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EXACT SEQUENCES ON WORSEY-FARIN SPLITS

JOHNNY GUZMAN, ANNA LISCHKE, AND MICHAEL NEILAN

ABSTRACT. We construct several smooth finite element spaces defined on three-
dimensional Worsey—Farin splits. In particular, we construct C1, H(curl),
and H'-conforming finite element spaces and show the discrete spaces satisfy
local exactness properties. A feature of the spaces is their low polynomial
degree and lack of extrinsic supersmoothness at subsimplices of the mesh. In
the lowest order case, the last two spaces in the sequence consist of piecewise
linear and piecewise constant spaces, and are suitable for the discretization of
the (Navier-)Stokes equation.

1. INTRODUCTION

An inherent feature of smooth finite element spaces, with respect to a general
simplicial mesh, is their high polynomial degree and complexity. For example,
C'-conforming finite element spaces necessitate the use of polynomials of at least
degree five and nine in two and three dimensions, respectively [3/[12]. Another
feature of smooth piecewise polynomial spaces is their complexity, as additional
smoothness is imposed on lower-dimensional simplices of the mesh. For example,
in three dimensions, C'' piecewise polynomials are C* on vertices and C? on edges
of the mesh [12][18[21].

Recently, the connection between C! finite element spaces and stable divergence—
free (Stokes) pairs for incompressible flows has been emphasized through the use
of smooth, discrete de Rham complexes (cf., e.g., [BL[7O,[IT]). The relationships
between distinct finite element spaces imply many of the attributes of smooth finite
element spaces (high polynomial degree and complexity) translate to divergence—
free pairs.

One way to mitigate the high polynomial degree and complexity of smooth finite
element spaces, and analogously divergence—free Stokes pairs, is to define the spaces
on certain splits (or refinements) of a simplicial triangulation; the added structure
of the split mesh offers additional flexibility not available on generic meshes. For
example, an Alfeld split of a simplex connects each vertex to its barycenter, thus
splitting each n-simplex into (n+ 1) subsimplices; this is commonly referred to as a
Clough-Tocher split in two-dimensions [3]. The polynomial degree of C! spaces on
Alfeld splits is dramatically reduced from five to three in two dimensions, and from
nine to five in three dimensions. These C! spaces are related to the divergence—
free Scott—Vogelius pair for the (Navier-)Stokes problem, where the velocity space
consists of continuous piecewise polynomials and the pressure space consists of
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discontinuous polynomials of one degree less [16]. On Alfeld splits, the Scott—
Vogelius pair is stable if the polynomial degree of the velocity space is at least the
spatial dimension [11[7,10,20].

While reducing the polynomial degree, these finite element spaces defined on
Alfeld splits still have supersmoothness at low-dimensional simplices, e.g., the three-
dimensional C! elements on Alfeld splits are C? at vertices [7]. Moreover, there is
still a restriction of polynomial degree for the corresponding Scott—Vogelius pair,
which is especially limiting in three dimensions. These issues motivate the use of
other types of splits with more facets, in particular, the three-dimensional Worsey—
Farin split [I2L[T9]. Similar to the Alfeld split, the Worsey—Farin split adds a vertex
to the interior of each tetrahedron and connects this vertex to its (four) vertices. In
addition, the Worsey—Farin split adds a vertex to each face of the tetrahedron and
connects this vertex to the vertices of the face and to the interior vertex. Thus, a
2D Alfeld split is performed on each face of the tetrahedron and the split produces
12 sub-tetrahedra (cf. Section 2] for the precise construction and definitions).

The goal of this paper is to construct finite element spaces with varying level
of smoothness defined on Worsey—Farin splits in three dimensions. We connect
several local finite element spaces defined on these splits through the use of a
discrete de Rham complex and show that the sequences are exact for any polynomial
degree. The exactness properties naturally lead to dimension formulas for the local
piecewise polynomial spaces. These dimension formulas appear to be new, even for
the C! spaces, and of independent interest. We then construct unisolvent sets of
degrees of freedom for the spaces which lead to the analogous global spaces and
commuting projections. The last two spaces in the sequences are suitable for the
discretization of the (Navier)-Stokes problem.

Features of the proposed finite element spaces are their low polynomial degree
and lack of extrinsic supersmoothness. The lowest-order C' finite element space
consists of piecewise cubic polynomials with respect to the Worsey—Farin trian-
gulation, and the accompanying Scott—Vogelius (Stokes) pair consists of spaces of
piecewise linear and piecewise constant spaces for the velocity and pressure, re-
spectively. We emphasize that, compared to the analogous spaces defined on Alfeld
splits, the polynomial degree is reduced by two. In addition, the degrees of free-
dom of the proposed spaces only use derivative information dictated by their global
smoothness, and therefore the spaces do not have added continuity restrictions
on lower-dimensional simplices in the mesh. Again, this contrasts with the finite
element spaces defined on Alfeld splits.

One of the properties of a Worsey—Farin split is the presence of singular edges,
i.e., edges that fall in exactly two planes in the mesh; cf. Figure[Il This is analogous
to two-dimensional singular vertices, i.e., vertices falling on exactly two straight
lines in a (two-dimensional) triangulation mesh. It is well known that in two di-
mensions, the divergence of piecewise smooth vector fields have a weak continuity
property at such points, and this intrinsic smoothness characterizes the discrete
pressure spaces in a Stokes/NSE finite element discretization [16,17]. Analogously,
we show that the derivatives of (continuous) piecewise polynomials have intrinsic
smoothness properties on singular edges. For example, the divergence operator
acting on the Lagrange finite element space has an alternating weak continuity
property on singular edges, and this affects the last space in the sequence (the
“pressure space”). Similar results, but in less generality, are shown in [22] Lemma
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FIGURE 1. Left: A triangulation with four tetrahedra and six ver-
tices with coordinates (0,0,0), (£1,0,0), (0,+£1,0), and (0,0,4).
The mesh has one interior singular edge with vertices (0,0,0),
(0,0,4) and indicated by the red dashed line. Right: The same
mesh, but vertex (1,0,0) is shifted to (2,1,0). The faces denoted
in blue and green are no longer co-planar, and therefore the edge
with vertices (0,0,0), (0,0,4) is not singular.

3.1] and [I5], Section 6]. For the first time, we also characterize intrinsic smooth-
ness properties of the curl operator acting on the Lagrange finite element space at
singular edges (cf. Remark [6.6]).

This paper is a continuation and nontrivial extension of [§], where smooth piece-
wise polynomial spaces are built on two-dimensional Powell-Sabin meshes. The
present work also has similarities with the recent work by Christiansen and Hu [2],
where low-order finite element de Rham complex are constructed on several differ-
ent meshes (splits). However, unlike this work, we build all of our finite element
spaces on a Worsey—Farin split and for general polynomial degree. One of the main
differences in the construction and the analysis between the current work and those
given in [2[7,[8] is identifying weak continuity properties for both the divergence
and curl operator at singular edges. This necessitates the construction of smoother
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Nédélec-type spaces; cf. ([25a)—(2.5d). Stokes pairs defined on Worsey—Farin splits
have also been analyzed in [22] using the quadratic Lagrange space for the velocity.
However, the pressure space in [22] was not explicitly characterized as we do in the
current paper.

The rest of the paper is organized as follows. In the next section, we provide the
notation and definitions used throughout the paper. In SectionBlwe show that local
smooth finite element spaces satisfy exactness properties with respect to several
de Rham complexes. This is proved, in part, by using the exactness properties
of piecewise polynomials defined on two-dimensional Clough—Tocher splits. These
exactness properties naturally lead to dimension formulas for the local spaces, which
we state in Section @l Next, we give unisolvent sets of degrees of freedom (DOF's)
for each space in Section [l and show that the DOFs induce commuting projections.
Finally, in Section [6, we prove that the DOFs lead to global (conforming) finite
element spaces.

This paper is based on the second author’s Ph.D. thesis [13].

2. PRELIMINARIES

Let © C R? be a contractible polyhedral domain. We assume we have a shape-
regular simplicial triangulation T} of Q. For each T € T, we let zp denote its
incenter, that is, the center of the largest inscribed ball contained in T. Let F =
T, N5, be an interior face with 77,75 € Tj,. Let L be the line segment connecting
z, and zr,; then we let {mpr} = L N F. Since we chose zr to be the incenters, we
can guarantee that mp exists. If F' is a boundary face of T}, then we let mp be
the barycenter of F'. For a simplex K, A¢(K) will denote the set of s-subsimplices
(i.e., the s-dimensional subsimplices) of K. More generally, if ¥, is a collection of
simplices, then A;(Fy) denotes the collection of s-subsimplices of all the simplices
in . Moreover, if ¥, is a simplicial triangulation of a domain with boundary,
then AL(F},) denotes the collection of s-subsimplices of A4 (F},) that do not belong
to the boundary of the domain.

For each T € T}, with T' = [zg,..., 23], we let T* = {K;,0 < ¢ < 3} with
K; = [zr,20,...,&;,...,x3]. Here and throughout = represents omission of the
term. In other words, we see that T? is a triangulation of 7' with four simplices
and this is known as the Alfeld split of T. Let F; = [zq,...,Z;,..., 23] be the i-th
face of T so that K; € T* with F; C K;. Then we let K} = {S; :0<j <3,j #i}
where S; = [z7,mp,, k20 and 0 < k, ¢ < 3 with k,¢ ¢ {i,j}. We let T =
{S € Kz‘»”f :0 < i < 3); cof Figure @l We see that T consists of 12 simplices
and is known as the Worsey—Farin split of T. We let 72 := {K € T* : T € T}
and T3 = {K € TV' : T € T),}. We see that T2 is a refinement of T), and T\
is a refinement of T5. For T' € T}, u denotes the hat function corresponding to
zr defined on the Alfeld split 7% . That is, p is the piecewise linear function with
respect to T such that pu(zr) =1 and g = 0 on 9T. Moreover, we use the notation
Hi = M‘K7

For any F € Ay(T) for T € T we see that T induces a Clough-Tocher
triangulation of F, which we denote by F*. To be precise, let F' = [yo, 91, y2], then
Fet = {[mp,y0,v1], [mF, yo, y2], [mr, y1,y2]}. We will utilize surface differential
operators. Let ¥ be a smooth enough vector valued function on T" € T}, and let
F € Ay(T). Then we let the tangential part of ¢ be given by ¥p :==n X ¢ X n|p
where n is the outward pointing normal of 0T. For a scalar valued function u, we
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\$2

FIGURE 2. A representation of the Worsey—Farin split with two
faces shown

define up := u|p. We will use the following identities:

(2.1) curlp Yp =curly - n on F,
(2.2) divg ¢Yp =div(n x (¢ x n)) on F,
(2.3) gradp up =n X (gradu x n) on F,
(2.4) rotp up =gradu x n on F.

We now define local finite element spaces on each macro-tetrahedron T' € T}. To
do this, we assume we have a triangulation of T', T}, which could be, for example,
T, = T2 or T), = T%'. We let P,.(S) be the space of polynomials of degree less than
or equal to r defined on S. For negative values of r, P,.(S) is the trivial set. We
define on the triangulation T}, of T the space of discontinuous polynomials:

Po(Ty) := {v e L*(T) : v|x € Pr(K),VK € T}
The spaces of minimal smoothness are defined as follows.

