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Abstract
We prove three-dimensional Worsey–Farin refinements inherit their parent triangulations’
shape regularity.

Keywords Worsey-Farin Splits · Shape regularity

1 Introduction

Three-dimensional Worsey–Farin splits were first introduced in [15] to construct low-order
C1 splines on simplicial triangulations, and they have been extensively studied since then;
see for example [12]. Recently it has been shown that smooth piecewise polynomial spaces
on Worsey–Farin splits (and related ones) fit into discrete de Rham complexes. [5, 7–10].
These results are further applied to analyze convergence, stability and accuracy of numerical
methods for models of incompressible fluids on theses refinements [3, 4, 11]. Therefore,
it is necessary to discuss the properties of these refinements, especially in the context of
approximation and stability properties of the corresponding discrete spaces. One critical
geometric property for approximation theory is the shape regularity of the underlying mesh.

The shape regularity of Worsey–Farin splits are required to ensure optimal-order and
uniform interpolation estimates in [12, Theorem 18.15], [1, Theorem 6.3], [14, Theorem
6.2], and [13, Theorem 8.14]. Stability estimates of a finite element method in [6] defined
on Worsey–Farin splits also require regularity of the refined triangulation. The references
[12, Page 515], [1, Remark 14], and [2, Page 54] explicitly conjecture that Worsey–Farin
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splits of a family of shape regular meshes remain shape regular. However, to the best of our
knowledge, a proof of this result has not appeared in the literature. In this note we fill in this
gap.

In [12, Lemma 4.20] and [11, Lemma 2.6], the relationship between the shape regularity
constant of Powell-Sabin splits and the parent triangulations is shown. Namely, this result is
proved by establishing bounds of the angles of each macro triangle. Hence, it is natural to
focus on the dihedral angles in the three-dimensional Worsey–Farin case. We first prove the
dihedral angles are bounded by quantities that only depend on the shape regularity of the
original mesh (see Lemma 2.6 below). Using this result we prove the crucial result that the
split points of each face F in the triangulation is uniformly bounded away from ∂F ; see
Lemma 3.3. From this result, the shape regularity of Worsey–Farin refinements is then
shown.

This paper is organized as follows. In Sect. 2, we recall the Worsey–Farin refinement of
a three-dimensional simplicial mesh and present some notations to better illustrate our main
analysis. In Sect. 3, we show the shape regularity of Worsey–Farin splits is solely determined
by the shape regularity of the parent mesh.

2 Preliminaries

2.1 Geometric Notations and Properties

We first present some basic definitions regarding the geometric properties of a tetrahedron,
see [12, Definition 16.1–16.2] for more details.

Given a tetrahedron T , we denote by m (T ) the set of m-dimensional simplices of T . For
example, 2(T ) is the set of four faces of T , and 1(T ) is the set of six edges of T . Let ρT be the
diameter of the inscribed sphere ST of T , which is the largest sphere contained in T . We call
the center of ST the incenter of T , denoted by zT , and call the radius of ST the inradius of T ,
equal to ρT /2. The sphere ST intersects each face F of T at a unique point, zT ,F . We note that
zT ,F is the orthogonal projection of the point zT to the plane that contains F (i.e., the vector zT

−  zT ,F is normal to F). Finally, we let hT =  diam(T ).
The following two propositions are well-known results of tetrahedra. To be self-contained

we provide their proofs.

Proposition 2.1 For a tetrahedron T , there holds
ρT =  6|T|/( 

     
|F|).

F�2 (T )

Proof Consider the refinement of T obtained by connecting the incenter of T to its vertices.
The resulting four subtetrahedra fill the volume of T , and thus,

|T| =  
1

|F|
ρT ,

F�2 (T )

which gives the result.

Proposition 2.2 Given a tetrahedron T , let x be any vertex of T and Fx be the face of T
which is opposite to x. Let Px be the plane containing Fx , then for any point a � int(T ), we
have

dist(x , Px ) >  dist(a, Px ). (2.1)
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Fig. 1 A representation of the dihedral angle

In particular,

dist(x , Px ) >  ρT . (2.2)

Proof Since the point a � int(T ) and Fx is a face of T , a and Fx form a tetrahedron T  � T .
Therefore,

3
|Fx|dist(x, Px ) =  |T| >  |T| =  

3
|Fx|dist(a, Px ),

which immediately gives (2.1). Let  be the line containing zT and zT ,F . Let  intersect ST at
a =  zT ,F . Then a � int(T ) and dist(a, Px ) =  |[a, zT ,F ]| =  ρT . Hence, (2.2) follows

from (2.1).

