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Abstract
We prove three-dimensional Worsey—Farin refinements inherit their parent triangulations’
shape regularity.
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1 Introduction

Three-dimensional Worsey—Farin splits were first introduced in [15] to construct low-order
C! splines on simplicial triangulations, and they have been extensively studied since then;
see for example [12]. Recently it has been shown that smooth piecewise polynomial spaces
on Worsey—Farin splits (and related ones) fit into discrete de Rham complexes. [5, 7-10].
These results are further applied to analyze convergence, stability and accuracy of numerical
methods for models of incompressible fluids on theses refinements [3, 4, 11]. Therefore,
it is necessary to discuss the properties of these refinements, especially in the context of
approximation and stability properties of the corresponding discrete spaces. One critical
geometric property for approximation theory is the shape regularity of the underlying mesh.

The shape regularity of Worsey—Farin splits are required to ensure optimal-order and
uniform interpolation estimates in [12, Theorem 18.15], [1, Theorem 6.3], [14, Theorem
6.2], and [13, Theorem 8.14]. Stability estimates of a finite element method in [6] defined
on Worsey—Farin splits also require regularity of the refined triangulation. The references
[12, Page 515], [1, Remark 14], and [2, Page 54] explicitly conjecture that Worsey—Farin
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splits of a family of shape regular meshes remain shape regular. However, to the best of our
knowledge, a proof of this result has not appeared in the literature. In this note we fill in this
gap.

In [12, Lemma 4.20] and [11, Lemma 2.6], the relationship between the shape regularity
constant of Powell-Sabin splits and the parent triangulations is shown. Namely, this result is
proved by establishing bounds of the angles of each macro triangle. Hence, it is natural to
focus on the dihedral angles in the three-dimensional Worsey—Farin case. We first prove the
dihedral angles are bounded by quantities that only depend on the shape regularity of the
original mesh (see Lemma 2.6 below). Using this result we prove the crucial result that the
split points of each face F in the triangulation is uniformly bounded away from 0 F’; see
Lemma 3.3. From this result, the shape regularity of Worsey—Farin refinements is then
shown.

This paper is organized as follows. In Sect. 2, we recall the Worsey—Farin refinement of
a three-dimensional simplicial mesh and present some notations to better illustrate our main
analysis. In Sect. 3, we show the shape regularity of Worsey—Farin splits is solely determined
by the shape regularity of the parent mesh.

2 Preliminaries
2.1 Geometric Notations and Properties

We first present some basic definitions regarding the geometric properties of a tetrahedron,
see [12, Definition 16.1-16.2] for more details.

Given a tetrahedron 7', we denote by (T ) the set of m-dimensional simplices of 7. For
example, 2(7T') is the set of four faces of T', and 1 (T') is the set of six edges of T'. Let pr be the
diameter of the inscribed sphere St of T, which is the largest sphere contained in 7'. We call
the center of S7 the incenter of 7', denoted by z7, and call the radius of S7 the inradius of 7',
equal to p7/2. The sphere St intersects each face F of T at a unique point, z7, 7. We note that
z7,F is the orthogonal projection of the point z7 to the plane that contains F (i.e., the vector z7
- zr,F isnormalto F). Finally, welet A7 = diam(T).

The following two propositions are well-known results of tetrahedra. To be self-contained
we provide their proofs.

Proposition 2.1 For a tetrahedron T, there holds
pr = 6|T|/N |F])
F&y(T)
Proof Consider the refinement of 7' obtained by connecting the incenter of T to its vertices.
The resulting four subtetrahedra fill the volume of 7', and thus,

L pr
[T| = _|F1ZZ,
Fepr) 3 2

which gives the result.