= HY(T) N VOTy),
= H(curl, T) NV, (T}),
= H(div, T) N V2(T}),
= L§(T) NV (Th),

where L3(T) = {q € L*(T) : [, qdz = 0}. Here, we use the commonly used nota-
tion that () denotes the corresponding space with vanishing traces, e.g., H(curl, T))
={ve H(cur,T) : vxnlop =0} and H(div,T) = {v € H(div,T) : v-nlor = 0}.
We also consider the Lagrange finite elements L(T},) := V.(Ty,) (L(T3,) = VO(T3))
LTy = LT (LL(Th) = [LAT,)]?) for i = 1,2 and finally L3(T},) := V(T3,)
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SHTh) = LH(Tn).

cgradv € L (T),
cgradv € Iii,l(Th
ccurlv € L2 (Th)},
scurlv € [f,l(Th)}a
sdive € L2 (Th)},
cdive € lo-f—l(Th)},

)
)
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|2
|2

We also define the intermediate spaces that add extra smoothness to the spaces
VI(T™) on the faces of T

(2.5a)
(2.5b)
(2.5¢)
(2.5d)

We see that LE(TV) ¢ Vi(T™) c VI(T™) for i = 2,3.

3. LocAL EXACT SEQUENCES

VH(TY) = {v € VA(T™) : v x n is continuous on each F € Ay(T)},
V2(TY) = {v € V2(T™) : v-n =0 on each F € Ay(T)},

V3T = {q € V3(T™") : ¢ is continuous on each F € Ay(T)},
V() = VYTV (1 I3(T).

One of the main results of the paper is to prove local sequences consisting of
smooth piecewise polynomials are exact. The first sequences are the ones with
homogeneous boundary conditions.

(3.1a) 0 — VO(T™)
(3.1b) 0 — SO(T™)
(3.1¢) 0 — SO(T™F)

(3.1d) 0 — SO(T™)

grad
—

grad
—

grad
—

grad

—

VL (1)
L}y (T
Sp_y(T™)

Spa (1)

curl

—

curl

—

curl

—

curl

—

V2o (1)
Vi _y(T)
L2 _o(T™)

7o (1)

div
—
div
—
div
—
div

—

V2 (1)
f/vr373 (TWf)
Vi_a(T)

LY (1)

The second set of sequences does not have boundary conditions.

(3.2a) R — V(%)

(3.2b) R — S%(1%%)

(3.2¢) R — S%(1%)

(3.2d) R — S%(1%)

grad
—

grad
—

grad
—

grad
—

Vi (1)
Ly 1 (1)
Sy (T™)

Sy (T™)

]
=1
=1
=

l

e}
=}
=
=

l

e}
=}
=
=

l

e}
=}
=
=

l

div
Vr272(TWf) i Vr373(TWf)

V2, (T™)
L7 (1)

Sy (1)

div
—
div
—
div

—

Vrsf 3 (TWf )
Vrgf 3 (TWf )

Ly a(T™)

L

%

%

%

The first sequences ([B1al) and [B:2al) are exact due to the results of Nédélec [14].
The major result of this section are the following theorems.

Theorem 3.1. Let r > 3. Then the sequences BI) are exact.

Licensed to Univ of Pittsburgh. Prepared on Tue Jul 18 21:30:42 EDT 2023 for download from IP 132.174.255.116.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



EXACT SEQUENCES ON WORSEY-FARIN SPLITS 2577

Proof. Again, we already know that (B.Ial) is exact. The exactness of the rest of
the sequences follow from the following results that are found below: Theorem B.8]
Theorem [3.14] and Theorem O

Similarly, we can prove the following theorem.
Theorem 3.2. Let r > 3. Then the sequences [B2)) are exact.

The proofs of Theorems follow the same general procedure as [7,[8,10].
Essentially, we build functions of the form pw, + 2wy + --- through an iterative
procedure, where the functions w; are specified such that the results of Theorems
are inferred. However, due to geometric properties of the Worsey—Farin
split, there are non-trivial differences between the arguments given in [7[8[I0] and
those presented here. Essentially this is due to the induced Clough—Tocher trian-
gulation on each face ' C 9T, which from the definition of p, implies that the
functions w; are piecewise polynomials with respect to the Worsey—Farin split; in
contrast, in [7l[I0], the functions w; are simply polynomials on T" defined by canon-
ical Nédélec degrees of freedom. As such, the exactness of polynomial sequences
defined on (two-dimensional) Clough—Tocher triangulations plays an essential role
in the proofs of Theorems

3.1. Exact sequences on Clough—Tocher splits. Before we prove Theorems
B and B2, we will need to use exact sequence properties of local Clough—Tocher
splits. To start, we require some definitions.

Definition 3.3. For a tetrahedron T' € T), and face F' € Ay(T'), we denote by
ng = n|p the outward unit normal of 9T restricted to F. We let 7 and v be
orthonormal vectors that span the tangent space of F. Thus, {r,v,np} is an
orthonormal system of R?.

Remark 3.4. If P(F) is a scalar valued space defined on F' then, with an abuse of
notation, we set [P(F)]% = {ar +bv : a,b € P(F)}.

We define the Nédélec spaces on the Clough—Tocher split:

Vi o (F) = {v € H(divp, F) : v|q € [Pr(F)]},VQ € F'},
Vi (F) = Vi, (F) 0 H(divp, F)
Vot (F) i={v € H(curlp;, F) : vlg € [Pr(F)|7,YQ € F°'},
Voo o (F) = Vi (F) 0 H (curl g, F),

VA(F) = {v € L*(F) : v|q € Pn(F),VQ € F'},

V2(F) := VA(F*) 0 L3(F),

and the Lagrange spaces,

LO(F) := V2(F) N H(gradp; F), LoY(F) :=L9(F°*) N H(gradp; F),
LE(F) = [LY(F))?, LE(F) = [LO(F))2,

T T

L) = (P, L2(F) = (P 1 L),
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Finally, we define the subspaces with additional smoothness.
SYUF) = {v € LUF) : gradpov € L} (F<
SO(F) :={v e LOF) : gradpv el (F
de L(FY) = HFY) . divpov e L2
de JFY) = {v e LY(FY) : divpvel?
(F) :={v € LL(F)
(F) = - (F)
SHE) =
)=

3
)

ol
F},
F)},

)
)
1(F°
1

: curlpw € Lr,l

curl r ( )
Curlr Fet {velX(F?): curlpve 2 [ (FY),
Fct _ LQ(FCt)
SZ (Fct L2(Fct)
We note that V\, ,.(F") (resp., St T(F“)) and Vi, .(F°) (resp., Scliiv’r(FCt)) are

isomorphic. For notational convenience we sometimes drop the curl and div from
the subscripts of these spaces.

Several combinations of these spaces form exact sequences, which are summarized
below.

Theorem 3.5. Let r > 1. The following sequences are exact [1L[7].

B3a) R L0F Y v, ) D vz o,
(3.3b) R — SOty T 1 pey M e pey g,
(3.3¢) R — SO T s (Y TS 2, — o,
Baa)  0— Oy Y L ) D v ) o,
(3.3¢) 0 g0y T pey N g pey g,
(3.3f) 0— 2 TS S LY S 2L, — o

Theorem has an alternate form that follows from a rotation of the coordinate
axes, where the operators grad and curl are replaced by rot and div, respectively.

Corollary 3.6. Let r > 1. The following sequences are ezact [1L[7].

rotp divp
(3.4a) R — LUFY) — Vi, 1 (FY) — V2, (F) — 0,
rot div
(3.4b) R — SO(FY) 5 11 (Pt T8 2 Rty o,
rot div
(3.4c) R — SOFY) — Sk, (FY) — L2 ,(F%) — 0,
o rot o div o
(3.4d) 0 — LUFY) —5 Vi, y(F) — V2,(F) — 0,
o rot ° div o
(3.4e¢) 0 — SOF) —5 (L (F®)  — V2, (F®) —» 0,
R rot o div B
(3.4f) 0 — SUFY) — Sho, 1(FY) — 2 ,(F) — 0.

Remark 3.7. From Theorem B.O Corollary B.6] the well-known dimension formu-
las of the Nédélec and Lagrange spaces, and the rank—nullity theorem, one easily
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TABLE 1. Dimension counts of the canonical (two-dimensional)
Nédélec, Lagrange, and smooth spaces with and without bound-
ary conditions with respect to the Clough—Tocher split. Here,
dim Vi, ,(F) = dim V2, (F*) = dim V,} (F°").
| k=0 k=1 k=2

dim VP (FY) | L(3r2 +3r +2) 3(r +1)? 2(r+1)(r+2)

dimVF(F) | 1(3r2 —=3r+2)  3r(r+1) Sr+1)(r+2) -1

dimLF(F%) | L(3r® +3r+2) 3r% +3r+2 1(3r? +3r+2)

dimLF(Ft) | 1(3r2 —3r+2) 312 —3r+2 Zr(r—1)
dim S¥ (F°?) 2(r?—r+2) 3r2 +3 1(3r% +3r +2)
dim S5(F*) | 2(r®2 —5r+6) 3r>—9r+6 r(r—1)

dim RE(F) | S(r — 1)(r — 2) 3(r —1)2

finds the dimensions of the smoother spaces S¥(F) (cf. [7]). These counts are
summarized in Table [I

We will use the following intermediate spaces when developing commuting pro-
jections on the Worsey-Farin split:

RUFY) = {v € SU(F) s v|gp =0}, RLUF) :={ve Sclﬁvm(FCt) s vlgr = 0}.
It is shown in [13] that dim R%(F*) = 2(r — 1)(r — 2) and dim R} (F') = 3(r — 1),

3.2. Surjectivity of the divergence operator on discrete local spaces. The
goal of this section is to prove the following theorem.

Theorem 3.8. Let r > 0. Then:

(i) for each p € Vﬁ (T, there exists a v € |°_72n+1(TWf) such that divv = p.

(ii) for each p € V3(T™), there exists a v € L2, (T™) N V2 (T™) such that
dive = p.

(iii) for each p € V3(T™), there exists a v € L2 4 (T™) such that divv = p.

(iv) for each p € L3(T™) (resp., p € L3(T™)), there exists a v € é’fH(TWf) (resp.,
v € S, (T%)) such that divv = p.

The proofs of Theorem B8 parts (i) and (ii) depends on five preliminary lemmas.

Lemma 3.9. Let r > 1 and s > 0 be integers. Then for any q € V3(T™), there
exists w € L2(TY) and g € V2 ,(T™Y), such that p*q = div(p*+tlw) + pstig.

Proof. Let g € V3(T") and s > 0. Because ¢|r, is continuous on each F; € Ay(T),
there exists b; € P.(F;) such that b; = ¢|r, on 0F;. Thus ¢ — b; is continuous
on F; and vanishes on OF;. Consequently, there exists a; € L2(T") such that
a; = (g —b;) on F; and supp(a;) C K;. Using the divergence-conforming Nédélec
degrees of freedom of the second kind [I4] , and the fact that grad p; is parallel to
the outward unit normal of Fj, there exists w; € [P.(T)] such that

(s+ Dw;y -gradp; =b; on F;.
We also define wy € L2(T™) as

1 4
= i‘eiv
w2 s+1 ;a

where ¢; := %. Finally, we set w := wy + wa € L2(T™!). We then see that

g—(s+1Dw-gradp=0 on I7T,
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and, hence, there exists p € V2 | (T") such that
g=(s+1Dw-gradp+pup onT.
Setting g := p — divw € V2 ;(T") we have
poq =(s + Dpw - grad p+ p*'p = div(p*w) + p*Hg.
(]

Lemma 3.10. Let K € T?, F € Ao(T) with F C 0K and let np denote the
outward pointing unit normal to F. If p € LL(F) then there erists ¢ € LL(T™)
such that q|p = p, supp(q) C K and g-np =0 on K.

Proof. Let {r,v,nr} be an orthonormal set with 7 and v parallel to F. Then
p = ar + b for some a,b € LO(F). We extend a and b to all of K, which we
denote by @,b € LO(K™), by setting all the other Lagrange degrees of freedom to
be zero. In particular @ and b vanish on 9K \F. Hence, we can further extend them
by zero to all of T to obtain a,b € LOY(TY). We then set ¢ = ar + bu. O

Lemma 3.11. For any 0 € V(T™), with r > 0, there exists 1 € L2, ,(T"") N
10/;2+1(TWf) and v € V3(T) such that

(3.5) w’l = div(py) + p’y Vs > 0.

