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Non-colloidal suspensions undergoing dipolar interactions in an electric field have been extensively
studied and are also known as smart materials as they share similarities with electrorheological (ER)
fluids. Although the macroscopic responses are well-documented, the multiscale nature of such
suspensions is still lacking. In this study, a large-scale Stokesian dynamics simulation is used to
investigate the structural formation of such suspensions in an electric field up to highly concentrated
regimes across different length scales: from particle-level (microscale) to particle cluster-level
(mesoscale) and stress response-level (macroscale). It is observed that at a volume fraction of ¢ ~ 30%,
the steady-state structures are the most isotropic at the microscale, but at the macroscale, their normal
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stress fields are the most anisotropic. Interestingly, these structures are also the most heterogeneous at
both the microscale and mesoscale. Furthermore, the effects of confinement on the multiscale
responses are explored, revealing that there could be a strong link between the mesoscale and
macroscale. This multiscale nature can offer the potential for precisely controlling or designing ER fluids
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rsc.li/soft-matter-journal in practical applications.

1 Introduction

Under an external electric field, the suspended particles with a
dielectric constant mismatched with a suspending fluid experi-
ence a rapid formation of dipole moment, which leads to
particle-particle interactions." This so-called dipolar inter-
action can cause a relative particle motion toward the for-
mation of anisotropic structures, such as chains and
columnar structures, as seeking a lower energy state."” As these
structures significantly alter the suspension rheology, such
electric-field-driven suspensions are often termed electrorheo-
logical (ER) fluids.® The same driving mechanism of the ER
fluid can be generated in a suspension of dielectric particles
under a uniform electric field. As the particles disturb a local
electric field around them, a non-uniform electric field is
created by which particle motion arises along the field gradi-
ents. This nonlinear electrokinetic phenomenon is termed
dielectrophoresis (DEP).*”

It has been well-documented that upon the application of an
electric field to ER fluids or DEP suspensions at dilute and
semi-dilute regimes, particles rapidly form chains along the
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field direction and then aggregate and form larger structures at
long times.® ™" The particle motion at short times is dominated
by the formation of small clusters, while at long times by the
interactions between the percolating clusters.'® The short-term
chain formation can be easily explained by the minimum
dipole energy that is reached when each of the two dipoles
pairs up along the field direction. In contrast, the long-term
follow-up rearrangement of structures is still a subject of
investigation. Nevertheless, it is suggested that during the
long-term structural rearrangement, the slow approaching of
the particle chains could be attributed to the net chain-chain
attraction.””'* The attractive interaction between the perfectly
aligned one-dimensional chains was shown to decay exponen-
tially with chain-chain separation distance, which is called an
electrostatic screening effect.” However, other longer-range
interactions could be possible due to geometrical disorder
induced by thermal fluctuation’ or inevitable intrinsic topo-
logical disorder within structures,” both of which lead to a
slower decay rate, the inverse fourth power of the separation
distance. In the case of confined suspensions with electrodes,
the chains spanning the gap between the electrodes can be
repulsive in the range above the certain separation distance.'>*?
Indeed, the balance between the near-field attraction and far-
field repulsion depends on various suspension conditions, such
as volume fraction and electrode gap, resulting in different
mesostructural features at a steady state.’>"?
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The structures and kinetics of ER fluids or DEP suspensions
strongly depend on volume fraction ¢."®'* Increasing volume
fraction results in the progressive loss of the structural aniso-
tropy as body-centered tetragonal (BCT) crystal structures are
formed earlier.® This BCT structure is known as the ground
state for ER fluids.>”"> The dependence of the structural
morphology and transition behavior on volume fraction was
also experimentally observed.'® At ¢ = 10%, the ground-state
crystal structure is formed from the one-dimensional chains.
Beyond ¢ = 15% up to ¢ = 45%, the presence of the chains
starts to decrease, but the two-dimensional sheets or large
particle columns become dominant features, turning to the
long-term labyrinthine patterns and eventually BCT crystals.
This labyrinthine pattern formation could be related to kineti-
cally arrested gels.'”'®

From an application perspective, the distinctive rheological
characteristics of the ER fluids, such as reversible and con-
trollable viscosity enhancement, have led to a wide range of
applications. Examples are active shock absorbers, clutches,
brakes, dampers, and actuators.'®"** In addition, the concept of
the ER fluids has been utilized in additive manufacturing of a
battery electrode to control micro or nano-structural manipula-
tions of internal structures.>® The potential of precisely tuning
the microstructure by an electric field has also made such
fluids appealing in photonic crystal applications®! and DNA
research.”” The ER fluids are also known to have a potential for
a transition to a solid state. Thanks to such intriguing
potential, their rheological response to an external flow has
been extensively studied.’®**° The elastic body-like deforma-
tion was developed at low shear rates, while the rapid micro-
structural rearrangement occurred at higher shear rates.>” In
this regard, the Bingham plastic constitutive model was pri-
marily used to describe the rheological behavior of the ER
fluids, where their yield stress is shown to scale as the squared
electric-field strength, which is indeed the same scale as the
dipolar interactions.>**°