We will also need the following result that bounds dist(zT ,F , ∂ F ) from below using the
dihedral angles.

Lemma 2.3 Let T be a tetrahedron, and for each face F � 2(T ), let zT ,F denote the
orthogonal projection of the incenter of T onto F. Let αe be the dihedral angle of T with
respect to e � 1(T ). We have

F�2 (T ) 
dist(zT , F , ∂ F )≥

e 
min 

) 

ρT 1 +  cos(αe)
. (2.3)

Proof We use the short hand notation depicted in Fig. 1. In particular, z denotes the incenter of
T and F � 2(T ), i =  0, . . . , 3 denote the faces of T . Let zi be the orthogonal projection of z
onto the plane containing F and note that |[z, zi]| =  ρT /2. We need to find a lower bound
for dist(zk , ∂ Fk ) (k =  0, . . . , 3) and without loss of generality we consider the case k =  0.
To this end, let ei =  ∂F0 ∩ ∂F , i =  1, 2, 3 and furthermore let i be the line containing ei .
Let γi be the plane determined by the points z, z0, and zi and let vi =  i ∩ γi . Since i � [z, zi ]
for j =  0, i , we have the line i is perpendicular to the plane γi , and thus i � [vi , z j ] for j =
0, i . This implies

dist(z j , i ) =  |[z j , vi ]|, j =  0, i , and αei : =  �z0vi zi =  �zvi z0 +  �zvi zi .

Next, note the properties [z, z j ] � [z j , vi ] for j =  0, i and |[z, z j]| =  ρT /2 imply that the
triangles [z, vi , z0] and [z, vi , zi ] are congruent (see Fig. 1b). Consequently, �zvi z0 =
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�zvi zi =  αe /2 and so

dist(z0, i ) =  |[z0, vi]| =  
tan(α

/
 /2) 

=  
2 1 −  cos(α

e

i )
. (2.4)

The result now follows after using dist(z0, ∂ F0) ≥  
1
min

3 
dist(z0 , i ).

2.2 Worsey–Farin Splits

Let Th be a three-dimensional triangulation without hanging nodes. We recall the construction
of the Worsey–Farin refinement of Th in the following definition [9, 12, 15].

Definition 2.4 The Worsey–Farin refinement of Th , denoted by T w f , is defined by the fol-
lowing two steps:

1. Connect the incenter zT of of each tetrahedron T � Th to its four vertices;
2. For each interior face F =  T1∩T2 with T1, T2 � Th , let m F =  L∩F where L =  [zT1 , zT2 ], the

line segment connecting the incenter of T1 and T2; meanwhile, for a boundary face F with
F =  T ∩ ∂  with T � Th , let m F be the barycenter of F . We then connect m F to the three
vertices of the face F and to the incenters zT1 and zT2 (or zT for the boundary case).

We see that this two-step procedure divides each T � T into 12 subtetrahedra; we denote
the set of these subtetrahedra by T w f .

The result [12, Lemma 16.24] ensures that the three-dimensional Worsey–Farin refinement is
well-defined; in particular, the line segment connecting the incenters of neighboring tetra-
hedra intersects their common face.

Definition 2.5 We define the shape regularity constant of the triangulation Th as

c0 =  max 
hT .

h       T

It is well-known that shape regularity of a mesh leads to bounded dihedral angles. To be
self-contained, we present a proof here.

Lemma 2.6 Fix T � Th , and let αe denote the dihedral angle of T with respect to e � 1(T ).
We then have

| cos(αe)| ≤ 1 −  c−2     �e � 1(T ). (2.5)

Proof Write T =  [x1, x2 , x3, x4], consider the edge e =  [x3, x4], and let  be the line
containing e; see Fig. 2. Let A be the orthogonal projection of x1 onto the plane γ containing
the face [x2, x3 , x4], and let B be the point on  such that [x1, B] � . Note that [x1, B] �  and [x1,
A] �  implies [A, B] � . Since |[x1, A]| ≥  ρT by Proposition 2.2 and |[x1, B]| ≤  hT , the dihedral
angle of e satisfies

sin(αe) =  
|[x

1,
 B]| 

≥  
h

T ≥  c−1 .

