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Abstract

This paper expands the isoparametric framework to construct a stable, H ' -conforming,
and divergence-free method for the Stokes problem in two dimensions based on
the Scott-Vogelius pair on Clough-Tocher splits. The pressure space is defined
through composition, whereas the velocity space is constructed via a new divergence-
preserving mapping that imposes full continuity across shared edges in the isoparamet-
ric mesh. Our construction is motivated by operators and spaces found in isoparametric
C! finite element methods. We prove the method is stable, pressure-robust, and has
optimal order convergence. Numerical experiments are provided which confirm the
theoretical results.
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1 Introduction

Divergence-free finite element finite element methods for incompressible flows intrin-
sically enjoy many advantages such as conservation of mass, improved accuracy,
pressure-robustness (i.e., any modification to the source function by a gradient field
only effects the discrete pressure solution) and so on. These desirable benefits have
made the study of constructing stable, divergence-free methods an active area of
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research and many such schemes have been introduced, analyzed in the literature
(e.g.,[8,9, 17, 18, 20]).

While the construction of divergence-free methods is a well-studied area of
research, most of the existing methods in the literature are limited to polytopal domains,
and as a result, have limited accuracy due to geometric error when applied on domain
with curved boundary. However, there has been a recent trend to extend divergence-
free methods to more complex settings, in particular, on non-polyhedral domains [3,
10, 12, 15].

In this paper, we add to these contributions by constructing and analyzing a stable,
H'-conforming and divergence-free method using isoparametric elements. As far
as we are aware, this is the first isoparametric finite element scheme for the Stokes
problem with all three of these properties. The construction is based on the lowest-
order Scott—Vogelius method finite element pair defined on Clough-Tocher partitions.
In the affine setting, this pair takes the discrete velocity space to consist of continuous,
piecewise quadratic polynomials, whereas the discrete pressure space is the space
of discontinuous, piecewise linear polynomials. A Clough-Tocher refinement of a
triangulation is obtained by connecting the vertices of each triangle to its barycenter.

The construction in the present work is based on the recent paper [15], where a
divergence-free scheme based on Scott-Vogelius isoparametric elements is also con-
structed and analyzed. The finite element spaces constructed in [15] centers on two
main ideas. The first is to treat the Scott-Vogelius pair as finite element spaces defined
on macro-elements rather than on a refined Clough-Tocher triangulation. In particular,
local spaces are defined via quadratic mappings of a reference macro element, and
therefore these mappings do not depend on the geometry of the Clough-Tocher parti-
tion (cf. Fig. 1). The second idea in [15] is to utilize the Piola (divergence-preserving)
transform in the definition of the discrete velocity space rather than traditional com-
position. The end result is a stable, convergent, and divergence-free method for the
Stokes problem. However, due to the use of the Piola transform, the discrete velocity
space in [15] is only H (div)-conforming, namely, the discrete velocity functions are
not continuous in an O (k) neighborhood of the boundary.

To explain our contributions and to differentiate our construction from [15], let us
elaborate on the previous paragraph.

As is typically done in the isoparametric framework, the starting point is an O (h?)
polygonal approximation Q, of the physical domain and an affine simplicial trian-
gulation Ty of €. In the isoparametric regime, the computational domain, denoted
by Qp, is a O (h?) approximation to 2, defined via a piecewise quadratic mapping
Gy - Qh — Q. This quadratic mapping induces a partition Jj, = {Gh(T) T € Ty}
consisting of triangles with curved edges.

On the polygon 2, the Scott-Vogelius velocity space, defined via macro elements,
is given by

Vi =1{ve H)(Q) : bl; € PS(TYVT € Ty),

where T is the local Clough-Tocher triangulation of T, and ?S(f”) is the vector-
valued, quadratic Lagrange space on T’ . From Vj,, we build our isoparametric velocity
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space, given abstractly by
V= {¥i: veVy}

for some operator W. Traditional isoparametric elements define ¥ via composition, i.e.,
Vol = f)oFToFT_1|T,where Fr: T — T and Fz: T T are quadratic and affine
diffeomorphisms, respectively. This assignment of ¥ yields an H })(Qh) conforming
finite element space that generally enjoys optimal-order approximation properties [1,
4, 11, 16]. However, this transformation is not divergence-preserving, and as conse-
quence, its use on the Scott-Vogelius finite element pair mars the divergence-free and
pressure robustness properties of the resulting scheme.

On the other hand, the construction in [15] uses the Piola transform in the definition
of ¥ in a manner that preserves values at the nodal Lagrange degrees of freedom. In
symbols, this means (¥)|r(a;) = V|7(a;), where {a;} and {d;} are the locations
of the canonical quadratic Lagrange degrees of freedom of 7' and T respectively,
with a; = Gp(a;). This construction, along with a pressure space defined through
composition, yields a divergence-free and stable pair for the Stokes problem. However,
while the definition of W yields a weakly continuous velocity space, the use of the
Piola transform only preserves normal continuity across interelement boundaries, i.e.,
the resulting space is only H (div; €2j,)-conforming.

The key contribution of this paper is to construct a mapping ¥ via the Piola transform
with the additional property

on all interior (affine) edges e. This property ensures that the resulting isoparamet-
ric space is H '-conforming, which potentially leads to improved error estimates in
finite element schemes due to improved consistency. Furthermore, the properties of
divergence-preserving mapping yield a divergence-free and inf-sup stable pair for the
Stokes problem.