As presented so far, there have been many studies on the ER
fluids and DEP suspensions at up to semi-dilute regimes,
focusing on macroscopic measures, namely the stress or visc-
osity. These measures have been correlated only with structural
morphology. Thus, it is evident that understanding the multi-
scale nature of the structural formation in ER fluids or DEP
suspensions is currently lacking. Furthermore, a robust con-
nection among different length scales is largely unexplored
because it is highly challenging.*® However, connecting the
macroscopic responses to the particle-level (microscopic) or
particle cluster-level (mesoscopic) responses is necessary to
promote the fundamental understanding of the underlying
mechanisms behind the structural formation of ER fluids and
DEP suspensions. Access to mesoscopic scales is also required as
it can play a critical role in identifying a hidden linkage between
micro and macroscopic responses in a suspension.*"*?

In this study, we provide for the first time a detailed
description of the structural formation across length scales at
a wide range of volume fractions up to ¢ = 50% using a large-
scale Stokesian dynamics simulation. In addition, the effects of
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confinement on the multiscale nature of structural formation
will also be presented as it has been widely observed that the
confinement plays a crucial role in affecting the dynamics and
pattern formation in various suspensions.**3¢ Using a detailed
algorithm for large-scale simulations presented in Section 2, we
can probe a long range of time scales in suspensions. Simula-
tion results are presented in Section 3, where we start by
providing the particle velocity and the mean cluster size as
suspension kinetic measures. We then provide measures at
three different length scales: (i) the coordination number and
fabric tensor as microscopic measures, (ii) the number density
fluctuation as a mesoscopic measure, and (iii) the particle-
induced stress field as a macroscopic response. The effects of
confinement on these scale measures are also provided.
We summarize our findings in Section 4.

2 Governing equation and
simulation method

We consider a suspension of N identical neutrally buoyant
spheres of radius a in a viscous electrolyte with the permittivity
¢ and viscosity n. Two different simulation domains are used, a
periodic domain in all three directions for simulating an
unbounded infinite suspension and a domain that is periodic
in the x and y directions but wall-confined along the z direction
(the field direction). The unit cell dimension is denoted by L,,
L,, L,, where L, is the electrode spacing for the confined
domain. The particles are assumed to be charged and non-
polarizable, a good approximation for dielectric particles. The
Debye layer thickness /Ay, of particles is much smaller than the
particle size (Ap « a) by which the particles with their Debye
layers behave like insulators so their permittivity does not play
a role. We apply an external uniform AC electric field E, = +£E2
given by the wave of frequency f. The frequency is assumed to
be high enough to satisfy both f > D/ip? and f > &{Ey/an, which
validates the assumptions that the Debye layer remains at
equilibrium and the particle motion due to linear electrophor-
esis is negligible, respectively. Note that D is the characteristic
diffusivity of the ions in the electrolyte and { is the native zeta
potential of the particles. In a typical experimental study for an
aquatic electrolyte, which is the condition of interest for the
current study, D ~ 107> cm® s™', i, ~ 10 nm and particle
radius of @ ~ 10 pm. Such conditions can be assured for high
frequency field f ~ 1 MHz.'"*” It is also assumed that the
particle size is large enough to make Brownian motion negli-
gible. In a typical experiment using a suspension of particles
with 10 um radius and an external field of E, > O(10) Vecm™?,
the electric Pe¢let number, defined by

ea’ Eo2

Pe = kB—T’ (1)

becomes large enough (Pe > 100) to ensure that the effect of
Brownian motion is negligible.'> Note that this dimensionless
Pe¢let number measures the relative magnitude of particle
convection due to dipolar interactions and Brownian diffusion.
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Under these assumptions, the motion of the particles results
entirely from nonlinear dipolar interactions.

For the current simulation, we use the numerical algorithm
developed in our previous works.*®*?° The velocity of each
particle x, is computed by a pairwise model,”*® and thus can
be expressed as

eaFEy?

N
> M(Ry/a):32, a=1,..,N ()
Sy

o

where R,z = x5 — x, is the separation vector between particle «
and particle f, and M is a third-order dimensionless tensor,
which is a function of the relative configuration of a pair of
spheres. It is shown that tensor M is entirely determined by
three scalar functions of the dimensionless inverse separation
distance, 1 = 2a/|R|.* For widely separated spheres (typically
when |R,g| > 4a), the far-field expression of tensor M is derived
as follows using the method of reflection:

Mer(R/a) = éT(R/a) +o(¥), 3)

where T is the Green’s functions for a potential quadrupole*®
and given in index notation as follows:
Ti(R) = f%(aﬁRk + 0uR; + 0 R;) + 30%. (4)

We use a periodic version of eqn (3) to account for the
interaction of particle o with particle f in the computational
domain, along with the periodic images of particle f in all three
directions. This far-field tensor is asymptotically valid to order
0(2*) for any pair of particles. However, if particle o and B are
close to each other (typically when |R,s| < 4a), the far-field
tensor in eqn (3) becomes inaccurate. To that end, Mg is
replaced by the more accurate version tensor Mry, calculated
by using the method of twin multiple expansions for a near-
field interaction.” This method is accurate down to a separation
distance of |R,s| ~ 2.005a. Note that the particle velocity from
eqn (2) with Mgp and My, accounts for both electric and
hydrodynamic interactions between the particles. For the con-
fined domain, only periodic images of particles in the x and y
directions are considered. For particle-wall interactions, only
short-range interactions with the boundaries are captured to
focus on an effect on particle dynamics in the vicinity of the
electrodes,"” while long-range interactions could be possible*'
but will be included in future work.

