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EXACT SEQUENCES ON WORSEY–FARIN SPLITS

JOHNNY GUZMÁN, ANNA LISCHKE, AND MICHAEL NEILAN

Abstract. We construct several smooth finite element spaces defined on three-
dimensional Worsey–Farin splits. In particular, we construct C1, H1(curl),
and H1-conforming finite element spaces and show the discrete spaces satisfy
local exactness properties. A feature of the spaces is their low polynomial
degree and lack of extrinsic supersmoothness at subsimplices of the mesh. In
the lowest order case, the last two spaces in the sequence consist of piecewise
linear and piecewise constant spaces, and are suitable for the discretization of

the (Navier-)Stokes equation.

1. Introduction

An inherent feature of smooth finite element spaces, with respect to a general
simplicial mesh, is their high polynomial degree and complexity. For example,
C1-conforming finite element spaces necessitate the use of polynomials of at least
degree five and nine in two and three dimensions, respectively [3, 12]. Another
feature of smooth piecewise polynomial spaces is their complexity, as additional
smoothness is imposed on lower-dimensional simplices of the mesh. For example,
in three dimensions, C1 piecewise polynomials are C4 on vertices and C2 on edges
of the mesh [12, 18, 21].

Recently, the connection between C1 finite element spaces and stable divergence–
free (Stokes) pairs for incompressible flows has been emphasized through the use
of smooth, discrete de Rham complexes (cf., e.g., [5, 7, 9, 11]). The relationships
between distinct finite element spaces imply many of the attributes of smooth finite
element spaces (high polynomial degree and complexity) translate to divergence–
free pairs.

One way to mitigate the high polynomial degree and complexity of smooth finite
element spaces, and analogously divergence–free Stokes pairs, is to define the spaces
on certain splits (or refinements) of a simplicial triangulation; the added structure
of the split mesh offers additional flexibility not available on generic meshes. For
example, an Alfeld split of a simplex connects each vertex to its barycenter, thus
splitting each n-simplex into (n+1) subsimplices; this is commonly referred to as a
Clough–Tocher split in two-dimensions [3]. The polynomial degree of C1 spaces on
Alfeld splits is dramatically reduced from five to three in two dimensions, and from
nine to five in three dimensions. These C1 spaces are related to the divergence–
free Scott–Vogelius pair for the (Navier-)Stokes problem, where the velocity space
consists of continuous piecewise polynomials and the pressure space consists of
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discontinuous polynomials of one degree less [16]. On Alfeld splits, the Scott–
Vogelius pair is stable if the polynomial degree of the velocity space is at least the
spatial dimension [1, 7, 10, 20].

While reducing the polynomial degree, these finite element spaces defined on
Alfeld splits still have supersmoothness at low-dimensional simplices, e.g., the three-
dimensional C1 elements on Alfeld splits are C2 at vertices [7]. Moreover, there is
still a restriction of polynomial degree for the corresponding Scott–Vogelius pair,
which is especially limiting in three dimensions. These issues motivate the use of
other types of splits with more facets, in particular, the three-dimensional Worsey–
Farin split [12,19]. Similar to the Alfeld split, the Worsey–Farin split adds a vertex
to the interior of each tetrahedron and connects this vertex to its (four) vertices. In
addition, the Worsey–Farin split adds a vertex to each face of the tetrahedron and
connects this vertex to the vertices of the face and to the interior vertex. Thus, a
2D Alfeld split is performed on each face of the tetrahedron and the split produces
12 sub-tetrahedra (cf. Section 2 for the precise construction and definitions).

The goal of this paper is to construct finite element spaces with varying level
of smoothness defined on Worsey–Farin splits in three dimensions. We connect
several local finite element spaces defined on these splits through the use of a
discrete de Rham complex and show that the sequences are exact for any polynomial
degree. The exactness properties naturally lead to dimension formulas for the local
piecewise polynomial spaces. These dimension formulas appear to be new, even for
the C1 spaces, and of independent interest. We then construct unisolvent sets of
degrees of freedom for the spaces which lead to the analogous global spaces and
commuting projections. The last two spaces in the sequences are suitable for the
discretization of the (Navier)-Stokes problem.

Features of the proposed finite element spaces are their low polynomial degree
and lack of extrinsic supersmoothness. The lowest-order C1 finite element space
consists of piecewise cubic polynomials with respect to the Worsey–Farin trian-
gulation, and the accompanying Scott–Vogelius (Stokes) pair consists of spaces of
piecewise linear and piecewise constant spaces for the velocity and pressure, re-
spectively. We emphasize that, compared to the analogous spaces defined on Alfeld
splits, the polynomial degree is reduced by two. In addition, the degrees of free-
dom of the proposed spaces only use derivative information dictated by their global
smoothness, and therefore the spaces do not have added continuity restrictions
on lower-dimensional simplices in the mesh. Again, this contrasts with the finite
element spaces defined on Alfeld splits.

One of the properties of a Worsey–Farin split is the presence of singular edges,
i.e., edges that fall in exactly two planes in the mesh; cf. Figure 1. This is analogous
to two-dimensional singular vertices, i.e., vertices falling on exactly two straight
lines in a (two-dimensional) triangulation mesh. It is well known that in two di-
mensions, the divergence of piecewise smooth vector fields have a weak continuity
property at such points, and this intrinsic smoothness characterizes the discrete
pressure spaces in a Stokes/NSE finite element discretization [16,17]. Analogously,
we show that the derivatives of (continuous) piecewise polynomials have intrinsic
smoothness properties on singular edges. For example, the divergence operator
acting on the Lagrange finite element space has an alternating weak continuity
property on singular edges, and this affects the last space in the sequence (the
“pressure space”). Similar results, but in less generality, are shown in [22, Lemma
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Figure 1. Left: A triangulation with four tetrahedra and six ver-
tices with coordinates (0, 0, 0), (±1, 0, 0), (0,±1, 0), and (0, 0, 4).
The mesh has one interior singular edge with vertices (0, 0, 0),
(0, 0, 4) and indicated by the red dashed line. Right: The same
mesh, but vertex (1, 0, 0) is shifted to (2, 1, 0). The faces denoted
in blue and green are no longer co-planar, and therefore the edge
with vertices (0, 0, 0), (0, 0, 4) is not singular.

3.1] and [15, Section 6]. For the first time, we also characterize intrinsic smooth-
ness properties of the curl operator acting on the Lagrange finite element space at
singular edges (cf. Remark 6.6).

This paper is a continuation and nontrivial extension of [8], where smooth piece-
wise polynomial spaces are built on two-dimensional Powell–Sabin meshes. The
present work also has similarities with the recent work by Christiansen and Hu [2],
where low-order finite element de Rham complex are constructed on several differ-
ent meshes (splits). However, unlike this work, we build all of our finite element
spaces on a Worsey–Farin split and for general polynomial degree. One of the main
differences in the construction and the analysis between the current work and those
given in [2, 7, 8] is identifying weak continuity properties for both the divergence
and curl operator at singular edges. This necessitates the construction of smoother
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Nédélec-type spaces; cf. (2.5a)–(2.5d). Stokes pairs defined on Worsey–Farin splits
have also been analyzed in [22] using the quadratic Lagrange space for the velocity.
However, the pressure space in [22] was not explicitly characterized as we do in the
current paper.

The rest of the paper is organized as follows. In the next section, we provide the
notation and definitions used throughout the paper. In Section 3 we show that local
smooth finite element spaces satisfy exactness properties with respect to several
de Rham complexes. This is proved, in part, by using the exactness properties
of piecewise polynomials defined on two-dimensional Clough–Tocher splits. These
exactness properties naturally lead to dimension formulas for the local spaces, which
we state in Section 4. Next, we give unisolvent sets of degrees of freedom (DOFs)
for each space in Section 5 and show that the DOFs induce commuting projections.
Finally, in Section 6, we prove that the DOFs lead to global (conforming) finite
element spaces.

This paper is based on the second author’s Ph.D. thesis [13].

2. Preliminaries

Let Ω ⊂ R
3 be a contractible polyhedral domain. We assume we have a shape-

regular simplicial triangulation Th of Ω. For each T ∈ Th we let zT denote its
incenter, that is, the center of the largest inscribed ball contained in T . Let F =
T1 ∩ T2 be an interior face with T1, T2 ∈ Th. Let L be the line segment connecting
zT1

and zT2
; then we let {mF } = L ∩ F . Since we chose zT to be the incenters, we

can guarantee that mF exists. If F is a boundary face of Th, then we let mF be
the barycenter of F . For a simplex K, Δs(K) will denote the set of s-subsimplices
(i.e., the s-dimensional subsimplices) of K. More generally, if Fh is a collection of
simplices, then Δs(Fh) denotes the collection of s-subsimplices of all the simplices
in Fh. Moreover, if Fh is a simplicial triangulation of a domain with boundary,
then ΔI

s(Fh) denotes the collection of s-subsimplices of Δs(Fh) that do not belong
to the boundary of the domain.

For each T ∈ Th with T = [x0, . . . , x3], we let T a = {Ki, 0 ≤ i ≤ 3} with
Ki = [zT , x0, . . . , x̂i, . . . , x3]. Here and throughout ·̂ represents omission of the
term. In other words, we see that T a is a triangulation of T with four simplices
and this is known as the Alfeld split of T . Let Fi = [x0, . . . , x̂i, . . . , x3] be the i-th
face of T so that Ki ∈ T a with Fi ⊂ Ki. Then we let Kwf

i = {Sj : 0 ≤ j ≤ 3, j �= i}
where Sj = [zT ,mFi

, xk, x�] and 0 ≤ k, � ≤ 3 with k, � /∈ {i, j}. We let Twf =
{S ∈ Kwf

i : 0 ≤ i ≤ 3}; cf. Figure 2. We see that Twf consists of 12 simplices
and is known as the Worsey–Farin split of T . We let Ta

h := {K ∈ T a : T ∈ Th}
and Twf

h := {K ∈ Twf : T ∈ Th}. We see that Ta
h is a refinement of Th and Twf

h

is a refinement of Ta
h. For T ∈ Th, μ denotes the hat function corresponding to

zT defined on the Alfeld split T a . That is, μ is the piecewise linear function with
respect to T a such that μ(zT ) = 1 and μ = 0 on ∂T . Moreover, we use the notation
μi = μ|Ki

.
For any F ∈ Δ2(T ) for T ∈ Th we see that Twf induces a Clough–Tocher

triangulation of F , which we denote by F ct. To be precise, let F = [y0, y1, y2], then
F ct := {[mF , y0, y1], [mF , y0, y2], [mF , y1, y2]}. We will utilize surface differential
operators. Let ψ be a smooth enough vector valued function on T ∈ Th and let
F ∈ Δ2(T ). Then we let the tangential part of ψ be given by ψF := n × ψ × n|F
where n is the outward pointing normal of ∂T . For a scalar valued function u, we
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Figure 2. A representation of the Worsey–Farin split with two
faces shown

define uF := u|F . We will use the following identities:

curlF ψF =curlψ · n on F,(2.1)

divF ψF =div(n× (ψ × n)) on F,(2.2)

gradF uF =n× (gradu× n) on F,(2.3)

rotF uF =gradu× n on F.(2.4)

We now define local finite element spaces on each macro-tetrahedron T ∈ Th. To
do this, we assume we have a triangulation of T , Th, which could be, for example,
Th = T a or Th = Twf . We let Pr(S) be the space of polynomials of degree less than
or equal to r defined on S. For negative values of r, Pr(S) is the trivial set. We
define on the triangulation Th of T the space of discontinuous polynomials:

Pr(Th) := {v ∈ L2(T ) : v|K ∈ Pr(K), ∀K ∈ Th}.

The spaces of minimal smoothness are defined as follows.

V 0
r (Th) :=Pr(Th) ∩H1(T ), V̊ 0

r (Th) := H̊1(T ) ∩ V 0
r (Th),

V 1
r (Th) :=[Pr(Th)]

3 ∩H(curl;T ), V̊ 1
r (Th) := H̊(curl, T ) ∩ V 1

r (Th),

V 2
r (Th) :=[Pr(Th)]

3 ∩H(div;T ), V̊ 2
r (Th) := H̊(div, T ) ∩ V 2

r (Th),

V 3
r (Th) :=Pr(Th), V̊ 3

r (Th) := L2
0(T ) ∩ V 3

r (Th),

where L2
0(T ) = {q ∈ L2(T ) :

∫
T
q dx = 0}. Here, we use the commonly used nota-

tion that (̊·) denotes the corresponding space with vanishing traces, e.g., H̊(curl, T )

= {v ∈ H(curl, T ) : v×n|∂T = 0} and H̊(div, T ) = {v ∈ H(div, T ) : v ·n|∂T = 0}.
We also consider the Lagrange finite elements L0r(Th) := V 0

r (Th)
(̊
L0r(Th) := V̊ 0(Th)

)
, Lir(Th) := [L0r(Th)]

3
(̊
Lir(Th) := [̊L0r(Th)]

3
)
for i = 1, 2 and finally L3r(Th) := V 0

r (Th)
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(̊
L3r(Th) := L2

0(T ) ∩ L̊0r(Th)
)
. Finally, we define the smoother finite element spaces

S0
r (Th) := {v ∈ L0r(Th) : grad v ∈ L1r−1(Th)},

S̊0
r (Th) := {v ∈ L̊0r(Th) : grad v ∈ L̊1r−1(Th)},

S1
r (Th) := {v ∈ L1r(Th) : curl v ∈ L2r−1(Th)},

S̊1
r (Th) := {v ∈ L̊1r(Th) : curl v ∈ L̊2r−1(Th)},

S2
r (Th) := {v ∈ L2r(Th) : div v ∈ L3r−1(Th)},

S̊2
r (Th) := {v ∈ L̊2r(Th) : div v ∈ L̊3r−1(Th)},

S3
r (Th) := L3r(Th),

S̊3
r (Th) := L̊3r(Th).

We also define the intermediate spaces that add extra smoothness to the spaces
V i
r (T

wf) on the faces of T .

V2
r(T

wf) = {v ∈ V 2
r (T

wf) : v × n is continuous on each F ∈ Δ2(T )},(2.5a)

V̊2
r(T

wf) = {v ∈ V2
r(T

wf) : v · n = 0 on each F ∈ Δ2(T )},(2.5b)

V3
r(T

wf) = {q ∈ V 3
r (T

wf) : q is continuous on each F ∈ Δ2(T )},(2.5c)

V̊3
r(T

wf) = V3
r(T

wf) ∩ L2
0(T ).(2.5d)

We see that Lir(T
wf) ⊂ Vi

r(T
wf) ⊂ V i

r (T
wf) for i = 2, 3.