Therefore, we have | cos(αe)| = 1 −  sin2(αe) ≤ 1 −  c−2 .
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Fig. 2 Computing dihedral
angles

3 Analysis of the Shape Regularity of Worsey–Farin Splits

In this section, we prove the main result of this note. We prove that the Worsey–Farin refine-
ment T w f is shape regular provided the parent triangulationn Th is shape regular. To be more
precise, the following theorem will be proved:

Theorem 3.1 There exists a constant c1 >  0 only depending on c0, the shape regularity
constant of Th given in Definition 2.5 such that

max 
hK ≤  c .

K�T w f K

For an explicit formula of c1, see (3.4) and (3.1).

3.1 Local Geometry

To prove the above theorem, we need to consider two cases: interior and boundary faces of Th .
The case of boundary faces is simpler, so we first focus on the interior faces. For that case, it is
sufficient to consider two adjacent elements of the mesh Th . To this end, let T1, T2 � Th be two
tetrahedra that share a common face F0. We write T1 =  [x1, x2 , x3 , x4], T2 =  [x1, x3 , x4 , x5], so
that the common face is F0 =  [x1, x3 , x4]. We further set F1 =  [x2 , x3 , x4], and let zi be the
incenter of T , i =  1, 2 (see Fig. 3a). For i =  1, 2, we denote by zi ,0 the orthogonal
projections of zi onto the plane containing the face F0 (see Fig. 3b). Likewise the orthogonal
projection of z1 onto the plane containing the face F1 is denoted by z1,1 (see Fig. 1a). We
denote the split point of the face F0 by m0, i.e., m0 is the intersection of the line [z1, z2] and F0.

3.2 The Position of Split Points and Bounded Dihedral Angles

The following proposition shows the relation between the split point m0 and the projections
zi ,0, i =  1, 2 of the incenter on the face F0.
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Fig. 3 A representation of the Worsey–Farin splits

Proposition 3.2 The orthogonal projections zi ,0 (i =  1, 2) lie in the interior of F0, and the
split point m0 lies on the line segment [z1,0 , z2,0]. Furthermore, we have

dist(m0, ∂F0) ≥  min dist(zi ,0 , ∂ F0).

Proof The proof of [12, Lemma 16.24] shows that m0 lies on the line segment [z1,0 , z2,0]
and that zi ,0 (i =  1, 2) lie in the interior of F0.

Let i , i =  1, 2, 3 denote the lines that contain the three edges of F0. Because m0 lies on
the interior of the line segment [z1,0 , z2,0], there exists a constant θ � (0, 1) such that m0 =
θz1,0 +  (1 −  θ )z2,0. Then by constructing similar triangles, we have

dist(m0, ∂F0) =  
1
min

3 
dist(m0, i )

=  
1≤ i ≤3 

θdist(z1,0, i ) +  (1 −  θ )dist(z2,0, i )

≥  θ 
1≤ i ≤3 

dist(z1,0 , i ) +  (1 −  θ)
1
min

3 
dist(z2,0, i ) =

θdist(z1,0, ∂F0) +  (1 −  θ )dist(z2,0, ∂F0)

≥  
i =1 ,2 

dist(zi ,0 , ∂ F0).

Combining Lemmas 2.3, 2.6 and Proposition 3.2, we have the following lemma which
describes the position of split points. We also include the case for boundary faces.

Lemma 3.3 Recall that m F is the split point of F constructed by the Worsey–Farin split
defined in Definition 2.4. For any face F of Th ,

dist(m F , ∂ F ) ≥  c2      min hT ,
h

F�2 (T )

where

c2 : =  min{c2 , (3c0)−1}, c : =  (2c )−1       −1  +  . (3.1)
1 +      1 −  c−2
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Proof (i) F is an interior face In this case F � 2(T ) and F � 2(T ) for some T , T  � Th .
Without loss of generality, we assume dist(zT ,F , ∂F ) ≥  dist(zT ,F , ∂F ). Lemma 2.3 and
Proposition 3.2 tell us that

dist(m F , ∂ F ) ≥  dist(zT ,F , ∂ F )
ρT 1 +  cos(αe) ρT 2

e�1(T ) 2 1 −  cos(αe) e�1(T ) 2 1 −  cos(αe)

If cos(αe) ≥  0, then 1−cos(αe ) ≥  2, and if cos(αe) ≤  0, then 1−cos(αe ) =  1+| cos(αe )| ≥
      by Lemma 2.6. Consequently,
1 +  1−c0

dist(m F , ∂ F ) ≥  
e 

min 
) 2

−1  +  
1 −  cos(αe) 

≥  c2hT .