Direct calculation of eqn (2) requires the high-order compu-
tation O(N*), which makes the simulation of many particles
prohibitively expensive. Hence, the fast smooth particle mesh
Ewald (SPME) algorithm based on the Ewald summation for-
mula of Hasimoto*? and on fast Fourier transforms is employed
to accelerate the computation to O(Nlog N).** The SPME algo-
rithm is another version of the accelerated Stokesian dynamics
simulation.*® This algorithm has been extended to Stokes
dipole and potential quadrupole interactions.'**® Here, a fixed
time step At is used and chosen to ensure that particles only
travel a fraction of the mean inter-particle distance during one
integration step. To prevent excessive particle overlaps, which
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occur due to the use of finite time steps in simulations, we
implement an effective algorithm, functionally identical to the
potential-free algorithm,"” where the particles are moved
almost exactly within roundoff errors (~2.005a), to contact.
This potential-free algorithm has been added to the simulation
model in our previous works®***® for simulating very concen-
trated suspensions. In the remainder of the paper, all variables
are made dimensionless using the characteristic length scale
I. = a and time scale ¢, = n/¢Ey>.

3 Results and discussion

We consider a suspension in a domain of dimension L, X L, X
L, = 40* x 20 for a range of volume fractions ¢ up to ¢ = 50%.
All simulations are initiated from the hard-sphere equilibrium
configurations at a given volume fraction. To check the depen-
dence of the initial configuration, we have run multiple simula-
tions with different initial configurations for each volume
fraction, confirming that the overall structural dynamics are
insensitive to the initial configuration.

3.1 Bulk suspension

The time evolution of the particle distribution in a suspension
for volume fractions of ¢ = 15% and 30% is shown in Fig. 1. At
t = 0, particles are randomly distributed, and an electric field is
applied, which, in response, leads to the formation of particu-
late structures over time. Shown in Fig. 1(a) for ¢ = 15%, the
particles initially chain up along the field (z) direction on a fast
time scale of 0(200). This fast process is then followed by the
rearrangement of the chains on a longer time scale. The
structural rearrangement coincides with the coalescence of
the nearby chains, resulting in the formation of larger struc-
tures like thick columnar aggregates.'” Fig. 1(b) shows a
suspension at ¢ = 30%. There is a noticeable difference in
the structural evolution compared with ¢ = 15%. The particles
do not seem to form initial chain-like structures. Instead, they
tend to directly undergo the formation of mesoscopic struc-
tures larger than thick columnar aggregates. This early for-
mation of the mesoscopic cellular pattern is observed by the
formation of particle-free voids in a suspension at up to ¢t ~
400. As these voids tend to expand with time due to the
continuous rearrangement and coalescence of structures, siz-
able clusters are eventually formed. A suspension then becomes
nearly steady-state at ¢ > 1400. Note that the particle motion
within structures seems to slow down at ¢ =~ 400 for both
volume fractions, and the structures do not evolve significantly
after ¢ = 1400.

The kinetics of the suspension evolution is then quantified
by the ensemble-averaged root-mean-square (RMS) particle
velocity uyms. Fig. 2 shows the RMS velocity at different volume
fractions as a function of time. As soon as the electric field is
applied, the particle motion instantaneously arises as a result
of dipolar interactions between particles. Since particle pairing
due to the dipolar or dielectrophoretic effects is inherently
stable, the particle velocity continues to decrease over time

This journal is © The Royal Society of Chemistry 2022
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Fig. 1 The temporal evolution of the particle distributions in the x—y plane in a periodic cell of dimensions L, x L, x L, = 402 x 20. The panel (a) is for
¢ =15%, and the panel (b) for ¢ = 30%. The figures at the far right in each panel illustrate the three-dimensional particle distributions at t = 6000 or steady

state.