3. Local Exact Sequences

One of the main results of the paper is to prove local sequences consisting of
smooth piecewise polynomials are exact. The first sequences are the ones with
homogeneous boundary conditions.

0 −−→ V̊ 0
r (T

wf)
grad

−−→ V̊ 1
r−1(T

wf)
curl
−−→ V̊ 2

r−2(T
wf)

div
−−→ V̊ 3

r−3(T
wf) −−→ 0,(3.1a)

0 −−→ S̊0
r (T

wf)
grad

−−→ L̊1r−1(T
wf)

curl
−−→ V̊2

r−2(T
wf)

div
−−→ V̊ 3

r−3(T
wf) −−→ 0,(3.1b)

0 −−→ S̊0
r (T

wf)
grad

−−→ S̊1
r−1(T

wf)
curl
−−→ L̊2r−2(T

wf)
div
−−→ V̊3

r−3(T
wf) −−→ 0,(3.1c)

0 −−→ S̊0
r (T

wf)
grad

−−→ S̊1
r−1(T

wf)
curl
−−→ S̊2

r−2(T
wf)

div
−−→ L̊3r−3(T

wf) −−→ 0.(3.1d)

The second set of sequences does not have boundary conditions.

R → V 0
r (T

wf)
grad

−−→ V 1
r−1(T

wf)
curl
−−→ V 2

r−2(T
wf)

div
−−→ V 3

r−3(T
wf) → 0,(3.2a)

R → S0
r (T

wf)
grad

−−→ L1r−1(T
wf)

curl
−−→ V 2

r−2(T
wf)

div
−−→ V 3

r−3(T
wf) → 0,(3.2b)

R → S0
r (T

wf)
grad

−−→ S1
r−1(T

wf)
curl
−−→ L2r−2(T

wf)
div
−−→ V 3

r−3(T
wf) → 0,(3.2c)

R → S0
r (T

wf)
grad

−−→ S1
r−1(T

wf)
curl
−−→ S2

r−2(T
wf)

div
−−→ L3r−3(T

wf) → 0.(3.2d)

The first sequences (3.1a) and (3.2a) are exact due to the results of Nédélec [14].
The major result of this section are the following theorems.

Theorem 3.1. Let r ≥ 3. Then the sequences (3.1) are exact.
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Proof. Again, we already know that (3.1a) is exact. The exactness of the rest of
the sequences follow from the following results that are found below: Theorem 3.8,
Theorem 3.14, and Theorem 3.20. �

Similarly, we can prove the following theorem.

Theorem 3.2. Let r ≥ 3. Then the sequences (3.2) are exact.

The proofs of Theorems 3.1–3.2 follow the same general procedure as [7, 8, 10].
Essentially, we build functions of the form μw1 + μ2w2 + · · · through an iterative
procedure, where the functions wj are specified such that the results of Theorems
3.1–3.2 are inferred. However, due to geometric properties of the Worsey–Farin
split, there are non-trivial differences between the arguments given in [7,8,10] and
those presented here. Essentially this is due to the induced Clough–Tocher trian-
gulation on each face F ⊂ ∂T , which from the definition of μ, implies that the
functions wj are piecewise polynomials with respect to the Worsey–Farin split; in
contrast, in [7,10], the functions wj are simply polynomials on T defined by canon-
ical Nédélec degrees of freedom. As such, the exactness of polynomial sequences
defined on (two-dimensional) Clough–Tocher triangulations plays an essential role
in the proofs of Theorems 3.1–3.2.

3.1. Exact sequences on Clough–Tocher splits. Before we prove Theorems
3.1 and 3.2, we will need to use exact sequence properties of local Clough–Tocher
splits. To start, we require some definitions.

Definition 3.3. For a tetrahedron T ∈ Th and face F ∈ Δ2(T ), we denote by
nF := n|F the outward unit normal of ∂T restricted to F . We let τ and υ be
orthonormal vectors that span the tangent space of F . Thus, {τ, υ, nF} is an
orthonormal system of R3.

Remark 3.4. If P (F ) is a scalar valued space defined on F then, with an abuse of
notation, we set [P (F )]2F = {aτ + bυ : a, b ∈ P (F )}.

We define the Nédélec spaces on the Clough–Tocher split:

V 1
div,r(F

ct) := {v ∈ H(divF , F ) : v|Q ∈ [Pr(F )]2F , ∀Q ∈ F ct},
V̊ 1
div,r(F

ct) = V 1
div,r(F

ct) ∩ H̊(divF , F )

V 1
curl,r(F

ct) := {v ∈ H(curlF ; , F ) : v|Q ∈ [Pr(F )]2F , ∀Q ∈ F ct},
V̊ 1
curl,r(F

ct) = V 1
curl,r(F

ct) ∩ H̊(curlF , F ),

V 2
r (F

ct) := {v ∈ L2(F ) : v|Q ∈ Pr(F ), ∀Q ∈ F ct},
V̊ 2
r (F

ct) := V 2
r (F

ct) ∩ L2
0(F ),

and the Lagrange spaces,

L0r(F
ct) := V 2

r (F
ct) ∩H(gradF ;F ), L̊0r(F

ct) := L0r(F
ct) ∩ H̊(gradF ;F ),

L1r(F
ct) := [L0r(F

ct)]2, L̊1r(F
ct) := [̊L0r(F

ct)]2,

L2r(F
ct) := L0r(F

ct), L̊2r(F
ct) := L̊0r(F

ct) ∩ L2
0(F ).
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2578 JOHNNY GUZMÁN, ANNA LISCHKE, AND MICHAEL NEILAN

Finally, we define the subspaces with additional smoothness.

S0
r (F

ct) := {v ∈ L0r(F
ct) : gradF v ∈ L1r−1(F

ct)},
S̊0
r (F

ct) := {v ∈ L̊0r(F
ct) : gradF v ∈ L̊1r−1(F

ct)},
S1
div,r(F

ct) := {v ∈ L1r(F
ct) : divF v ∈ L2r−1(F

ct)},
S̊1
div,r(F

ct) := {v ∈ L̊1r(F
ct) : divF v ∈ L̊2r−1(F

ct)},
S1
curl,r(F

ct) := {v ∈ L1r(F
ct) : curlF v ∈ L2r−1(F

ct)},
S̊1
curl,r(F

ct) := {v ∈ L̊1r(F
ct) : curlF v ∈ L̊2r−1(F

ct)},
S2
r (F

ct) := L2r(F
ct),

S̊2
r (F

ct) := L̊2r(F
ct).

We note that V 1
curl,r(F

ct)
(
resp.,S1

curl,r(F
ct)

)
and V 1

div,r(F
ct)

(
resp.,S1

div,r(F
ct)

)
are

isomorphic. For notational convenience we sometimes drop the curl and div from
the subscripts of these spaces.

Several combinations of these spaces form exact sequences, which are summarized
below.

Theorem 3.5. Let r ≥ 1. The following sequences are exact [1, 7].

R −−→ L0r(F
ct)

gradF

−−→ V 1
curl,r−1(F

ct)
curlF
−−→ V 2

r−2(F
ct) −−→ 0,(3.3a)

R −−→ S0
r (F

ct)
gradF

−−→ L1r−1(F
ct)

curlF
−−→ V 2

r−2(F
ct) −−→ 0,(3.3b)

R −−→ S0
r (F

ct)
gradF

−−→ S1
curl,r−1(F

ct)
curlF
−−→ L2r−2(F

ct) −−→ 0,(3.3c)

0 −−→ L̊0r(F
ct)

gradF

−−→ V̊ 1
curl,r−1(F

ct)
curlF
−−→ V̊ 2

r−2(F
ct) −−→ 0,(3.3d)

0 −−→ S̊0
r (F

ct)
gradF

−−→ L̊1r−1(F
ct)

curlF
−−→ V̊ 2

r−2(F
ct) −−→ 0,(3.3e)

0 −−→ S̊0
r (F

ct)
gradF

−−→ S̊1
curl,r−1(F

ct)
curlF
−−→ L̊2r−2(F

ct) −−→ 0.(3.3f)

Theorem 3.5 has an alternate form that follows from a rotation of the coordinate
axes, where the operators grad and curl are replaced by rot and div, respectively.

Corollary 3.6. Let r ≥ 1. The following sequences are exact [1, 7].

R −−→ L0r(F
ct)

rotF
−−→ V 1

div,r−1(F
ct)

divF

−−→ V 2
r−2(F

ct) −−→ 0,(3.4a)

R −−→ S0
r (F

ct)
rotF
−−→ L1r−1(F

ct)
divF

−−→ V 2
r−2(F

ct) −−→ 0,(3.4b)

R −−→ S0
r (F

ct)
rotF
−−→ S1

div,r−1(F
ct)

divF

−−→ L2r−2(F
ct) −−→ 0,(3.4c)

0 −−→ L̊0r(F
ct)

rotF
−−→ V̊ 1

div,r−1(F
ct)

divF

−−→ V̊ 2
r−2(F

ct) −−→ 0,(3.4d)

0 −−→ S̊0
r (F

ct)
rotF
−−→ L̊1r−1(F

ct)
divF

−−→ V̊ 2
r−2(F

ct) −−→ 0,(3.4e)

0 −−→ S̊0
r (F

ct)
rotF
−−→ S̊1

div,r−1(F
ct)

divF

−−→ L̊2r−2(F
ct) −−→ 0.(3.4f)

Remark 3.7. From Theorem 3.5, Corollary 3.6, the well-known dimension formu-
las of the Nédélec and Lagrange spaces, and the rank–nullity theorem, one easily
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Table 1. Dimension counts of the canonical (two-dimensional)
Nédélec, Lagrange, and smooth spaces with and without bound-
ary conditions with respect to the Clough–Tocher split. Here,
dimV 1

div,r(F
ct) = dimV 1

curl,r(F
ct) =: dimV 1

r (F
ct).

k = 0 k = 1 k = 2

dimV k
r (F ct) 1

2 (3r
2 + 3r + 2) 3(r + 1)2 3

2 (r + 1)(r + 2)

dim V̊ k
r (F ct) 1

2 (3r
2 − 3r + 2) 3r(r + 1) 3

2 (r + 1)(r + 2) − 1

dim Lk
r (F

ct) 1
2 (3r

2 + 3r + 2) 3r2 + 3r + 2 1
2 (3r

2 + 3r + 2)

dim L̊k
r (F

ct) 1
2 (3r

2 − 3r + 2) 3r2 − 3r + 2 3
2 r(r − 1)

dimSk
r (F

ct) 3
2 (r

2 − r + 2) 3r2 + 3 1
2 (3r

2 + 3r + 2)

dim S̊k
r (F

ct) 3
2 (r

2 − 5r + 6) 3r2 − 9r + 6 3
2 r(r − 1)

dimRk
r (F

ct) 3
2 (r − 1)(r − 2) 3(r − 1)2 —

finds the dimensions of the smoother spaces Sk
r (F

ct) (cf. [7]). These counts are
summarized in Table 1.

We will use the following intermediate spaces when developing commuting pro-
jections on the Worsey–Farin split:

R0
r(F

ct) := {v ∈ S0
r (F

ct) : v|∂F = 0}, R1
r(F

ct) := {v ∈ S1
div,r(F

ct) : v|∂F = 0}.
It is shown in [13] that dimR0

r(F
ct) = 3

2 (r− 1)(r− 2) and dimR1
r(F

ct) = 3(r− 1)2.

3.2. Surjectivity of the divergence operator on discrete local spaces. The
goal of this section is to prove the following theorem.

Theorem 3.8. Let r ≥ 0. Then:

(i) for each p ∈ V̊3
r(T

wf), there exists a v ∈ L̊2r+1(T
wf) such that div v = p.

(ii) for each p ∈ V̊ 3
r (T

wf), there exists a v ∈ L2r+1(T
wf) ∩ V̊ 2

r+1(T
wf) such that

div v = p.
(iii) for each p ∈ V 3

r (T
wf), there exists a v ∈ L2r+1(T

wf) such that div v = p.

(iv) for each p ∈ L̊3r(T
wf) (resp., p ∈ L3r(T

wf)), there exists a v ∈ S̊2
r+1(T

wf) (resp.,

v ∈ S2
r+1(T

wf)) such that div v = p.

The proofs of Theorem 3.8 parts (i) and (ii) depends on five preliminary lemmas.

Lemma 3.9. Let r ≥ 1 and s ≥ 0 be integers. Then for any q ∈ V3
r(T

wf), there
exists w ∈ L2r(T

wf) and g ∈ V 3
r−1(T

wf), such that μsq = div(μs+1w) + μs+1g.

Proof. Let q ∈ V3
r(T

wf) and s ≥ 0. Because q|Fi
is continuous on each Fi ∈ Δ2(T ),

there exists bi ∈ Pr(Fi) such that bi = q|Fi
on ∂Fi. Thus q − bi is continuous

on Fi and vanishes on ∂Fi. Consequently, there exists ai ∈ L3r(T
wf) such that

ai = (q − bi) on Fi and supp(ai) ⊆ Ki. Using the divergence-conforming Nédélec
degrees of freedom of the second kind [14] , and the fact that gradμi is parallel to
the outward unit normal of Fi, there exists w1 ∈ [Pr(T )]

3 such that

(s+ 1)w1 · gradμi = bi on Fi.

We also define w2 ∈ L2r(T
wf) as

w2 :=
1

s+ 1

4∑
i=1

ai�i,

where �i :=
gradμi

| gradμi|2 . Finally, we set w := w1 + w2 ∈ L2r(T
wf). We then see that

q − (s+ 1)w · gradμ = 0 on ∂T,
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and, hence, there exists p ∈ V 3
r−1(T

wf) such that

q = (s+ 1)w · gradμ+ μp on T.

Setting g := p− divw ∈ V 3
r−1(T

wf) we have

μsq =(s+ 1)μsw · gradμ+ μs+1p = div(μs+1w) + μs+1g.

�

Lemma 3.10. Let K ∈ T a, F ∈ Δ2(T ) with F ⊂ ∂K and let nF denote the

outward pointing unit normal to F . If p ∈ L̊1r(F
ct) then there exists q ∈ L1r(T

wf)
such that q|F = p, supp(q) ⊂ K and q · nF = 0 on K.