Our construction is based on isoparametric C! elements on Clough-Tocher splits
in [13]. There, C! elements on curved elements are constructed by considering an
enriched local reference space. A subspace of this enriched space is extracted and
mapped via composition to the computational domain in a way that preserves function
and gradient values on interior edges. Likewise, we add divergence-free polynomials
of higher degree to the reference macro element and extract and map a subspace via
a Piola transform to defined . We emphasize that, while we consider an enriched
space in our construction, the resulting spaces have the same dimensions as their affine
counterparts.

The rest of the paper is organized as follows. In the next section, we state some
properties of the isoparametric framework as well as the Piola transform and set the
notation that is used throughout the following sections. In Sect. 3, we present several
local spaces and state some of their properties. In this section, we also introduce the
local mappings between the local spaces, which eventually leads to the definition of
the local mapping that is used for the construction of the discrete velocity space (see
Theorem 3.8). Here, we also study the behavior of this local mapping including its
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stability and approximation properties. In Sect. 4, we define the global mappings, the
global spaces, and prove the inf-sup stability. In Sect. 5, we state the finite element
method, prove the divergence-free property and that the method is of optimal order
of convergence. Section3 discusses the implementation of the method and presents
numerical experiments which support the theoretical results.

2 Notation and preliminary results

In this section we set up the notation and state some preliminary results. Throughout
the paper, the letter C (with or without subscripts) denotes a generic positive constant,
independent of the mesh size and may change values at each occurrence. We also
use the letter n to denote an outward unit normal with respect to a boundary that is
understood from context.

Affine mesh

Let © C R? be a bounded, sufficiently smooth, open domain and assume that~ the
boundary of €2, 9€2, is given by a finite number of local charts. Denote by T, a
shape regular, affine triangulation of 2 such that the boundary vertices of 7}, lies

on Q and Q) = int( Ufes, ?) is an O(h?) polygonal approximation to §2, where

h = max; T, diam (7). Furthermore, we assume that T, has at most two vertices on
0.

Isoparametric mesh

We follow thf~: well established isoparametric framework [1, 4, 5, 11, 21].
Let G : 2, — € be a bijective map satisfying 1Gllyreo,) = € with the
additional properties that G|;(x) = x at all vertices of T, and G reduces to the

identity mapping on any triangle T € T}, with no more than one vertex on the bound-
ary. We then let G, denote the piecewise quadratic nodal interpolant of G such that
IDGhll 1oy = € and ||DG;1||W1,OO(f) <Cforall T € Ty.

We define the isoparametric triangulation and the computational domain, respec-
tively, as follows:

Ty = {Gh(T) - Te ih}, Q= int( L‘J, T)
TeTy

Local mappings

Denote by T the reference triangle with vertices (0, 0), (0, 1) and (1, 0), and for
T €Ty, let F5 : T — T be an affine mapping. With the aid of the mappings G, and
Fj, we introduce the quadratic mapping Fr : T - T, defined by Fr := Gp o F5,
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which satisfies [1, 4, 11]

IFrlymocsy < ChE 0<m <2, |Fp ! lwmoory < Ch7™ 0 <m <3,

2.1)
c1h? < det(DFr) < cah?,
with hy = diam(G;l(T)). It is important to note that Fr = Fj; at the vertices of f",

and indeed, F7 = Fj for all T e ’j'h with no more than one boundary vertex.
The following scaling result is found in [1].

Lemma2.1 Forv e H"(T) (m > 0), define v : T — R2 such that 9(%) = v(x) with
x = Fr(x). Then v € H™(T) and

m
1- 2(m—r) | »
olamery < ChE ™ Y 03" 1Bl ez
r=0

m

~ m—1

[0l gym 7y < Chy Z|"|Hr(f).
r=0

Next, we introduce a matrix-valued function A7 which arises in the Piola transform.
For reference, we state the well-known divergence and normal-preserving properties
of this transform [14], and we also state bounds of A7 and its inverse [15, Lemma 2.3].

Lemma 2.2 Foreach T € Ty, define the matrix-valued function At : T — R2*2 g5

DFr(%)

Ar®) = DR )

(2.2)

The Piola transform of a function v : T — R2 is the function v : T — R? given by

v(x) = Ar(X)v(x), x=Fr(x). 2.3)

There holds
. 1 — .

(le v)(x) = m(dlv v)(x), (24)

and
v-n
v-n= .
det(DFr)DF; i

The matrix At and its inverse satisfy the following estimates:

Chy™ m =0, 1

. m—1 -1 .
|AT|Wm,00(T) S ChT 5 (,l}’ld |AT |W”’*°°(T) S {0 m 2 2

2.5)
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In particular, A}l is the adjugate matrix of D Fr, and therefore the entries of A;l are
linear polynomials.

Clough-Tocher splits

Welet T¢! = {12 i }l.3=1 denote the Clough-Tocher triangulation of the reference triangle
T, which is obtained by connecting its vertices with its barycenter. We define the
corresponding triangulations on 7 € T, and T € Tj, respectively, as follows:

= {Fz(K): K eT"), T ={Fr(K): K eT}.
The globally refined triangulations are then given by
Jl=(K: KeT" 3T €Ty}, T¢={(K:KeT 3T €Ty).