~ 0.0017

Fig. 2 Temporal evolution of the root-mean-squared (RMS) velocity of
particles for various volume fractions. It is found that the suspensions
become steady state when u,ns ~ 0.0017.

until the particle motion almost ceases at long times. However,
there is a distinct difference in the decreasing trend of u,, for
different regimes of volume fractions. For dilute regimes, such
as ¢ < 20%, there are two characteristic slopes as seen for
¢ =10% in Fig. 2 - an initial gentle slope followed by a steeper
slope after t ~ 100. The initial gentle slope represents a slow
decay of the velocity, indicating the rapid formation of particle
chains along the field direction. The following steeper slope
represents a rapid decay of the velocity, corresponding to the
rearrangement and coalescence process of the chains, which
results in the formation of thicker columnar structures, as seen
in Fig. 1(a). However, beyond semi-dilute regimes, roughly for
¢ > 25%, there is no initial gentle slope, and the RMS velocity
starts to rapidly decrease from the beginning. It again suggests
that for the semi-dilute and concentrated regimes, the particles

This journal is © The Royal Society of Chemistry 2022

tend to undergo the formation of larger structures directly
without forming any initial particle chains, which is consistent
with the observations in snapshots in Fig. 1(b). It is worth
noting that the suspension reaches an almost steady state when
Ums & 0.0017 as the structures barely evolve and move,
although there are very small particle motions within the
structures. Hereinafter, we denote the steady-state when
Urms < 0.0017 in a suspension.

To quantify the formation kinetics of the suspension struc-
tures, we calculate the mean cluster size Sy, as a function of
time, which was given by See and Doi*® as follows

Smlt) = ¢ D NE() 6

where N,(t) is the number of clusters at a certain time ¢ and N
is the number of particles in the kth cluster. The cluster
statistics are computed by the connectivity matrix method
based on the algorithm developed by Sevick et al.®” In this
method, individual clusters are identified by directly-connected
and indirectly-connected particles within a cluster. Particle
pairs are considered as directly-connected when the separation
distance is within a criterion of |R|/a < 2.0075. A search for the
directly-connected and indirectly-connected particles continues
until the individual clusters are identified, given the fact that
every particle within a cluster should be connected, either
directly or indirectly. The number and size of clusters are then
calculated.

Fig. 3 shows a temporal evolution of the mean cluster size
computed by eqn (5) for various volume fractions. For a
reference, the dashed line for S,, = 2 was added to represent
a particle pair from which the time scale of the particle pairing
can be estimated at each volume fraction. The characteristic
time scale of particle pairing decreases with volume fraction
due to the smaller average separation distances between parti-
cles in initial random configurations as a volume fraction is
increased. At ¢ < 20%, the mean cluster size appears to
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Fig. 3 Temporal evolution of the mean cluster size S, for various volume
fractions. The dashed line indicates the time scales of particle pairing in the
field direction at each volume fraction.

increase following a power-law function after S,, > 2 before
reaching a plateau. The exponent of the power-law function
slightly increases with volume fraction in this range of volume
fractions. Interestingly, the steady-state value of S, increases a
bit larger from ¢ = 10% to ¢ = 15% and also from ¢ = 20% to
¢ = 25% than from ¢ = 15% to ¢ = 20%. These observations
imply the probabilities of transitions in structural formation
among these volume fractions. At ¢ > 30%, each curve starts
with an initial small power-law exponent followed by a much
higher power-law exponent before reaching a clear plateau of
the mean cluster size. As a volume fraction is further increased,
these power-law exponents get larger, and the mean cluster size
reaches a plateau much faster.

Now, we proceed to presenting the multiscale characteristics
of the structural formation at three different scales, namely
microscale, mesoscale, and macroscale.

3.2 Microscopic measure

To provide a microscopic (particle-level) measure or micro-
structural information, we first measure the coordination
number Z, which represents the average number of neighbor
particles in contact with a certain particle. Fig. 4(a) shows the
temporal evolution of the ensemble-averaged coordination
number (Z) at various volume fractions. The two different
growth behaviors are observed, where there is an initial fast
growth followed by much slower growth at longer times. The
inset of Fig. 4(a) shows the steady-state coordination number as
a function of volume fraction. As expected, it increases mono-
tonically with volume fraction and especially becomes an
almost linear function of volume fraction for ¢ > 15%.

More notably, suspensions exhibit interesting behaviors
with regard to the microscopic fluctuations. To this end, the
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Fig. 4 Temporal evolution of (a) the ensemble-averaged coordination
number (Z) and (b) the normalized coordination number fluctuation for
various volume fractions on log-log scale. Note that ¢, denotes the
standard deviation of the ensemble-averaged coordination number. The
insets show the time-averaged values of these variables over a steady state
as a function of volume fraction.

standard deviation o, of the ensemble-averaged coordination
number Z is calculated. Fig. 4(b) shows the temporal evolution
of the normalized fluctuation magnitude ¢,°/(Z) at various
volume fractions. This normalized fluctuation magnitude could
also be indicative of microscopic heterogeneity. To be more
specific, the microscopic heterogeneity can be referred to as the
variability in the coordination number. Initially, the fluctuation
decreases as the particles start to form particle chains or bonds,
which means that the degree of the microscopic heterogeneity
decreases. It then reaches the minimum at about the same time
when the average coordination number (Z) becomes almost
plateau, as seen in Fig. 4(a). Typically, the time at which the
fluctuation reaches the minimum decreases with volume frac-
tion. Once the minimum reaches, the microscopic fluctuation
exhibits an interesting behavior for different volume fractions.
At ¢ = 10%, the fluctuation shows a relatively strong variation