Proof. Let {τ, υ, nF} be an orthonormal set with τ and υ parallel to F . Then

p = aτ + bυ for some a, b ∈ L̊0r(F
ct). We extend a and b to all of K, which we

denote by ã, b̃ ∈ L0r(K
wf), by setting all the other Lagrange degrees of freedom to

be zero. In particular ã and b̃ vanish on ∂K\F . Hence, we can further extend them

by zero to all of T to obtain ã, b̃ ∈ L0r(T
wf). We then set q = ãτ + b̃υ. �

Lemma 3.11. For any θ ∈ V 3
r (T

wf), with r ≥ 0, there exists ψ ∈ L2r+1(T
wf) ∩

V̊ 2
r+1(T

wf) and γ ∈ V3
r(T

wf) such that

μsθ = div(μsψ) + μsγ ∀s ≥ 0.(3.5)

Proof. Let Ki ∈ T a be the tetrahedron containing the face Fi ∈ Δ2(T ), and let
κi ∈ V 3

0 (T
a) ⊂ V 3

0 (T
wf) be defined on Ki as κi =

1
|Fi|

∫
Fi

θ dA. Then on Fi,∫
Fi

(θ − κi) dA = 0,

so (θ − κi)Fi
∈ V̊ 2

r (F
ct
i ) by definition. Hence, by Corollary 3.6, there exists a

function ρi ∈ L̊1r+1(F
ct
i ) such that

divFi
ρi = (θ − κi) on Fi.(3.6)

By Lemma 3.10, there exists an extension ψi ∈ L2r+1(T
wf) such that ψi|Fi

= ρi,

supp(ψi) ⊆ Ki, and ψi ·nFi
= 0 on Ki. We then define ψ =

∑3
i=0 ψi ∈ L2r+1(T

wf)∩
V̊ 2
r+1(T

wf). The construction of ψ, and using (2.2), yields the identities

ψ · nFi
=0 on Ki,(3.7)

divψ =divFi
ρi on Fi.(3.8)

Now set γ := θ−divψ, so that γ = κi on Fi by (3.8) and (3.6). Since κi is continuous
on Fi, it follows that γ ∈ V3

r(T
wf). Rearranging terms yields θ = divψ + γ, which

proves the result in the case s = 0. Furthermore, since gradμ is parallel to nFi
on

each Ki, we have by (3.7),

μsθ − div(μsψ) = μsθ − μs divψ − sμs−1ψ · gradμ = μsγ,

which is the desired result. �

Lemma 3.12. Let q ∈ V3
r(T

wf) with r ≥ 1, and s ≥ 0. Then there exists v ∈
L2r(T

wf) and p ∈ V3
r−1(T

wf) such that μsq = div(μs+1v) + μs+1p.
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Proof. By Lemma 3.9, there exist w ∈ L2r(T
wf) and g ∈ V 3

r−1(T
wf) such that

μsq = div(μs+1w) + μs+1g.

Since g ∈ V 3
r−1(T

wf), Lemma 3.11 yields the existence of ψ ∈ L2r(T
wf) and p ∈

V3
r−1(T

wf) such that

μs+1g = div(μs+1ψ) + μs+1p.

Therefore, μsq = div(μs+1(w+ψ))+μs+1p. Setting v = w+ψ achieves the desired
result. �

The final preliminary lemma follows from a result shown in [7].

Lemma 3.13. Let s ≥ 0, and let q ∈ V3
0(T

wf) with
∫
T
μsq dx = 0. Then there

exists w ∈ L20(T
wf) such that μsq = div(μs+1w).

Proof. Since q ∈ V3
0(T

wf) it is easy to see that q ∈ V 3
0 (T

a). From [7, Lemma 3.11],
there exists w ∈ [P0(T )]

3 ⊂ L20(T
wf) such that div(μs+1w) = μsq. �

We can now prove Theorem 3.8 parts (i) and (ii).

Proof of Theorem 3.8, part (i). The case r = 0 follows immediately from Lemma
3.13 with s = 0. Now consider the case r ≥ 1. Let 0 ≤ j ≤ r − 1 and assume that
we have found wr, wr−1, . . . , wr−j with w� ∈ L2� (T

wf) and pr−j ∈ V3
r−j(T

wf) such
that

p =div(μwr + μ2wr−1 + · · ·+ μj+1wr−j) + μj+1pr−(j+1).

If 0 ≤ j < r − 1 then we apply Lemma 3.12 to find wr−(j+1) ∈ L2r−(j+1)(T
wf) and

pr−(j+2) ∈ V3
r−(j+2)(T

wf) such that

μj+1pr−(j+1) = div(μj+2wr−(j+1)) + μj+2pr−(j+2).

In which case we obtain

p =div(μwr + μ2wr−1 + · · ·+ μj+2wr−(j+1)) + μj+2pr−(j+2).

After taking care of the base case j = 0, and continuining by induction we arrive
at

p = div(μwr + μ2wr−1 + · · ·+ μrw1) + μrp0.

By the hypothesis
∫
T
p dx = 0, there holds

∫
T
μrp0 dx = 0. By Lemma 3.13, there

exists w0 ∈ L20(T
wf) such that div(μr+1w0) = μrp0. The result follows by setting

v = μwr + μ2wr−1 + · · ·+ μrw1 + μr+1w0. �

Proof of Theorem 3.8, part (ii). By Lemma 3.11 (with s = 0), there exists ψ ∈
L2r+1(T

wf) ∩ V̊ 2
r+1(T

wf) and γ ∈ V3
r(T

wf) satisfying

p = divψ + γ.

Note that
∫
T
p dx = 0, and

∫
T
divψ dx =

∫
∂T

ψ · n dA = 0 since ψ · n = 0 on ∂T .

Thus, we have that
∫
T
γ dx = 0 which implies γ ∈ V̊3

r(T
wf). Therefore, we apply

part (i) of Theorem 3.8 to find g ∈ L̊r+1(T
wf) such that div g = γ. The result

follows by setting v = ψ + g. �

We now prove parts (iii) and (iv) of Theorem 3.8, which are corollaries to parts
(i) and (ii).

Licensed to Univ of Pittsburgh. Prepared on Tue Jul 18 21:30:42 EDT 2023 for download from IP 132.174.255.116.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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Proof of Theorem 3.8, part (iii). We decompose p=(p−p)+p where p := 1
|T |

∫
T
p dx.

There exists w ∈ [P1(T )]
3 such that divw = p, and by part (ii) of Theorem 3.8 we

have ψ ∈ L2r+1(T
wf)∩ V̊ 2

r+1(T
wf) such that divψ = p− p. Thus, setting v := ψ+w

completes the proof. �

Proof of Theorem 3.8, part (iv). Let p ∈ L̊3r(T
wf) ⊂ V̊3

r(T
wf). Applying part (i) of

Theorem 3.8, we find v ∈ L̊2r+1(T
wf) such that div v = p. But clearly v ∈ S̊2

r+1(T
wf),

since div v belongs to L̊3r(T
wf). �

3.3. Surjectivity of the curl operator on discrete local spaces. The main
goal of this section is to derive the analagous results of Section 3.2, but for the curl
operator; that is, we show that the curl operator acting on piecewise polynomial
spaces with respect to the Worsey–Farin split is surjective onto spaces of divergence–
free functions. The main result of this section is the following.

Theorem 3.14. Let r ≥ 0. Then:

(i) for any v ∈ V̊2
r(T

wf) satisfying div v = 0 there exists w ∈ L̊1r+1(T
wf) satisfying

curlw = v.
(ii) let v ∈ V 2

r (T
wf) with div v = 0. Then there exists w ∈ L1r+1(T

wf) such that
curlw = v.
(iii) for each v ∈ L̊2r(T

wf) (resp., v ∈ L2r(T
wf)) with div v = 0, there exists a w ∈

S̊1
r+1(T

wf) (resp., w ∈ S1
r+1(T

wf)) such that curlw = v.

(iv) for each v ∈ S̊2
r (T

wf) (resp., v ∈ S2
r (T

wf)) with div v = 0, there exists w ∈
S̊1
r+1(T

wf) (resp., w ∈ S1
r+1(T

wf)) such that curlw = v.

We omit the proofs of parts (iii) and (iv) of Theorem 3.14 since they easily follow
from parts (i) and (ii) of the same theorem.

Before we prove parts (i) and (ii) of Theorem 3.14, we first establish several
lemmas.

Lemma 3.15. Let r ≥ 0 and let v ∈ V̊2
r(T

wf). Then there exist functions z ∈
[Pr(T

wf)]3 and γ ∈ [Pr−1(T
wf)]3 such that

v = gradμ× z + μγ,(3.9)

and so gradμ × z is continuous on F for each F ∈ Δ2(T ). Moreover, for each
e ∈ Δ1(T ) and its unit tangent vector t, z · t is single-valued on e.

Proof. By [7, Lemma 4.1], there exists z ∈ [Pr(T
wf)]3 and γ ∈ [Pr−1(T

wf)]3 such
that (3.9) holds. For each F ∈ Δ2(T ), there holds v = gradμ× z on F , and hence
gradμ × z is continuous on F . Following exactly the proof of [7, Lemma 4.2], we
see that z · t is single-valued for all e ∈ Δ1(T ). �

Lemma 3.16. For any v ∈ V̊2
r(T

wf), with r ≥ 1, and any integer s ≥ 0, there
exists w ∈ L1r(T

wf) and g ∈ V 2
r−1(T

wf) such that

μsv = curl(μs+1w) + μs+1g.(3.10)

Proof. From Lemma 3.15, there exists z ∈ [Pr(T
wf)]3 and γ ∈ [Pr−1(T

wf)]3 sat-
isfying (3.9) with z × gradμ continuous on F for each F ∈ Δ2(T ) and z · t is
single-valued for all e ∈ Δ1(T ). Let {Fi}3i=0 be the four faces of T . For each i we
choose bi ∈ [Pr(Fi)]

2 so that bi = zFi
on ∂Fi, which we are allowed to do since

z × gradμ is continuous on Fi. Since z · t is single-valued for all e ∈ Δ1(T ), we
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have that bi · t|e = bj · t|e if e = Fi ∩ Fj . Hence, using the curl-conforming Nédélec
degrees of freedom of the second kind [14], there exists w1 ∈ [Pr(T )]

3 such that
(w1)Fi

= bi on Fi for 0 ≤ i ≤ 3.

Since zFi
− bi ∈ L̊1r(F

ct
i ), according to Lemma 3.10, there exists ai ∈ L1r(T

wf)

such that supp (ai) ⊂ Ki and (ai)Fi
= zFi

− bi on Fi. We set w2 :=
∑3

i=0 ai and

finally w := 1
s+1 (w1 + w2) ∈ L1r(T

wf). Hence,

(s+ 1)wFi
= (w1)Fi

+ (w2)Fi
= bi + (ai)Fi

= zFi
.

From this we deduce (s+ 1) gradμ× w = gradμ× z on each Fi.
Thus, there exists φ ∈ [Pr−1(T

wf)]3 such that

(3.11) (s+ 1) gradμ× w = gradμ× z + μφ = v + μ(φ− γ) on T.

We write curl(μs+1w) = (s+1)μs gradμ×w+μs+1 curlw = μsv+μs+1(curlw−
γ+φ). Setting g := −(curlw−γ+φ), we have that (3.10) holds. Finally, since μsv·n
and curl(μs+1w) · n are single-valued on interior faces, μs+1g · n is single-valued.
Because μ is continuous and strictly positive in the interior of T , this implies g · n
is single-valued on interior faces, and thus g ∈ V 2

r−1(T
wf). �

Lemma 3.17. Let r ≥ 0 and s ≥ 0 be integers. For any g ∈ V̊ 2
r (T

wf) there exists

ψ ∈ L1r+1(T
wf) and γ ∈ V̊2

r(T
wf) such that

μsg = curl(μsψ) + μsγ.

Proof. Let {Fi}3i=0 be the four faces of T so that gFi
∈ H(divFi

;Fi) by Lemma B.1.
We use the (two-dimensional) divergence-conforming Nédélec degrees of freedom to
construct pi ∈ [Pr(Fi)]

2 so that for r ≥ 1,

pi · (nF × t) = gFi
· (nF × t) on e, ∀e ∈ Δ1(Fi),

where t is the unit vector tangent to the edge e. If r = 0, we can satisfy the above
equation for two of the three edges, however, on the third edge the equation will
be automatically satisfied since divFi

(gFi
− pi) = 0.

Using gFi
−pi ∈ V̊ 1

div,r(F
ct
i ) we have that div(gFi

−pi) ∈ V̊ 2
r−1(F

ct
i ). By Corollary

3.6, there exists mi ∈ L̊1r(F
ct
i ) so that divFi

mi = divFi
(gFi

− pi) on Fi. Thus,

if we let θi := pi + mi we have θi ∈ L1r(F
ct
i ) and gFi

− θi ∈ V̊ 1
div,r(F

ct
i ) with

divFi
(gFi

− θi) = 0. By Corollary 3.6, there exists κi ∈ L̊0r+1(F
ct
i ) such that

rotFi
κi = gFi

− θi. Since κi vanishes on ∂Fi there exists βi ∈ L̊0r+1(T
wf) with

supp (βi) ⊂ Ki such that βi = κi on Fi. We let ψ =
∑3

i=0 βinFi
∈ L̊1r+1(T

wf).
Note that this immediately implies that gradμ× ψ ≡ 0 on T . Also, we have that

curlψ = gradβi × nFi
= rotFi

κi = gFi
− θi on Fi.

Setting γ = g − curlψ we see that γ ∈ V̊ 2
r (T

wf). Moreover, noting, in addition, to
the above equation, that curlψ|Fi

= (curlψ)Fi
since curlψ · nFi

= 0 on Fi, we see

that γFi
= θi ∈ L1r(F

ct
i ) and, hence, γ ∈ V̊2

r(T
wf). Finally, since gradμ× ψ ≡ 0 we

have curl(μsψ) = μs curlψ = μs(g − γ). �

Lemma 3.18. Let r ≥ 1, s ≥ 0 be integers. Then for any v ∈ V̊2
r(T

wf) such

that div(μsv) = 0 on T there exists w ∈ L1r(T
wf) and g ∈ V̊2

r−1(T
wf) satisfying

μsv = curl(μs+1w) + μs+1g.
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Proof. By Lemma 3.16, there exists w1 ∈ L1r(T
wf) and g1 ∈ V 2

r−1(T
wf) satisfying

μsv = curl(μs+1w1) + μs+1g1.(3.12)

By our hypothesis we have 0 = div(μs+1g1) = μs((s + 1) gradμ · g1 + μ div g1).
Hence, (s + 1) gradμ · g1 + μ div g1 = 0 on T which implies (gradμ) · g1 = 0 on

∂T . In other words, we have g1 ∈ V̊ 2
r−1(T

wf). We then apply Lemma 3.17 to write

μs+1g1 = curl(μs+1w2) + μs+1g2 where w2 ∈ L1r(T
wf) and g2 ∈ V̊2

r−1(T
wf). The

proof is complete if we set w := w1 + w2 and g = g2. �

We need one final preliminary lemma.

