of parameters within
individual schemes [22,23], we omit this added complexity here
and all internal scheme parameters are left at their default values.
In all cases, when one parameterization option is swapped for
another, nonlinear coupling among different parts of the model can
lead to drastically different model results that often cannot be
readily diagnosed.

2.1.2. WRF model domain, boundary condition data, and simulation
length

The focus of this work is upon the parameterizations that govern
how physical processes within WREF are represented. Therefore, the
majority of the WRF namelists options — particularly those gov-
erning the model domain and dynamics — are kept constant in each
configuration as are the boundary conditions. The modeling
domain is centered over the Northeast United States and has a
12 km horizontal resolution with 36 levels in the vertical direction.
The pressure at the model top is 5000 Pa, and the eta levels were set
manually (Table A.1 in Appendix A.1 gives the exact eta levels). The
time step used for all simulations was set to 45 s to reduce the
likelihood of Courant—Friedrichs—Lewy (CFL) errors as we made
every effort to accommodate the broadest array of physics pa-
rameterizations. A copy of our constant WRF namelist parameters
is included in Section Appendix A.2. ERA-Interim data created by
the European Centre for Medium-Range Weather Forecasts
(ECMWEF) was used as boundary condition data for all downscaling
[43]. Each simulation runs for 24 h and is initialized at 00:00 UTC
on a random day in 2011. We analyze all the data from each
simulation rather than treating the first several hours as a spinup
period.

2.2. Genetic algorithm

We have employed a simple genetic algorithm (GA) to identify a
WREF physics option set that performs better than out-of-the-box
recommendations from NCAR. It's important to note that a GA
does not guarantee an optimal solution, but improves the solution
space through an iterative evolutionary process. Each WRF physics
option set combined with a specific run date represents an indi-
vidual within this population. GAs are constructed from a number
of operators that govern how the algorithm functions: fitness, se-
lection, crossover, and mutation. Fig. 1 depicts a general layout for
the algorithm. These processes are repeated once per generation
until a pre-specified number of generations are reached. Each
operator will be described in greater detail in the sections that
follow.

2.2.1. Physics schemes as genes; WRF simulations as individuals
Like any real population, the space of possible individuals de-
pends indelibly upon the gene pool. Genes represent the basic
building block upon which a population is built, and for this case,
physics schemes created for each of the six major physical
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Fig. 1. Schematic diagram of the genetic algorithm used for determining a near
optimal set of physics parameters for the WRF model based upon an arbitrary
application-specific fitness function. The number of generations (cycles through the
diagram) can be tuned by the user based upon size of the ensemble, available time, and
computational resources.

processes parameterized within the model are each encoded as one
of six genes. These processes are microphysics with 25 schemes,
longwave radiation with 8 schemes, shortwave radiation with 8
schemes, land surface with 6 schemes, PBL with 11 schemes, and
cumulus with 14 schemes (See Appendix A for a complete list of
parameterization schemes). To set up a WRF model run, exactly one
parameterization scheme from each category must be chosen.
Combinatorially, this allows for 1,478,400 distinct possible WRF
model setups. Taking model run date into account, that number
swells to 539,616,000. Each of these distinct model setups corre-
sponds to a single individual that together makes up a population
for the genetic algorithm.

2.2.2. The fitness function

In order to judge how well each individual within the popula-
tion performs, a metric for judgment must be specified. For the
application of medium-to long-term power systems planning, we
care about WRF's ability to downscale meteorological variables
affecting wind and solar energy production. We created a metric
dubbed the wind power density (WPD) to judge model perfor-
mance based on wind speed. WPD captures the amount of power
that could be extracted from the wind per square meter of wind
turbine sweep area, WPD = % = 1 pv3, where Pying is the power
extracted by a wind turbine, A is the rotor sweep area of the turbine,
p is the air density, and v is the 100 m wind speed. Performance
based on solar energy was judged by model-calculated GHI. The
fitness function shown in Equation (1) calculates the accumulated
errors between a WRF model configuration and the ERA5 reanalysis
dataset [44] in GHI (denoted by the two terms within the first set of
absolute value brackets) and WPD (denoted by the two terms
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within the second set of absolute value brackets) across each hourly
time step, ¢, and across all model grid cells, g, as shown below.