This journal is © The Royal Society of Chemistry 2022
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but stays near its minimum value. For 10% < ¢ < 40%, the
fluctuation starts to increase until reaching the steady plateau
with less variations compared to one for ¢ = 10%. This
fluctuation growth appears to result from the rearrangement
and coalescence of structures during the coarsening process
after the particle pairing process. At much higher volume
fractions (¢ > 40%), this growth trend depreciates due to the
strong particle loading effects. The inset of Fig. 4(b) shows the
time-averaged coordination number fluctuations over a steady-
state. Interestingly, the steady-state coordination number fluc-
tuation (ie., microscopic heterogeneity) exhibits a non-
monotonic variation with volume fraction. The microscopic
heterogeneity is enhanced with volume fraction and reaches a
maximum at ¢ = 20% followed by a subsequent decrease. It
suggests that there is a microstructural transition arising at
¢ = 20% at which the suspension reaches the most hetero-
geneous state at the microscale.

To further characterize the microstructure of a suspension,
we employ the fabric tensor concept, which was originally
introduced for the contact network of granular materials.*®*°
The fabric tensor A? can be computed at the particle level using

the following expression,*'>%>!
Np

Ap = Z n X n;, (6)
pa

where Ny, is the number of the particles in contact, n; is the unit
vector connecting the center of a particle to the center of its ith
bond neighbors, and ® denotes the dyadic product. The
system-sized fabric tensor A can be then derived by averaging
the particle-level fabric tensors over the particle ensemble,

1 N
A=A 7
N[; 7)

The isotropic scalar of the fabric tensor, defined by the trace
of A or tr A, indeed represents the average coordination
number. Subtracting this isotropic part from the fabric tensor

Soft Matter

(ie., { = A — (tr A/3)I) yields the deviatoric tensor {,*' which is
illustrative to quantify the microstructural anisotropy. When
the diagonal entities of the deviatoric tensor get smaller and
close to zero, particle bonds inside the structure exhibit less
preference of orientation in all directions, suggesting an iso-
tropic state. Fig. 5(a) shows the temporal evolution of the
diagonal entities of the deviatoric tenor { in three (x, y, 2)
directions at various volume fractions. Shortly after applying
the electric field to the most isotropic state at ¢t = 0, a suspen-
sion starts to deviate from its isotropic state at ¢ ~ 10, where (,,
increases and becomes positive, while ., and {,,, decrease and
become negative. The positive sign suggests that the orienta-
tion of particle arrangements is preferred in the field direction
for t > 10. At a specific time (which varies with volume fraction
within the range of ¢ = 110-300), {,, and {},, become minimum,
while (., becomes maximum. The suspensions at that specific
time are the most microscopically anisotropic at each volume
fraction.

Interestingly, after reaching the most anisotropic state, the
long-term behavior of (s, {,, and {,, appears to depend on
volume fraction. At a volume fraction of 10%, the long-term
variation of the deviatoric components is almost negligible,
meaning that the most anisotropic state continues to maintain.
That can be explained by the weak interactions between the
highly-anisotropic chain-like structures that are largely sepa-
rated and hence do not tend to coalesce and rearrange. This
explanation is also consistent with the cluster size in Fig. 3,
where the mean cluster size for ¢ = 10% remains around 10 at
steady state, which is the size of L,, as most structures are one-
dimensional chains spanned in the field direction due to very
weak chain-chain interactions. For 15% < ¢ < 30%, however,
the magnitude of {, {,, and {,, exhibits a noticeable decrease
before reaching a plateau. This decreasing period indicates that
the rearrangement and coalescence of the structures arise
during this period, leading to the microstructure being more
isotropic. For ¢ > 40%, the microscopic anisotropy does not
change over time once the most anisotropic state reaches.
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Fig. 5

(a) The diagonal components of the deviatoric tensor, (., {,,. (>, as a function of time for various volume fractions. Due to symmetry with respect

to the field direction, {,, ~ {,,. Note that the dashed line, dotted line, and solid line represent x, y, and z directions, respectively. (b) The time-averaged
diagonal components of the deviatoric tensor over a steady state as a function of volume fraction. A hon-monotonic behavior is observed for all three

components as a function of volume fraction.
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In this highly concentrated regime, once the suspension
reaches its most anisotropic state by forming a cellular network
with larger cells of particle clusters, structural evolution tends
to arrest without any further microstructural changes.

Fig. 5(b) shows the time-averaged deviatoric components
over a steady-state. In this figure, we observe a non-monotonic
behavior with volume fraction, which is also seen in the
coordination number fluctuation (microscopic heterogeneity) as
shown in the inset of Fig. 4(b). However, the deviatoric compo-
nents show the opposite characteristics to the microscopic
heterogeneity. While microscopic heterogeneity increases with
volume fraction up to ¢ = 20%, the degree of microscopic
anisotropy decreases with volume fraction and becomes mini-
mum at ¢ = 30% followed by a subsequent increase. It suggests
that there is a microstructural transition arising at ¢ = 30% at
which the suspension reaches the most isotropic state at the
microscopic level. The most isotropic state results from the fact
that the structure becomes much thicker in the x and y directions
at ¢ = 30%. This makes the particles bond with almost the same
number of neighbor particles in all directions. Increasing the
volume fraction beyond ¢ = 30% then results in microstructure to
be more anisotropic, while becoming more homogeneous.