Proposition 2.2 Given a tetrahedron T, let x be any vertex of T and Fy be the face of T
which is opposite to x. Let Py be the plane containing Fy, then for any point a B int(T'), we
have

dist(x, Py) > dist(a, Py). 2.1)
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Fig.1 A representation of the dihedral angle

In particular,
dist(x, Px) > pr. 2.2)

Proof Since the point @ @ int(7) and Fy is a face of T', @ and F form a tetrahedron 7 @ 7.
Therefore,

%IFxIdist(x, Py)= |T|> IT| = 3hFx|dist(a, Px),

which immediately gives (2.1). Let be the line containing zr and z7,F | Let intersect Srat
a = zr,r , Thena B int(T) and dist(a, Px) = |la,zr,r ]| = pr. Hence, (2.2) follows
' from (2.1).

We will also need the following result that bounds dist(z7, F, d F) from below using the
dihedral angles.

Lemma 2.3 Let T be a tetrahedron, and for each face F B »(T), let zr,F denote the
orthogonal projection of the incenter of T onto F. Let a. be the dihedral angle of T with
respect to e B 1(T). We have

1+
mindist(z7 7, 0F)> min PT_ 1F c0s(@) 2.3)
Feo(T) e (1) 2 1- cos(ae)

Proof We use the short hand notation depicted in Fig. 1. In particular, z denotes the incenter of
Tand F B;2(T),i = 0,...,3 denote the faces of 7. Let z; be the orthogonal projection of z
onto the plane containing F° and note that |[z, z;]| = p7/2. We need to find a lower bound
for dist(zx, 0 Fi) (k = 0,...,3) and without loss of generality we consider the case k = 0.
To this end, lete; = dFpNndF,i = 1,2,3 and furthermore let ; be the line containing e;.
Let y; be the plane determined by the points z, zo, and z; and let v; = ; ny;. Since ; B [z, z;]
for j = 0, i, we have the line ; is perpendicular to the plane y;, and thus ; & [v;, z;] for j =

0, i. This implies

dist(z;, i) = |lzj,vill, j = 0,i, and ae, := Blzovizi = Bzvizo + Bzv;z;.

Next, note the properties [z, z;] B [z}, vi] for j = 0,7 and |[z z;]| = p7r/2 imply that the
triangles [z, v;, zo] and [z, v, z;] are congruent (see Fig. 1b). Consequently, Bzv;zo =
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Bzvizi = Qe /2 and so

i )= a1 = pf 2 _ pr 1+ cosfae,)
dlSt(ZO;l) = |[ZO/ Vl]l = tW 27 W. (24)

The result now follows after using dist(zo, 0 Fo) > 1min3 dist(zo, ;).
<i<

2.2 Worsey—Farin Splits

Let T;, be a three-dimensional triangulation without hanging nodes. We recall the construction
of the Worsey—Farin refinement of 7}, in the following definition [9, 12, 15].

Definition 2.4 The Worsey—Farin refinement of T;, denoted by T]';Vf , is defined by the fol-
lowing two steps:

1. Connect the incenter z7 of of each tetrahedron 7' B Ty, to its four vertices;

2. Foreachinteriorface F = TinTawith 71, > B Ty, letmp = LnFwhereL = [z7,, z7,], the
line segment connecting the incenter of 71 and 7>; meanwhile, for a boundary face F with
F = T ndwith T B Ty, let mr be the barycenter of . We then connect m r to the three
vertices of the face F* and to the incenters z7, and z7, (or z7 for the boundary case).

We see that this two-step procedure divides each 7' B T ,into 12 subtetrahedra; we denote
the set of these subtetrahedra by 7%/ .

The result [12, Lemma 16.24] ensures that the three-dimensional Worsey—Farin refinement is
well-defined; in particular, the line segment connecting the incenters of neighboring tetra-
hedra intersects their common face.

Definition 2.5 We define the shape regularity constant of the triangulation 7j, as

hr
€0 = max —.
TBTH PT
It is well-known that shape regularity of a mesh leads to bounded dihedral angles. To be
self-contained, we present a proof here.