Proof. Let K; € T* be the tetrahedron containing the face F; € Aq(T'), and let
ki € VE(T?*) C V@ (T™) be defined on K; as x; = ﬁ Jp, 0dA. Then on F;,

/ (0 — k) dA =0,
F;
s0 (0 — ki)p, € VA(F) by definition. Hence, by Corollary B there exists a
function p; € L}, ;(Ff*) such that
(3.6) divg, p; = (0 — ki) on F;.
By Lemma 310, there exists an extension ¢; € L2, | (T™) such that v;|p, = p;,

supp(v;) € K;, and ¢; -np, = 0 on K;. We then define ¢ = Zf:o P; € L?H(T“’f) N
IG/,?H(TWf). The construction of ¥, and using (2.2)), yields the identities

(3.7) Y-np =0 on K,
(3.8) divy =divg, p; on F;.

Now set v := 0—div 1, so that v = k; on F; by (B.8) and (B0). Since &; is continuous
on Fj, it follows that v € V3(T"). Rearranging terms yields § = div ¢ + -y, which
proves the result in the case s = 0. Furthermore, since grad p is parallel to ng, on
each K, we have by B,

p°0 — div(p*v) = p*0 — p®divey — sp® M - grad p = pty,
which is the desired result. O

Lemma 3.12. Let ¢ € V3(T™) with r > 1, and s > 0. Then there erists v €
L2(T) and p € V3_,(T™) such that p*q = div(p**tlv) + ps+ip.
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Proof. By Lemma 3.9} there exist w € L2(T%f) and g € V;2_,(T") such that
ptq = div(p*w) + p*tyg.
Since g € V2 ((T"), Lemma BT yields the existence of v € L2(T") and p €
V3_,(T") such that
phg = div(p*T) + .

Therefore, p*q = div(p*™ (w+1)) + p*Tp. Setting v = w + 1) achieves the desired
result. O

The final preliminary lemma follows from a result shown in [7].
Lemma 3.13. Let s > 0, and let ¢ € V3(T™) with fT pqdr = 0. Then there
exists w € L2(T™Y) such that p*q = div(p*tlw).
Proof. Since q € V3(TVY) it is easy to see that ¢ € V@ (T?). From [7l Lemma 3.11],
there exists w € [Po(T)]? C LE(T™F) such that div(p*tlw) = pq. O

We can now prove Theorem B8 parts (i) and (ii).

Proof of Theorem B8, part (i). The case r = 0 follows immediately from Lemma
B.13] with s = 0. Now consider the case » > 1. Let 0<j<r-1 and assume that
we have found wy, w,—1, ..., w,—; with wy € L2(T") and p,_; € foj(TWf) such
that

p =div(pw, + pPw, 1+ -4 @ we ) + @ e ),
If 0 <j <r—1 then we apply Lemma B.T2 to find w,_(;41) € Lf_( (T%") and
Pr—(j+2) € Vf_(j+2)(TWf) such that

j+1)
W1y = div(? TP, o1y) + 10T (12).-

In which case we obtain

p=div(pw, + pPw,_1 + -+ Uj+2wr—(j+1)) + ﬂj+2pr—(j+2)-
After taking care of the base case j7 = 0, and continuining by induction we arrive
at

p = div(pw, + pPw,_q + -+ p"wi) + p"po.
By the hypothesis [, pdx = 0, there holds [, u"podz = 0. By Lemma 313} there
exists wo € L3(T™) such that div(u"*wy) = u"po. The result follows by setting
v = pw, + pPwe_1 + -+ ptwr + p" . O
Proof of Theorem B8, part (ii). By Lemma BII] (with s = 0), there exists ¢ €
L2, ((TV)) N V2 (T) and vy € V3(T™) satisfying
p=divy + 7.

Note that [,.pder =0, and [, divyyde = [, -ndA =0 since 1 - n = 0 on IT.
Thus, we have that fT vdx = 0 which implies vy € \73 (T™). Therefore, we apply
part (i) of Theorem B8] to find g € L1 (T™) such that divg = . The result
follows by setting v =¥ + g¢. |

We now prove parts (iii) and (iv) of Theorem B.8 which are corollaries to parts
(i) and (ii).

Licensed to Univ of Pittsburgh. Prepared on Tue Jul 18 21:30:42 EDT 2023 for download from IP 132.174.255.116.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



2582 JOHNNY GUZMAN, ANNA LISCHKE, AND MICHAEL NEILAN

Proof of Theorem B8], part (iii). We decompose p= (p—p)+p where p:= ﬁ fT pdx.
There exists w € [P1(T)]? such that divw = p, and by part (ii) of Theorem B8 we
have ¢ € L2, (TY") N V2, (T™") such that dive) = p—p. Thus, setting v := ¢+ w
completes the proof. O

Proof of Theorem BR, part (iv). Let p € L3(T™) ¢ V3(T™). Applying part (i) of
Theorem B8, we find v € L2 (T™") such that divv = p. But clearly v € 52, (T™),
since div v belongs to L3(T%F). O

3.3. Surjectivity of the curl operator on discrete local spaces. The main
goal of this section is to derive the analagous results of Section 3.2}, but for the curl
operator; that is, we show that the curl operator acting on piecewise polynomial
spaces with respect to the Worsey—Farin split is surjective onto spaces of divergence—
free functions. The main result of this section is the following.

Theorem 3.14. Letr > 0. Then:
i) for any v € V2(T) satis ying divv = 0 there exists w € L1, (T™) satis ying
r r+1

curlw = v.
(i) let v € VA(T™) with dive = 0. Then there exists w € LI, (T"") such that
curlw = v.

(iii) for each v € L2(T™) (resp., v € L2(T™)) with dive = 0, there exists a w €
S (T (resp., w e S (1)) such that curlw = v.
(iv) for each v € S2(T™) (resp., v € S2(T)) with dive = 0, there exists w €
S (T (resp., w e St (T)) such that curlw = v.

We omit the proofs of parts (iii) and (iv) of Theorem B.I4]since they easily follow
from parts (i) and (ii) of the same theorem.

Before we prove parts (i) and (ii) of Theorem BI4] we first establish several
lemmas.

Lemma 3.15. Let r > 0 and let v € \°7f(TWf). Then there exist functions z €
[P(TYD)? and v € [Pr_1(T™))? such that

(3.9) v=gradpu X z + py,

and so grad p x z is continuous on F for each F € Ao(T). Moreover, for each
e € A1(T) and its unit tangent vector t, z - t is single-valued on e.

Proof. By [T, Lemma 4.1], there exists z € [P,.(T%")]? and v € [P,_1(T")]? such
that (3.9) holds. For each F' € Ay(T'), there holds v = grad y x z on F', and hence
grad 4 X z is continuous on F. Following exactly the proof of [7, Lemma 4.2], we
see that z - t is single-valued for all e € Ay (T). O

Lemma 3.16. For any v € \073(TWf), with v > 1, and any integer s > 0, there
exists w € LL(T™Y) and g € V2 {(T™) such that

(3.10) v = curl(p*w) + pttlg.

Proof. From Lemma B.I5] there exists z € [P.(T™)]? and v € [P,_1(T)]? sat-
isfying (39) with z x grad ;& continuous on F' for each F' € Ay(T) and z - ¢ is
single-valued for all e € A;(T). Let {F;}3_, be the four faces of T. For each i we
choose b; € [P.(F};))? so that b; = zr, on JF;, which we are allowed to do since
z x grad u is continuous on Fj;. Since z -t is single-valued for all e € A{(T), we
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have that b; - t|c = b; - t|. if e = F; N Fj. Hence, using the curl-conforming Nédélec
degrees of freedom of the second kind [I4], there exists wy € [P,.(T)]® such that
(w1)F, = b; on F; for 0 <4 < 3.

Since zp, — b; € LL(FS), according to Lemma BI0, there exists a; € LL(T")
such that supp (a;) C K; and (a;)p, = zp, — b; on F;. We set wy := E?:O a; and

finally w := -5 (w1 + w) € L(T™). Hence,

(3 + 1)wF1‘, = (wl)Fq‘, + (wQ)Fi =b+ (a’i)Fq‘, = ZF;-

From this we deduce (s+ 1) grad u x w = grad pu X z on each Fj.
Thus, there exists ¢ € [P,_1(T")]? such that

(3.11) (s+ D) gradpuxw=gradpux z+pup=v+pu(¢p—=v) onT.

We write curl(p*Ttw) = (s+1)u® grad u x w+ p* 1 curlw = pv + p* 1 (curl w —
v+@). Setting g := —(curlw—~+¢), we have that (BI0) holds. Finally, since p*v-n
and curl(u**1w) - n are single-valued on interior faces, u**tg - n is single-valued.
Because p is continuous and strictly positive in the interior of T, this implies g - n
is single-valued on interior faces, and thus g € V2 (T"). O

Lemma 3.17. Let r > 0 and s > 0 be integers. For any g € f/}z(TWf) there exists
Y €Ll (TY) and v € VZ(T™) such that

pg = curl(p*y) + p’y.

Proof. Let {F;}3_, be the four faces of T' so that g, € H(divp,; F;) by Lemma[Bl
We use the (two-dimensional) divergence-conforming Nédélec degrees of freedom to
construct p; € [P,(F;)]? so that for r > 1,

pi-(np xt)=gp - (np xt) on e, Ve € A1(F),

where ¢ is the unit vector tangent to the edge e. If r = 0, we can satisfy the above
equation for two of the three edges, however, on the third edge the equation will
be automatically satisfied since divg, (95, — p;) = 0.

Using g, —p; € ‘o/dliv7r(FZ9t) we have that div(gp, —p;) € V2, (F). By Corollary
B8, there exists m; € LL(F) so that dive, m; = dive, (gr, — p;) on F;. Thus,
if we let 0; := p; + m; we have 0; € LL(F') and gr, — 0; € ‘O/dlivm(Fft) with
divg, (9r, — 6;) = 0. By Corollary B.6] there exists k; € IG_QH(Fft) such that
rotg,k; = gr, — 6;. Since k; vanishes on OF; there exists §8; € E9+1(TWf) with
supp (B;) C K; such that 8; = k; on F;. We let ¢p = Z?:o Bing, € I°_71n+1(TWf).
Note that this immediately implies that grad u x ¢ = 0 on T'. Also, we have that

curly = grad B; X np, =rotp, K, = gp, — 0; on Fj.

Setting v = g — curly we see that v € 19/702 (T%"). Moreover, noting, in addition, to
the above equation, that curly|p, = (curly)p, since curly - np, = 0 on F;, we see
that yp, = 0; € LL(Ff') and, hence, v € V2(T). Finally, since grad yu x 1) = 0 we
have curl(u®y) = p® curl = pu®(g — 7). O

Lemma 3.18. Let r > 1,5 > 0 be integers. Then for any v € \07%(TWf) such
that div(uv) = 0 on T there exists w € LL(T™) and g € V?_,(T™) satisfying
v = curl(p*tlw) + pstig.
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Proof. By Lemma [3.16] there exists w; € LL(T") and g; € V.2 | (T™) satisfying
(3.12) piv = curl(p*wy) + pi g

By our hypothesis we have 0 = div(u*lg;) = p*((s + 1) gradp - g1 + pdivgy).
Hence, (s + 1)gradp - g1 + pdivgy = 0 on T which implies (gradp) - g1 = 0 on
OT. In other words, we have ¢g; € YO/TQ_I(TWf). We then apply Lemma BT to write
p gy = curl(pftw,) 4 pttlgs where wy € LL(T™) and go € V2 (T*F). The
proof is complete if we set w := wy + wy and g = gs. O

We need one final preliminary lemma.