fitness = 33" ((DfmAGHIWRF ~ GHlggs| + Cuina
t g

Since GHI varies substantially across seasons, we multiplied the
GHI errors by a day length fraction Dgqc = D/Dy, where D is the day
length calculated using the algorithm provided in Appendix A.5
[70], and D; corresponds to the longest day of the year. While
WPD and GHI both have units of W m~2, a scalar correction factor,

Cwind = (EcHi /Dfrac)/Ewpp, Was employed to ensure that accumu-
lated errors in each quantity during the year 2011 were the same.
Cwing Was derived by running one simulation for each month of

2011 using the same paramterization schemes, where Egy; corre-

sponds to the mean daily GHI error, Eypp to the mean daily WPD

error, and Dy, to the mean daily day length fraction. Reanalysis
products blend observations with past short-range forecasts
providing the most complete picture of global weather in existence
making them an ideal choice for testing the skill of a gridded model.
Note that this fitness function can change to accommodate a variety
of different applications or tuned to show improvement over an
existing configuration. Namely, a user might choose to normalize
GHI and WPD errors with respect to those produced by an existing
model setup, leading the fitness function to represent the
improvement (or degradation) in performance with respect to the
existing setup.

2.2.3. Population initialization and tournament selection

A population within the GA is composed of WRF model con-
figurations with different physics and/or run dates. During popu-
lation initialization, the namelist files governing how each model
will run are written. First, physics schemes for the six major
parameterization options are selected randomly from the options
available (See Appendix A for the complete list). Throughout
testing, we uncovered numerous incompatibilities while attempt-
ing to run the WRF model a certain way. When possible, these
physics scheme incompatibilities were incorporated into the
initialization function signaling the operator to avoid these com-
binations. The run date is selected randomly within 2011. This year
was selected for convenience, and a comparison of performance for
different years was beyond the scope and computational resources
available for this work, but the choice to select start dates within a
single year was made deliberately to ensure that seasonal vari-
ability was taken into account without having to consider meteo-
rological variability on longer time scales. Experiments were run
using several population sizes, containing between 50 and 200
members, whose performance will be discussed in Section 4.

Following population initialization, the fitness of each member
of the population was calculated by running each WRF model
configuration. All the configurations in a generation were submit-
ted to a cluster simultaneously using Python's concurrent. futures
module. Each configuration was allocated a maximum of 6 h on
eight cores for a maximum of 48 core hours per simulation — the
vast majority of configurations finished in that amount of time.

(P wind) _ (
A WRF
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Those configurations that failed to finish within the allotted 6 h
were terminated and assigned a large fitness value. Likewise, those

)g)t (1)

configurations that failed due to physics scheme incompatibilities
or other WRF model vicissitudes were assigned a high fitness value.
Recall that the fitness value represents the accumulated error, so
lower fitness values are desirable. In this way, the algorithm dis-
covers and records which physics scheme combinations produce
errors.

With fitness values calculated, the selection operator identifies
individuals within the existing population and constructs a mating
population from which offspring will be conceived. Tournament
selection creates a mating population that has both strength and
diversity. In tournament selection, 10% of the existing population is
selected randomly, and the individual with the highest fitness in
this group is placed in the mating population. Tournament selec-
tion is continued iteratively until the mating population is half the
size of the existing population. Previous research has investigated
the sensitivity of output with respect to many of these GA control
parameters [45], but such analysis was beyond the scope of this
work. The randomization introduced by tournament selection is
designed to keep the GA from converging to a sub-optimal local
minimum prematurely by ensuring that the population contains
individuals carrying genes with a greater variety of fitness values
than just the ones at the top, which we carry through to future
generations regardless.

Pwind)
A JEras

2.2.4. The crossover operator

An offspring population is formed via two separate mechanisms
— crossover and elitism. Elitism simply takes a prescribed number
of individuals — one-third of the population in this study — and
places them in the offspring population unchanged. The crossover
operator is responsible for filling the remaining two-thirds of the
offspring population. The crossover operator randomly selects two
individuals from the mating population and gives them a 50%
chance to form two offspring. When crossover does happen, a
single gene (i.e., a physics scheme) is selected at random, and
swapped between the two individuals creating two new offspring.