Remark 2.3 We emphasize that the isoparametric framework is applied to Ty, not to
‘J'Z’, i.e., the isoparametric Clough-Tocher mesh T (or Tp) is constructed through

the reference macroelement 7 via the mapping Fr (or F7). In other words, we
first consider the isoparametric mesh induced by the mapping Fr (or Fj), and then
consider its barycenter refinement.

We let AS(]A”C’ ) denote the set of s-dimensional simplices of the local Areference
mesh 7. For example, Ao(T*") is the set of four vertices of 7¢!, and A{(T") is the

set of six edges of T¢'. Likewise, and with a slight abuse of notation, we denote by
A (T) the set of s-dimensional simplices of 7.

Function spaces

For a non-negative integer k, and for an affine, regular, and simplicial triangulation
Sp, we set

Pe(8n) = {g € L*(S) : qlx € Pr(K) VK € 8y},

where § = int( Ukes, K ), and Py (K) denotes the space of polynomials of degree
< k with domain K. We further set

PLS) = PeE) NH' (), P = Pr(Sp) N HA(S).
For example, ‘Pi(f”) is the local kth-degree Lagrange finite element space, and
fP,C(l(T” ) is the local kth-degree C' finite element space, both defined on the ref-

erence Clough-Tocher split. Analogous vector-valued spaces are denoted in boldface.
For example, P{(T¢") = [P{(T")]* and PL(T) = [PLT )]
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3 Local spaces on macro elements
We define the following spaces on the reference macro element Tet
P = P51, Vi=P5T), Q=P (T.

That is, P is the local C! Clough-Tocher element, V is the vector-valued, quadratic
Lagrange finite element space, and Q is the space of piecewise linear polynomials
without continuity constraints. A simple counting argument shows these spaces form
the exact sequence

R-S pey 65 Lo,
0z _ 9z
g axp’ A3)E| o R
v = curl Z forsome z € P (unique up to aconstant), and (ii) the mappingdiv : V — Q
is surjective. We also state well-known dimension formulas of these spaces (cf. [6]
and Lemma 3.1 below):

where glﬁﬁ = ( )T. In particular, (i) if v € Vs divergence—free, then

dmP =12, dimV =20, dimQ=09.
Analogous spaces on the affine macro element 7 (with T € Tp) are given by
V(T) = {0 € PS(T) : Blyjrpg, =0 Q) =Pi(T).

For T' € Tj, possibly with curved edge, we define V(T') to be the image of v by the
Piola transform (2.3), and Q(7T) the image of Q via composition i.e.,

V(T)={ve H(T): v(x) = Ar(®)d(X), Tb € V, and v|arnag, = 0}

T T(3.1)
Q(T) ={g € L*(T): q(x) =4(%), 3G € Q),
where x = Fr (x). Note that if T is affine, then A7 is constant, and therefore V(T) =
V(T) in this case.
Finally, variants of the above spaces with boundary conditions are given by

Vo=V nH\D, Qo = 0 N LY(T),
Vo(T) = V(T) N H(T), Qo(T) = Q(T) N L(T),
Vo(T) = V(T) N HY(T), Q0(T) =1{g € LA(T) : q(x) = §(%), 3G € O},

where L%(S ) is the space of L2(S) functions with vanishing mean.

The main goal of this section to construct an injective divergence-preserving oper-
ator that maps functions in V(T) onto a space of functions with domain 7 (with
T = G,(T)) and preserves function values on the common affine edges. In addition,
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the range of the operator inherits the approximation properties of V(7). This con-
struction is based on an enriching procedure used in the construction of isoparametric
C! elements which we describe next.

3.1 Alocal and enriched Clough-Tocher €' element

Here we summarize and extend the results of the isoparametric Clough-Tocher element
proposed by Mansfield in [13]. The essential idea of the construction is to consider an
enriched local space of P, and to extract and map via composition a 12-dimensional
subspace in a way that preserves function and gradient values on affine edges.

The enriched space consists of C! tricubic polynomials defined on the reference
Clough-Tocher split, i.e., C! piecewise quartic polynomials which are cubic along all
six edges in the split [2]. Adopting the notation in the previous section, this space is
given by

= (£ e PHTY) : 2| € P3(e) Vé € A(T)).

The following two lemmas state the dimension counts and degrees of freedom for the
spaces P and the enriched space IP. The first result is found in [6, Theorem 6.1.2] and
[7, Theorem 1]. The proof of Lemma 3.2 is implicitly shown in [13, Theorem 1]; we
provide a proof of this result in the appendix.

Lemma 3.1 The space P is 12-dimensional, and a function Z € Pis uniquely deter-
mined by the degrees of freedom (DOFs)

2(a), Vi) Vae Ao(T), (3.22)
07 n

X g Ve e Ay(D), (3.2b)
Bn@

where 1iv; denotes the edge midpoint of é, and h; denotes the outward normal of 3T
restricted to é.