Lemma 3.19. Let s ≥ 0 and let g ∈ V̊2
0(T

wf), then there exists w ∈ [P0(T )]
3 such

that

(3.13) μsg = curl(μs+1w).

Proof. It is easy to see that g ∈ V̊ 2
0 (T

a). Hence by [7, Lemma 4.3] there exists
w ∈ [P0(T )]

3 such that curl(μs+1w) = μsg. �

Now we can prove parts (i) and (ii) of Theorem 3.14.

Proof of part (i) of Theorem 3.14. If r = 0 the result follows immediately from
Lemma 3.19 with s = 0. Now we consider the case r ≥ 1. Let 0 ≤ j ≤ r−1. Assume

that we have found wr−j , . . . , wr with w� ∈ L1� (T
wf) and gr−(j+1) ∈ V̊2

r−(j+1)(T
wf)

such that

v = curl(μwr + μ2wr−1 + · · ·+ μj+1wr−j) + μj+1gr−(j+1).

Since div(μj+1gr−(j+1)) = 0 on T , if we assume that 0 ≤ j < r− 1, we apply apply
Lemma 3.18 to get

μj+1gr−(j+1) = curl(μj+2wr−(j+1)) + μj+2gr−(j+2),

where wr−(j+1) ∈ L1r−(j+1)(T
wf) and gr−(j+2) ∈ V̊2

r−(j+2)(T
wf). It follows that

v = curl(μwr + μ2wr−1 + · · ·+ μj+1wr−j + μj+2wr−(j+1)) + μj+2gr−(j+2).

Continuing by induction, after taking care of the base case j = 0, we have

v = curl(μwr + μ2wr−1 + · · ·+ μrw1) + μrg0, with g0 ∈ V̊2
0(T

wf).

By Lemma 3.19 there exists w0 ∈ [P0(T )]
3 such that curl(μr+1w0) = μrg0. Setting

w := μwr + μ2wr−1 + · · ·+ μr+1w0 completes the proof. �

Proof of part (ii) of Theorem 3.14. Set φ = v − ΠRT
0 v, where ΠRT

0 v is the lowest-
order Raviart-Thomas projection of v on T . Then

∫
Fi

φ · nFi
dA = 0 for each Fi ∈

Δ2(T ). Applying Theorem 3.5, there exists a ρi ∈ L̊1r+1(F
ct
i ) such that curlFi

ρi =

φ · nFi
on Fi. By Lemma 3.10 we can extend ρi to a function pi ∈ L1r+1(T

wf) with

support only on Ki, such that (pi)Fi
= ρi on Fi. We let p =

∑3
i=0 pi ∈ L1r+1(T

wf).
Hence, by (2.1), curl p · nFi

= φ · nFi
on Fi. Furthermore, there exists s ∈ [P1(T )]

3

such that curl s = ΠRT
0 v where we used that div ΠRT

0 v = 0 which follows by the
commuting property of ΠRT

0 and the fact div v = 0. We set ψ := s+p ∈ L1r+1(T
wf),

then

v · nFi
= (φ+ΠRT

0 v) · nFi
= (curlψ) · nFi

on Fi.
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Hence, we see that v − curlψ ∈ V̊ 2
r (T

wf). By Lemma 3.17 (with s = 0) we have

v − curlψ = curlm + γ where m ∈ L1r+1(T
wf) and γ ∈ V̊2

r(T
wf). By part (i)

of Theorem 3.14, there exists z ∈ L̊1r+1(T
wf) such that curl z = γ. Setting w =

ψ +m+ z completes the proof. �

3.4. Surjectivity of the gradient operator on discrete local spaces. Finally,
to show that the sequences in (3.1)–(3.2) are exact, i.e., to complete the proof of
Theorems 3.1–3.2, we establish the surjectivity of the gradient operator onto spaces
of curl–free functions.

Theorem 3.20. Let r ≥ 0. Then:

(i) for any v ∈ V̊ 1
r (T

wf) (resp., v ∈ V 1
r (T

wf)) satisfying curl v = 0, there exists

w ∈ L̊0r+1(T
wf) (resp., w ∈ L0r+1(T

wf)), satisfying gradw = v.

(ii) for any v ∈ L̊1r(T
wf) (resp., v ∈ L1r(T

wf)) with curl v = 0, there exists a w ∈
S̊0
r+1(T

wf) (resp., w ∈ S0
r+1(T

wf)) such that gradw = v.

(iii) for any v ∈ S̊1
r (T

wf) (resp., v ∈ S1
r (T

wf)) where curl v = 0, there exists a

w ∈ S̊0
r+1(T

wf) (resp., w ∈ S0
r+1(T

wf)) such that gradw = v.

Proof of (i). If v ∈ V̊ 1
r (T

wf) (resp., v ∈ V 1
r (T

wf)) is curl–free, then there exists w ∈
H̊1(T ) (resp., w ∈ H1(T )) such that gradw = v. Since v is a piecewise polynomial
of degree r with respect to Twf , it follows that w is a piecewise polynomial of degree

(r + 1), i.e., w ∈ L̊0r+1(T
wf) (resp., w ∈ L0r+1(T

wf)). �

Proof of (ii). Let v ∈ L̊1r(T
wf) ⊂ V̊ 1

r (T
wf) such that curl v = 0. By part (i), there

exists w ∈ L̊0r+1(T
wf) such that gradw = v. However, clearly w ∈ S̊0

r+1(T
wf) since

gradw ∈ L̊1r(T
wf). �

Proof of (iii). The proof is similar to (ii) and is omitted. �

4. Dimension Counts

Here, we give dimension counts for the spaces appearing in the local sequences
(3.1) and (3.2). As a first step, we state the dimensions of the Nédélec spaces

V k
r (T

wf) and V̊ k
r (T

wf), and the Lagrange spaces Lkr (T
wf) and L̊kr (T

wf) in Table 2.
These counts follow from well-known dimension formulas of these spaces and the
fact that Twf contains 9 vertices, 1 internal vertex, 26 edges, 8 internal edges, 30
faces, 18 internal faces, and 12 tetrahedra.

The main step in the derivation of the dimension counts for the rest of the spaces
in (3.1)–(3.2) is to prove dimension counts for the subspaces of the Nédélec spaces
with additional smoothness on the faces of T , i.e., the dimension of Vk

r (T
wf) and

V̊k
r (T

wf). The dimensions of the other spaces will then follow from the rank–nullity
theorem.

Definition 4.1. Let T ∈ Th, then for each F ∈ Δ2(T ), let eF ∈ ΔI
1(F

ct) be an
arbitrary, but fixed, internal edge of F ct.

We also define the “jump” of a function across an edge.

Definition 4.2. Consider the triangulation F ct of a face F ∈ Δ2(T ), and let the
three triangles of F ct be labeled Q1, Q2, and Q3. Let e = ∂Q1∩∂Q2 be an internal
edge, let t be the unit vector tangent to e pointing away from the split point mF ,
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Table 2. Dimension counts of the canonical Nédélec and La-
grange spaces with and without boundary conditions with respect
to the Worsey–Farin split

k = 0 k = 1 k = 2 k = 3

dimV k
r (Twf) (2r + 1)(r2 + r + 1)

2(r + 1)

· (3r2 + 6r + 4)

3(r + 1)(r + 2)

· (2r + 3)
2(r + 1)(r + 2)(r + 3)

dim V̊ k
r (Twf) (2r − 1)(r2 − r + 1)

2(r + 1)

· (3r2 + 1)

3(r + 1)(r + 2)

· (2r + 1)
2r3 + 12r2 + 22r + 11

dim Lk
r (T

wf ) (2r + 1)(r2 + r + 1)
3(2r + 1)

· (r2 + r + 1)

3(2r + 1)

· (r2 + r + 1)
(2r + 1)(r2 + r + 1)

dim L̊k
r (T

wf ) (2r − 1)(r2 − r + 1)
3(2r − 1)

· (r2 − r + 1)

3(2r − 1)

· (r2 − r + 1)
(r − 1)(2r2 − r + 2)

Table 3. Summary of dimension counts proved in Section 4.
Here, the superscript + indicates the positive part of the number.

k = 0 k = 1 k = 2 k = 3

V̊k
r (T

wf ) — — 6r3 + 21r2 + 9r + 2
2r

3
+ 12r

2

+ 10r + 3

Sk
r (T

wf ) 2r3 − 6r2 + 10r − 2 3r(2r2 − 3r + 5) 6r3 + 8r + 2
(2r + 1)

· (r2 + r + 1)

S̊0
r(T

wf )
(
2(r − 2)(r − 3)(r − 4)

)+

(
3(2r − 3)

· (r − 2)(r − 3)
)+

(
2(r − 2)

· (3r2 − 6r + 4)
)+

(r − 1)

· (2r2 − r + 2)

and let s = nF × t be the unit vector orthogonal to both t and nF . Then, the jump
of a function p ∈ Pr(T

wf) across the edge e is defined as

�p�e = (p|Q1
− p|Q2

) s .

Remark 4.3. In the remainder of the paper, the edge associated with vectors t and
s should be inferred from their context. For example, in the expression

∫
e
v · t ds,

the unit vector t is understood to be the tangent vector of the edge e.

Lemma 4.4. Let p ∈ V 1
div,r(F

ct) and suppose that∫
eF

�p · t�eFmds = 0 for all m ∈ Pr(eF )(4.1a) ∫
e

�p · t�emds = 0 for all m ∈ Pr−1(e), ∀e ∈ ΔI
1(F

ct)\{eF },(4.1b)

where t is the unit vector tangent to an edge e. Then, p ∈ L1r(F
ct).

Proof. Let e ∈ ΔI
1(F

ct), and recall that s is a unit vector parallel to F that is
perpendicular to the edge e. Then since p ∈ V 1

div,r(F
ct), �p · s� = 0. In order

to show that p ∈ L1r(F
ct) we need to show that �p · t� = 0 for all internal edges

e ∈ ΔI
1(F

ct). By (4.1a) this is certainly true for e = eF . In fact, this shows that
p is continuous across eF . Since �p · s� = 0 on the two remaining edges this show
that p is continuous on the interior vertex z. In particular, �p · t�(z) vanishes on
the two remaining edges. Hence, using (4.1b) shows that �p · t� = 0. �
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Corollary 4.5. Let v ∈ V̊ 2
r (T

wf) and suppose that for all F ∈ Δ2(T ), the following
holds ∫

eF

�vF · t�eFmds = 0 for m ∈ Pr(eF ),∫
e

�vF · t�emds = 0 for m ∈ Pr−1(e), ∀e ∈ ΔI
1(F

ct)\{eF }.

Then, v ∈ V̊2
r(T

wf).

Proof. The proof of Lemma 3.17 shows that vF ∈ V 1
div,r(F

ct) for all F ∈ Δ2(T ).
The result now follows by applying Lemma 4.4. �

We see that the number of constraints in Corollary 4.5 is 4(3r+ 1). We use this

result to determine the dimension of the space V̊2
r(T

wf).

Lemma 4.6. Let v ∈ V̊2
r(T

wf) with r ≥ 1. Then v is fully determined by the
following DOFs.

v|f · nf (a), ∀a ∈ Δ0(T ), ∀f ∈ ΔI
2(T

a), a ⊂ f,(4.2a) ∫
e

(v|f · nf )κ ds, ∀κ ∈ Pr−2(e), ∀e ∈ Δ1(T ), ∀f ∈ ΔI
2(T

wf), e ⊂ f,(4.2b) ∫
e

(vF · t)κ ds, ∀κ ∈ Pr−2(e), ∀e ∈ Δ1(F
ct)\ΔI

1(F
ct), ∀F ∈ Δ2(T ),(4.2c) ∫

F

vF · κ dA, ∀κ ∈ L̊1r(F
ct), ∀F ∈ Δ2(T ),(4.2d) ∫

T

v · κ dx, ∀κ ∈ V 2
r−1(T

wf).(4.2e)

Here t is tangent to e. Furthermore, dim V̊2
r(T

wf) = 6r3 + 21r2 + 9r + 2.

Proof. From Corollary 4.5 we have

dim V̊2
r(T

wf) ≥ dim V̊ 2
r (T

wf)− 4(3r + 1) = 6r3 + 21r2 + 9r + 2.(4.3)

We see that the number of DOFs from (4.2a) are 12 = 4·3. There are 6(r−1) DOFs
for (4.2b) and 12(r− 1) DOFs for (4.2c). We have 4(3(r− 1)(r− 2) + 6(r− 1) + 2)
DOFs from (4.2d), and finally 3r(2r+1)(r+1) for (4.2d). Hence, the total number
of DOFs (4.2) is

3r(2r + 1)(r + 1) + 12(r − 1)(r − 2) + 42(r − 1) + 20 = 6r3 + 21r2 + 9r + 2.

Hence, we will prove that dim V̊2
r(T

wf) = 6r3+21r2+9r+2 if we show the constraints

(4.2) determine a function v ∈ V̊2
r(T

wf). To this end, suppose that the DOFs (4.2)
vanish. The DOFs (4.2a) shows that v vanishes ∀a ∈ Δ0(T ). The DOFs (4.2b)
and (4.2c) show that v vanishes ∀e ∈ Δ1(T ). Also, the DOFs (4.2d) show that vF
vanishes ∀F ∈ Δ2(T ). Thus, v = 0 on ∂T and so v = μw where w ∈ V 2

r−1(T
wf).

Finally, (4.2e) shows that w vanishes. Thus, v ≡ 0. �

In a similar but significantly easier way we can show

dimV3
r(T

wf) ≥ dimV 3
r (T

wf)− 4(2(r + 1) + r) = 2(r3 + 6r2 + 5r + 2).(4.4)

Lemma 4.7. The space V3
r(T

wf) has dimension 2(r3+6r2+5r+2), and therefore

dim V̊3
r(T

wf) = 2r3 + 12r2 + 10r + 3.
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Proof. We can easily show that the following DOFs determine q ∈ V3
r(T

wf)

∫
F

qp dA, ∀p ∈ L2r(F
ct), ∀F ∈ Δ2(T ),(4.5a) ∫

T

qp dx, ∀p ∈ V 3
r−1(T

wf).(4.5b)

The number of DOFs are 2(r3 +6r2 +5r+2), which are exactly the number given
by (4.4). �

Theorem 4.8. The dimension counts in Table 3 hold for r ≥ 1.