2.2.5. The mutation operator

After the offspring population has been filled, mutation provides
a mechanism to introduce additional genes into individuals that
their parent configurations did not contain. The mutation operator
is applied to each offspring in the population, and the probability of
a mutation occurring is equal to one over the population size. In
other words, on average, one member of each offspring population
will experience a mutation. When a mutation occurs, a single gene
within an individual is randomly changed — one physics scheme is
swapped for another in one configuration. Researchers previously
delved into both the best operators to carry out mutation [46] and
the optimal mutation probability [47]. After mutation, the final
version of the offspring population is complete. The cycle (in Fig. 1)
begins again and this population becomes the parent population
for the next generation. Only once the prescribed number of gen-
erations have elapsed are the best configurations extracted from
the final population.

Although OptWRF cannot guarantee that every member in the
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Table 1
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Highest Performing OptWRF and WRF User Guide-Recommended Setups. Improvements are reported with respect to the highest performing setup recommended in the WRF
user guide, which is shown directly below the midrule. Plus signs indicate a performance improvement, and minus signs indicate a performance deterioration.

Date Microphysics LW Rad SW Rad LSM PBL Cumulus Fitness Improvement
OptWREF Setups

Dec 13 NSSL 1 Moment RRTMG RRTMG Pleim-Xiu BoulLac Old KF 7858. +16.0%
Jan 14 NSSL 1 Moment RRTMG RRTMG Pleim-Xiu Boulac Old KF 7859. +16.0%
Dec 13 Thompson RRTMG Dudhia Pleim-Xiu BouLac KF 8207. +12.2%
Dec 02 Sbu-Ylin RRTMG RRTMG Pleim-Xiu BoulLac Old KF 8480. +9.3%
Jan 14 NSSL 1 Moment RRTMG Dudhia Pleim-Xiu Boulac Old KF 8488. +9.2%
Dec 02 NSSL 1 Moment RRTMG RRTMG Pleim-Xiu BoulLac Old KF 8519. +8.9%
Jan 14 NSSL 1 Moment RRTMG CAM Pleim-Xiu BouLac KF 8601. +8.0%
WREF User Guide-Recommended Setups

Dec 13 Thompson RRTMG RRTMG Noah MY] Tied TKE 9351. N/A
Dec 13 WSM6 CAM CAM Noah YSU KF 16071. -71.9%
Dec 13 Thompson RRTMG RRTMG Noah YSU Grell-Freitas 16117. —72.4%
Dec 13 WSM5 RRTMG Goddard Noah MY] KF 16704. —78.6%

offspring population will result in a viable WRF simulation, elitism
ensures that the top third of the population is transferred into the
next generation. This, in combination with the disproportionately
poor fitness value that failed members receive leads OptWRF to
filter failed members out over time.

3. Results

By running OptWRF with a population size of 200 over 10
generations, 2000 simulations were initialized. Of those, 1823
distinct simulations — considering the date of model initialization
and physics option set together — ran successfully. The balance of
the 2000 total simulations can be accounted for either via the 8%
(16 simulations) that are passed into each successive generation
unchanged (a total of 144 simulations) or failed for one of many
possible reasons along the way. We also retained some additional
simulations run during algorithm testing to bolster the data used in
the analysis of WRF model behavior based upon physics option sets
(see Section 3.3). The top five performing physics option sets are
shown in Table 1. Note that the best performing physics option set
(NSSL 1 moment microphysics, RRTMG longwave and shortwave
radiation, Pleim-Xiu land surface model, BouLac PBL, and old Kain-
Fritsch cumulus) appears three times in the top seven demon-
strating its ability to produce low error values when WRF is
initialized on different days. All the top-performing physics option
sets found by OptWRF offer an improvement to the WRF User
Guide-Recommended physics option sets as shown in Table 1.

3.1. Annual comparisons

We designed OptWREF to cover the greatest possible number of
physics option sets initialized on random days throughout a single
year. Of course, there is an inherent trade-off between coverage and
computational cost. Running simulations over longer time periods,
or with multiple time periods dispersed throughout the year,
would have given us more insight into how skilled a particular
physics option set was at downscaling a diverse set of meteoro-
logical conditions, but we would have been able to investigate
fewer physics option sets with the same computational resource.
Since we sought to determine how different parameterization op-
tions affected wind and solar forecast errors, higher coverage of
physics option sets better matched the goals of this work.