Lemma 3.2 The space P is 15-dimensional, and a function 7 € P is uniquely deter-
mined by the DOFs (3.2a)—(3.2b) and

922 R .
~ m Ve € A\(T), 3.2¢
297 ( ¢) 1(T) (3.20)

where t; is the unit tangent of é, obtained by rotating ft; 90 degrees clockwise.
Consequently, the space

= {2 € P: Zvanishes on(3.2a) — —(3.2b)} C HX(T) N HY(T)  (3.3)

is three-dimensional, afunctton 2 e Wis uniquely determined by its values (3.2c),

and there holds P = P ) W.
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Lemma3.3 Let w € P3(T)|. o7 Such that W vanishes at the three vertices and the

three edge midpoints ofT ie, w@a =0 and w(mg) = 0 forall a € AO(T) and
ec A (T) Then, there exists a unique 7 € W such that

0

Z R
— = w.
on

aT

Proof Let w € P3 (YA"” )| be a function that vanishes on Ao(f") and edge midpoints
of T. Using Lemma 3.2, we uniquely determine Z € W by the conditions

922 oW .
— (i) = — (i, Ve € A(T).
atéaﬁé( é) até( &) 1(T)

For an edge ¢ € A(T), set Fs = (;’TZ - w)|@ € P3(é). Then by the properties of w

and the definition of W, s vanishes at three distinct points on é. Furthermore, with
an abuse of notation, 7 (/i1;) = 0. These conditions imply 7; = 0, and we conclude

%'ai = Wlyy- =

3.2 Alocal and enriched Lagrange C° element

Using the space W given by (3.3), we define the enriched (local) Lagrange space as
¥ =V + curl W. (3.4)

Proposition 3.4 The sum in (3.4) is direct, in particular, V N eurl W = {0}.

Proof If € V Ncurl W, then 9 € V and is divergence-free. Therefore ¥ = curl Z;
for some Z; € P. On the other hand because v € curl W, we may write o = curl 2,

for some 2, € W thus, curl 71 = curlz2, implying that z; = Z + ¢ for some c e R.
Because ¢ € P and 2 Z1 = ¢ on the DOFs (3.2a)—(3.2b) (by the definition of W) we
conclude z; = ¢ by Lemma 3.1. Therefore v = 0. O

3.3 Local mappings

We denote by {a;}; 10 2 anda; }10 | the sets of vertices and edge midpoints with respect to

< and T , respectively, labeled such that a; = F5 (a;). That is, {a; }10 | and {a,}

are the locations of the Lagrange DOFs for V and V(T), respectively.
Using Lemma 3.3 and [15, Lemma 3.3], we introduce three mappings.

Definition3.5 Let 7 € T, and T € T, with T = G,(T).

(i) We define the bijection ¥ : V(f”) — V(T) uniquely determined by the condi-
tions

Wrv)(a;) =v(@) i=1,2...,10, (3.5)
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where a; = G (a;) = Fr(a).
(i) We define the operator @ - V(T) — W uniquely determined by the conditions
3077
on

:A;l(\Ile)oFT—f)oFf)~A

£, (3.6)

aT
(iii) We define the operator Y7 : O(T) — O(T) as
(Yrq)(x) = G(Fj(%)).

Remark 3.6 Recalling the definition of the space V(T') (3.1), we see from (3.5) Athat
W is of the form (W7d)(x) = (Arvg)(x), where x = Fr(x) and 99 € V is
the unique piecewise quadratic function satisfying vo(a;) = A;l(&i)f)(&,-) (i =
1,2,...,10). We then immediately see that A;I\IITTJ oFr = 19 € f/, and more-
over, A;lfy oFj € Tg(f” ) because the entries of A;l are linear polynomials on
T. We conclude from properties of Wr that (:)T is well-defined by Lemma 3.3 with
W=A;' (¥rdoFr —oFyz)-1

Remark 3.7 From Lemmas 3.2-3.3, we see that (3.6) is satisfied if and only if

82C:)7-~ —1 ~ ~ ~ A A e
PP (i) = - (AT (‘I’TvoFT—voFf)~té>(mé) vé e Ay(T).
e

The construction of a global continuous space using isoparametric Piola mappings
is based on the following theorem.

Theorem 3.8 We define the operator \Ilg : V(T) — Hl(T) as
WET = Wrd — (Areurl ©;:9) 0 F;' Vi e V(D).
Then there holds
Vib|, =9, Veell, and ¥$b|yrraq, =0,
where EIT is the set of (affine) interior edges of T.
Proof Setz = ©:v € W, and write (cf. (3.6))

0z . - ~ 2
= %‘6? :AT](‘I’TI)OFT—I)OFT) ~t}37m.

By the definition of W7 and the properties of the Piola transform (cf. [ 15, Lemma 2.4]),
there holds

A;l(\IleJoFT—f)oFT)JAl

;=0 Veeé&l :={F;'(e): et}

e
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Consequently, because 2|3f = 0 there holds (@2) . ﬁ'af =0, and so

—

curl 2[; = A7 (Wrdo Fr —vo Fj)|, Véeé&l. 3.7
We then have for £ eff, with x = Fr(£) = F;(%),

WCi(x) = Wrd(x) — (Areurl 2)(%)
= W7i(x) — (Wb o Fr — 5o F;) @)
= v(x).