3.3 Mesoscopic measure

Moving towards the next scale measure at the mesoscale
(particle clusters-level), we consider the number density fluc-
tuation as it could provide a measure for the mesoscopic
structural information of suspensions, especially mesoscopic
heterogeneity.>” The number density fluctuation can be readily
calculated at arbitrary cluster sizes.*****° In this calculation, a
probe cell of a fixed volume V is positioned arbitrarily in a
simulation domain, where the fixed volume V is chosen a priori.
In practice, the number of particles N, inside the probe cell
may differ from the expected value (N,) = ¢V/V,, where
V, = 4ma’/3 is the volume of a particle. Note that (N,) represents
the expected number of particles inside the cell or the mean
cluster size. Quantifying a local variation in the number density
of particles, the variance of N, (i.e., O'sz) normalized by the
expected value (N,) can give the number density fluctuation.
Fig. 6 shows the time-averaged number density fluctuation
over steady state as a function of volume fraction for five
different expected cluster sizes (N;). For all these five cases,
the mesoscopic fluctuations display a non-monotonic behavior
as a function of volume fraction. As increased with volume
fraction at ¢ = 10%, the maximum values are reached at
¢ =~ 30%, suggesting that the suspension becomes the most
heterogeneous state at the mesoscale at this volume fraction. As
seen in the steady-state particle distribution in Fig. 1, the
suspension exhibits a unique particle distribution at steady
state at this volume fraction, where there are well-separated
large clusters or aggregates that are densely packed with
particles. For ¢ > 30%, the mesoscopic fluctuation decreases
with volume fraction as the particles assemble into a cellular
network pattern with smaller particle-free voids. It should be
noted that the highly heterogeneous mesoscopic state could tie
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Fig. 6 The number density fluctuation averaged over a steady state as a
function of volume fraction. Five different expected values of (N,) are
considered, and all cases show the same non-monotonic trend with
volume fraction.

closely to the highly heterogeneous microscopic state due to
large variability in the coordination number.

3.4 Macroscopic measure

To provide a measure for the macroscopic response during the
structural evolution, we calculate the particle stress tensor ¥ in
a suspension. To leading order, the particle stress mainly
results from the dielectrophoretic force F°*°, which to leading
order is O(R™*). The resulting stress xF°"" then becomes the
leading order of O(R*). Note that the hydrodynamic contribu-
tion to the stress is of O(R™>), which corresponds to the leading
order of the gradient of eqn (4). The particle stress due to the
dielectrophoretic force F°FF is calculated by

P = —n(xF°"), (8)

where 7 is the number density of particles and x is the position
vector of a particle. The dielectrophoretic force between a pair
of particles can be expressed as FPFP = dnea® F:EoEy,**® where
the dimensionless third-order tensor F can be written in
indicial notation by

Fyr = f(A)(0R + S5R)) + GRS + h(ARRRy,  (9)

where R = R/|R| and 2 = 2a/|R|. The scalar functions f, g, and &
can be calculated using the methods of reflection for the
asymptotic results and corrected using the twin multipole
expansion when the particles are very close to each other.**®
To leading order for the particle stress, the scalar functions are
given by

_ 34 oy 3 _15.,
f) = 64),7g(ﬂ)— 64A,h(2)—642.

(10)
Fig. 7(a) and (b) show the temporal evolution of the normal
components of the particle stress tensor X in the transverse (x)
direction and the field (z) direction, respectively. For all volume
fractions, the transverse normal stress X%, remains negative

This journal is © The Royal Society of Chemistry 2022
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Fig. 7 Time evolution of the diagonal components of the particle stress
tensor XP. (a) %, and (b) 2, as a function of volume fraction. Note that
2P, ~ .. (c) The time-averaged X£,, £, and XZ, over steady state as a
function of volume fraction. (d) The particle pressure IT and the normal
stress difference Xf, — X2, over a steady state as a function of volume
fraction.

and becomes more negative after early plateau periods. The
time at which the magnitude of X%, starts to decrease gets
earlier with increasing volume fraction as a result of the
reconfiguration and coalescence of initially formed structures.
For the field normal stress ¥%,, the different temporal behaviors
are observed between ¢ < 30% and ¢ > 30%. For semi-dilute
and concentrated suspensions at ¢ > 30%, 3%, exhibits almost
the same trend as 3%,, while at ¢ = 30%, there is a slight go-up
before becoming more negative. However, for ¢ < 30%, X%,
exhibits a notable non-monotonic variation with time. It goes
up after the early short plateau periods. Especially, at ¢ = 10%
and 20%, X%, becomes positive, while it becomes negative again
at long times for ¢ = 20%.