Still, we wanted greater confidence that physics option sets ul-
timately selected by OptWRF outperformed the WRF User Guide
recommendations across a variety of meteorological conditions. We
ran the top five physics option sets selected by OptWRF and four
from the WRF User Guide (Table 1) for the entire year of 2011 in a

series of single-day simulations similar to the original experiment.
Monthly mean fitness values for each of the five physics option sets
found by OptWRF outperformed each of the four from the WRF
User Guide (Fig. 2). Note that several of the simulations initialized
in July and August for the NCAR 1 physics option set failed to run, so
these monthly means were generated using data from fewer sim-
ulations. However, it is unlikely this affected the overall trend
presented here.

3.2. Wind and solar trends

Simulations are judged based upon the fitness function (Equa-
tion (1)). For this application, we designed the fitness function to
deliberately consider wind and solar resources equally on an
annual basis as we would like the forecast skill to be equal for both
wind and solar energy. We chose GHI to benchmark solar energy as
this depends on both the diffuse and direct components of solar
radiation — although both are shortwave [48]. We integrated the
GHI for one single-day simulation period and plotted it across the
entire domain for both the best-performing WRF simulation and
the ERA5 reanalysis (Fig. 3 a)-b)). This integration was performed
using the hourly values for GHI in kW m~2, which when summed
over a day, result in kWh m~2 day~ . Clouds, moisture, and aerosol
creation or advection are largely responsible for the sharp GHI
gradients shown in such single-day snapshots.

The same method was applied to produce WPD plots for both
the best-performing WRF simulation and the ERA5 reanalysis
(Fig. 3 ¢)-d)). Since wind power depends on the cube of the wind
speed, the WPD is plotted on a log scale.

Visualizing the fitness is simply a matter of combining the errors
incurred by a WRF simulation with respect to the ERA5 reanalysis,
controlling for day length in the GHI error, and correcting the WPD
error so the two error metrics are of the same order of magnitude.
Fitness varies across the domain with the errors in GHI and WPD
(Fig. 3 e)-g)), and errors are the highest where meteorological ex-
tremes are poorly captured. A panel of scatter plots showing GHI
error, WPD error, and fitness values for each of the almost 2000
simulations is shown in Figure A1 in the Supplemental Information.

3.3. Effects of physics parameterizations

In order to determine the absolute effect that each physics
parameterization scheme has upon the fitness value, we post-
processed the OptWRF results using a random forest regressor [49].
This method was chosen because the physics parameterization
options are non-ordinal categorical variables; so principle compo-
nent analysis cannot shed much light on the effect that each physics
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Fig. 2. Plot matrix with each of nine panels highlighting the monthly mean fitness of one physics option set and the results from the other eight plotted in grey. Physics option sets
selected by OptWREF are highlighted in teal and appear in the first five panels; whereas physics option sets recommended by NCAR in the WRF User Guide are highlighted in navy
blue and occupy the final four panels. Each of the sets chosen by OptWRF outperformed each of the sets recommended by NCAR in all months of 2011 providing compelling
evidence that these physics option sets produce better forecasts across seasons and diverse meteorological conditions.
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Fig. 3. Panels a) and b) show global horizontal irradiance (GHI) across the entire modeling domain in kWh m~2 day ! for a one-day WRF simulation initialized on December 13,
201100 (UTC) and the ERA5 reanalysis. Similarly, panels c) and d) show the wind power density (WPD) also in kWh m~2 day~"'. Data shown in b), d), f), and g) is taken from the best-
performing simulation produced by OptWREF. Errors in the GHI (panel f)) and WPD (panel g)) contribute to the overall model fitness (panel e)).
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Fig. 4. SHAP values explain the impact that each random forest model feature (WRF parameterization scheme) has upon model error. Radiation parameterization schemes are listed
along the left axis, and boxes are created from all the WRF model runs. Orange bars correspond to WRF configurations where the parameterization scheme was activated; whereas
the blue bars correspond to those where the scheme was deactivated. Negative SHAP values correspond to those schemes that reduce model error (improving the forecast); whereas
positive SHAP values correspond to those schemes that increase model error. Therefore, those schemes with orange bars centered furthest to the left produce the best WRF
forecasts. The namelist options for all longwave and shortwave radiation schemes are included in Tables A.4 and A.5 in Appendix A.3, respectively.
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Fig. 5. Planetary boundary layer parameterization schemes are listed along the left
axis, and boxes are created from all the WRF model runs. Orange bars correspond to
WREF configurations where the parameterization scheme was activated; whereas the
blue bars correspond to those where the scheme was deactivated. Those schemes with
orange bars centered furthest to the left produce the best WRF forecasts. The namelist
options for all PBL schemes are included in Table A.7 in Appendix A.3.