Proof. Using the exactness of the sequences (3.1) and the rank–nullity theorem, we
have

dim S̊0
r (T

wf)− dim L̊1r−1(T
wf) + dim V̊2

r−2(T
wf)− dim V̊ 3

r−3(T
wf) = 0,

dim S̊0
r (T

wf)− dim S̊1
r−1(T

wf) + dim L̊2r−2(T
wf)− dim V̊3

r−3(T
wf) = 0,

dim S̊0
r (T

wf)− dim S̊1
r−1(T

wf) + dim S̊2
r−2(T

wf)− dim L̊3r−3(T
wf) = 0,

dimS0
r (T

wf)− dim L1r−1(T
wf) + dimV 2

r−2(T
wf)− dimV 3

r−3(T
wf) = 1,

dimS0
r (T

wf)− dimS1
r−1(T

wf) + dim L2r−2(T
wf)− dimV 3

r−3(T
wf) = 1,

dimS0
r (T

wf)− dimS1
r−1(T

wf) + dimS2
r−2(T

wf)− dim L3r−3(T
wf) = 1.

This along with Table 2 and Lemmas 4.6–4.7 give the result. �

Remark 4.9. The dimension counts show that for small r, some of these spaces are
trivialized. In particular, S0

r (T
wf) = Pr(T ) for r ∈ {1, 2}, and S1

1(T
wf) = [P1(T )]

3.

5. Degrees of Freedom and Commuting Projections

In this section, we provide unisolvent sets of degrees of freedom (DOFs) for all
spaces appearing in the exact (local) sequences (3.2). The DOFs are constructed
such that they induce commuting projections and in addition, lead to global finite
element spaces with suitable smoothness.

5.1. SLVV degrees of freedom. We first give degrees of freedom (DOFs) for the
local finite element spaces in the sequence (3.2b) which we refer to as the ‘SLVV’
sequence due to the given notation. These DOFs are constructed such that they
induce projections that commute with the appropriate differential operators.

Now, we give degrees of freedom for S0
r (T

wf) for r ≥ 3. When r < 3, this space
reduces to Pr(T ).
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Lemma 5.1. A function q ∈ S0
r (T

wf), with r ≥ 3, is fully determined by the
following degrees of freedom.

No. of DOFs

q(a), ∀a ∈ Δ0(T ), 4,

(5.1a)

grad q(a), ∀a ∈ Δ0(T ), 12,

(5.1b)

∫
e

qκ ds, ∀κ ∈ Pr−4(e), ∀e ∈ Δ1(T ), 6(r − 3),

(5.1c)

∫
e

∂q

∂n±
e
κ ds, ∀κ ∈ Pr−3(e), ∀e ∈ Δ1(T ), 12(r − 2),

(5.1d)

∫
F

gradF q · κ dA, ∀κ ∈ gradF S̊
0
r (F

ct), ∀F ∈ Δ2(T ), 6(r − 2)(r − 3),

(5.1e)

∫
F

(nF · grad q)κ dA, ∀κ ∈ R0
r−1(F

ct), ∀F ∈ Δ2(T ), 6(r − 2)(r − 3),(5.1f)

∫
T

grad q · κ dx, ∀κ ∈ grad S̊0
r (T

wf), 2(r − 2)(r − 3)(r − 4),

(5.1g)

where ∂
∂n±

e
represents two normal derivatives to edge e, so that n+

e , n
−
e and t form an

orthonormal basis of R3. Then the DOFs (5.1) define the projection Π0
r : C∞(T ) →

S0
r (T

wf).

Proof. The dimension of S0
r (T

wf) is 2r3 − 6r2 + 10r− 2, which is equal to the sum
of the number of the given DOFs.

Let q ∈ S0
r (T

wf) such that q vanishes on the DOFs (5.1). On each edge e ∈
Δ1(T ), q|e = 0 by DOFs (5.1a)–(5.1c). Furthermore, grad q|e = 0 by DOFs (5.1b)

and (5.1d). Then q|F ∈ S̊0
r (F

ct) for each F ∈ Δ2(T ), and (5.1e) yields gradF q|F =
0. Hence q|F is constant, and since q|∂F = 0, it follows that q|F = 0 for each
F ∈ Δ2(T ).

Write q = μp, where p ∈ L0r−1(T
wf). Since μ is a positive linear polynomial on

each K ∈ T a, and q|K ∈ S0
r (K

wf), it follows that p ∈ S0
r−1(K

wf), hence p|F ∈
S0
r−1(F

ct). We have grad q = μ grad p+p gradμ, hence on F , nF ·grad q|F = p(nF ·
gradμ)|F . Since grad q|∂F = 0, it follows that p|∂F = 0. Therefore p ∈ R0

r−1(F
ct),

so p|F = 0 by (5.1f). Now grad q|∂T = 0, hence q ∈ S̊0
r (T

wf), and by (5.1g), we
have grad q = 0. Therefore q = 0, which is the desired result. �

Remark 5.2. In two dimensions, the work of [4] provided nodal degrees of freedom
for the space S0

r (F
ct) with r ≥ 3.

Next, we need the following vector-calculus identity. Its proof is found in the
appendix.
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Lemma 5.3. Let e be an internal edge of F ct, and let t and s be unit vectors
tangent and orthogonal to e, respectively, as in Definition 4.2. Let v ∈ L1r(T

wf) for
some r ≥ 0. If v × nF = 0 on F , then �curl v · t�e = �grad(v · nF ) · s�e.

Now we are ready to give the degrees of freedom for L1r−1(T
wf).

Lemma 5.4. A function v ∈ L1r−1(T
wf), with r ≥ 3, is fully determined by the

following degrees of freedom.

No. of DOFs

v(a), 12,(5.2a) ∫
e

v · κ ds, ∀κ ∈ [Pr−3(e)]
3, ∀e ∈ Δ1(T ), 18(r − 2),(5.2b) ∫

e

�curl v · t�eκ ds, ∀κ ∈ Pr−3(e), ∀e ∈ ΔI
1(F

ct)\{eF },

∀F ∈ Δ2(T ), 8(r − 2),(5.2c) ∫
eF

�curl v · t�eF κ ds, ∀κ ∈ Pr−2(eF ), ∀F ∈ Δ2(T ), 4(r − 1),(5.2d) ∫
F

(v · nF )κ dA, ∀κ ∈ R0
r−1(F

ct), ∀F ∈ Δ2(T ), 6(r − 2)(r − 3),(5.2e) ∫
F

curlF vFκ dA, ∀κ ∈ V̊ 2
r−2(F

ct), ∀F ∈ Δ2(T ), 6r2 − 6r − 4,(5.2f) ∫
F

vF · κ dA, ∀κ ∈ gradF S̊
0
r (F

ct), ∀F ∈ Δ2(T ),6(r − 2)(r − 3),(5.2g) ∫
T

curl v · κ dx, ∀κ ∈ curl L̊1r−1(T
wf), 4r3 − 9r2 − 7r + 21,(5.2h) ∫

T

v · κ dx, ∀κ ∈ grad S̊0
r (T

wf), 2(r − 2)(r − 3)(r − 4).(5.2i)

Then the DOFs (5.2) define the projection Π1
r−1 : [C∞(T )]3 → L1r−1(T

wf).

Proof. The dimension of L1r−1(T
wf) is 6r3 − 9r2 + 9r − 3, which is equal to the

number of DOFs in (5.2). Let v ∈ L1r−1(T
wf) such that v vanishes on the DOFs

(5.2). Then v|e = 0 for each edge e ∈ Δ1(T ) by (5.2a)–(5.2b), so vF ∈ L̊1r−1(F
ct)

on each F ∈ Δ2(T ). From (3.3e), we can see that curlF vF ∈ V̊ 2
r−2(F

ct). Then
(5.2f) yields curlF vF = 0, and by the exactness of the sequence (3.3e) and (5.2g),
we have vF = 0.

Since curl v · nF = curlF vF = 0 on F it follows from Corollary 4.5 and DOFs
(5.2c)–(5.2d) that �curl v · t�e = 0 for each e ∈ ΔI

1(F
ct). Hence, by Lemma 5.3,

v · nF |F ∈ S0
r−1(F

ct), and since v · nF |∂F = 0, we have v · nF |F ∈ R0
r−1(F

ct). Then
v · nF |F = 0 by (5.2e). We therefore conclude v|∂T = 0.

Now v ∈ L̊1r−1(T
wf), so curl v = 0 by (5.2h). Using the exactness of sequence

(3.1b), there exists a p ∈ S̊0
r (T

wf) such that grad p = v. So by (5.2i), v = 0, which
is the desired result. �

Next, we can write the degrees of freedom for V 2
r−2(T

wf).
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Lemma 5.5. A function w ∈ V 2
r−2(T

wf), with r ≥ 3, is fully determined by the
following degrees of freedom.

No. of DOFs∫
e

�w · t�eq ds, ∀q ∈ Pr−3(e), ∀e ∈ ΔI
1(F

ct)\{eF },

∀F ∈ Δ2(T ), 8(r − 2),(5.3a) ∫
eF

�w · t�eF q ds, ∀q ∈ Pr−2(eF ), ∀F ∈ Δ2(T ), 4(r − 1),(5.3b) ∫
F

w · nF q dA, ∀q ∈ V 2
r−2(F

ct), ∀F ∈ Δ2(T ), 6r(r − 1),(5.3c) ∫
T

(divw)q dx, ∀q ∈ V̊ 3
r−3(T

wf), 2r3 − 6r2 + 4r − 1,(5.3d) ∫
T

w · q dx, ∀q ∈ curl L̊1r−1(T
wf), 4r3 − 9r2 − 7r + 21.(5.3e)

Then the DOFs (5.3) define the projection Π2
r−2 : [C∞(T )]3 → V 2

r−2(T
wf).

Proof. The dimension of V 2
r−2(T

wf) is 6r3−9r2+3r, which is the number of DOFs

in (5.3). Let w ∈ V 2
r−2(T

wf) such that w vanishes on (5.3). By DOF (5.3c), we
have w · nF = 0 on each F ∈ Δ2(T ). By DOFs (5.3a)–(5.3b), and Corollary 4.5

we have w ∈ V̊2
r−2(T

wf), so divw = 0 by (5.3d) and the exactness of (3.1b). Using

the exactness of sequence (3.1b) again, there exists a v ∈ L̊1r−1(T
wf) such that

curl v = w. Therefore w = 0 by (5.3e), which is the desired result. �

Finally, we conclude this subsection with the DOFs of V 3
r−3(T

wf). The proof of
the lemma is trivial, and so omitted.

Lemma 5.6. A function p ∈ V 3
r−3(T

wf), with r ≥ 3, is fully determined by the
following degrees of freedom.

No. of DOFs∫
T

p dx, 1,(5.4a) ∫
T

pq dx, ∀q ∈ V̊ 3
r−3(T

wf), 2r(r − 1)(r − 2)− 1.(5.4b)

Then the DOFs (5.4) define the projection Π3
r−3 : C∞(T ) → V 3

r−3(T
wf).

5.2. SLVV commuting diagram.

Theorem 5.7. Let r ≥ 3. Given the definitions of the projections Π0
r,Π

1
r−1,Π

2
r−2,

and Π3
r−3 in Lemmas 5.1–5.6, the following commuting properties are satisfied.

gradΠ0
rq = Π1

r−1 grad q, ∀q ∈ C∞(T ),(5.5a)

curl Π1
r−1v = Π2

r−2 curl v, ∀v ∈ [C∞(T )]3,(5.5b)

div Π2
r−2w = Π3

r−3 divw, ∀w ∈ [C∞(T )]3.(5.5c)

Proof. (i) Proof of (5.5a). Given q ∈C∞(T ), let ρ = gradΠ0
rq − Π1

r−1 grad q ∈
L1r−1(T

wf). Then to show (5.5a) holds, it is sufficient to show that ρ vanishes on
the DOFs (5.2) of Lemma 5.4.
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Using (5.2a) and (5.1b), we have ρ(a) = gradΠ0
rq(a)−Π1

r−1 grad q(a) = 0 for each
a ∈ Δ0(T ). Using (5.2b) and (5.1d), for each e ∈ Δ1(T ) and for any κ ∈ [Pr−3(e)]

3,∫
e

ρ · κ ds =
∫
e

grad(Π0
rq − q) · κ ds

=

∫
e

( ∂

∂n+
e
(Π0

rq − q)n+
e +

∂

∂n−
e
(Π0

rq − q)n−
e +

∂

∂t
(Π0

rq − q)t
)
· κ ds

=

∫
e

∂

∂t
(Π0

rq − q)t · κ ds = 0,

where the last line follows from (5.1a) and (5.1c). Using (5.2c), for each e ∈
ΔI

1(F
ct)\{eF }, with F ∈ Δ2(T ), and for any κ ∈ Pr−3(e),∫

e

�curl ρ · t�eκ ds =
∫
e

�curl grad(Π0
rq − q) · t�eκ ds = 0,

since the curl of the gradient is zero. By the same reasoning, the DOFs (5.2d) of ρ
vanish. By (5.2e) and (5.1f), for any κ ∈ R0

r−1(F
ct),∫

F

(ρ · nF )κ dA =

∫
F

(grad(Π0
rq − q) · nF )κ dA = 0.

Similarly, using (5.2f), (2.1), and the fact that curl grad = 0,
∫
F
curlF ρF κ dA =

0 for every κ ∈ V̊ 2
r−2(F

ct). Next, for κ ∈ gradF S̊0
r (F

ct),∫
F

ρF · κ dA =

∫
F

gradF (Π0
rq − q) · κ dA = 0,

using (5.1e) and (5.2g).

On the macro-element T , we use (5.2h) so that for all κ ∈ curl L̊1r−1(T
wf),∫

T

curl ρ · κ dx =

∫
T

curl grad(Π0
rq − q) · κ dx = 0.

Finally, we use (5.2i) to see that for all κ ∈ grad S̊0
r (T

wf),∫
T

ρ · κ dx =

∫
T

grad(Π0
rq − q) · κ dx = 0,

by (5.1g). Hence by Lemma 5.4, ρ = 0, and the identity (5.5a) is proved. �
(ii) Proof of (5.5b). Given v ∈ [C∞(T )]3, let ρ = curlΠ1

r−1v − Π2
r−2 curl v ∈

V 2
r−2(T

wf). To prove that (5.5b) holds, we will show that ρ vanishes on the DOFs
(5.3) of Lemma 5.5.

On the interior edges e ∈ ΔI
1(F

ct)\{eF } of each face F ∈ Δ2(T ), and for all
q ∈ Pr−3(e), we have∫

e

�ρ · t�e q ds =
∫
e

�curl(Π1
r−1v − v) · t�e q ds = 0,

using (5.2c) and (5.3a). Similarly, the DOFs (5.3c) of ρ vanish.
To show that the DOFs (5.3c) of ρ vanish we consider first constant functions

and then functions orthogonal to constants. To this end, we use (5.3c), (5.2b), (2.1)
and Stokes Theorem, so that∫

F

ρ · nF dA =

∫
F

curlF (Π
1
r−1v − v)F dA = 0,
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where we used that r ≥ 3. Moreover, for any p ∈ V̊ 2
r−2(F

ct), from (5.3c) and (5.2f),
we have

∫
F

ρ · nF p dA =

∫
F

curlF (Π
1
r−1v − v)F p dA = 0.