Thus, ¥$3|, = ¥], fore € EL.
Finally, if e := 0T N 02y, is a curved boundary edge, set e = G;] (e) = aT N 852;,
to be the corresponding affine boundary edge Then v|; = 0 by definition of vV (T),

and consequently ¥7v|, = 0. This implies curlz|e = 0, and therefore \Ilcv|e =
Y|, =0. O

Next, we shall derive additional useful properties of the operator \Ilg As an inter-
mediate step, we provide some estimates for the operator Wr.

Lemma3.9 Let T € ‘j'h and T € Ty, such that T = Gy, (7~"). There holds

178l 1) < Clollg gy and 15l < Cl¥rdllmg). (38

Moreover, if T is affine, so that T =T, then W7 = .

Proof The identity W7v = v on affine elements and the first estimate in (3.8) is shown
in [15, Theorem 3.7].

To prove the second estimate, we assume that 7" has a curved edge, for otherwise the
proof is trivial. Write (¥ 7)(x) = (Arvo)(x), where v € Vis uniquely determined
by the conditions 9¢(d;) = A;l (aj)v(a;)fori =1,2,...,10. Then astandard scaling
argument, along with Lemmas 2.2, yield

10 10

151317, < CZ|v<a,)| =C ) I(Ardo)@nl®
i=1
10

-2 N oAaN2 =204 12
< Chy E [vo(ai)|” = Chy~[lvoll,
i=1

(1)
We then apply Lemmas 2.1-2.2 and the Poincare inequality to conclude

19017y = CHNAT 21y 1AT B0 ) = CHATBOIZ, ) = CINBI -

]
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Lemma }.10 Let T € j'h and T € Ty such that T = Gh(T). There holds for all
ve V(T),

(i) WSV =V if T is affine.

(i) div¥$y = div U7

({iD) 150l 17y < ClIoll g .

Proof (i) If T is an (interior) affine element, then W79 = v by Lemma 3.9. Also, we
conclude from (3.6) and Lemma 3.3 that —— a() = 0, which implies (:)ff) =0.

Thus if T is affine, \Il V=V;0=1.
(i) The divergence-preserving property of the Piola transform (2.4) shows

div ((AT&H@)fﬁ) o F;l) = ( d’i?&ﬁ(éfﬁ)) o Frl =0.

1
det(DFr)

This identity immediately yields div \Ilcf) =divV¥ro.
(iii) Assume that 7" is a boundary triangle w1th curved edge, for otherwise the result is
trivial. Set Z = @ € W so that

WCo = Wb — (Arcurl?) o Fy . (3.9)

In light of (3.8), it suffices to estimate ||§1E2||§1 o

Using Lemma 3.2, equivalence of norms, and (3.6) we get

w212, ) = C(1920 2 0+ 11 5) = €l 2
< CIAT 120 g, (N9 0 FrI2, 4 + 15 0 F ||L2(T))
Thus, by Lemmas 2.1-2.2, (3.8), and the Poincare inequality
2
leurl 22, 5 < Ch3(I1% 79 0 FrI2, ;) + 150 Fpl2, ;)

< C(I97312, + 1512, 7)) = CHEIBIZ, .
Finally, we apply this estimate to (3.8)—(3.9) and again apply Lemmas 2.1-2.2:

||‘I’$1~’||H1(T) < 1¥rollgiry + C||ATcur12||H1(f)
=< C(”T)”Hl(f‘) + ||AT||W|oo(f)||cur12||1_11(f))

< C(Ioll g1 + 7 Ieurl 2l 1 7)) < ClIBl 7
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Lemma3.11 For T € T, and u € H3(T), let v € V(T) be the unique function
satisfying v(a;) = u(a;) with Gyp(a;) = a; fori = 1,2, ..., 10. Then, there holds

lw = WGol gmry < By " ullgsy  m =0, 1. (3.10)

Proof Write W3 = Wy — (Arcurl2) o F; ! with 2 = @53 € W. First, the result
in [15, Lemma 3.5] yields

lu — W7l gmry < hy "lulgsqy, —m=0,1. (3.11)
We also have by equivalence of norms,

leurl 2| 7y < Clleurd 2]l 257
< CIA7 (Wrbo Fr — oo F7)|}

”Lz(f")
< Ch3(le — W7o Frl?, - + &t — o Fz|

(3.12)

L2(T) L2(T))

where 1 € H3(f") satisfies #(x) = u(x). By a change of variables (cf. Lemma 2.1)
and (3.11),

-2 =12 4
li = Wrdo Fri2, ;) < Chy’lu = Wrill}s . < Chillullysqy.  (313)
By properties of v, standard approximation theory and Lemma 2.1,
e — Vo F5 ||L2(T) C|u|H3(T) < Ch} ||u||H3(T). (3.14)
Combining (3.12)—(3.14) yields
feurl 2l 0 ) < Ch N}
H™(T) = =T g3 (1)
and therefore by (3.11) and Lemmas 2.1-2.2,
lu — G5 gncry < lu — W7l mer) + [(Areurl 2) o Fy ey
< C(B ™ ullgary + hy "I Areurl 2] 1 7))
< C( ||u||H3(T) +h m”curlZ”Hm(T))
= ChT ||u||1-13(T)-
O
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4 Global Spaces and Inf-Sup Stability

Using the local mappings ¥r, \Ilg, and Y7, for T € Tj, we define the analogous
global mappings W, W€, and Y piecewise as

Ulp =Wy, WO =9l Yiri=7r, VT eT,.
The Scott-Vogelius pair on the affine triangulation Ty, is defined as
Vi={be H\Q): bz € V(T), ¥T € Ty},
On =1 € L§i(u) : Gly € O(T), VT € Ty).