option has upon the model output. Random forest allowed us to
one-hot encode each parameterization scheme as a feature so each
could be considered separately. Although the random forest re-
gressor assigns a weight (importance) to each feature, these
weights are relative, and their shortcomings are well documented
[50]. To determine the importance of each parameterization
scheme, we employed the SHapley Additive exPlanation (SHAP)
Python Package [51]. SHAP provides a high-speed exact algorithm

for explaining the output of tree-based machine learning models
and has been shown to correctly rank the contributions of predictor
variables to model output [52]. The SHAP values for each radiation
and each planetary boundary layer parameterization scheme in
each setup are shown in box plots in Fig. 4 and Fig. 5, respectively.
When a scheme is turned on (i.e., used in a WREF forecast), an orange
box is used, and when a scheme is turned off (i.e., not used in a WRF
forecast), a blue box is used. Negative SHAP values correspond to
those schemes — either turned on or off — that push the fitness
(error) value lower while positive SHAP values correspond to those
physics options that push the fitness (error) value higher. In other
words, when an orange box appears to the left of the zero SHAP
value line, the scheme improves the WRF forecast skill when used.

Looking at the radiation schemes shown in Fig. 4, several
perform quite poorly while only a couple contribute to lower fitness
(error) in a majority of cases. Clearly, shortwave FLG, longwave
Held-Suarez, and shortwave New Goddard are linked to much
higher errors in GHI and WPD as all non-outlier SHAP values are
positive. WRF users investigating wind and solar integration should
avoid using these schemes. Unfortunately, no schemes can be
linked to an overwhelming reduction in error; so we can offer no
clear choice of radiation schemes. The shortwave RRTMG scheme is
the only one linked to a modest reduction in forecast errors in
nearly all cases. This is consistent with the best physics option sets
selected by OptWRF (see Table 1). Longwave RRTMG and longwave
FLG are both linked to lower errors in the majority of cases and
represent the best choices for longwave radiation. All remaining
schemes contribute to higher errors in the majority of cases and
therefore users should carry out further model tuning exercises if
they want to use one of these schemes for wind and solar
integration.

Turning now to the performance of the planetary boundary
layer schemes shown in Fig. 5, only a couple contribute to higher
error most of the time and several perform well. Only the MYNN3
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scheme is linked to higher errors in GHI and WPD in almost all
cases, but ACM2, MYNN2, TEMF, and YSU are all linked to higher
errors a majority of the time. Therefore, users should avoid these
schemes for wind and solar integration in the Northeast United
States if at all possible or carry out further model tuning if the use of
these schemes is warranted for some ancillary reason. For example,
this raises an issue for the WRF wind farm parameterization [26],
which is currently only compatible with the MYNN2 scheme. We
will engage this point further in Section 4. Encouragingly, the
BoulLac scheme appears to drive down GHI and WPD errors sub-
stantially in all cases that it is used making it an easy choice for a
PBL scheme. GBM, MY]J, QNSE, Shin-Hong, and UW schemes are also
all linked to lower errors for the majority of configurations in which
they were activated. Appendix A.7 presents SHAP values plots for
the remaining parameterization schemes (microphysics, land sur-
face, and cumulus).

4. Discussion

As with any modeling approach, there are caveats that affect the
applicability of this approach, which warrant further discussion.
Foremost, we want to stress the importance of the choice of domain
and fitness function. Then, we discuss why certain physics options
sets may have outperformed others.