It follows from (5.3d) that for all p ∈ V̊ 3
r−3(T

wf)

∫
T

(div ρ)p dx =

∫
T

div curl(Π1
r−1v − v)p dx = 0.

Finally, for all p ∈ curl L̊1r−1(T
wf), it follows from (5.2h) and (5.3e) that

∫
T

ρ · p dx =

∫
T

curl(Π1
r−1v − v) · p dx = 0.

Hence by Lemma 5.5, ρ = 0, and the identity (5.5b) is proved. �
(iii) Proof of (5.5c). Given w ∈ [C∞(T )]3, let ρ = divΠ2

r−2w − Π3
r−3 divw ∈

V 3
r−3(T

wf). We will show that ρ vanishes on the DOFs (5.4), so that ρ = 0.
First, by (5.3c), (5.4a), and Stokes Theorem, we have

∫
T

ρ dx =

∫
T

div(Π2
r−2w − w) dx =

∫
∂T

(Π2
r−2w − w) · n dA = 0.

Next, using (5.3d) and (5.4b), for any q ∈ V̊ 3
r−3(T

wf),

∫
T

ρq dx =

∫
T

div(Π2
r−2w − w)q dx = 0,

since V̊ 3
r−3(T

wf) = div V̊2
r−2(T

wf) (cf. Theorem 3.1). Then by Lemma 5.6, ρ = 0,
and the identity (5.5c) is proved. �

5.3. SSLV degrees of freedom. In this section we construct degrees of freedom
for spaces in the sequence that takes the Lagrange finite element in the third slot,
i.e., sequence (3.2c). The third and last space are well–suited for fluid flow problems
as we discuss in the introduction.

We will define degrees of freedom for each of the spaces S1
r−1(T

wf), L2r−2(T
wf),

and V 3
r−3(T

wf) that induce projections π1
r−1, π

2
r−2, and π3

r−3, respectively, such that
they satisfy commuting properties. First, we provide a unisolvent set of DOFs for
S1
r−1(T

wf).
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Lemma 5.8. A function v ∈ S1
r−1(T

wf), with r ≥ 2, is fully determined by the
following DOFs.

No. of DOFs

v(a), ∀a ∈ Δ0(T ), 12,
(5.6a)

curl v(a), ∀a ∈ Δ0(T ), 12,
(5.6b)

∫
e

v · q ds, ∀q ∈ [Pr−3(e)]
3, ∀e ∈ Δ1(T ), 18(r − 2),

(5.6c)

∫
e

curl v · q ds, ∀q ∈ [Pr−4(e)]
3, ∀e ∈ Δ1(T ), 18(r − 3),

(5.6d)

∫
F

curlF vF q dA, ∀q ∈ L0r−3(F
ct) ∩ L2

0(F ), ∀F ∈ Δ2(T ), 6r
2 − 30r + 36,

(5.6e)

∫
F

(v · nF )q dA, ∀q ∈ R
0
r−1(F

ct), ∀F ∈ Δ2(T ), 6(r − 2)(r − 3),

(5.6f)

∫
F

vF · q dA, ∀q ∈ gradF S̊
0
r (F

ct) ∀F ∈ Δ2(T ), 6r2 − 30r + 36

(5.6g)

∫
F

(curl v)F · q dA, ∀q ∈ R1
r−2(F

ct), ∀F ∈ Δ2(T ), 12(r − 3)2,

(5.6h)

∫
T

curl v · q dx, ∀q ∈ curl S̊1
r−1(T

wf), (4r − 11)(r − 3)(r − 4),

(5.6i)

∫
T

v · q dx, ∀q ∈ grad S̊0
r (T

wf), 2(r − 2)(r − 3)(r − 4).

(5.6j)

Then the DOFs (5.6) define the projection π1
r−1 : [C∞(T )]3 → S1

r−1(T
wf).

Proof. The dimension of S1
r−1(T

wf) is 6r3 − 27r2 + 51r − 30, which is equal to the
number of DOFs in (5.6).

Let v ∈ S1
r−1(T

wf) such that v vanishes on (5.6). Then DOFs (5.6a) and (5.6c)
yield that v|e = 0 for every e ∈ Δ1(T ). Furthermore, it follows from DOFs (5.6b)
and (5.6d) that curl v|e = 0 for each e ∈ Δ1(T ).

Since curlF vF ∈ L̊0r−2(F
ct), there exists a function β ∈ L0r−3(F

ct) such that
curlF vF = λFβ, where λF is the continuous linear function on F such that
λF (mF ) = 1 at the split point mF and λF |∂F = 0. We also note that (5.6e)
holds for all q ∈ L0r−3(F

ct) since
∫
F
curlF vF dA = 0, which follows from integration

by parts. Thus, we have curlF vF = 0 by choosing q = β. From the exactness
of sequence (3.3e), it follows that vF = 0 by (5.6g). Since curl v is continuous
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and vF = 0, by Lemma 5.3 we have that grad(v · nF )|F is continuous. Therefore,
v · nF |F ∈ R0

r−1(F
ct), so v · nF |F = 0 by (5.6f).

Since curl v ∈ L2r−2(T
wf) ∩ V̊ 2

r−2(T
wf) and div curl v = 0, we can apply Lemma

B.2 to deduce that (curl v)F ∈ R1
r−2(F

ct), where we also used that (curl v)F = 0
on ∂F . Hence, by (5.6h), we have that (curl v)F = 0. We already have that
curl v · nF |F = 0, so curl v|F = 0 on each face F ∈ Δ2(T ).

On the macro-elements, we use (5.6i) to see that curl v = 0. By the exactness of

sequence (3.1b), there exists a p ∈ S̊0
r (T

wf) such that grad p = v. Hence by (5.6j),
v = 0, which is the desired result. �

We state the DOFs of L2r−2(T
wf) in the following lemma.

Lemma 5.9. A function w ∈ L2r−2(T
wf), with r ≥ 3, is fully determined by the

following DOFs.

No. of DOFs

w(a), ∀a ∈ Δ0(T ), 12,

(5.7a)

∫
e

w · q ds, ∀q ∈ [Pr−4(e)]
3, ∀e ∈ Δ1(T ), 18(r − 3),

(5.7b)

∫
F

(w · nF )q dA, ∀q ∈ L0r−3(F
ct), ∀F ∈ Δ2(T ) 6(r − 2)(r − 3) + 4,

(5.7c)

∫
e

�divw�eq ds,
∀q ∈ Pr−3(e), e ∈ ΔI

1(F
ct)\{eF },
∀F ∈ Δ2(T ),

8(r − 2),

(5.7d)

∫
eF

�divw�eF q ds,
∀q ∈ Pr−4(eF ), eF ∈ ΔI

1(F
ct),

∀F ∈ Δ2(T ),
4(r − 3),

(5.7e)

∫
F

wF · q dA, ∀q ∈ R1
r−2(F

ct), ∀F ∈ Δ2(T ), 12(r − 3)2,

(5.7f)

∫
T

divw q dx, ∀q ∈ div L̊2r−2(T
wf), 2(r − 3)(r − 2)(r + 2) + 3,

(5.7g)

∫
T

w · q dx, ∀q ∈ curl S̊1
r−1(T

wf), (4r − 11)(r − 3)(r − 4).

(5.7h)

Then the DOFs (5.7) define the projection π2
r−2 : [C∞(T )]3 → L2r−2(T

wf).

Proof. The dimension of L2r−2(T
wf) is 3(2r− 3)(r2 − 3r + 3), which is equal to the

number of DOFs in (5.7).
Let w ∈ L2r−2(T

wf) such that w vanishes on the DOFs (5.7). Using DOFs (5.7a)

and (5.7b), we have that w|e = 0 for every e ∈ Δ1(T ), hence w · nF |F ∈ L̊0r−2(F
ct).

Therefore w · nF |F = 0 by (5.7c). Using DOFs (5.7d)–(5.7e) and Lemma B.3, we
have that divw|F ∈ L2r−3(F

ct) for each F ∈ Δ2(T ). Hence, using Lemma B.2 we
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deduce that divF wF is continuous which implies that wF ∈ R1
r−2(F

ct). By (5.7f),
it follows that wF = 0 on F .

Now we have that w ∈ L̊2r−2(T
wf), so by (5.7g), divw = 0. Using the exactness

property of sequence (3.1c), there exists a function p ∈ S̊1
r−1(T

wf) such that curl p =
w. Then by (5.7h), w = 0, which is the desired result. �

Lemma 5.10. A function p ∈ V 3
r−3(T

wf), with r ≥ 3, is fully determined by the
following DOFs.

No. of DOFs

∫
e

�p�eq ds, ∀q ∈ Pr−3(e), e ∈ ΔI
1(F

ct)\{eF }, ∀F ∈ Δ2(T ), 8(r − 2),

(5.8a)

∫
eF

�p�eF q ds, ∀q ∈ Pr−4(eF ), eF ∈ ΔI
1(F

ct), ∀F ∈ Δ2(T ), 4(r − 3),

(5.8b)

∫
T

p dx, 1,

(5.8c)

∫
T

pq dx, ∀q ∈ V̊3
r−3(T

wf), 2r3 − 6r2 − 8r + 27.

(5.8d)

Then the DOFs (5.8) define the projection π3
r−3 : C∞(T ) → V 3

r−3(T
wf).

Proof. The dimension of V 3
r−3(T

wf) is 2r(r−1)(r−2), which is equal to the number
of DOFs in (5.8).

Let p ∈ V 3
r−3(T

wf) such that p vanishes on the DOFs (5.8). Then by (5.8a)–

(5.8b) and Lemma B.3, �p�e = 0 for every e ∈ ΔI
1(F

ct) for each F ∈ Δ2(T ).

Combined with (5.8c), it follows that p ∈ V̊3
r−3(T

wf). So by (5.8d), p = 0. �

5.4. SSLV commuting diagram.

Theorem 5.11. Let r ≥ 3, and let Π0
r : C∞(T ) → S0

r (T
wf) be the projection

defined in Lemma 5.1, let π1
r−1 : [C∞(T )]3 → S1

r−1(T
wf) be the projection defined

in Lemma 5.8, let π2
r−2 : [C∞(T )]3 → L2r−2(T

wf) be the projection defined in Lemma

5.9, and let π3
r−3 : C∞(T ) → V 3

r−3(T
wf) be the projection defined in Lemma 5.10.

Then the following commuting properties are satisfied.

gradΠ0
rq = π1

r−1 grad q, ∀q ∈ C∞(T ),(5.9a)

curlπ1
r−1v = π2

r−2 curl v, ∀v ∈ [C∞(T )]3,(5.9b)

div π2
r−2w = π3

r−3 divw, ∀w ∈ [C∞(T )]3.(5.9c)

Proof. (i) Proof of (5.9a). Let q ∈ C∞(T ), and set ρ = gradΠ0
rq−π1

r−1 grad q ∈
S1
r−1(T

wf). We show that ρ vanishes on the DOFs (5.6).
For each a ∈ Δ0(T ), ρ(a) = gradΠ0

rq(a) − π1
r−1 grad q(a) = 0 by (5.1b) and

(5.6a). Then, using (5.6b), curl ρ(a) = curl(grad(Π0
rq−q)) = 0. By (5.6c), we have,
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for all p ∈ [Pr−3(e)]
3 on each e ∈ Δ1(T ),∫

e

ρ · p ds =
∫
e

grad(Π0
rq − q) · p ds

=

∫
e

(
∂

∂n+
e
(Π0

rq − q)n+
e +

∂

∂n−
e
(Π0

rq − q)n−
e +

∂

∂t
(Π0

rq − q)t

)
· p ds

=

∫
e

∂

∂t
(Π0

rq − q)(p · t) ds by (5.1d)

= −
∫
e

(Π0
rq − q)

∂

∂t
(p · t) ds = 0 by (5.1a) and (5.1c).

Next, using (5.6d), for all p ∈ [Pr−4(e)]
3,∫

e

curl ρ · p ds =
∫
e

curl grad(Π0
rq − q) · p ds = 0.

On the faces, from (5.6e), we have for all p ∈ L0r−3(F
ct) ∩ L2

0(F ),∫
F

curlF ρF p dA =

∫
F

curlF gradF (Π
0
rq − q)p dA = 0.

Using (5.1f) and (5.6f), for all p ∈ R0
r−1(F

ct),∫
F

(ρ · nF )p dA =

∫
F

(nF · grad(Π0
rq − q)) p dA = 0.

Next, using (5.6g) and (5.1e), we have for all p ∈ gradF S̊0
r (F

ct),∫
F

ρF · p dA =

∫
F

(gradF (Π
0
rq − q)F ) · p dA = 0.

Then we use (5.6h), so that for all p ∈ R1
r−2(F

ct),∫
F

(curl ρ)F · p dA =

∫
F

(curl(grad(Π0
rq − q)))F · p dA = 0.

On the macro-elements, we use (5.6i) so that, for all p ∈ curl S̊1
r−1(T

wf),∫
T

curl ρ · p dx =

∫
T

curl grad(Π0
rq − q) · p dx = 0.

Lastly, we use (5.1g) and (5.6j) to see that, for every p ∈ grad S̊0
r (T

wf),∫
T

ρ · p dx =

∫
T

grad(Π0
rq − q) · p dx = 0.

Therefore, by Lemma 5.8, ρ = 0, and the identity (5.9a) is proved. �
(ii) Proof of (5.9b). Let v ∈ [C∞(T )]3, and set ρ = curlπ1

r−1v − π2
r−2 curl v ∈

L2r−2(T
wf). We show that ρ vanishes on the DOFs (5.7).

By (5.6b) and (5.7a), ρ(a) = curlπ1
r−1v(a) − π2

r−2 curl v(a) = 0. By (5.6d) and
(5.7b), for all p ∈ [Pr−4(e)]

3 where e ∈ Δ1(T ),∫
e

ρ · p ds =
∫
e

curl(π1
r−1v − v) · p ds = 0.

By (5.7c), (5.6c) and (5.6e), for every p ∈ L0r−3(F
ct),∫

F

(ρ · nF )p dA =

∫
F

curlF ((π
1
r−1v)F − vF )p dA = 0,
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where used that r ≥ 3.
Using (5.7d), for all p ∈ Pr−3(e), e ∈ ΔI

1(F
ct)\{eF } and F ∈ Δ2(T ), we have∫

e

�div ρ�ep ds =

∫
e

�div curl(π1
r−1v − v)�ep ds = 0.