Using this pair Vh x Q" and the global mappings W€, Y, we define the global
velocity space and global pressure space, respectively, as follows:

V}f ={v: v=VC, IWeV,, O):= {g: g=174q, 3G € Oy}

It follows from Theorem 3.8 that V,? - H(l)(Qh). We also define the H (div; 2j)-
conforming space (cf. [15, Theorem 4.2])

Vi={v: v=Wd, 35 € V},,}.

The following theorem shows that that conforming Stokes pair V,f X Qp is inf-sup
stable.

Theorem 4.1 There exists B > 0 independent of h such that

th (divv)g dx
i T E——— Bllglzz, Vg € On. 4.1)
veVE\(0) IVoll2 g,

Proof 1t is established in [15, Theorem 4.4] that the (nonconforming) pair Vj x Qy

is inf-sup stable. In particular, there exists y > 0 such that for a given g € Qj, there
exists v € V, such that

th (divv)g dx

ol = vllgllz2)- (4.2)
h

Let & € V), be the unique function such that v = W € V), and set v¢ = W€, By
Lemma 3.9-3.10, we have

div v€ = divWw s = div ¥ = div v,
and
19 112y < ClEl1 0y < CIVll @)
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Using these two identities in (4.2) yields

Jo, (div v9)q dx - Jo, (div v9)q dx

lvllgie, 1N a1 @)

vllglze e, =

This implies the desired result with § = y/C. O

5 Finite element method for the Stokes problem and convergence
analysis

We consider finite element approximations for the Stokes problem with no-slip bound-
ary conditions

—vAu+Vp=f inQ,
divu =0 in €,
u=0 onod,

where we assume the viscosity v > 0 is constant for simplicity. We assume the data
is sufficient regular, such that the exact solution satisfies (u, p) € H3(Q) x HX(Q).
Because 02 is assumed smooth, there exists extensions of the solution, still denoted
by (u, p) such that diva = 0 in R?, and

lull g3 ey < Cllullgs)y,  IPlpe@e) < Cllipla2g)-

We extend the source function via f = —vAu + Vp in R2.
The proposed method seeks (uj, pn) € V,f X Qp, such that

/ vVuh:Vvdx—/ (divo)ppdx = | f), -vdx Vo e VS, (5.1a)
Q, Q Q,

(divup)gdx =0 Vg € O, (5.1b)
Q)

where f) € L?(2,) is some computable approximation of f|q. It follows from the
inf-sup stability result in Theorem 4.1 and standard arguments in mixed finite element

theory that there exists a unique solution to (5.1). Moreover, the method yields a
divergence-free velocity approximation as the following lemma shows.

Lemma 5.1 Suppose u;, € Vf satisfies (5.1b). Then divuy = 0 in .

Proof Write u;, = W% for some # € V. Then, by (5.1b) and Lemma 3.10 we have

divap)gdx = | [div¥Cd)gdx = | (div¥i)gdx =0, Vg € Q.
Qp Qp Qp
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It is shown in [15, Lemma 5.2] that the right hand side of the above equation implies
that div W9 = 0 in €2,. Hence, div ¥ = div W9 = divu, = 0 in §2,. O

Next, we state that the method is well-posed and optimally convergent. In the light
of Theorem 4.1, Lemma 3.9, the next two theorems follow from standard arguments
of mixed finite element theory.

Theorem 5.2 There exists a unique solution (uy, py) € V;f X Qp satisfying (5.1).

Theorem 5.3 There holds
V@ = un)ll 20, < C(A* Nl gy + v LF = Falx:): (5.2)

where

Jo, (f = f4) - vdx

. XS i={veVl: dive=0}.
veXE\{0} IVoll2 g,

|f = fulx; =

The pressure approximation satisfies

Ip = pullr2,) < COR*lull gy + qienéf Ip —all2g, + I1.f = Fallzgy,)-
h
(5.3)

6 Numerics
6.1 Implementation aspects

In this section, we discuss the implementation of the proposed method, in particular,
the computation of a basis for the velocity space VC Recall this space is defined as
the i image of the operator W€ acting on the affine quadratlc Lagrange finite element
space V1. For any basis of V), restricted to some T € Ty, call {(o( )} the set {\Il (k)}
represents a basis of Vg restricted to T = Gh(T) € T3, In the following discussion,
we take <7)§k) to be the canonical nodal basis, and discuss the computation in the case
T has a curved edge; if T is affine, then \IIC (k) l(k) |7,
standard. We start with some notation and assumptlons.
To ease presentation, we set B = A;l = adj(DFr) : T — R2*2. Because

and so the computation is

Fr:T — Tisa quadratic mapping, we see that the entries of B are linear polynomials.
We denote the kth column of B by ﬂ(k), ie.,

k
B =
. Let ¢; denote the edge of T connecting (0, 0) and (1, 0), &> denote the edge of
T connecting (0, 0) and (0, 1), and é3 denote the remaining edge. Without loss of