Lemma 2.6 Fix T B Ty, and let a. denote the dihedral angle of T with respecttoe B 1(T).
We then have

[ cos(ae)| < 1- 062 Be R ((T). (2.5)

Proof Write T = [x1, x2, X3, x4], consider the edge e = [x3, x4], and let be the line
containing e; see Fig. 2. Let 4 be the orthogonal projection of x1 onto the plane y containing
the face [x2, x3, x4], and let B be the point on such that [x;, B] @ . Note that [x1, B] @ and [x,
A]® implies [A4, B] @. Since |[x1, A]| 2 pr by Proposition 2.2 and | [x1, B]| £ &, the dihedral
angle of e satisfies

. e, Al e
sinf(ae) = I Bl 2 nT > 0.

Therefore, we have | cos(ae)| = ~ 1 - sin’(ae) < 1- caz.
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Fig.2 Computing dihedral X.I
angles

3 Analysis of the Shape Regularity of Worsey—Farin Splits

In this section, we prove the main result of this note. We prove that the Worsey—Farin refine-

ment Th‘"‘f is shape regular provided the parent triangulationn T, is shape regular. To be more
precise, the following theorem will be proved:

Theorem 3.1 There exists a constant c1 > 0 only depending on co, the shape regularity
constant of Ty, given in Definition 2.5 such that
h
max "~ < -
ket PK

For an explicit formula of c1, see (3.4) and (3.1).

3.1 Local Geometry

To prove the above theorem, we need to consider two cases: interior and boundary faces of 7j,.

The case of boundary faces is simpler, so we first focus on the interior faces. For that case, it is

sufficient to consider two adjacent elements of the mesh 7. To thisend, let 71, 7> B Tj betwo
tetrahedra that share a common face Fo. We write 71 = [x1, x2, x3, x4], T2 = [x1, X3, X4, X5], SO
that the common face is Fo = [x1, x3, x4]. We further set 1 = [x2, x3, x4], and let z; be the
incenter of 7', i = 1,2 (see Fig. 3a). For i = 1,2, we denote by z;0 the orthogonal
projections of z; onto the plane containing the face Fy (see Fig. 3b). Likewise the orthogonal
projection of z1 onto the plane containing the face F1 is denoted by z1,1 (see Fig. 1a). We
denote the split point of the face Fo by mo, i.e., mo is the intersection of the line [z1, z2] and Fp.

3.2 The Position of Split Points and Bounded Dihedral Angles

The following proposition shows the relation between the split point 7o and the projections
zi0, 1 = 1,2 of the incenter on the face Fj.
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Xq

Fig.3 A representation of the Worsey—Farin splits

Proposition 3.2 The orthogonal projections z;,o (i = 1, 2) lie in the interior of Fo, and the
split point my lies on the line segment [z1,0, z2,0]. Furthermore, we have

dist(mo, 0 Fo) = mlln2 dist(z;,0,  Fo).
i=1,

Proof The proof of [12, Lemma 16.24] shows that m¢ lies on the line segment [z1,0, z2,0]
and that z; 0 (i = 1, 2) lie in the interior of Fp.

Let;, i = 1,2, 3 denote the lines that contain the three edges of Fy. Because mg lies on
the interior of the line segment [z1,0, z2,0], there exists a constant & @ (0, 1) such that mo =
Uz1,0+ (1 - 9)z2,0. Then by constructing similar triangles, we have

dist(mo, 0 Fo)

min3 dist(mo, i)

<is<
T dist(zio, )+ (1- O)dist(z20, 1)

L
¢ min dist(z1,0,;)+ (1 - ¥) min dist(z2,0, ) =
1<i<3 1 <i3

v

adist(z1,0, 0 Fo) + (1 - 9)dist(z2,0,0 Fo)
> mlin dist(z;,0, 0 Fo).

=1,

Combining Lemmas 2.3, 2.6 and Proposition 3.2, we have the following lemma which
describes the position of split points. We also include the case for boundary faces.