Similarly, (5.7e) yields that
∫
eF

�div ρ�eF p ds = 0 for p ∈ Pr−2(eF ). Next, using

(5.7f), for any p ∈ R1
r−2(F

ct), we have∫
F

ρF · p dA =

∫
F

(curl(π1
r−1v − v))F · p dA = 0

by (5.6h).

By (5.7g) and for any p ∈ div L̊2r−2(T
wf),∫

T

div ρ p dx =

∫
T

div curl(π1
r−1v − v)p dx = 0.

Finally, by (5.6i), (5.7h), and for any p ∈ curl S̊1
r−1(T

wf),∫
T

ρ · p dx =

∫
T

curl(π1
r−1v − v) · p dx = 0.

Therefore, ρ = 0 by Lemma 5.9, which is the desired result. �
(iii) Proof of (5.9c). Let w ∈ [C∞(T )]3, and set ρ = div π2

r−2w − π3
r−3 divw ∈

V 3
r−3(T

wf). We show that ρ vanishes on the DOFs (5.8).

First, we see from (5.7d) and (5.8a) that for any p ∈ Pr−3(e), e ∈ ΔI
1(F

ct)\{eF }
and F ∈ Δ2(T ), we have∫

e

�ρ�ep ds =

∫
e

�div(π2
r−2w − w)�ep ds = 0.

Similarly, ρ vanish on the DOFs (5.8b).
We then use (5.8c), (5.7c), and the Stokes Theorem to see that∫

T

ρ dx =

∫
T

div(π2
r−2w − w) dx =

∫
∂T

(π2
r−2w − w) · nF dA = 0,

where again we used that r ≥ 3.

Lastly, for any p ∈ V̊3
r−3(T

wf),∫
T

ρ p dx =

∫
T

(div π2
r−2w − w)p dx = 0

by (5.7g), (5.8d) and the fact div L̊2r−2(T
wf) = V̊3

r−3(T
wf) which follows by the

exactness of sequence (3.1c). Therefore ρ = 0 by Lemma 5.10, which is the desired
result. �

�

5.5. SSSL degrees of freedom. In this section, we define degrees of freedom for
each of the spaces S2

r−2(T
wf) and L3r−3(T

wf) that induce commuting projections

corresponding to the local exact sequence (3.2d). First the DOFs for S2
r−2(T

wf)
are given below.
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Lemma 5.12. A function w ∈ S2
r−2(T

wf), with r ≥ 3, is fully determined by the
following DOFs.

No. of DOFs

w(a), 12,(5.10a)

divw(a), 4,(5.10b) ∫
e

w · q ds, ∀q ∈ [Pr−4(e)]
3, ∀e ∈ Δ1(T ), 18(r − 3),(5.10c) ∫

e

(divw)q ds, ∀q ∈ Pr−5(e), ∀e ∈ Δ1(T ), 6(r − 4),(5.10d) ∫
F

(w · nF )q dA, ∀q ∈ L0r−3(F
ct), ∀F ∈ Δ2(T ), 6(r − 2)(r − 3) + 4,(5.10e) ∫

F

wF · q dA, ∀q ∈ R1
r−2(F

ct), ∀F ∈ Δ2(T ), 12(r − 3)2,(5.10f) ∫
F

(divw)q dA, ∀q ∈ L2r−4(F
ct), ∀F ∈ Δ2(T ), 6(r − 3)(r − 4) + 4,(5.10g) ∫

T

(divw)q dx, ∀q ∈ L̊3r−3(T
wf), (r − 4)(2r2 − 13r + 23),(5.10h) ∫

T

w · q dx, ∀q ∈ curl S̊1
r−1(T

wf), (4r − 11)(r − 3)(r − 4).(5.10i)

Then the DOFs 5.10 define the projection �2
r−2 : [C∞(T )]3 → S2

r−2(T
wf).

Proof. The dimension of S2
r−2(T

wf) is 6r3 − 36r2 + 80r − 62, which is equal to the
number of DOFs in (5.10).

Let w ∈ S2
r−2(T

wf) such that w vanishes on the DOFs (5.10). Then from (5.10a)
and (5.10c), w|e = 0 for each e ∈ Δ1(T ), and divw|e = 0 by (5.10b) and (5.10d).

On each F ∈ Δ2(T ), w · nF |F ∈ L̊0r−2(F
ct), hence w · nF |F = 0 by (5.10e).

By Lemma B.2, we have that divF wF is continuous. Hence, wF ∈ R1
r−2(F

ct).
Therefore (5.10f) yields wF = 0. Now we have divw ∈ L2r−3(F

ct) and divw vanishes

on ∂F . So, divw|F = 0 by (5.10g), hence w ∈ S̊2
r−2(T

wf).
On the macro-element, we have divw = 0 by (5.10h) and the exactness of (3.1d).

Likewise, the exactness of (3.1d) yields the existence of a v ∈ S̊1
r−1(T

wf) such that
curl v = w. Hence by (5.10i), w = 0, which is the desired result. �
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Lemma 5.13. A function p ∈ L3r−3(T
wf), with r ≥ 3, is fully determined by the

following DOFs.

No. of DOFs

p(a), 4,(5.11a) ∫
e

pq ds, ∀q ∈ Pr−5(e), ∀e ∈ Δ1(T ), 6(r − 4),(5.11b) ∫
F

pq dA, ∀q ∈ L2r−4(F
ct), ∀F ∈ Δ2(T ), 6(r − 3)(r − 4) + 4,(5.11c) ∫

T

p dx, 1,(5.11d) ∫
T

pq dx, ∀q ∈ L̊3r−3(T
wf), (r − 4)(2r2 − 13r + 23).(5.11e)

Then the DOFs (5.11) define the projection �3
r−3 : C∞(T ) → L3r−3(T

wf).

Proof. The dimension of L3r−3(T
wf) is (2r − 5)(r2 − 5r + 7), which matches the

number of DOFs in (5.11).
Let p ∈ L3r−3(T

wf) such that p vanishes on the DOFs (5.11). Then by (5.11a)
and (5.11b), p|e = 0 for every e ∈ Δ1(T ). For each F ∈ Δ2(T ), we have that

p|F ∈ L̊2r−3(F
ct), so p|F = 0 by (5.11c). Then by (5.11d), we have p ∈ L̊3r−3(T

wf),
and by (5.11e), p = 0. �

5.6. SSSL commuting diagram.

Theorem 5.14. Recall that Π0
r : C∞(T ) → S0

r (T
wf) is the projection defined in

Lemma 5.1, π1
r−1 : [C∞(T )]3 → S1

r−1(T
wf) is the projection defined in Lemma

5.8, �2
r−2 : [C∞(T )]3 → S2

r−2(T
wf) is the projection defined in Lemma 5.12, and

�3
r−3 : C∞(T ) → L3r−3(T

wf) is the projection defined in Lemma 5.10. There holds,
for r ≥ 3,

gradΠ0
rq = π1

r−1 grad q, ∀q ∈ C∞(T ),(5.12a)

curlπ1
r−1v = �2

r−2 curl v, ∀v ∈ [C∞(T )]3,(5.12b)

div�2
r−2w = �3

r−3 divw, ∀w ∈ [C∞(T )]3.(5.12c)

Proof. (i) Proof of (5.12a). The identity (5.12a) holds by Theorem 5.11. �
(ii) Proof of (5.12b). Let v ∈ [C∞(T )]3, and set ρ = curlπ1

r−1v − �2
r−2 curl v.

Then ρ ∈ S2
r−2(T

wf), so we must show that ρ vanishes on the DOFs (5.10). By
(5.6b) and (5.10a), ρ(a) = curlπ1

r−1v(a)− curl v(a) = 0, and by (5.10b), div ρ(a) =
div curlπ1

r−1v(a)− div curl v(a) = 0 for each a ∈ Δ0(T ).
For all e ∈ Δ1(T ) and for all p ∈ [Pr−4(e)]

3,∫
e

ρ · p ds =
∫
e

curl(π1
r−1v − v) · p ds = 0

by (5.6d) and (5.10c). Using (5.10d), for all p ∈ Pr−5(e), we have∫
e

div ρ p ds =

∫
e

div curl(π1
r−1v − v)p ds = 0.
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On each face F ∈ Δ2(T ), for every p ∈ L0r−3(F
ct),∫

F

(ρ · nF )p dA =

∫
F

curlF ((π
1
r−1v)F − vF )p dA = 0,

by (5.6e), (5.6c) and (5.10e). Here we used that r ≥ 3.
For each p ∈ R1

r−2(F
ct), we have∫

F

ρF · p dA =

∫
F

(
curl(π1

r−1v − v)
)
F
· p dA = 0,

where we used (5.6h) and (5.10f). Next, for every p ∈ L2r−4(F
ct), (5.10g) yields∫

F

div ρ p dA =

∫
F

div curl(π1
r−1v − v) p dA = 0.

For each p ∈ L̊3r−3(T
wf), we use (5.10h) so that∫

T

div ρ p dx =

∫
T

div curl(π1
r−1v − v)p dx = 0.

Finally, for all p ∈ curl S̊1
r−1(T

wf),∫
T

ρ · p dx =

∫
T

curl(π1
r−1v − v) · p dx = 0,

by (5.6i) and (5.10i). Therefore, by Lemma 5.12, ρ = 0, and the identity (5.12b) is
proved. �

(iii) Proof of (5.12c). Let w ∈ [C∞(T )]3, and set ρ = div�2
r−2w −�3

r−3 divw.

Then ρ ∈ L3r−3(T
wf), and we show ρ vanishes on the DOFs (5.11).

For all a ∈ Δ0(T ), ρ(a) = div�2
r−2w(a) − �3

r−3 divw(a) = 0 by (5.10b) and
(5.11a). On each edge e ∈ Δ1(T ) and for all p ∈ Pr−5(e),∫

e

ρ p ds =

∫
e

div(�2
r−2w − w)p ds = 0,

by (5.10d) and (5.11b).
On each face F ∈ Δ2(T ), using (5.11c), we have, for all p ∈ L2r−4(F

ct),∫
F

ρ p dA =

∫
F

div(�2
r−2w − w) p ds = 0,

by (5.10g).
Now we use (5.11d) and Stokes Theorem to see that∫

T

ρ dx =

∫
T

div(�2
r−2w − w) dx =

∫
∂T

(�2
r−2w − w) · n dA = 0

by (5.10e) since r ≥ 3. Then by (5.10h) and (5.11e), for any p ∈ L̊3r−3(T
wf),∫

T

ρ p dx =

∫
T

div(�2
r−2w − w)p dx = 0.

Hence ρ = 0 by Lemma 5.13, and the identity (5.12c) is proved. �
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2602 JOHNNY GUZMÁN, ANNA LISCHKE, AND MICHAEL NEILAN

6. Global spaces and commuting diagrams

In this section, we discuss the global finite element spaces induced by the degrees
of freedom of Subsections 5.1, 5.3, and 5.5, thereby extending the results of Section
3.

Recall Th is a triangulation of the polyhedral domain Ω ⊂ R
3, and let Twf

h

be the Worsey–Farin refinement of Th. One of the main features of the induced
global spaces is their intrinsic smoothness on Worsey–Farin splits (cf. [6] for related
results). To describe this property in detail, we require some definitions.

Definition 6.1. We define the set E(Twf
h ) as the collection of edges that are internal

to a Clough–Tocher split of a face F ∈ ΔI
2(Th), i.e., E(T

wf
h ) = {e ∈ ΔI

1(F
ct) : F ∈

ΔI
2(Th)}.

Remark 6.2. For e ∈ E(Twf
h ), let F ∈ ΔI

2(Th) be the face such that e ∈ ΔI
1(F

ct),
and let T1, T2 ∈ Th satisfy F = ∂T1 ∩ ∂T2. As in Section 2, let zT1

and zT2
denote

the incenters of T1 and T2, respectively. Then the four faces in Twf
h that have e as

an edge are either in the plane containing F or in the plane determined by e and
the line [zT1

, zT2
]. Consequently, e is a singular edge. In fact, E(Twf

h ) is exactly the
set of (interior) singular edges in Twf

h .

We will use the following notation in this section. Let T1 and T2 be adjacent
tetrahedra in Th that share a face F . Let K1 and K2 be tetrahedra in T a

1 and
T a
2 , respectively, such that K1 and K2 share the face F . Let F ct represent the

triangulation of F ct in Twf
h , and let Kwf

i be the triangulation of Ki in Twf
h , where

1 ≤ i ≤ 2. Given a simplex S ∈ Δs(T
wf
h ), with 0 ≤ s ≤ 3, let χ(S) represent

that characteristic function that equals 1 on S and 0 otherwise. Without loss of
generality, we choose nF = n1, the outward normal to T1 on F .

Definition 6.3. Using the above notation, let e ∈ ΔI
1(F

ct). Furthermore, let

K1
i ,K

2
i ∈ Δ3(K

wf
i ), 1 ≤ i ≤ 2 be such that e ⊂ Kj

i , 1 ≤ i ≤ 2, 1 ≤ j ≤ 2 and K2
1

shares a face with K1
2 . Then we define

θe(p) = |p|K1
1
− p|K2

1
+ p|K1

2
− p|K2

2
| on e.

Remark 6.4. Note that if θe(p) = 0 if and only if �p1�e = �p2�e where pi = p|Ti
.

Remark 6.5. The importance of the Worsey–Farin structure is that the natural
extension of a piecewise polynomial from Kwf

1 to all of Kwf
1 ∪ Kwf

2 maintains its
original smoothness properties across the interior faces of Kwf

2 , since all the faces of
a given subtetrahedron in Kwf

1 are coplanar to the faces of the adjacent subtetra-
hedron of Kwf

2 . In particular, if p ∈ Pr(K
wf
1 ) ∩ C1(K1) then the natural extension

of p, which we denote by q satisfies q|K2
∈ Pr(K

wf
2 ) ∩ C1(K2).
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We show below that the projections defined in Sections 5.1, 5.3, and 5.5 induce
the following global spaces.