4.1. Domain and fitness function

All the results presented here are inextricably linked to how
well WRF can predict GHI and WPD across the entire domain
covering most of the eastern United States. We chose this domain to
overlap with the Ozone Transport Commission's domain and its
placement enables researchers studying one of the three major
eastern regional transmission organizations — PJM Interconnection,
New York ISO, and New England ISO — direct insight into the best-
performing WRF physics option set across the entire region.
However, the fitness function judges all errors across this domain
equally; so we caution users who study primarily a small subset
within this domain and encourage them to undertake further
benchmarking. For example, the best performing configuration
produced by the GA incurred high errors in WPD off the coast of
North Carolina (see Fig. 3 g)). As such, this model setup would
almost certainly not be the best choice for simulating the power
output from an offshore wind farm there. In other words, the fitness
function can be tuned to a user's specific application, and different
error metrics may be more appropriate for other applications. For
example, a researcher studying power system reliability might care
deeply about overpredicting renewable generation. In such a case, a
non-absolute error metric should underlie the fitness function.
Finally, the choice of data products used for boundary conditions
and comparison will impact the model fitness. This work coincided
with the transition between ERA-Interim and ERA5 at ECMWEF, so
both datasets made their way into our work. However, with ERA5
fully available, we recommend that users seeking to apply our
method simply use ERA5 for both boundary conditions and com-
parison, which could more clearly elucidate errors associated with
physical parameterization.

On arelated note, our approach applies to a variety of spatial and
temporal scales. For this work, we selected a 12-km domain across
the eastern United States and ran many one-day simulations within
2011 to balance computational resources with coverage of many
different physics option sets. Users could easily modify this setup in
several ways (i) change the location, spatial extent, or grid spacing
of the domain, (ii) include a nested domain in which to judge errors,
and (iii) extend the time period for each simulation or the time
period from which model start dates are drawn. Keep in mind that,
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Fig. 6. The left panel shows a zoomed-in view depicting GHI error over New York State
and parts of the Northeastern United States — the same quantity as plotted in Fig. 3 f).
The largest errors in GHI occurred off the southern and eastern coasts of Long Island,
NY. The right panel shows a zoomed-in view depicting WPD error over New York State
and parts of the Northeastern United States — the same quantity as plotted in Fig. 3 g).
The spit of land between Lake Erie and Lake Ontario as well as the White Mountains in
Northern New Hampshire have the largest errors in WPD. However, the area off the
coast of Long Island, NY also has moderately high WPD errors.

barring a reduction in the spatial extent of a domain or an increase
in grid spacing, each of these modifications will increase the
computational cost of running OptWREF. For some studies, using a
single year as we have here is appropriate. For example, short-to
medium-term power systems capacity planning exercises gener-
ally utilize historical peak demand for a single season or year. On
the other hand, long-term capacity planning exercises (e.g., plan-
ning wind and solar facility deployments through 2050) should
incorporate simulations from a longer time period to capture
variability at larger scales (e.g., interannual cycles, ENSO, and
interdecadal cycles) that will affect how much energy a wind or
solar facility will produce over its lifetime.

4.2. Best physics option sets

We turn now to a discussion of why these particular physics
option sets (refer back to Table 1) may have produced the best
downscaling of GHI and WPD. To frame this discussion, we will
zoom in on a portion of our domain, New York State, to discuss the
spatial pattern in the GHI errors (shown on the left in Fig. 6) and
WPD errors (shown on the right in Fig. 6). Errors in GHI appear
uniform across much of NYS with the largest errors occurring off
the coast, to the South and East, of Long Island. We attribute these
to clouds that are resolved in the WRF downscaling but not in the
ERAS5 reanalysis (see maps in Fig. 3a)—b)). However, since these
features sit offshore, their presence represents no concern for
forecasting solar resources over land thereby potentially making
this setup more attractive in practice. An extension of this work
could consider only the GHI over land. Modestly high GHI error
values occur near the Great Lakes and near the White Mountains in
Northern New Hampshire. We stipulate that these errors may stem
from the added physical complexity associated with the transition
from lake to land and the wake of a mountainous region, respec-
tively. In other words, challenges remain in representing unre-
solvable quantities (e.g., remaining subgrid scale clouds) in regions
where terrain features change dramatically within a small number
of grid cells. At 12 km, WRF cannot yet resolve convective clouds,
which are a feature often produced by flow over mountainous
terrain. Therefore, we would expect substantially lower errors
running WRF at a higher resolution (e.g., 4 km), but that in turn,
would increase the computational and output data burden of
OptWREF.