Lemma 3.19. Let s > 0 and let g € VE(T™), then there exists w € [Po(T)]3 such
that

(3.13) ptg = curl(p*w).

Proof. 1t is easy to see that g € VZ(T*). Hence by [7, Lemma 4.3] there exists
w € [Po(T)]? such that curl(pw) = psg. O

Now we can prove parts (i) and (ii) of Theorem BI4

Proof of part (i) of Theorem BI4 If r = 0 the result follows immediately from
Lemma[BI9with s = 0. Now we consider the case r > 1. Let 0 < j < r—1. Assume
that we have found w,_j, ..., w, with w, € L}(T"") and g,_ ;1) € Vf_(jﬂ)(TWf)
such that
v = curl(pw, + pPw, g + -+ we ) + @ g
Since div(,uj“gr,(jﬂ)) =0on T, if we assume that 0 < j < r — 1, we apply apply
Lemma 31§ to get
W gy = curl(W P w,_4)) + 17200 (r2),s

where w,_(j11) € Li_(j_H)(TWf) and g,_(jy2) € Vf_(jﬂ)(TWf). It follows that

v = curl(pw, + pPw,—y 4 o+ P ) + 0 g, ).

Continuing by induction, after taking care of the base case j = 0, we have

v = curl(pw, + pPw,_1 + -+ p"wy) + " go, with gg € \07(2)(TWf).
By Lemma 319 there exists wqy € [Po(T)]? such that curl(u" wy) = p"go. Setting
w = pwy, + pPwy—q + - + @ wg completes the proof. (]

Proof of part (ii) of Theorem BI4l Set ¢ = v — 5 v, where I8 v is the lowest-
order Raviart-Thomas projection of v on 7. Then f I ¢-np, dA =0 for each F; €
Ao(T). Applying Theorem BH, there exists a p; € Ii,qu(Fft) such that curlg, p; =
¢ - np, on F;. By Lemma [BI0 we can extend p; to a function p; € L}, (T") with
support only on K;, such that (p;)r, = p; on F;. We let p = Z?:o pi € LL(T™).
Hence, by 1)), curlp - ng, = ¢ - ng, on F;. Furthermore, there exists s € [P1(T)]3
such that curls = II{T v where we used that divIIf*v = 0 which follows by the
commuting property of II§1 and the fact divo = 0. We set ¢ := s+p € L%+1(TWf),
then

V-Np, = ((b + Hg{T/U) ‘Np, = (Curhb) "NE; on Fj;.
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Hence, we see that v — curlyy € V2(T™). By Lemma BI7 (with s = 0) we have
v —curly = curlm + v where m € L}, (T") and v € V2(T*). By part (i)
of Theorem [B14] there exists z € fi+1(TWf) such that curlz = ~. Setting w =
1 + m + z completes the proof. O

3.4. Surjectivity of the gradient operator on discrete local spaces. Finally,
to show that the sequences in (BI)—-([B.2) are exact, i.e., to complete the proof of
Theorems B.TH3.2] we establish the surjectivity of the gradient operator onto spaces
of curl-free functions.

Theorem 3.20. Let r > 0. Then:
(i) for any v € VHT™) (resp., v € VIT™)) satisfying curlv = 0, there exists
w € LY, (T (Z“esp,, w € LY, (T™)), satisfying gradw = v.
(ii) for any v € LY(T™) (resp., v € LL(T™)) with curlv = 0, there exists a w €
SO (T (resp., w € 8%, (T™)) such that gradw = v.
(i) for any v € SHT™) (resp., v € SHT™)) where curlv = 0, there exists a
w € 82,4 (T) (resp., w € SO, 1(T"")) such that gradw = v.

Proof of (i). Ifv € VYT (resp., v € V1(T™)) is curl-free, then there exists w €
HY(T) (resp., w € H'(T)) such that gradw = v. Since v is a piecewise polynomial
of degree r with respect to T%!, it follows that w is a piecewise polynomial of degree
(r4+1),ie,we [SH(TWf) (resp., w € LY, (T™)). O

Proof of (ii). Let v € LL(T™) c V1(T™) such that curlv = 0. By part (i), there
exists w € L2, (T"") such that gradw = v. However, clearly w € S, | (T™) since
gradw e LL(T™F). O

Proof of (iil). The proof is similar to (ii) and is omitted. |

4. DIMENSION COUNTS

Here, we give dimension counts for the spaces appearing in the local sequences
BI) and B2Z). As a first step, we state the dimensions of the Nédélec spaces
VE(T™) and VF(T™), and the Lagrange spaces LF(T™) and L¥(T™) in Table
These counts follow from well-known dimension formulas of these spaces and the
fact that 7% contains 9 vertices, 1 internal vertex, 26 edges, 8 internal edges, 30
faces, 18 internal faces, and 12 tetrahedra.

The main step in the derivation of the dimension counts for the rest of the spaces
in BI)-B2) is to prove dimension counts for the subspaces of the Nédélec spaces
with additional smoothness on the faces of T, i.e., the dimension of V¥(T%f) and
\"77;?(wa). The dimensions of the other spaces will then follow from the rank-nullity
theorem.

Definition 4.1. Let 7' € Tj, then for each F € As(T), let er € AI(F) be an
arbitrary, but fixed, internal edge of F*°t.

We also define the “jump” of a function across an edge.

Definition 4.2. Consider the triangulation F* of a face F' € A(T), and let the
three triangles of £t be labeled Q1, Q2, and Q3. Let e = Q1 NOQ5 be an internal
edge, let ¢ be the unit vector tangent to e pointing away from the split point m g,
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TABLE 2. Dimension counts of the canonical Nédélec and La-
grange spaces with and without boundary conditions with respect
to the Worsey—Farin split

k=0 k=1 k=2 k=3
, 2+ 1) 3+ D +2)
: ke (rpwk 2
dim VA (T™) | 2r + D(r" + 7+ 1) B4 6r+4) - (2r+3) 2(r+ 1)(r +2)(r +3)
vk pwE _ 2 _ 2r+ 1) 3(r+1)(r+2) 3 2
dim V,”(T™") | (2r — 1)(r r+1) ) (37‘2+1) (@2r+1) 2r° 4+ 12r° +22r + 11
o 3(2r +1) 3(2r + 1)
dimLF (1Y) | 2r + D)2+ 4 1) Rt 1) O @r+1)@%+r+1)
dim LF(T™) | (2r — )2 — 7 + 1) Ber =) ser = 1) (r—1)(2r —r +2)
" (P —r+1) (P —r41)

TABLE 3. Summary of dimension counts proved in Section @l
Here, the superscript + indicates the positive part of the number.

| k=0 k=1 k=2 k=3
- 2r% £ 127
VE(TvE — — 6r° 4+ 21r2 +9r + 2
B o2t 9 £ 10r+3
(2r+1)
Sk(Tv) 2r3 — 6r2 +10r — 2 3r(2r2 — 3r 4+ 5) 6r° + 8r + 2 2
S(rf4+r41)
. 3(2r—3 2(r —2 (r—1)
8oty | (2(r —2)(r —3)(r —4)) " (s ) N (2 ) ) )
S(r—2)(r —3)) S(3r7 —6r+4)T (2 —r+2)

and let s = np X t be the unit vector orthogonal to both ¢ and ng. Then, the jump
of a function p € P,.(T™) across the edge e is defined as

[ple = (plo, — Plq.)s-

Remark 4.3. In the remainder of the paper, the edge associated with vectors ¢ and
s should be inferred from their context. For example, in the expression fe v-tds,
the unit vector ¢ is understood to be the tangent vector of the edge e.

Lemma 4.4. Letp € Vg, (F) and suppose that
(4.1a) / [p-tlepmds =0 forallm e P,(ep)
(4.1b) /[[p Alemds =0 for allm € P,_y(e),Ve € Al (F)\{er},

where t is the unit vector tangent to an edge e. Then, p € LL(F°).

Proof. Let e € AI(F°), and recall that s is a unit vector parallel to F that is
perpendicular to the edge e. Then since p € Vclliv7r(FCt), [p-s] = 0. In order
to show that p € LL(F°") we need to show that [p-¢] = 0 for all internal edges
e € AI(F<). By ([@Ia) this is certainly true for e = ep. In fact, this shows that
p is continuous across ep. Since [p - s] = 0 on the two remaining edges this show
that p is continuous on the interior vertex z. In particular, [p-¢](z) vanishes on
the two remaining edges. Hence, using (£ID) shows that [p - ¢] = 0. O
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Corollary 4.5. Letv € f/;?(TWf) and suppose that for all F € Ay(T), the following
holds

/ [ve - tle,mds =0 form € P.(er),
er

/[[UF Atlemds =0 form € P,_1(e),Ve € AL(F)\{er}.

Then, v € V2(T*Y).

Proof. The proof of Lemma B.IT shows that vy € Vi, .(F) for all F € Ay(T).
The result now follows by applying Lemma 41 O

We see that the number of constraints in Corollary [L35lis 4(3r 4+ 1). We use this
result to determine the dimension of the space VZ(T™F).

Lemma 4.6. Let v € \073(TWf) with v > 1. Then v is fully determined by the
following DOFss.

(4.2a) v|s - ns(a), Va € Ao(T), Ve ALT*),aC ¥,

(4.2b) /(v|f -ny)kds, Yk € Pp_o(e), Ve € A(T),Yf € AL(TY),e C f,
(4.2¢) / (vp - Ords, ¥k €Pa(c),  Vee Ai(FNAL(FN),VF € Ay(T),
(4.2d) /F vp-kdA,  Veell(F®),  VFe Ay(T),

(4.2¢) /T v Kde, Ve € V2 (T,

Here t is tangent to e. Furthermore, dim \07%(TWf) =673 + 2172 + 9r + 2.
Proof. From Corollary we have
(4.3)  dimVA(TY) > dim VA(T™) — 4(3r + 1) = 6r° + 2172 + 97 + 2.
We see that the number of DOFs from ([@2al) are 12 = 4-3. There are 6(r—1) DOFs
for (4.2D) and 12(r — 1) DOFs for (£2d). We have 4(3(r —1)(r —2) +6(r — 1) + 2)
DOFs from ([£2d)), and finally 3r(2r +1)(r+1) for (£2d). Hence, the total number
of DOFs [{2) is

3r(2r +1)(r +1) + 12(r — 1)(r — 2) +42(r — 1) + 20 = 6r° + 217 + 9r + 2.

Hence, we will prove that dim {7%(T“’f) = 6r3+21r%+9r+2 if we show the constraints
([#2) determine a function v € \73 (T™). To this end, suppose that the DOFs (Z.2)
vanish. The DOFs ([f2Zal) shows that v vanishes VYa € Ag(T). The DOFs (4.2L)
and (£2d) show that v vanishes Ve € A;(T). Also, the DOFs ([£.2d) show that vg
vanishes VF € Ay(T). Thus, v = 0 on 9T and so v = pw where w € V2 | (T"F).
Finally, (£2¢) shows that w vanishes. Thus, v = 0. O

In a similar but significantly easier way we can show
(4.4)  dimV3(TY) > dim V3(TY) —42(r + 1) +7) = 2(r> + 612 + 51 + 2).

Lemma 4.7. The space V3(T™) has dimension 2(r3 4+ 6r% +5r +2), and therefore
dim V3(TV) = 23 + 1272 + 107 + 3.
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Proof. We can easily show that the following DOFs determine ¢ € V3(T")
(4.5a) / qpdA, Vp € L2(FY), VF € Ayo(T),

F
(4.5b) / qpdz, Vp e V2 (T).