S0r(T
wf
h ) = {q ∈ C1(Ω) : q|T ∈ S0

r (T
wf) ∀T ∈ Th},

S1r−1(T
wf
h ) = {v ∈ [C(Ω)]3 : curl v ∈ [C(Ω)]3, v|T ∈ S1

r−1(T
wf) ∀T ∈ Th},

S2r−2(T
wf
h ) = {w ∈ [C(Ω)]3 : divw ∈ C(Ω), w|T ∈ S2

r−2(T
wf) ∀T ∈ Th},

L1
r−1(T

wf
h ) = {v ∈ [C(Ω)]3 : v|T ∈ L1r−1(T

wf) ∀T ∈ Th},
L2

r−2(T
wf
h ) = {w ∈ [C(Ω)]3 : w|T ∈ L2r−2(T

wf) ∀T ∈ Th},
V 2
r−2(T

wf
h ) = {w ∈ H(div; Ω) : w|T ∈ V 2

r−2(T
wf) ∀T ∈ Th,

θe(w · t) = 0 ∀e ∈ E(Twf
h )},

V 3
r−3(T

wf
h ) = {p ∈ L2(Ω) : p|T ∈ V 3

r−3(T
wf) ∀T ∈ Th, θe(p) = 0 ∀e ∈ E(Twf

h )},
L3

r−3(T
wf
h ) = {p ∈ C(Ω) : p|T ∈ L3r−3(T

wf) ∀T ∈ Th},
V 3
r−3(T

wf
h ) = Pr−3(T

wf
h ).

Remark 6.6. Due to the singular edges formed through a Worsey–Farin refinement
of a triangulation, the global space L1

r(T
wf
h ) has the property

θe(curlw · t) = 0.(6.1)

Moreover, any function v ∈ L2
r(T

wf
h ) satisfies

θe(div v) = 0.(6.2)

We refer to [13, Lemmas 5.7.3–5.7.4] for a proof of these results.

Now we are ready to show that the global analogue of sequence (3.2b) is induced
by the local DOFs of Section 5.1.

Lemma 6.7. The local degrees of freedom stated in Lemmas 5.1, 5.4, 5.5, and
5.6 induce the global spaces S0r(T

wf
h ), L1

r−1(T
wf
h ), V 2

r−2(T
wf
h ), and V 3

r−3(T
wf
h ), respec-

tively.

Proof.(i) Let q1 ∈ S0
r (T

wf
1 ) and q2 ∈ S0

r (T
wf
2 ) such that q1 − q2 vanishes on the

DOFs (5.1a)–(5.1f) associated with the triangulation F ct. We extend q1 to K2

according to Remark 6.5, and we set p = q1 − q2. Then by the proof of Lemma
5.1, we have p = 0 and grad p = 0 on F , therefore the function q1χ(K1) + q2χ(K2)
is C1 across F . Therefore the DOFs (5.1) induce the global space S0r(T

wf
h ).

(ii) Let v1 ∈ L1r−1(T
wf
1 ) and v2 ∈ L1r−1(T

wf
2 ) such that v1 − v2 vanishes on the DOFs

(5.2a)–(5.2g) associated with the triangulation F ct of the face F . We extend v1 to
K2 as in Remark 6.5, and we set w = v1−v2. Then by by the proof of Lemma 5.4,
w = 0 on F . Therefore the local DOFs (5.2) induce the global space L1

r−1(T
wf
h ).

(iii) Let w1 ∈ V 2
r−2(T

wf
1 ) and w2 ∈ V 2

r−2(T
wf
2 ) such that w1 − w2 vanishes on the

DOFs (5.3a)–(5.3c) associated with the triangulation F ct of the face F . We extend
w1 to K2 as in Remark 6.5 and set v = w1 − w2. Then, by Lemma 5.5, v · nF = 0
on F , which implies that w1χ(K1) +w2χ(K2) is in H(div) across F . Furthermore,
DOFs (5.3a)–(5.3b) imply that �v · t�e = 0 for each e ∈ ΔI

1(F
ct), hence �w1 · t�e =

�w2 · t�e. By Remark 6.4, θe((w1χ(K1)+w2χ(K2)) · t) = 0, so the local DOFs (5.3)
induce the global space V 2

r−2(T
wf
h ).
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(iv) The DOFs (5.4) simply determine the piecewise polynomials Pr−3(T
wf). Hence

these DOFs naturally induce the global piecewise polynomial space Pr−3(T
wf
h ).

�
Now we can see that the following sequence forms a complex by Theorem 5.7 for

r ≥ 3.

R −−→ S0r(T
wf
h )

grad

−−→ L1
r−1(T

wf
h )

curl
−−→ V 2

r−2(T
wf
h )

div
−−→ V 3

r−3(T
wf
h ) −−→ 0.

Furthermore, for 0 ≤ k ≤ 3 and r ≥ 3 we have commuting projections Π̃k
r−k such

that Π̃k
r−kv|T = Πk

r−k(v|T ) for all T ∈ Th. Then by Theorem 5.7, the following
diagram commutes.

R C∞(T ) [C∞(T )]3 [C∞(T )]3 C∞(T ) 0

R S0r(T
wf
h ) L1

r−1(T
wf
h ) V 2

r−2(T
wf
h ) V 3

r−3(T
wf
h ) 0.

Π̃r
3

grad

Π̃1
r−1

curl div

Π̃2
r−2 Π̃3

r−3

grad curl div

Next, we will show that the global analogue of sequence (3.2c) is induced by the
local DOFs of Section 5.3.

Lemma 6.8. The local degrees of freedom stated in Lemmas 5.8, 5.9, and 5.10
induce the global spaces S1r−1(T

wf
h ), L2

r−2(T
wf
h ), and V 3

r−3(T
wf
h ), respectively.

Proof.(i) Let v1 ∈ S1
r−1(T

wf
1 ) and v2 ∈ S1

r−1(T
wf
2 ) such that v1− v2 vanishes on the

DOFs (5.6a)–(5.6h) associated with the triangulation F ct. We extend v1 to K2 as
in Remark 6.5, and we set w = v1−v2. Then by by the proof of Lemma 5.8, w = 0
and curlw = 0 on F , therefore the DOFs (5.6) induce the global space S1r−1(T

wf
h ).

(ii) Let w1 ∈ L2r−2(T
wf
1 ) and w2 ∈ L2r−2(T

wf
2 ) such that w1 − w2 vanishes on the

DOFs (5.7a)–(5.7f) associated with the triangulation F ct of the face F . We extend
w1 to K2 as in Remark 6.5, and we set v = w1−w2. Using the proof of Lemma 5.9
we can show that v = 0 on F . Hence, w1χ(K1) + w2χ(K2) is continuos accross F .
(iii) Let q1 ∈ V 3

r−3(T
wf
1 ) and q2 ∈ V 3

r−3(T
wf
2 ) such that q1− q2 vanishes on the DOFs

(5.8a)–(5.8b) associated with the triangulation F ct of the face F . We can naturally
extend q1 to K2 as in Remark 6.5. Let p = q1 − q2. As in Lemma 5.10, it follows
from DOFs (5.8a)–(5.8b) that for each e ∈ ΔI

1(F
ct), �p�e = 0, hence �q1�e = �q2�e,

which implies that θe(q1χ(K1) + q2χ(K2)) = 0. So, the local DOFs (5.8) induce
the global space V 3

r−3(T
wf
h ).

�
Now we can see that the following sequence forms a complex by Theorem 5.11

for r ≥ 3.

R −−→ S0r(T
wf
h )

grad

−−→ S1r−1(T
wf
h )

curl
−−→ L2

r−2(T
wf
h )

div
−−→ V 3

r−3(T
wf
h ) −−→ 0.

Furthermore, for 1 ≤ k ≤ 3 and r ≥ 3 we have commuting projections π̃k
r−k such

that π̃k
r−kv|T = πk

r−k(v|T ) for all T ∈ Th, and by Theorem 5.11, the following
diagram commutes.

R C∞(T ) [C∞(T )]
3

[C∞(T )]
3

C∞(T ) 0

R S0r(T
wf
h ) S1r−1(T

wf
h ) L2

r−2(T
wf
h ) V3

r−3(T
wf
h ) 0.

Π̃r
3

grad

π̃1
r−1

curl div

π̃2
r−2 π̃3

r−3

grad curl div
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Lastly, we will show that the global analogue of sequence (3.2d) is induced by the
local DOFs of Section 5.5.

Lemma 6.9. The local degrees of freedom stated in Lemmas 5.12 and 5.13 induce
the global spaces S2r−2(T

wf
h ) and L3

r−3(T
wf
h ), respectively.

Proof.(i) Let w1 ∈ S2
r−2(T

wf
1 ) and w2 ∈ S2

r−2(T
wf
2 ) such that w1 − w2 vanishes on

the DOFs (5.10a)–(5.10g) associated with the triangulation F ct. We extend w1 to
K2 as in Remark 6.5, and we set v = w1 − w2. Then by Lemma 5.12, v = 0 and
div v = 0 on F . Therefore, the local DOFs (5.10) induce the global space S2r−2(T

wf
h ).

(ii) Let q1 ∈ L3r−3(T
wf
1 ) and q2 ∈ L3r−3(T

wf
2 ) such that q1 − q2 vanishes on the DOFs

(5.11a)–(5.11d) associated with the triangulation F ct of the face F . We extend q1
to K2 as in Remark 6.5, and we set p = q1 − q2. It follows from Lemma 5.13 that
p = 0 on F , which means q1χ(K1)+ q2χ(K2) is continuous across F . Therefore the
local DOFs (5.11) induce the global space L3

r−3(T
wf
h ).

�

Now we can see that the following sequence forms a complex by Theorem 5.14
for r ≥ 3.

R −−→ S0
r (T

wf
h )

grad

−−→ S1
r−1(T

wf
h )

curl
−−→ S2

r−2(T
wf
h )

div
−−→ L3

r−3(T
wf
h ) −−→ 0.

For 2 ≤ k ≤ 3 and r ≥ 3, we have commuting projections �̃k
r−k such that

�̃k
r−kv|T = �k

r−k(v|T ) for all T ∈ Th, and by Theorem 5.14, the following dia-
gram commutes.

R C∞(T ) [C∞(T )]3 [C∞(T )]3 C∞(T ) 0

R S0
r (T

wf
h ) S1

r−1(T
wf
h ) S2

r−2(T
wf
h ) L3

r−3(T
wf
h ) 0.

Π̃r
3

grad

π̃1
r−1

curl div

�̃2
r−2 �̃3

r−3

grad curl div

Appendix A. Proof of Lemma 5.3

Proof. The set [t, s, nF ]
� forms an orthonormal basis of R

3, and therefore v =
att+ as s+annF , with at = v · t, as = v · s, and an = v · nF . Since v × nF = 0 on
F , we have at = as = 0 on F . Then, on F ,

gradF at = gradF as = 0.(A.1)

We also have curl v = grad at × t+ grad as × s+ grad an × nF , and so

curl v · t = (grad as × s+ grad an × nF ) · t.(A.2)

Writing grad as = (t · grad as)t+ (s · grad as) s+(nF · grad as)nF , we find

(grad as × s) · t = (nF · grad as)(nF × s) · t,(A.3)

since (t× s) · t = 0 and (s× s) · t = 0.
Let f be the interior face of Twf that contains e, and let r be the unit vector

tangent to f and orthogonal to t. Then r may be written r = (r · s) s+(r ·nF )nF ,
therefore

nF =
r−(r · s) s
r ·nF

.
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Then by (A.1), on F we have

nF · grad as =
1

r ·nF
(r−(r · s) s) · grad as =

1

r ·nF
(r · grad as).(A.4)

Since r is tangent to f and as is continuous, we have �r · grad as�e = 0, which yields
�nF · grad as�e = 0 which in turn implies �(grad as × s) · t�e = 0 by (A.3). It follows
that �curl v · t�e = �(grad an × nF ) · t�e.

We expand grad an in terms of [t, s, nF ]
� as

grad an = (t · grad an)t+ (s · grad an) s+(nF · grad an)nF .

So (grad an × nF ) · t = (s · grad an(s×nF )) · t. Because (s×nF ) · t = 1, it fol-
lows that (grad an × nF ) · t = s · grad an. Therefore �curl v · t�e = �s · grad an�e =
�s · grad(v · nF )�e, which is the desired result. �

Appendix B. Miscellaneous Results

Lemma B.1. For any g ∈ V̊ 2
r (T

wf) we have that gF ∈ H(divF ;F ) for F ∈ Δ2(T ).

Proof. Let e ∈ ΔI
1(F

ct), and let f be the corresponding an internal face of Twf

that has e as an edge. We let t be a unit vector parallel to e and set s = t × nF .
Note that {nF , s, t} forms an orthonormal basis of R3. To prove gF ∈ H(÷F ;F ),
it suffices to show gF · s is single-valued on e.

Let nf be a unit-normal to f . Since nf · t = 0, we have that nf = (nf · s) s+(nf ·
nF )nF and thus, g · nf = g · s(nf · s) + g · nF (nf · nF ) on e. However, g · nF = 0 on

F by definition of V̊ 2
r (T

wf), and so g · nf = g · s(nf · s) on e. Since g · nf is single
valued on e (since e ⊂ ∂f and g ∈ V 2

r (T
wf)) we have that g · s is single valued on

e. Finally, since gF · s = g · s we conclude gF ∈ H(divF ;F ). �

Lemma B.2. For any g ∈ L2r(T
wf) ∩ V̊ 2

r (T
wf) with div g|F continuous on F we

have that divF gF is continuous on F , for F ∈ Δ2(T ).

Proof. Let K ∈ T a with F ∈ Δ2(K). Since g · nF = 0 on F , we can write
g · nF |K = μψ on K for some ψ ∈ Pr−1(K

wf). However, since g · nF is continuous
on K and μ is linear and positive on K, it must be that ψ is continuous on K.
Since nF · grad(g · nF ) = ψ gradμ · nF on F this implies that nF · grad(g · nF ) is
continuous on F . We can write divF gF = div g|F − nF · grad(g · nF ) on F and,
hence, divF gF is continuous on F .

�

Lemma B.3. Let p ∈ V 3
r (T

wf) and r ≥ 0. For F ∈ Δ2(T
wf), if∫

e

�p�eq ds = 0 ∀q ∈ Pr(e) e ∈ ΔI
1(F

ct)\{eF }, and(B.1a) ∫
eF

�p�eF ds = 0 ∀q ∈ Pr−1(eF ) eF ∈ ΔI
1(F

ct),(B.1b)

then p|F is continuous.

Proof. We label the three triangles in Δ2(F
ct) as Q1, Q2, and Q3 such that eF =

Q1 ∩ Q2. We let pi = p|Qi
and let z ∈ ΔI

0(F
ct). Since p ∈ V 3

r (T
wf), condition

(B.1a) yields that �p�e = 0 for both interior edges e ∈ ΔI
1(F

ct)\{eF }. It follows that
p1(z) = p2(z) and p2(z) = p3(z), therefore p is continuous at z. Hence �p�eF (z) = 0.
Then, (B.1b) shows that �p�eF = 0. �
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