Interestingly, we found that the NSSL single-moment scheme
(see Ref. [53] for the original NSSL two-moment scheme) selected
by OptWRF was linked to higher errors in a majority of cases,
shown in Figure A.2. Since the same is true for the other two
microphysics schemes used in the best-performing configurations
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(Thompson [54] and Sbu-Ylin [55]), the microphysics scheme does
not appear to strongly influence GHI and WPD error values. This
stands in contrast to the radiation schemes (Refer back to Fig. 4)
where both the longwave and shortwave RRTMG [56] schemes are
linked to lower errors. Longwave RRTMG is based on the
correlated-k method [57] that generates required k-distributions
and optical depths using a line-by-line radiative transfer model
drawing data from the HITRAN database [58]. We found that this
new “look-up-table” parameterization method [10] outperforms
the longwave schemes based upon the older broadband emissivity
method [59] (e.g., see Ref. [60]). Of course, there are other sources
of error in addition to those related to the parameterizations (e.g.,
terrain, initial and boundary conditions, etc.). SHAP values may
offer more insight if we were able to first estimate the error con-
tributions from various sources and then observe the impact that a
particular scheme had upon the portion of the error contributed by
the parameterizations.

Turning to errors in WPD shown in the right panel of Fig. 6, we
observe some expected trends. The highest errors occur between
Lake Erie and Lake Ontario and near the White Mountains in
Northern New Hampshire. Since the spit of land between the two
Great Lakes is approximately 36 km wide, it can be spanned by
three WREF grid cells (12 km) and is on the same order as the ERA5
grid (~30 km). Therefore, it's not surprising that winds deviate here
as the benchmark data represents this feature so coarsely. For the
White Mountain region, winds likely deviate due to the complex
terrain. Most PBL parameterizations — with the possible exception
of the YSU scheme [61] — poorly represent unresolved orographical
features existing in mountainous terrain and remains an open area
of research [33,41,62]. Draxl et al. reported that the choice of PBL
schemes depends on atmospheric stability [31]. Unfortunately, the
BouLac scheme [63] selected by OptWRF was not part of their
study. Therefore, the performance of this scheme under different
stability regimes remains a subject for future work. Of course, the
PBL scheme exchanges heat and moisture fluxes with the surface
layer scheme but these fluxes are ultimately determined by the
physics represented in the land surface model. Therefore, we want
to highlight that the Pleim-Xiu land surface model [64], which was
developed in conjunction with the ACM2 PBL scheme [65,66] and
the Pleim-Xiu surface layer scheme [67], was selected in isolation of
its companion schemes by OptWREF. Since we should not judge the
overall performance of a scheme based on such limited simulation
data, future work should continue to explore hidden synergies
among WRF's many parameterization schemes.

5. Conclusion

We developed a methodology that utilizes a genetic algorithm
to aid in the setup and benchmarking of a numerical weather
prediction model (WRF) with hundreds of thousands of potential
physics option sets. This method can be applied over any region,
and the fitness function can be tailored to a specific application (or
variable) to find a more optimal model physics option set. The
benefits of the method are that it allows users to a) find a model
setup in the absence of an inherited setup or similar application
existing within the literature, b) easily discover sensitivities to
different physics option sets and model run dates that would not
otherwise be apparent, and c) provides users with multiple options
— allowing them to choose a quicker sub-optimal setup. Of course,
running a GA with a WRF model as the individual computational
unit is inherently computationally expensive; so not all researchers
will have access to computational resources necessary to carry out
such an expensive exercise. We have therefore stored all the con-
figurations run throughout the course of this work in an SQL
database and will be included with the Supplemental Information.
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The dataset produced by this work will aid future researchers in
medium to long-term power systems planning. The sheer number
of meteorological data products creates a high barrier to entry for
the atmospheric sciences. This creates a problem for energy system
planners who historically conducted long-term planning exercises
with simple models to predict electricity demand growth and help
them to decide where to invest in new power plants and lines that
would support the system several decades into the future. The
proliferation of renewable energy demands a much more complex
approach to system planning integrated intimately with meteoro-
logical modeling. Weather now not only loosely dictates how much
electricity people use but is responsible for exactly how much
renewable energy will be supplied. Since many of the parameteri-
zation options were developed before the rapid deployment of
renewable energy, there is no reason to believe that the prediction
of renewable energy production was even a passing consideration
for the designers of these physics schemes. Our results provide an
exhaustive view of how well each physics scheme operates when
judged on wind and solar energy prediction — power systems re-
searchers can use these directly to quickly set up a WRF modeling
effort.