Lemma 3.3 Recall that mF is the split point of F constructed by the Worsey—Farin split
defined in Definition 2.4. For any face F of Ty,

dist(mp,0F) > ¢ min hr,

TBTh
F@y(T)
where
. -1 . -1 _ 2
¢z := min{c, (3co)™'}, € = (2¢p) I+ — 3.1
1+ 1-¢;?
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Proof (i) F isaninteriorfacelnthiscase F' B »(T)and F @ »(T)forsomeT, T Th.
Without loss of generality, we assume dist(z7, 7, 0 FF) > dist(z7,r, 0 F). Lemma 2.3 and
Proposition 3.2 tell us that

dist(mr, 0F) 2 dist(zr,r, 0 F)

. . PT J—FGGS(%Z}_ . pr T 2

- e?}lTI} 2 1- cos(ae) ~ e?}lTI)l 2 1 - cos(ae)
If cos(ate) 2 0, then m > 2, and if cos(a.) < 0, then l_cosz(ae) = o cog{ae)l >
—2_ by Lemma 2.6. Consequently,
1+ 1-¢42

. . PT 2
disttmp,0F)2 min — -1+ —— > chr.
ed (T ) 2 1 - cos(a,)

(i) F is a boundary face Let T = [x1,x2,x3,x4] and F = [x1, x3, x4], and consider an
arbitrary e B 1(F) with denoting the line containing e. Without loss of generality we
assume e = [x3, x4] and adopt the notation in the proof of Lemma 2.6; see Fig. 2.
Because m r is the barycenter of F', we have

1 1
~|F| = ~di .
SIFI = Sdistinr, )lel
Moreover, clearly
|F| = 1| | 1[x1, B]
= 5lelllv, B].

And therefore, since |[x1, B]| 2 |[x1, 41| > pr, (where we used (2.2) and the right
triangle [x1, 4, B]) we get

. 1
distmr,) = Mo, Bl > pr > (3e0) hr-

Since e B | (F) was arbitrary the result follows.

3.3 Proof of Theorem 3.1

Now we are ready to use Lemma 3.3 to prove Theorem 3.1.

Proof Let K @ 7"/, and let T @ Tj, such that K @ TW . We write T = [x1, x2, X3, x4], and
assume, without loss of generality, that e := [x1, x2] is an edge of both T and K. Let F
2(T) such that the split point mr is a vertex of K. In particular, e B 1(F)and K = [x,
x2, mr, zr], where z 7 is the incenter of 7. We further denote by , the line containing the edge
e.

We again adopt the notation in the proof of Lemma 2.6 and refer to Fig. 2. Note that [x1,
A] is normal to the plane y containing [x2, x3, x4], in particular, [x1, A] @ [4, x2]. Thus |e| =
[[x1, x2]] > |[x1, 41| > pr by (2.2). Now we have hx < hr,pr < le| £ hr and, by
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Lemma 3.3, the volume of K is

1p7 1
K| = 7, x |[x1,x2,mp]| = gprleldist(mp,)
> 1 p2dist(mp, dF) > ¢ in hrz cpd>x T k3. 3.2
P, dis (mp,dF) Be, min hrzogptz GhT (3.2)
FlPFp Co

Here we also used

min  h, 2 le|> p,
T &ty
FEy(T)

Additionally, each face of K is contained in a circle with radius % /2, and thus we have
h
|F| < i
F@r(K) F@y(K)

= nhy. (3.3)

Consequently, with Proposition 2.1, (3.2) and (3.3), we have

6|K]| czh3T c2hk
= >
pK IF1 = 2rcdi2 = 2nel
Fip(K)
Thus, setting
23
o= (3.4)

2

we have & < ¢,. Because K T;Vf was arbitrary, we conclude max X < ¢

K K
P kot p

4 Conclusion

We have settled a conjecture concerning the shape regularity of a Worsey—Farin refinement of
a parent triangulation. As described in the introduction, this is a crucial bound to obtain
approximation results for splines; see for example [12, Theorem 18.15]. However, based on
initial numerical calculations, the constant ¢; in Theorem 3.1 that relates the shape regularity
of'the parent triangulation (i.e., co) and its Worsey—Farin refinement is most likely not sharp. In
particular, the theorem suggest that c| scales like ¢ whijch could be quite large even for a good
quality parent triangulation. We hope that this work leads to further investigations and

sharper estimates will emerge.
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