generality and with an abuse of notation, we assume Fr(e3) C 9%y, i.e., €3 is the
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aio
ag

a2 as

ay

as

a1

Fig.1 Node labeling convention

pre-image of the curved edge of T. Also, let {a; }}21 denote the ten Lagrange DOFs
of V where, in order to ease the presentation, we assume a; = i, , 4y = M;,, and

az = (0, 0); see Fig. 1. We also assume ag, dg, djo € é3, so that, due to the boundary
conditions, these DOFs are not active. This labeling convention also implies that the
unit tangent on & is £;, = e® fork = 1,2, where e® = (81, 8x2)T. Furthermore,
let 12,- € f”, i = 1,2, 3, be such that I%,- does not contain &1'

Let ¢; denote the nodal Lagrange basis function of P$(T“") corresponding to the
node &, i.e., $;(a;) = &_,. Let ¢§") = ¢;e® (k = 1,2), so that {@j.")} is a nodal
basis of V. Likewise, we set @j € ?E(f”) as (,5/;()2) = ¢(x) with ¥ = F5(%), and
¢;k) = ¢je(k). Then {(b;k)} is a nodal basis of V (T').

C (k)
79

The construction of (p&k) =V is summarized in the following proposition.

Proposition 6.1 Let {7], T2} C W be the nodal basis functions of W satisfying
(cf. Table 1)

22,
07T

ong, 0t

22,
0T

ng)=26ij, ,j=12, ———
(me,) ij» b J Bné38t§3

(e;) = 0.

Define the functions Eﬁ-k) e Was

. 0Bj i . : . 1. . . .
G =t feri =120 5 = =@+ Y =0 ford <y <7,
J
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Then a nodal basis of V (T) is given by the formula
oV o Fr = Ar(B%@))¢; - curlz(k)) 6.1)

Proof Set z(k)

@T(o , so that, by definition of we,
o = w7 — (Arcurlz¥) o Fr 6.2)
where we recall the function \IIT(ﬁSk) € V(T) is uniquely defined by the conditions
\I:Tq;“(a,)— “(a,)_a,je i=1,2,...,10. 6.3)
By the definition of V (T'), we can write \IIT¢5.k) (x) = (ATilAfE-k))(i), for some 1/75»16) €

~ ~ (k
V. In particular, from (6.3), we see that 1/[5- - B® @ )¢ ;. Combining this identity
with (6.2) yields

w4\ o Fr = A7 % (@), (6.4)
o o Fr = Ar(B% (@), —curlz(k)) (6.5)

Notice that, due to the boundary conditions and labeling convention, there holds
¢j."’| o7 = 0for j =4,5,6,7and k = 1,2. This implies 25.") — 0 (cf. Remark 3.7),
and thus we conclude

o o Fr =Arp® )¢, forj=4,567 k=12

Hence, it remains to discuss the construction of 2(!( ) for j=12,3k=1,2.

J
Using Remark 3.7, the function z( ) is uniquely determined by the conditions

82 (k)

(k) —
i ane atA Gig,) =

3
at;,

~ (k ~(k A ~ .
(B(\IIT(p;. Yo Fr — % o Fp) -té,.)(m@,.) i=1,23

Due to the boundary conditions and labeling convention, the right-hand side expres-
sion is zero in the case i = 3. Thus, we have

2;]() = c&k)lr + c(k) (6.6)
Using the identity #;, = e fori = 1,2 and (6.4), we have

RN Bana a0y )
el = e (BAr@ng; - o) - o)
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Table 1 Formulas for nodal basis functions of W

x1(2xy — 1+ xl)(4xf —2x1xp — 2x% — X1 +2x2) on 121

1 = {x2(2xy — 1 +x1)(6x —6x2 + 1) on K3
(2xy — 1+ x1)(12x] +6xp — 5)(=1 +x] +x2)>  on K3
—x2(2x1 +2xp — 1)(6x1 — 6xp — 1) on K

2 = —x2(2x1 +x2 — DQ2x? +2x1x3 — 4x3 — 2x1 +x3) on K

(6x1 + 12x0 — 5)(2x] +xp — (=1 4+x| +x2)2  onK3

=2 (¢5(8% @) — Be®) - ) @)

ax;

d (. . . .
8_A<(Pj(Bi,k(aj) - Bi,k))(ai) i=1,2.
£

By the product rule and the property ¢;(a;) = 8; ; yields

0Q; 0 B;
(k) Dj A ~ ~ ik
cji = 3%, (@) (Bix(a;) — Bix(a)) — 3i,j8_)2i~
In particular, there holds
325® 9B
(k) ' A ik .
V= ——(aq;) =—=8; i—— forj=1,2. 6.7
Cjli aﬁéiat@i (a;) i,J 9% J (6.7)
because %(&i) = 0fori # j. The case j = 3 reads
922 09
(k) 3 A P3 A A ~
) — 5 (a) = ——(a)(B; — B ).
3,i aﬁéiatéi (ai) 9% (al)( i.k(az) l,k(al))
A simple calculation yields %%(&i) = —1fori = 1, 2, and therefore,
1 0B

) . .
c3; = (Bix(@) — Bix(as)) = 2 0%

. (6.8)