(ii) F is a boundary face Let T =  [x1, x2 , x3 , x4] and F =  [x1, x3 , x4], and consider an
arbitrary e � 1(F ) with  denoting the line containing e. Without loss of generality we
assume e =  [x3, x4] and adopt the notation in the proof of Lemma 2.6; see Fig. 2.
Because mF is the barycenter of F , we have

3
|F| =  

2
dist(mF , )|e|.

Moreover, clearly

|F| =  
2

|e||[x1, B].

And therefore, since |[x1, B]| ≥  |[x1, A]| >  ρT , (where we used (2.2) and the right
triangle [x1, A, B]) we get

dist(m F , ) =  
3

|[x1, B]| ≥  
3
ρT ≥  (3c0 )−1h T .

Since e � 1(F ) was arbitrary the result follows.

3.3 Proof of Theorem 3.1

Now we are ready to use Lemma 3.3 to prove Theorem 3.1.

Proof Let K � T w f , and let T � Th such that K � T w f . We write T =  [x1, x2 , x3, x4], and
assume, without loss of generality, that e : =  [x1, x2] is an edge of both T and K . Let F �
2(T ) such that the split point m F is a vertex of K . In particular, e � 1(F ) and K =  [x1,
x2 , m F , zT ], where zT is the incenter of T . We further denote by , the line containing the edge
e.

We again adopt the notation in the proof of Lemma 2.6 and refer to Fig. 2. Note that [x1,
A] is normal to the plane γ containing [x2, x3, x4], in particular, [x1, A] � [ A, x2]. Thus |e| =
|[x1, x2]| >  |[x1, A]| >  ρT by (2.2). Now we have hK ≤  hT , ρT <  |e| ≤  hT and, by

1 2 3



1 ρT 1

1

T �T h

c2 2c c

c0
T T T T

T T

2

4
2

ρ ≥ T

K0 0

= ≥ .

3

c

h
h

ρ ρK K
1 1

0

46      Page 8 of 9 Journal of Scientific Computing (2023) 95:46

Lemma 3.3, the volume of K is

|K| =  
3 2 

×  |[x1, x2, mF ]| =  
12

ρT |e|dist(mF , )
≥  

12
ρ2 dist(m F , ∂F ) ≥  

12
ρ2 

 
min hT  

 
≥  

12
ρ3 ≥  

12
2

3 h
3 . (3.2)

F�2 (T )

Here we also used

min h  ≥  |e| >  ρ .
T �Th

F�2 (T )

Additionally, each face of K is contained in a circle with radius hK /2, and thus we have

|F| ≤
πhK =  πhK . (3.3)

F�2 (K )                  F�2 (K )

Consequently, with Proposition 2.1, (3.2) and (3.3), we have

6|K| c2h3 c2hK
K                            |F|       2πc3h2 2πc3

F�2 (K )

Thus, setting

c1 =  
2πc0 , (3.4)

2

we have hK ≤  c . Because K � T w f was arbitrary, we conclude max hK ≤  c .
K�T w f

4 Conclusion

We have settled a conjecture concerning the shape regularity of a Worsey–Farin refinement of
a parent triangulation. As described in the introduction, this is a crucial bound to obtain
approximation results for splines; see for example [12, Theorem 18.15]. However, based on
initial numerical calculations, the constant c1 in Theorem 3.1 that relates the shape regularity
of the parent triangulation (i.e., c0) and its Worsey–Farin refinement is most likely not sharp. In
particular, the theorem suggest that c1 scales like c5 which could be quite large even for a good
quality parent triangulation. We hope that this work leads to further investigations and
sharper estimates will emerge.
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