T

The number of DOFs are 2(r3 + 672 + 5r + 2), which are exactly the number given

by @.4). O

Theorem 4.8. The dimension counts in Table Bl hold for r > 1.

Proof. Using the exactness of the sequences [BI]) and the rank—nullity theorem, we

have
dim SO(T™) — dim L., (T™") + dim V?_,(T™) — dim V> 4(T"") = 0,
dim SO(T™1) — dim S!_, (T"7) 4 dim L2_,(T™") — dim V3_,(T™") = 0,
dim SO(T™!) — dim S*_, (T™") + dim $2_,(T™) — dim L3_,(T™") = 0,
dim S2(T™) — dim L!_{ (T™) + dim V2, (T™) — dim V;2_5(T™) = 1,
dim S%(T%") — dim S*_ | (T™") + dim L?_,(T%") — dim V3 5(T%F) =1,
dim SO(T%") — dim S*_,(T") + dim S?_,(T"") — dim L3 _,(T"") = 1.
This along with Table 2l and Lemmas give the result. a

Remark 4.9. The dimension counts show that for small r, some of these spaces are
trivialized. In particular, SO(T"") = P,.(T) for r € {1,2}, and S}(T") = [P1(T)]>.

5. DEGREES OF FREEDOM AND COMMUTING PROJECTIONS

In this section, we provide unisolvent sets of degrees of freedom (DOFs) for all
spaces appearing in the exact (local) sequences ([B:2). The DOFs are constructed
such that they induce commuting projections and in addition, lead to global finite
element spaces with suitable smoothness.

5.1. SLVV degrees of freedom. We first give degrees of freedom (DOFs) for the
local finite element spaces in the sequence (3:2D) which we refer to as the ‘SLVV’
sequence due to the given notation. These DOFs are constructed such that they
induce projections that commute with the appropriate differential operators.

Now, we give degrees of freedom for SO(T™) for » > 3. When r < 3, this space
reduces to P,.(T).
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Lemma 5.1. A function q € S°(TY), with r > 3, is fully determined by the
following degrees of freedom.

No. of DOF's
(5.1a)
q(a’)’ Va € AO(T)v 4,
(5.1b)
grad ¢(a), Va € Ao(T), 12,
(5.1c)
/qm ds, Vi € Pr_y(e), Ve € Ay(T), 6(r — 3),
(5.1d)
aiqgt K ds, Vi € Pr_s(e), Ye € Ay(T), 12(r — 2),
(5.1e)
/ gradp q - Kk dA, Ve € grad zSO(F), VE € Ay(T), 6(r —2)(r —3),
F
(5.1f) / (np-gradq)kdA, Yx € RO (F), YF € Ao(T), 6(r —2)(r — 3),
F
(5.1g)

/ grad q - K dz, Vi € grad SO(T™1), 2(r = 2)(r = 3)(r — 4),
T

where % represents two normal derivatives to edge e, so thatnl,n_ andt form an

orthonormal basis of R3. Then the DOFs (5.11) define the projection 110 : C°°(T) —
ST,

Proof. The dimension of SO(T"f) is 213 — 612 + 10r — 2, which is equal to the sum
of the number of the given DOFs.

Let ¢ € S2(T™) such that ¢ vanishes on the DOFs (5I). On each edge e €
A1(T), gle = 0 by DOFs (EIa)-(51d). Furthermore, grad ¢|. = 0 by DOFs (5.11)
and (BId). Then ¢|p € SO(F<) for each F € Ay(T), and (518) yields grad ¢|p =
0. Hence ¢|p is constant, and since glspr = 0, it follows that ¢|r = 0 for each
Fe AQ(T)

Write ¢ = up, where p € L%_; (T™). Since p is a positive linear polynomial on
each K € T?, and q|x € SO(K™), it follows that p € S°_;(K™), hence p|r €
SV | (F°). We have grad ¢ = pgrad p+pgrad u, hence on F, np-grad q|r = p(np -
grad p1)|p. Since grad q|sr = 0, it follows that p|gr = 0. Therefore p € RY_; (F<Y),
so plp = 0 by (BII). Now gradg|or = 0, hence ¢ € SO(T™), and by (5.1g), we
have grad ¢ = 0. Therefore ¢ = 0, which is the desired result. O

Remark 5.2. In two dimensions, the work of [4] provided nodal degrees of freedom
for the space S2(F°) with r > 3.

Next, we need the following vector-calculus identity. Its proof is found in the
appendix.
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Lemma 5.3. Let e be an internal edge of F°*, and let t and s be unit vectors
tangent and orthogonal to e, respectively, as in Definition B2L Let v € LL(T™) for
somer >0. Ifvxnp =0 on F, then [curlv - t], = [grad(v - np) - s]e.

Now we are ready to give the degrees of freedom for LL_, (T%1).

Lemma 5.4. A function v € LL_ (T, with r > 3, is fully determined by the
following degrees of freedom.

No. of DOFs
(5.2a) v(a), 12,
(5.2b) /v -k ds, Vi € [Pr_3(e)]®, Ve e Ay(T), 18(r — 2),
/[[curlv Aords, V€ Pr_sle), Ve € AL(F\fer),
(5.2¢) ) VF € Ay(T), 8(r — 2),
(5.2d) / [curlv - t]ekds, VK € Pr_o(er), VE € Ao(T), 4(r — 1),
(5.2¢) /F(v~nF)ndA, Vi € RO (FY),VF € Ay(T), 6(r —2)(r —3),
(5.2f) /Fcurlp vpkdA, Vi € V2 ,(F),VF € Ay(T), 612 — 61 — 4,
(5.2g) /F vp - KdA, Vi € grad SO (F),VF € Ay(T),6(r — 2)(r — 3),
(5.2h) /Tcurlv -Kkdx, Vk € curl L}, (1), 4r® —9r? — Tr 4 21,
(5.21) /Tv Kk dx, Ve € grad SO(T™F), 2(r = 2)(r = 3)(r — 4).

Then the DOFs (52) define the projection IIL_; : [C>(T)]® — LL_,(T™).

Proof. The dimension of L! ,(T%) is 6r® — 972 + 9r — 3, which is equal to the
number of DOFs in (52). Let v € LL_;(T™) such that v vanishes on the DOFs
(B2). Then v|. = 0 for each edge ¢ € A (T) by .2Za)-(B20), so vy € L1, (F)
on each F' € Ay(T). From (B3d), we can see that curlpvp € V2 o(F). Then
(5:20)) yields curlp vp = 0, and by the exactness of the sequence ([3:3€) and (5-2g),
we have vp = 0.

Since curlv - ng = curlpvr = 0 on F' it follows from Corollary and DOFs
G2d)-(E2d) that [curlv -], = 0 for each e € AI(F°"). Hence, by Lemma (3]
venp|p € SO (F), and since v - np|or = 0, we have v -np|p € RO_; (F). Then
v-np|rp =0 by (B2€). We therefore conclude v|sr = 0.

Now v € IO_Ll(TWf), so curlv = 0 by (B2L). Using the exactness of sequence
(BID), there exists a p € SO(T™) such that gradp = v. So by (5.21), v = 0, which
is the desired result. ]

Next, we can write the degrees of freedom for V,2 ,(T™1).
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Lemma 5.5. A function w € V2 (T, with r > 3, is fully determined by the
following degrees of freedom.

No. of DOFs
/[[w t]eqds, Vg € P _s(e), Ve € AL(F)\{er},

(5.3a) VF € Ao(T), 8(r —2),

(5.3b) / [w-t]lerqds, Vqe& Pr_a(er), YF € Ay(T), 4(r — 1),

(5.3c) / w-npqdA, Vg € V2 ,(FY), YF € Ay(T), 6r(r—1),
F

(5.3d) / (divw)gqdez, Yq € XD/'T373(TWf), 2% — 6r% 4 4r — 1,
T

(5.3¢) / w - qdz, Vg € curl L} (T, 4r® —9r? — Tr + 21,
T

Then the DOFs (53) define the projection II2_,, : [C™(T)]* — V.2 (T"Y).

Proof. The dimension of V2 ,(T") is 673 — 972 + 37, which is the number of DOF's
in (53). Let w € V2 ,(T") such that w vanishes on (5.3). By DOF (5.3d), we
have w - np = 0 on each F' € Ay(T). By DOFs (5.3a)-(5.3h), and Corollary
we have w € V2_,(T*), so divw = 0 by (5.3d) and the exactness of (3.1L). Using
the exactness of sequence (B.IDL) again, there exists a v € Ii,lq_l(TWf) such that
curlv = w. Therefore w = 0 by (536), which is the desired result. O

Finally, we conclude this subsection with the DOFs of V2 ;(T™). The proof of
the lemma is trivial, and so omitted.

Lemma 5.6. A function p € V2 5(T%Y), with v > 3, is fully determined by the
following degrees of freedom.

No. of DOF's

(5.4a) /pdm, 1,
T

(5.4b) / pqdz, Vg e V3 (T, 2r(r —1)(r —2) — 1.
T

Then the DOFs (5.4) define the projection II3_5 : C(T) — V3 4(T™).
5.2. SLVV commuting diagram.

Theorem 5.7. Let r > 3. Given the definitions of the projections IO TIL | TI2_,,
and 12_5 in Lemmas BIHG.G, the following commuting properties are satisfied.

(5.5a) grad 1% =TI} _, gradq, Vq € C>(T),
(5.5b) curl II}_ v =TI2_, curlv, Yo € [C™(T))?,
(5.5¢) divIl?_,w =1I2_,divw, VYw € [C(T)]>.

Proof. (i) Proof of (B5a)). Given g€ C>=(T), let p = grad 1% —I1}_, gradq €
L. (7). Then to show (5.5a) holds, it is sufficient to show that p vanishes on
the DOFs (52) of Lemma 541
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Using (5.2a)) and (5.IH), we have p(a) = grad [1%¢(a)—1II}_, grad ¢(a) = 0 for each
a € Ao(T). Using (E2B) and (EId), for each e € A1(T') and for any x € [P,_3(€)]?,

/p-ﬁds:/grad(l_[?q—q)-nds
e

e

0 0 0
= / ( (ng —q)nd + (ng —q)n, + —(H?q - q)t) -kds

ond One ot
= /%(ng—q)t'nds =0,

where the last line follows from (Glal) and (BId). Using (B.2d), for each e €
AL(F)\{er}, with F € Ay(T), and for any & € P,_3(e),

/[[curlp tlekds = /[[curl grad(Il%q — q) - t]er ds = 0,

since the curl of the gradient is zero. By the same reasoning, the DOFs (5.2d) of p
vanish. By (B2d) and (EII)), for any x € RO_; (F°Y),

/ (p-np)kdA = / (grad(Il% — q) - np)k dA = 0.
F F

Similarly, using (5.2f)), (1)), and the fact that curlgrad = 0, [, curlp pp K dA =
0 for every k € V2 ,(F). Next, for x € grad, SO(F<),

/pp~/<odA:/gradF(ng—q)'/{dA:O,
F F

using (5.1€) and (5.2g).