Additional nuance exists when selecting boundary condition
data for use in different power systems applications. We selected
the ERA5 reanalysis because we presented an example of how
OptWRF might be used to inform medium-to long-term power
systems planning. Such planners can make use of historical data to
extrapolate future trends. However, researchers aiming to imple-
ment OptWRF for operational wind and solar forecasting must
initialize their simulations using data available forecast data that is
updated in real time. Two common data products matching that
fullfill this requirement are the Global Forecast System (GFS) pro-
vided by the National Centers for Environmental Prediction (NCEP),
and the high resolution 10-day forecast (HRES) produced by
ECMWE.

Open-source software tools and publicly accessible datasets are
vital to both the meteorological modeling community and the en-
ergy systems community. We have put all the code used in this
work — namely an OptWRF python package — on a public GitHub
site in the hopes that others can make use of this methodology
producing and disseminating datasets in different geographic re-
gions or for different applications. In this repository, we include
fitness functions that consider wind and solar in isolation and
remark that these use cases may make SHAP values easier to
interpret for certain parameterizations (e.g., radiation schemes in a
solar only case). The meteorological modeling community is one
containing a wealth of freely available data modeling products; the
WRF model is a prime example. The power systems community has
some work to do, but a similar approach will help more regions
across the world develop renewable energy and decarbonize their
electricity systems faster.

To be sure, there are some areas for improvement in tailoring a
GA to effectively set up a WRF modeling effort. GA control pa-
rameters are important tools to help guide the algorithm toward
the best solution, and while we adopted the population size and
elite percentage from previous work [68], other recommendations
were omitted to reduce complexity. For example, Mills et al. found
that an adaptive mutation rate could improve GA efficiency. The
domain, physics, and dynamics of the WRF model itself are also
exceedingly complex. Future work could investigate GA solution
sensitivity to horizontal and vertical grid spacing specified in each
WRF setup — an incredibly computationally expensive task as it
would require repeating the work described here at a variety of
different grid resolutions. We also have not investigated the
sensitivity of the GA solution to the geographic location where the
WREF setups are run. We expect that different parameterization
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options will perform better in different geographic areas, but there
is little way to know how well the model setups reported in Section
3 may apply to an arbitrary location across the globe. The best
physics option sets reported here are probably most relevant to
climates, latitudes, and topographical regimes similar to that of the
Northeastern United States, but the OptWRF approach could be
deployed anywhere (e.g., in the tropics where the relative contri-
butions of solar radiative heating and the Coriolis force are mark-
edly different).

Finally, some work has been done to optimize the control pa-
rameters within an individual parameterization option to improve
the forecast skill (e.g. Refs. [22,23]). This work could be integrated
into the current framework as a second step after the model physics
has been selected during the first. Similarly, WRF contains options
with the ability to change the behavior of advection, diffusion, and
damping. While many of these options have recommendations,
they too could be integrated into this framework to fully encompass
all options available to WREF users. Each of these future directions
would require staggering computational resources; so we echo
again the importance of making such WRF performance analytics
available to the broader user community who may lack necessary
resources.

Not all environmental nonprofits, local governments, commu-
nity colleges, and the like have the knowledge or budget to
painstakingly tailor a forecasting system to fit their needs over a
period of years. However, as developers of wind and solar float
ever-cheaper bids, planners across institutions require tools to
make sense of an increasingly interconnected system. As the
weather will dictate both electricity supply and demand, WRF is the
indispensable open-source tool that can help all planners decar-
bonize their systems. This work takes the first major step toward
making location and application forecasts using WRF more
accessible.
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