Fig. 7(c) shows the time-averaged X%, and X%, over a steady
state as a function of volume fraction. Both normal stresses
exhibit a monotonic decreasing trend with volume fraction. As
expected, X%, ~ X5, due to symmetry with respect to the field
direction. As in the case of hard-sphere suspensions,® all
normal stresses are negative, but interestingly except for posi-
tive X%, at ¢ < 15%. This positive normal stress might result
from relatively strong compression in the field direction. For
the magnitude of the normal stresses, the transverse stresses
>, and Xf, are larger than the field stress X2, due to limited
particle motions in the field direction at steady state. To further
examine the macroscopic measure at steady state, Fig. 7(d)
shows the particle pressure IT = —1/3%% and the normal stress
difference X%, — X%,. Similar to the hard-sphere suspensions in
a shear flow,”>"? the particle pressure I is positive and mono-
tonically increases with volume fraction. The normal stress
difference becomes more negative with volume fraction and
then remains almost constant for ¢ > 25%. In other words, the
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normal stresses become more anisotropic with volume fraction
until its most anisotropic state is reached at ¢ ~ 25%. As the
volume fraction is further increased, however, the degree of
macroscopic anisotropy remains the same even though the
particle pressure keeps increasing. Interestingly, the highly
anisotropic macroscopic state arises when the structure
becomes less anisotropic at the microscale.

3.5 Effect of confinement

Lastly, we evaluate the effects of confinement on the multiscale
responses embedded in the suspension. Flat boundaries are
present at z = 0 and z = L, = 20a, where the periodic interactions
are prohibited in the field direction. The simulation method is
similar to our previous works.'>*> Fig. 8 shows the temporal
evolution of the suspension kinetics u,,s for both periodic
and confined domains. The RMS particle velocity in the con-
fined suspensions tends to decrease faster than for the periodic
ones. Similar to the kinetics in the periodic suspensions, the
steady-state seems to arise for the confined suspensions when
Urms ~ 0.0017 as the structures barely evolve. Fig. 9(a) and (b)
show the particle distributions at steady state in the x-y plane
for the periodic and confined suspensions, respectively. At
¢ = 15%, the confinement makes the suspension form more
sheet-like thin aggregates, which are also observed in the
previous studies.">'® Similarly, at ¢ = 30%, the steady-state
pattern of the confined suspension is far different from that of
the periodic one. Sizable clusters that are densely packed with
particles are well-separated for the periodic case, while a more
labyrinthine-like pattern is formed for the confined case. At
¢ = 45%, the confinement is likely to make the particle-free
voids in a cellular network pattern much smaller than for the
periodic case. Movies of periodic and confined suspensions at
each volume fraction are included in the ESL}

~ 0.0017

Periodic: ¢ =15%
Periodic: ¢ =30%
Periodic: ¢ =45%
Confined: ¢ =15%
Confined: ¢ = 30%
Confined: ¢ =45%

10' 10> 10°
t

Fig. 8 Temporal evolution of the root-mean-squared (RMS) velocity of
particles at three different volume fractions for periodic and confined
suspensions.
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Fig. 9 The steady-state particle distributions at three different volume
fractions: the panel (a) for periodic suspensions and the panel (b) for
confined suspensions. Movies of periodic and confined suspensions at
each volume fraction are included in the ESI.¥

The effects of confinement on the multiscale responses in
the suspension are investigated across length scales. For the
microscale, we again consider the coordination number fluc-
tuation and the deviatoric tensor at a steady state. As seen in
Fig. 10(a) and (b), no significant changes are observed in the
microscopic responses at least for the current degree of con-
finement, although the coordination number fluctuation is
slightly reduced by confinement. However, for the mesoscale,
there is a noticeable change due to confinement. Fig. 10(c)
shows the number density fluctuations at steady state for the
periodic and confined suspensions. The confinement seems to

b —
(a) —A— Periodic ( ) Periodic:
- = & - = Confined 3 Periodic: §,
0.8 Periodic: §
0.5¢ - -4 - - Confined: ézxx
- -4 - - Confined: §,
N - - < -~ Confined: {_
x 0.7 _p
o N
o
0 F
0.6
4 g
0.5 s " N
0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5
(© @)

—O— Periodic: IT

Periodic: X7 -X7,
-- - - Confined: IT

- - % - - Confined: X’ -2}
-

10 Periodic
- - == Confined 0.04

0.1 0.2 0.3 0.4 0.5

Fig. 10 Effects of confinement on multiscale responses. Microscale:
(a) the time-averaged coordination number fluctuation and (b) the time-
averaged diagonal components of the deviatoric tensor at steady state.
Mesoscale: (c) the number density fluctuation at steady state averaged
over five expected values of (N,) = 20, 30, 40, 50, 60. Macroscale: (d) the
particle pressure IT and the normal stress difference X§, — 22,
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primarily alter the mesoscopic response, specifically affecting
the mesoscopic heterogeneity. Unlike the periodic suspension,
where there is a non-monotonic behavior of the fluctuation
with volume fraction, the confined suspension shows an almost
monotonic decay of the fluctuation with volume fraction.
Indeed, the confinement tends to diminish the mesoscopic
heterogeneity and eventually removes the most mesoscopically
heterogeneous state at ¢ ~ 30%. For the macroscale, no
significant changes are again made by confinement, as can
be seen in the particle pressure and the normal stress differ-
ence in Fig. 10(d). It should be noted, however, that the normal
stress difference seems to continue to decrease even after
¢ = 25% for the confined suspension, while that of the periodic
suspension stays almost constant after ¢ = 25%. These con-
finement effects could suggest that the macroscopic response
seems to link more to the mesoscopic features than the micro-
scopic ones, for which detailed investigations will be a subject
of interesting future work.