On the macro-element 7', we use (5.2) so that for all & € curl L1, (T%),
/ curlp - kdx = / curl grad(IT%q — q) - K dx = 0.
T T
Finally, we use (5.21) to see that for all x € grad SO(T™),

/p-md:t:/grad(H?q—q)-ndsz,
T T

by (6-Ig). Hence by Lemma[54] p = 0, and the identity (5.5al) is proved. O
(ii) Proof of (E3BD). Given v € [C®(T)]3, let p = curllll_jv — II2_, curlv €
V2 ,(T""). To prove that (5.5h) holds, we will show that p vanishes on the DOFs
E3) of Lemma
On the interior edges e € Al (F)\{er} of each face F' € Ay(T), and for all
q € Pr_3(e), we have

/[p tlegds = /[[curl(H,l_lv —v)-t]leqds =0,
using (5.2d) and (B.3al). Similarly, the DOFs (5.3d) of p vanish.
To show that the DOFs (B.3d) of p vanish we consider first constant functions

and then functions orthogonal to constants. To this end, we use (5.3d), (5:20), 2]
and Stokes Theorem, so that

/p'anA:/curlF(Hiflv—v)FdA:(),
F F
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where we used that r > 3. Moreover, for any p € V2 ,(F<), from (5.3d) and (5.21)),

we have

/p-nppdA:/curlF(Hi_lv—v)deA:().
F F

It follows from (5.3d) that for all p € V3 4(T™)

/ (div p)pdx = / div curl(IT}_,v — v)pdz = 0.
T T

Finally, for all p € curl L1, (T™), it follows from (5.2I) and (5.3¢) that

/p-pdw:/curl(Hi_lv—v)-pdaczO.
T T

Hence by Lemma 55l p = 0, and the identity (5.5D]) is proved. O
(iii) Proof of (B.5d). Given w € [C(T))3, let p = divII?_,w — II3_5divw €
V3 (T%"). We will show that p vanishes on the DOFs (5.4)), so that p = 0.
First, by (6.3d), (5.4al), and Stokes Theorem, we have

/ pdx = / div(IT?_yw — w) dx = / (IT?_yw — w) -ndA = 0.
T T aT
Next, using (5.3d) and (545), for any g € V? 4(T™),
/ pgdx = / div(IT?_yw — w)qdx = 0,
T T

since V3 o(T%) = div'V2_,(T*f) (cf. Theorem BI). Then by Lemma 5.0, p = 0,
and the identity (55d) is proved. O

5.3. SSLV degrees of freedom. In this section we construct degrees of freedom
for spaces in the sequence that takes the Lagrange finite element in the third slot,
i.e., sequence ([B.2d). The third and last space are well-suited for fluid flow problems
as we discuss in the introduction.

We will define degrees of freedom for each of the spaces S!_;(T"),L2_,(T"),
and V2 5 (T™) that induce projections 7} _;, 72 _,, and 73_5, respectively, such that
they satisfy commuting properties. First, we provide a unisolvent set of DOF's for
Sp(T).
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Lemma 5.8. A function v € S} (T, with r > 2, is fully determined by the
following DOFs.

No. of DOFs
(5.6a)
v(a), Va € Ao(T), 12,
(5.6)
curlwv(a), Va € Ao(T), 12,
(5.6¢)
/v - qds, Vg € [Pr_s(e)]?, Ye € Ay (T), 18(r — 2),
(5.6d)
/curlv - qds, Vg € [Pr_4(e)]?, Ye € A (T), 18(r — 3),
(5.6e)

curlpvp qdA, Vg e L% 4(FNLE(F), VF € Ay(T), 6r° — 30r + 36,

S

(5.6f)

/F(’U'np)qu, Vg € R)_(F), VF € Ao(T), 6(r —2)(r — 3),
(5.6g)

/ vp - qdA, Vg € grad , 52 (FY) VF € Ay(T), 6r° — 30r + 36
(5.6h) )

/ (curlv)p - qdA, Yq e RL_,(F), YF € Ao(T), 12(r — 3)%,
(5.61) )

/ curlv - g dzx, Vg € curl S'_(T™), (4r —11)(r — 3)(r — 4),
G)

/Tv~qu, Vq € grad SO(T™), 2(r —2)(r — 3)(r — 4).

Then the DOFs (5.6) define the projection wt_ : [C(T)]® — SL_,(T™).

Proof. The dimension of S}_,(T") is 6r3 — 27r2 4 51r — 30, which is equal to the
number of DOFs in (5.6).

Let v € St_;(T™) such that v vanishes on (5.6). Then DOFs (5.6a) and (5.6d)
yield that v|, = 0 for every e € A{(T). Furthermore, it follows from DOFs (5.61)
and (5.6d) that curlv|. = 0 for each e € A{(T).

Since curlpvp € L9 ,(F<Y), there exists a function 8 € L9 4(F<) such that
curlpvp = ApfB, where Ap is the continuous linear function on F such that
Ar(mp) = 1 at the split point mp and Ap|lsr = 0. We also note that (5.Gel)
holds for all ¢ € L?_3(F*") since [}, curlp vy dA = 0, which follows from integration
by parts. Thus, we have curlpvp = 0 by choosing ¢ = . From the exactness
of sequence ([B.3d), it follows that vp = 0 by (5.6g). Since curlv is continuous
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and vp = 0, by Lemma [5.3] we have that grad(v - ng)|p is continuous. Therefore,
v-nplp € RO (F), sov-np|r =0 by (G.6f).

Since curlv € L2 ,(T™) N V2 ,(T*") and divcurlv = 0, we can apply Lemma
to deduce that (curlv)p € RE_,(F°"), where we also used that (curlv)r = 0
on OF. Hence, by (5.6L), we have that (curlv)p = 0. We already have that
curlv - np|p =0, so curlv|p = 0 on each face F' € Aq(T).

On the macro-elements, we use (5.61) to see that curlv = 0. By the exactness of
sequence (3.1, there exists a p € S'g(TWf) such that gradp = v. Hence by (5.6]),
v = 0, which is the desired result. O

We state the DOFs of L2_,(T™) in the following lemma.

Lemma 5.9. A function w € L2_,(T%Y), with r > 3, is fully determined by the
following DOFss.

No. of DOFs
(5.7a)
w(a), Va € Ao(T), 12,
(5.7b)
/w qds, Vg € [Pr_a(e), Ve € Ay(T), 18(r — 3),
(5.7¢)
/ (w-np)gdd, Vg€l J(FY), VF € Ay(T) 6(r —2)(r — 3) + 4,
P
(5.7d)
. Vg e Pr_s(e), e e AL(F<t ,
[Hvalgn, Pl e MEer), 8 — 2),
(5.7¢)
. Vg € P, . ep € AL(FY),
o [divw]e,qds, q a(er), er VFlé Ag)(T), 4(r — 3),
(5.71)
/ wp - qdA, Vg € RL_L(FY), YF € Ay(T), 12(r — 3)2,
F
(5.7g)
divw q dx, Vg € divl? (T, 2(r =3)(r—2)(r +2) + 3,
T
(5.7h)
/ w - qdz, Vg € curl S} (T™), (4r —11)(r — 3)(r — 4).
T

Then the DOFs ([51) define the projection w2_y : [C(T)]? — L2_,(T™F).

T

Proof. The dimension of L2_,(T™*) is 3(2r — 3)(r? — 3r + 3), which is equal to the
number of DOFs in (7).

Let w € L2_,(T™?) such that w vanishes on the DOFs (5.7). Using DOFs (5.7a))
and (5.70), we have that wl|, = 0 for every e € A (T), hence w - np|p € L9, (F).

Therefore w - np|p = 0 by (B.7d). Using DOFs (B.7d)-(5.76) and Lemma B3] we
have that divw|p € L2_4(F*°") for each F' € Ay(T). Hence, using Lemma we
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deduce that divp wr is continuous which implies that wr € RL_,(F°). By (5.1),
it follows that wr = 0 on F.
Now we have that w € L2_,(T""), so by (5.7g)), divw = 0. Using the exactness

property of sequence (3Id), there exists a function p € S2_| (TF) such that curlp =
w. Then by (E70), w = 0, which is the desired result. O

Lemma 5.10. A function p € V2 5(T%Y), with r > 3, is fully determined by the
following DOFs.

No. of DOFs
(5.8a)

/[[pﬂ gds,  ¥ge P s(e), e € AL(F)N\fen}, ¥F € Ao(T),  8(r—2),
5 8b

[Plerads, Yq € P._sler), er € A{(F“), VE € Ay (T), 4(r —3),

(5.8¢)
/ pdzx, 1,

T

(5.8d)
/ pq dx, Vq € \07i73(TWf), 213 — 612 — 8 + 27.

T

Then the DOFs (5.8) define the projection w2_5 : C=(T) — V.3 (T™Y).

Proof. The dimension of V,2_;(T™?) is 2r(r —1)(r —2), which is equal to the number
of DOFs in (&.8).

Let p € V.3 5(T%) such that p vanishes on the DOFs (5.8). Then by (5.8al)-
(5:80) and Lemma B3] [p]e = 0 for every e € AI(F) for each F € Ay(T).
Combined with (5.84), it follows that p € V3_4(T*). So by (6.8d), p = 0. O

5.4. SSLV commuting diagram.

Theorem 5.11. Let v > 3, and let 11V : C®(T) — S%(T™') be the projection
defined in Lemma |5:|:| let Tk : [C(T)]? — S (T™) be the projection defined
in Lemma@ let m2_y 2 [C(T)) — L2_5(T™) be the projection defined in Lemma
B3, and let ©3_5 : C®(T) — V3 (T be the projection defined in Lemma [E.I0.
Then the following commuting properties are satisfied.

(5.9a) gradl%q = 7}, gradq, Vqe C™(T),
(5.9b) curlw} v =72_,curly, VYo e [C(T))?,
(5.9¢) divr?_,w =72_sdivw, Yw e [C®(T)]>.

Proof. (i) Proof of (5.9al). Let ¢ € C°°(T), and set p = grad [I¥q—7}_, gradq €
S (T*"). We show that p vanishes on the DOFs (5.6)).

For each a € Ao(T), p(a) = gradIl%(a) — m}_; gradg(a) = 0 by (BID) and
(56al). Then, using (5.60)), curl p(a) = curl(grad(Il%q —q)) = 0. By (5.6d), we have,
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for all p € [P._3(e)]® on each e € Ay (T),

/p~pds:/grad(H?q—q)'pds

0 0 0
— HO _ HO HO .
/(a (g — g +an;( rd — Qe + 5 (g ))pds
— [ g1t -t ds by GID)
0
/(Hoq—q)at(pt)ds:O by (B1a) and (5.1d).
Next, using (5.6d), for all p € [P,_4(e)]3,

/curlp-pds = /curl grad(Il% — ¢) - pds = 0.

On the faces, from (5.6d), we have for all p € LY_5(F*) N L3(F),

/ curlp pppdA = / curlp grad (1% — q)pdA = 0.
F F
Using (B.If) and (5.6, for all p € RY_, (F<Y),
/ (p-np)pdA = / (nr - grad(I)g — q)) pdA = 0.
F F
Next, using (5.6g) and (5.1€), we have for all p € grad SO(Fety,
/ pp-pdA=/(gradp (g — q)r) -pdA =0.
F F
Then we use (5.6L), so that for all p € RL_,(F*Y),
/ (curlp)p - pdA = / (curl(grad(I1% — ¢)))F - pdA = 0.
F F
On the macro-elements, we use (5.61) so that, for all p € curl S, (T™F),
/ curlp - pdx = / curl grad(IT% — q) - pdx = 0.
T T
Lastly, we use (5.1g) and (5.6]) to see that, for every p € grad SO(T™),
/ p-pdr = / grad(I1% — q) - pdz = 0.
T T
Therefore, by Lemma 5.8 p = 0, and the identity (5.9al) is proved. O
(ii) Proof of (B9H). Let v € [C°(T)]3, and set p = curlw}_ ;v — 72_5curlv €
L2_,(T""). We show that p vanishes on the DOFs (5.7).
By (B6h) and (B7a), p(a) = curlw!l_jv(a) — 72_, curlv(a) = 0. By (5.6d) and
(5.7h), for all p € [P,_4(e)]® where e € Aq(T),
/p'pds:/curl( T 10— ) -pds = 0.

By (B.7d), (56d) and (5.6d), for every p € LO_,(F°Y),

/(p~np)pdA:/curlp((wiflv)p—vp)pdA:O,
F F
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where used that r > 3.
Using (BZd)), for all p € P,._3(e), e € AL (F*)\{er} and F € Ay(T), we have

/[[div plepds = /[[div curl(r}_yv —v)]epds = 0.