The statements (6.6)—(6.8) provide the formula for z;k), which combined with (6.5),
yields the desired result (6.1). O

6.2 Numerical experiments

To support the theoretical results, we compute the finite element method (5.1) on the
domain €2 = B1(0) and construct the source function such that the exact solution is

u = curl ((1 — x{ — x3)*sin(5x; + 2x2)),
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Table 2 Errors of the finite element method (5.1) with Q = B{(0), v = 101, and exact solution (6.9)

h lu—upl>  Rate  [V@—up)l,> Rae [p—pyl,2  Rate [divayl,
0.2000 2.938¢ — 01 6.144¢ + 00 2.001e + 00 6.422¢ — 13
0.1000 4.656e — 02  2.66 1.656¢ + 00 1.89  7.717¢ — 01 1.38 1.222¢ — 12
0.0500 5.795¢ — 03 3.01 4.729¢ — 01 1.81 2.919¢ — 01 140  6.504e — 13
0.0250 9.042¢ — 04 2.68 1.371e — 01 1.79 1.073e — 01 144 2174e—11
0.0125 1.171e — 04 2.95 3.527¢ — 02 1.96 2.613e — 02 2.04  6.509 — 11
0.00625 1.440e — 05 3.02 8.759¢ — 03 2.01 6.128¢ — 03 2.09  2.642¢ - 10
0.003125 1.788e — 06 3.01 2.177e — 03 2.01 1.522¢ — 03 2.01 5.873e — 10

Norms are taken with respect to the domain 2y,

1
p = x? 4 x5 4 sin(107 (x? 4 x3)) — 5 (6.9)

Table 2 lists the errors of the discrete solution on a sequence of refined quasi-uniform
meshes with viscosity v = 10!, The numerical experiments indicate second-order
convergence of the velocity and pressure in the H' and L?-norms, respectively, which
is in agreement with the theoretical results given in Theorem 5.3. In addition, we
observe third-order convergence of discrete velocity function in the L?-norm.

Appendix A. Proof Proof of Lemma 3.2

Proof Itis shownin[13, Theorem 1]thatifz € IP(f") vanishes on (3.2) then Z = O; For
completeness, we provide a proof of this result and in addition, show that dim P(7') =
15.

We first show dim P(f") > 15. To this end, we first consider the intermediate space

P(T):={% € (PZ(YA"“) 3, € P3(é) Vé € AT

Simple arguments show dimP¢(T) = 25. In particular, a function 2 € P°(T) is
uniquely determined by its values at the vertices in T¢ (4), its values at two interior
points on each edge (12), and its values at three interior points of each sub-triangle
).

Let ag denote the barycenter of T¢, and label the vertices Ao(f") = {&,0}?_ - We
also label 7¢ = {K }3 | such that g, is not a vertex of K Let E be the interior edge
in 7 that connects d;o to dg, and let a;1, di» be two interior points of the edge E,,
fori = 1,2,3. We set i1y, be a unit normal of Z,, and t[ be the unit tangent of Z,,
obtained by rotating 72y, 90 degrees clockwise.
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For a function 2 € P¢(T), we denote its restriction on K; by Z;. Suppose that
z € P°(T) satisfies the following 10 constraints:

07 07
Z’“( ai;) = Z’“( ap)  i=1,2.3, j=01,2,
(A.1)

8 07
= =3 (ao) == ! (ao)

with the convention Z4 = Z;. These constraints, with the continuity of the tangential
derivative on each ¢;, imply VZ%IZ = VZl'e We then have az1 (a ) = 3Z3 (a ) =

322 (do), where we used the continuity of Z in the last equality. Because (ao) =
/51

%(&0) and 88%(&0) = (ao) (again, by continuity of z), and because {t i 63}
£y 3

spans R2, we conclude V2, (ao) = V2,(dp). Combined with (A.1), we have V3, s, =

@22%. Similar arguments show @Ezlil = V%3 |21 ,and so 2 € C(T). Thus, imposing

the 10 constraints (A.1) on IP”(f") induces ]P’(f), and so dim IP’(f) > dim Pc(f") —10 =

15.

Next, suppose that Z vanishes at the claimed 15 DOFs (3.2). This implies that
z = °p, where i € P(T) N H& (T) with f1(ap) = 1, p is continuous, quadratic
Lagrange with respect to 7¢', and linear on eachedge ¢ € Ag(T). This actually implies
that p is continuous and linear with respect to T andso? = 2% pis cubic with respect
to T, e,z € (Pgl(T”). By Lemma 3.1, Z = 0, and therefore dim P(7) = 15, and
(3.2) is a unisolvent set of DOFs for }P’(f‘). .

Since (3.2) represents a unisolvent set ofADOFs for P(T'), we conclude from the
definition of W (T) that a fm}ction Z € W(T) is uniquely determined by the values
(3.2¢). In particular, dim W(T') = 3. . . .

On the other hand, by Lemma 3.1 and the definition of W(T'), inl (THNW(T) =
{0}, and so

dim (PN (T @ W(T)) = dim P§ (T) + dim W(T) = 124+ 3 = 15.

The desired result now follows from P§!(7¢) @ W(T') ¢ P(T) and dim P(T) = 15.
O
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