4 Conclusions

We studied the multiscale characteristics of the structural
formation in a suspension of dielectric spheres in an electric
field from dilute to concentrated regimes using large-scale
particle simulations. For the current simulation model, we
used the fast smooth particle mesh Ewald algorithm to account
for dipolar interactions and hydrodynamic interactions (cap-
turing both near-field and far-field electric and hydrodynamic
interactions) for large systems over a long time.'>*° The
kinetics of structural evolution is studied by the RMS particle
velocities and mean cluster size. There is a distinctive
difference in temporal behavior of structural kinetics between
the regimes of volume fraction. Unlike the dilute regime
(¢ < 25%), beyond the semi-dilute regime (¢ > 25%), the
particles tend to undergo the formation of larger structures
directly without the initial formation of particle chains, even-
tually forming a large cellular network pattern.

At the microscopic level, the degree of structural anisotropy
is evaluated by the deviatoric tensor based on the fabric tensor.
The temporal behavior of these parameters is shown to depend
on volume fraction. Although the initial increasing trend of
anisotropy before reaching the most anisotropic state occurs
for all volume fractions, their long-time behavior after this most
anisotropic state varies with volume fraction. For a volume
fraction as small as ¢ = 10%, the long-time variation of this
state is negligible due to very weak interactions between highly
anisotropic chains that are largely separated. For 15% < ¢ <
30%, the rearrangement and coalescence arise within struc-
tures to recover microscopic isotropy. In concentrated regimes
(¢ = 40%), the long-term structural evolution tends to arrest
without any further changes in the microstructural features. At
steady-state, the degree of microscopic anisotropy decreases up to
¢ = 30% and then slightly increases as a volume fraction is
further increased. The degree of microscopic heterogeneity is also
evaluated by the coordination number fluctuation. Interestingly,
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it also exhibits a non-monotonic ¢-dependence but follows the
opposite trend to microscopic anisotropy. The degree of hetero-
geneity sharply increases up to ¢ ~ 20% followed by a gentle
decrease.

For a mesoscale measure, the degree of structural hetero-
geneity was measured by the number density fluctuation, which
also displays a non-monotonic variation with volume fraction.
Similar to the microscopic heterogeneity, the degree of meso-
scopic heterogeneity increases up to ¢ = 20% or ¢ = 30% and
then decreases as a larger cellular-like network pattern is
formed.

For a macroscopic measure, the particle-induced stress field
was computed. Most of the normal stresses are negative and
become more negative as approaching a steady state. However,
the field normal stress initially becomes less negative for
¢ < 30% and even becomes positive for ¢ = 10%. For semi-
dilute and concentrated suspensions (¢ > 30%), it still exhibits
a decreasing trend as approaching a steady state. At steady-
state, the normal stresses become more anisotropic with
volume fraction and reach the most anisotropic state at
¢ =~ 25%. However, it remains almost at that state for
¢ > 30%, while particle pressure keeps increasing.

The present multiscale observations suggest that there is a
transition in the multiscale responses at ¢ =~ 30%. At this
volume fraction, the steady-state suspension structure is shown
to be the most isotropic at the microscale, while its stress field
is the most anisotropic at the macroscale. In addition, the
heterogeneity of suspension structures becomes maximum at
this volume fraction at both microscale and mesoscale.
Although there clearly seems a mutual physical consequence
that influences each other among three length scales at
¢ = 30%, such investigation will be included in future work.

Lastly, we explore the effects of confinement on structural
formation. It should be noted that we excluded the DEP
interactions between the particles and the boundaries. The
confinement seems to effectively screen the mesoscopic
response, while there are slight changes at the microscale. This
screening effect is clearly observed at the transitional volume
fraction, ¢ ~ 30%, where the strong mesoscopic heterogeneity
disappears. This mesoscopic response via confinement appears
to strongly affect the macroscopic stress anisotropy that keeps
increasing with volume fraction, unlike the periodic suspen-
sion where it increases only until ¢ ~ 25%. The confinement
effect on the mesoscopic and macroscopic features could
suggest that the suspension has a more direct link between
the mesoscale and macroscale, but detailed investigations will
be included in future work. Nonetheless, the current multiscale
understanding of structural formation can lead to control
strategies for practical applications of electric-driven suspen-
sions, such as for ER fluids.
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