Similarly, (57d) yields that feF [div p]e,pds = 0 for p € P,_s(er). Next, using
(B0, for any p € RE_,(FY), we have

/pp-pdA:/ (curl(w}_jv —v))p -pdA =0
P F

by (G.6L).

By (5.7g) and for any p € div L2 (1),
/ divppdx = / div curl(r}_v —v)pdr = 0.
T T
Finally, by (561), (5.70), and for any p € curl SX_, (T™F),

/p-pda::/curl(wi_lv—v)-pdaz:().
T T

Therefore, p = 0 by Lemma [5.9] which is the desired result. O
(iii) Proof of (BAd). Let w € [C°(T)]3, and set p = divrZ_yw — 73_sdivw €
V3 o(T"). We show that p vanishes on the DOFs (5.5)).
First, we see from (5.17d) and (5.8al) that for any p € P,_3(e), e € Al (F)\{er}
and F € Ao(T), we have

JUhevds = [Laivtr? pw—w)lpds 0.

Similarly, p vanish on the DOFs (5.80).
We then use (5:8d), (E77d), and the Stokes Theorem to see that

/ pdx = / div(7?_,w — w)dx = / (72 _ow —w) -npdA =0,
T T aT

where again we used that r > 3.
Lastly, for any p € V3_4(T"Y),

/ppdxz/(divwfow—w)pdx:O
T T

by (B.78), (BRd) and the fact divL2_o(T™) = V3_,(T™) which follows by the
exactness of sequence ([B.Id). Therefore p = 0 by Lemma [5.I0, which is the desired
result. ]

(Il

5.5. SSSL degrees of freedom. In this section, we define degrees of freedom for
each of the spaces S? ,(T™!) and L3_,(T%) that induce commuting projections
corresponding to the local exact sequence ([B.2d). First the DOFs for S2_,(T™F)
are given below.
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Lemma 5.12. A function w € S?_,(TV), with r > 3, is fully determined by the
following DOFs.

No. of DOFs
(5.10a) w(a), 12,
(5.10b) divw(a), 4,
(5.10¢) /w - qds, Vg € [Pr_ale)]?, Ve € A(T), 18(r — 3),
(5.10d) /(div w)qds, Vg € Pr_5(e), Ye € A(T), 6(r —4),

(5.10e) /F(w np)qdA, Vg€l 4(F), YF € Ay(T), 6(r—2)(r—3) +4,
(5.10f) /pr -qdA, Vg € RE_o(FY), VF € Ay(T), 12(r — 3)2,
(5.10g) /F(div w)qgdA, YqeL? (FY), VF € Ay(T), 6(r—3)(r —4)+4,
(5.10h) /T (divw)gdz, Vqe L3 o(T), (r —4)(2r® — 13r + 23),

(5.101) / w - qdz, Vg € curl S} (T, (4r —11)(r — 3)(r — 4).
T

Then the DOFs 510l define the projection w?_, : [C™(T)]® — S2_,(T™).

Proof. The dimension of S2_,(T") is 673 — 3612 + 80r — 62, which is equal to the
number of DOFs in (E10).

Let w € S?_,(T™) such that w vanishes on the DOFs (5.I0). Then from (5.10a))
and (EI0d), w|. = 0 for each e € A1(T), and divw|, = 0 by (5I0D) and (EI0d).

On cach F € Ay(T), w-np|p € L9 5(F), hence w - np|lp = 0 by (5.10d).
By Lemma [B:2] we have that divpwg is continuous. Hence, wr € RL_,(F°<).
Therefore (B.I0f]) yields wr = 0. Now we have divw € L2_5(F°) and divw vanishes
on OF. So, divw|p = 0 by (5.10g), hence w € 52 _,(T™").

On the macro-element, we have divw = 0 by (5.10h]) and the exactness of (B.1d]).
Likewise, the exactness of (3.1d)) yields the existence of a v € S'Ll(T wf) such that
curlv = w. Hence by (B.I01), w = 0, which is the desired result. O
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Lemma 5.13. A function p € L3_4(T"), with r > 3, is fully determined by the
following DOFs.

No. of DOFs

(5.11a)  pla), 4,

(5.11b) /pq ds, VqéeP._5(e),Vee A(T), 6(r —4),

(5.11¢) / pgdA, Vgel2 (FY), VF e Ao(T),  6(r—3)(r —4) +4,
F

5.11d dx 1

( ) / pdz, ;
T

(5.11e) / pgdz, Vqel® 5T, (r —4)(2r% — 13r + 23).
T

Then the DOFs (G.10) define the projection w?_5 : C(T) — L3_5(T™).

Proof. The dimension of L?_5(T") is (2r — 5)(r? — 57 + 7), which matches the
number of DOFs in (GIT).

Let p € L2_5(T™") such that p vanishes on the DOFs (5.II)). Then by (511al)
and (BIID), ple = 0 for every e € Ay(T). For each F' € Ay(T), we have that
plp € L2_4(FY), so p|p = 0 by (5.IId). Then by (BI1d), we have p € L3_4(T™),
and by (E11€), p=0. O

5.6. SSSL commuting diagram.

Theorem 5.14. Recall that 112 : C(T) — S2(T™) is the projection defined in
Lemma B, ), : [C=(T)]®> — S}_,(T") is the projection defined in Lemma
B8, w2, : [C°(T)]® — S2_o(T™) is the projection defined in Lemma BI2, and
w5 C(T) — L3_4(T%Y) is the projection defined in Lemma [5.I0. There holds,

forr >3,

(5.12a) gradIl%q = 7}, gradq, Vg€ C™(T),
(5.12b) curl 7t _ v =w?_,curlv, Yo € [C™(T))?,
(5.12¢) dive?_yw = wd_ydivw, Yw € [C(T)]?.

Proof. (i) Proof of (&12al). The identity (G.12al) holds by Theorem B.TT1 O

(ii) Proof of (B.I2H). Let v € [C°°(T)]?, and set p = curlw! ;v — @w2_, curlw.
Then p € S2_,(T™), so we must show that p vanishes on the DOFs (5.10). By
(5:6D) and (5I0al), p(a) = curlw}_jv(a) — curlv(a) = 0, and by (B.100), div p(a) =

diveurlwr}_ v(a) — div curlv(a) = 0 for each a € Ag(T).
For all e € A{(T) and for all p € [P,_4(e)]?,

/p-pds = /curl(ﬂ'i_lv —v)-pds=0
by (5.6d) and (5.I0d). Using (5.10d), for all p € P,_5(e), we have

/divppds = /div curl(r}_,v —v)pds = 0.
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On each face F' € Ay(T), for every p € LO_5(F°),
/ (p-np)pdA = / curlp((7}_v)p —vp)pdA =0,
F F

by (.6€), (5.6d) and (5.106). Here we used that r > 3.

For each p € RL_,(F*t), we have
/ pr-pdA= / (curl(m,_qv — v))F -pdA =0,
F F
where we used (5.6L) and (5I0f). Next, for every p € L2_,(F'), (5-10g)) yields

/ divppdA = / div curl(r;_v —v) pdA = 0.
F F

For each p € [3_,(T™), we use (EI00) so that

/ divppdr = / div curl(7}_jv —v)pdz = 0.
T T

Finally, for all p € curl S}, (T™),
/ p-pdr = / curl(r}_yv —v) - pdr =0,
T T

by (B6i) and (EI01). Therefore, by LemmaE.I2 p = 0, and the identity (E12H) is
proved. O

(iii) Proof of (BI2d). Let w € [C°°(T)]3, and set p = divw?_sw — wy_; divw.
Then p € L3_4(T™), and we show p vanishes on the DOFs (5.11).

For all a € Ag(T), p(a) = divw?_,w(a) — w?_sdivw(a) = 0 by (EI0D) and
(BIIal). On each edge e € Ay (T) and for all p € P,._5(e),

/ppds = /div(wfﬁw —w)pds =0,

by (6.10d) and (5.110).
On each face F' € Ay(T), using (5.11d), we have, for all p € L2_,(F°),

/ppclAz/div(wf_zw—w)pds:o7
F P

by (EI0B).
Now we use (5.11d)) and Stokes Theorem to see that

/ pdr = / div(w?_yw — w) dx = / (w?_yw—w) -ndA =0
T T oT
by (5.106) since r > 3. Then by (5.I00) and (5.11d), for any p € L3_,(T™F),

/ ppdr = / div(w?_yw — w)pdx = 0.
T T

Hence p = 0 by Lemma [5.13] and the identity (5.12d) is proved. a
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6. GLOBAL SPACES AND COMMUTING DIAGRAMS

In this section, we discuss the global finite element spaces induced by the degrees
of freedom of Subsections 5.1l 5.3, and 5.5l thereby extending the results of Section
Bl

Recall Tj, is a triangulation of the polyhedral domain Q@ C R3, and let Tyt
be the Worsey—Farin refinement of J,. One of the main features of the induced
global spaces is their intrinsic smoothness on Worsey—Farin splits (cf. [6] for related
results). To describe this property in detail, we require some definitions.

Definition 6.1. We define the set &(T\') as the collection of edges that are internal
to a Clough-Tocher split of a face F' € AL(T}), i.e., E(TP) = {e € AI(F) : F €
A3 (Tn)}-

Remark 6.2. For e € &(TY), let F € AL(T,) be the face such that e € AI(F<),
and let Ty, Ty € T, satisfy F = 0Ty N T,. As in Section 2] let zp, and z7, denote
the incenters of T and T5, respectively. Then the four faces in ‘J’}’;’f that have e as
an edge are either in the plane containing F' or in the plane determined by e and
the line [z, 27,]. Consequently, e is a singular edge. In fact, &(T)!) is exactly the
set of (interior) singular edges in T}

We will use the following notation in this section. Let 77 and T, be adjacent
tetrahedra in 7}, that share a face F. Let K; and Kj be tetrahedra in 77 and
T2, respectively, such that K; and Ks share the face F. Let F°' represent the
triangulation of F°* in ‘T,‘;"f, and let Kf"f be the triangulation of K; in T,;’f, where
1 < i < 2. Given a simplex S € Ay (T, with 0 < s < 3, let x(S) represent
that characteristic function that equals 1 on S and 0 otherwise. Without loss of
generality, we choose np = ny, the outward normal to 77 on F'.

Definition 6.3. Using the above notation, let e € AI(F). Furthermore, let
K}, K? € A3(K), 1 <4 <2besuch that e C K7,1<i<21<j<2and K?
shares a face with K3. Then we define

0c(p) = ||kt — Plr2 + plrs — plxz] on e.

Remark 6.4. Note that if 0.(p) = 0 if and only if [p1]. = [p2]. where p; =p

T;-

Remark 6.5. The importance of the Worsey—Farin structure is that the natural
extension of a piecewise polynomial from K} to all of K U K¥f maintains its
original smoothness properties across the interior faces of Ky, since all the faces of
a given subtetrahedron in K} are coplanar to the faces of the adjacent subtetra-
hedron of K¥f. In particular, if p € P,.(K{"f) N C*(K;) then the natural extension
of p, which we denote by ¢ satisfies q|r, € P,.(K¥T) N CL(K>).
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We show below that the projections defined in Sections 5.1l (5.3l and induce
the following global spaces.

SUTH) ={q € CH(Q) : qr € SUT)VT € Ty},
571"_1(7}2’{) ={v e [C(Q)]?: curlv € [C(Q)]?, v|r € S}_l(TWf) vT € Ty},
82 (T = {w € [C(Q))? : divw € C(Q),w|r € S2_(TYVT € Ty},
L 1T ={v € [CQP : vlr € LL_(T™)VT € Tp},
L7 (T ={w € [C)]* s wlp € L2_,(T™)VT € Ty},
V2 (T = {w € H(div; Q) : w|p € V2 (TY)VT € Ty,

. (w-t) =0Ve € E(TIH},
V25T = {p € L*(Q) : plr € V2 5(T™)VT € Tp, b(p) = 0Ve € E(T))},
L3 (T ={peCQ):plr € L} _5(T"")VT € Tp},
V3 (T1) = Pp_s (T,

Remark 6.6. Due to the singular edges formed through a Worsey—Farin refinement
of a triangulation, the global space £1(TVf) has the property

(6.1) Oc(curlw - t) = 0.

Moreover, any function v € £L2(TVF) satisfies

(6.2) 0. (divv) = 0.

We refer to [I3] Lemmas 5.7.3-5.7.4] for a proof of these results.

Now we are ready to show that the global analogue of sequence (3.2B) is induced
by the local DOFs of Section Bl

Lemma 6.7. The local degrees of freedom stated in Lemmas B, B4, B.5, and
induce the global spaces 8%(TVY), LL_ (TWH), 2 (T, and V,2_5(T3), respec-
tively.

Proof.(i) Let ¢1 € SO(TY) and g2 € S%(T3") such that q; — g» vanishes on the
DOFs (G.Ia)-(5If) associated with the triangulation F'. We extend ¢; to Ko
according to Remark [6.5] and we set p = ¢1 — g2. Then by the proof of Lemma
Bl we have p = 0 and gradp = 0 on F, therefore the function g1 x (K1) + g2x(K2)
is C* across F. Therefore the DOFs (B.1]) induce the global space 82(T3).

(i) Let vy € LL_;(T3") and vy € LL_;(T3") such that v; — vy vanishes on the DOFs
(5:2a))-(5-2g) associated with the triangulation F* of the face F. We extend vy to
K5 as in Remark [6.5] and we set w = v; —vy. Then by by the proof of Lemmal5.4]
w = 0 on F. Therefore the local DOFs (5.2) induce the global space £1_; (T}).

(iii) Let wy € V2 o(TY) and wy € V2 5(T3F) such that w; — wsy vanishes on the
DOFs m,m associated with the triangulation F°* of the face F. We extend
w1 to K5 as in Remark [6.5] and set v = wy; — ws. Then, by Lemma B3l v-np =0
on F, which implies that wyx (K1) + wax(K32) is in H(div) across F. Furthermore,
DOFs (5.3a)-(5.3h) imply that [v - t]. = 0 for each e € AL (F), hence [w; - t]. =
[ws - t]e. By Remark [6.4] 0. ((w1x (K1) +wax(K2))-t) = 0, so the local DOF's (5.3)
induce the global space %2 ,(T}).
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(iv) The DOFs (5.4) simply determine the piecewise polynomials P,_3(7T"). Hence
these DOF's naturally induce the global piecewise polynomial space CPT,g(‘.TX’f).
O

Now we can see that the following sequence forms a complex by Theorem .7 for
r> 3.
¢ grad 1 ¢ curl 9 ¢ div ¢
R — 8X(T3) — L 4(TH) — 72T — V() — o

Furthermore, for 0 < k < 3 and r > 3 we have commuting projections ﬁfffk such

that II*_,v|p = TI*_, (v|r) for all T € T;. Then by Theorem 57 the following
diagram commutes.

R —— C(T) [C=(T))? =Ly [Coo(T))P — s ¢°(T) ——— 0

|ms | | |,

R —— SO(TpT) £, g1 (gpt) <y 2 () v ps (g —— 0.

grad

=

Next, we will show that the global analogue of sequence ([B.2d) is induced by the
local DOFs of Section [5.3

Lemma 6.8. The local degrees of freedom stated in Lemmas B8, B9, and BEI0
induce the global spaces 8L_ (T3, L2_,(T3Y), and ¥2 5(TV), respectively.

Proof.(i) Let vy € S} (TY) and vy € SE_;(T3*F) such that vy — vo vanishes on the
DOFs (5.6a)-(5.6L) associated with the triangulation F°*. We extend vy to K as
in Remark [6.5], and we set w = v; —v9. Then by by the proof of LemmaB.8 w =0
and curlw = 0 on F, therefore the DOFs (5.6]) induce the global space 8!_; (TW'F).
(ii) Let wy € L2_o(T™) and wy € L2_,(Ty"") such that w; — wo vanishes on the
DOFs (5.7a)-(5.71) associated with the triangulation F°* of the face F'. We extend
w1 to K> as in Remark [6.5] and we set v = wy — wy. Using the proof of Lemma [5.9]
we can show that v =0 on F. Hence, wyx (K1) + wax(K32) is continuos accross F.
(iii) Let g1 € V2 5(T3F) and g2 € V;2_ 5(T3") such that g; — g2 vanishes on the DOFs
(5.8a)—(E.8D) associated with the triangulation F°* of the face F. We can naturally
extend ¢; to K> as in Remark Let p = g1 — q2. As in Lemma [5.10] it follows
from DOFs (B.8al)—(E.8h) that for each e € AL(F<), [p]. = 0, hence [g1]e = [g2]e,
which 1mphes that 6, (qlx(Kl) + q2x(K32)) = 0. So, the local DOFs (£.8) induce

the global space 7,3 4(TW!).
(]

Now we can see that the following sequence forms a complex by Theorem [B.1T]
for r > 3.

rad curl div
R — (7)) 5 s () DD e, S 2, ) — o

Furthermore, for 1 < k < 3 and r > 3 we have commuting projections ¥ , such
that @%_,v|r = 7F_ (v|r) for all T € Tj, and by Theorem B.I1] the following
diagram commutes.

R —— C%(T) 5 [0%(D)] 2 [0(T)) — s 0%(T) —— 0

|ms [ [ =

grad

R —— 8Y(T) E2% 81 (T3h) b £2_,(Tpf) — V3 (T3 —— 0.
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Lastly, we will show that the global analogue of sequence ([3.2d) is induced by the
local DOFs of Section

Lemma 6.9. The local degrees of freedom stated in Lemmas and B3] induce
the global spaces 82_,(T3Y) and L3_5(TV), respectively.

Proof.(i) Let wy € S?_5(Ty") and wy € S?_,(T3F) such that w; — wy vanishes on
the DOFs (5.10a)—(5.10g) associated with the triangulation F°*. We extend w; to
K5 as in Remark [6.5], and we set v = w; — we. Then by Lemma 512, v = 0 and
dive = 0 on F. Therefore, the local DOFs (5.10) induce the global space 82_,(TW'F).
(ii) Let g1 € L3_5(T!) and qo € L3_5(T5*F) such that ¢; — g2 vanishes on the DOFs
(5ITa)- (EI1d) associated with the triangulation F°* of the face F. We extend q;
to Ky as in Remark [6.5] and we set p = ¢1 — ¢o. It follows from Lemma [5.13] that
p = 0on F, which means ¢; x(K1) + g2x(K>) is continuous across F. Therefore the

local DOFs (B.I0) induce the global space £3_5(T}).
(]

Now we can see that the following sequence forms a complex by Theorem .14
for r > 3.
curl div

R s §O(Tvh) T g1 (g §2 (v L3 (T 0
— S(T) — S, () — (T — L7 () — 0.

T

For 2 < k < 3 and r > 3, we have commuting projections Z~Uk _p such that
@k vy = @ (v|r) for all T € Tj,, and by Theorem (14 the following dia-
gram commutes.

R —— (1) =25 [0%(D)] s [0(T)) — T 0(T) —— 0

| = |#2-2 |#2-s

R —— SO(Tpf) 220, gL gty <l g2 gty v, g3 (T —— 0.

APPENDIX A. PROOF OF LEMMA [5.3]
Proof. The set [t,s,ng|" forms an orthonormal basis of R3, and therefore v =

ait + ass+apnp, with a; =v-t, as =v-s,and a, = v-ng. Since v X ng =0 on
F, we have a; = as =0 on F. Then, on F|,

(A1) gradp a; = gradp as = 0.
We also have curlv = grada; x t + gradas X s+ grad a,, X ng, and so
(A.2) curlv -t = (gradas x s+grada, X ng) - t.
Writing grad as = (¢ - grad as)t + (s- grad as) s +(np - grad as)np, we find
(A.3) (gradas x s) -t = (np - gradas)(np x s) - t,
since (t x s) -t =0and (sxs)-t=0.
Let f be the interior face of T%! that contains e, and let r be the unit vector

tangent to f and orthogonal to t. Then r may be written r = (r-s)s+(r -np)np,
therefore

g — r—(r~s)s'
rng
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Then by (A1), on F' we have

1 1
(A.4) np - gradas = . (r—(r-s)s)-gradas = . (r-gradas).
Since r is tangent to f and as is continuous, we have [r- grad as]. = 0, which yields
[nF - grad as]. = 0 which in turn implies [(grad as x s) - t]. = 0 by (A3). It follows
that Jeurlv - t]. = [(grad a, X np) - t]e.

We expand grad a,, in terms of [t,s,np]" as

grad a, = (t - grad a, )t + (s- grad a,) s+(nr - grad a,)np.

So (grada, x np) -t = (s-grada,(s xnp)) - t. Because (sxng) -t = 1, it fol-
lows that (grada, X ng) -t = s-grada,. Therefore [curlv - t]. = [s-grada,]. =
[s-grad(v - ng)]e, which is the desired result. O

APPENDIX B. MISCELLANEOUS RESULTS
Lemma B.1. For any g € V2(T™) we have that gr € H(divg; F) for F € Ay(T).

Proof. Let e € AI(F°), and let f be the corresponding an internal face of TVF
that has e as an edge. We let ¢ be a unit vector parallel to e and set s = ¢ X ng.
Note that {np,s,t} forms an orthonormal basis of R®. To prove gr € H(=f; F),
it suffices to show g - s is single-valued on e.

Let ny be a unit-normal to f. Since ny-t = 0, we have that ny = (ny-s)s+(ny-
np)np and thus, g-ng = g-s(ny-s)+g-np(ny-npr) on e. However, g-np =0 on
F by definition of V2(T™), and so g - ny =g-s(ns-s)one. Since g-ny is single
valued on e (since e C f and g € V,2(T™)) we have that g - s is single valued on
e. Finally, since gp -s = g - s we conclude gr € H(divp; F). O

Lemma B.2. For any g € L2(T™") N V2(T™) with divg|p continuous on F we
have that divpgr is continuous on F, for F € Ay(T).

Proof. Let K € T® with F € Ag(K). Since g -nrp = 0 on F, we can write
g-nr|lx = pp on K for some ¢ € P, (K¥!). However, since g - np is continuous
on K and p is linear and positive on K, it must be that i is continuous on K.
Since np - grad(g - np) = Y grad u - np on F this implies that np - grad(g - np) is
continuous on F. We can write divp gr = divg|p — ng - grad(g - ng) on F and,
hence, divg gp is continuous on F'.

O

Lemma B.3. Let p € V3(T™) and r > 0. For F € Ay(T™), if

(B.1a) /[[pﬂequ =0 Vg € Pr(e) ee A{(FCt)\{eF}, and

(B.1b) / [plepds =0 Vg€ P 1(er)  er € AL(F®),
eFr

then p|p is continuous.

Proof. We label the three triangles in As(F°) as Q1, @2, and Q3 such that e =
Q1N Q2. We let p; = plg, and let z € AL(F°). Since p € V2(T™), condition
(B1a) yields that [p]. = 0 for both interior edges e € AI(F)\{er}. It follows that
p1(2) = p2(z) and p2(z) = p3(z), therefore p is continuous at z. Hence [p]e,(2) = 0.
Then, (BIL) shows that [p]e, = 0. O
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