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We consider finite element approximations of the Maxwell eigenvalue problem in two dimensions.
We prove, in certain settings, convergence of the discrete eigenvalues using Lagrange finite elements.
In particular, we prove convergence in three scenarios: piecewise linear elements on Powell-Sabin
triangulations, piecewise quadratic elements on Clough—Tocher triangulations and piecewise quartics
(and higher) elements on general shape-regular triangulations. We provide numerical experiments that
support the theoretical results. The computations also show that, on general triangulations, the eigenvalue
approximations are very sensitive to nearly singular vertices, i.e., vertices that fall on exactly two ‘almost’
straight lines.
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1. Introduction

Let 2 C R? be a contractible polygonal domain and consider the eigenvalue problem: find
u € Hy(rot, £2),u # 0 and n € R such that

(rotu,rotv) = nz(u,v) Vv € H(rot, §2), (1.1)

where H(rot, £2) := {v € L2(.{2) I Toty € L2(.Q)}, H(rot,$2) := {v € H(rot,£2) : v -t = 0 on 052}
and (-, -) denotes the L2 inner product over §2. Given a finite element space V;, C H(rot, £2) a finite
element method seeks u;, € V;\{0} and n;, € R satisfying

(rotu,,, rotv;) = ni(u,,v;) Vv, €V, (1.2)

For example, one can take V, to be the H y(rot; £2)-conforming Nédélec finite elements (i.e., the rotated
Raviart-Thomas finite elements) as the finite element space. It is well known this choice leads to
a convergent approximation of the eigenvalue problem. On the other hand, taking V, as a space of
continuous piecewise polynomials (i.e., an H'(§2)-conforming Lagrange finite element) may lead to
spurious eigenvalues for any mesh parameter.
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There is a vast literature on this subject. The interested reader is referred to Boffi (2010, Section
20) for an extensive survey including a comprehensive list of references about Nédélec finite elements
and to Boffi er al. (2000, 1999) for discussion about the use of standard Lagrange finite elements (see
also Arnold et al., 2010 for a discussion of these phenomena in the context of the finite element exterior
calculus (FEEC)). Many formulations have been developed based on penalization and/or regularization
(e.g., Costabel & Dauge, 2002; Buffa et al., 2009; Bonito & Guermond, 2011; Badia & Codina,
2012; Duan et al., 2019a,b; Du & Duan, 2020), showing Lagrange elements can lead to consistent
approximations to (1.1). However, we are not aware of a previous analysis of Lagrange elements on
macro elements using the standard formulation (1.2), and this is the main objective of this work.

To better appreciate the problem and its discretization we consider the equivalent formulation
introduced in Boffi e al. (1999) for n # 0: (o, p) € H(rot, £2) X Lé(.Q), o # 0 such that

(o0,7) + (p,rott) =0 V7T € Hy(rot, §2), (1.3a)
(roto,q) = — A(p,q) VYqeL3(R2). (1.3b)

Taking g = rotv with v € H(rot, £2) shows the equivalence of (1.3) and (1.1) witho = u, A = n* and
p= —%rotu.

The corresponding finite element method for the mixed formulation (1.3) seeks o, € V,\{0},
Py € @y, and A, € R such that

(o),T)) + (p,rotT),) =0 VT,€V,, (1.4a)

with Q) C L(z)(.Q). Similar to the continuous problem, if the finite element spaces satisfy rotV; C Q,,
then the mixed finite element formulation (1.4) is equivalent to the primal one (1.2) with o), = u,,
A, =17 and p, = —ﬁrotuh.

If V;, is the Nédélec space of index k then we may take Q,, to be the space of piecewise polynomials
of degree k — 1. In this case (V,,, Q),) forms an inf-sup stable pair of spaces, in particular, there exists a
Fortin projection

Im,:v—->yVv,
satisfying
rotlTyt =Iyrott VT €V, (1.52)
Tyt —7ll2g <Ch%+‘s(||r||H%+5(Q) +rotTll2p) VT EV. (1.5b)

Here V := H(rot, £2) N H(div, £2). Moreover, § € (0, %] is a parameter such that V «— H%J”S (£2)
(Amrouche et al., 1998), and 11, : L%(.Q) — 0, is the L? orthogonal projection onto Q;,. Using
this projection one can prove that the corresponding source problems converge uniformly, and this
is sufficient to prove convergence of the eigenvalue problem (1.2) (see Boffi, 2010; Kato, 1995 and
Proposition 2.1).
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FIG. 1. A simplicial triangulation of the unit square (left) and the associated Powell-Sabin triangulation (right).

On the other hand, if V, is taken to be the Lagrange finite element space of degree k, then a natural
choice of Q,, is the space of (discontinuous) piecewise polynomials of degree k — 1. However, (V,,, Q))
is not inf-sup stable on generic triangulations, at least when k = 1 (Qin, 1994; Boffi et al., 2008), and
therefore there does not exist a Fortin projection satisfying (1.5). On the other hand, the pair (V;, Q;)
is known to be stable on special triangulations, even if the inf-sup condition might not be sufficient to
guarantee the existence of a Fortin projector satisfying (1.5) (see Boffi et al., 2000).

Wong & Cendes (1988) showed numerically that, on very special triangulations, solutions to (1.2) do
converge to the correct eigenvalues using piecewise linear Lagrange elements (i.e., k = 1). In fact, they
used precisely the Powell-Sabin triangulations (see Fig. 1). A rigorous proof of this result has remained
unsettled until now; see the review paper Boffi (2010) for a discussion. Specifically, we prove that
using Lagrange elements in conjunction with Powell-Sabin triangulation leads to a convergent method.
We do this by proving that there is a Fortin projection of sorts. We show that there exists an operator
I, :v(Q,) — V, satistying

rotIllyTt =rott V71 € V(Q),), (1.6a)
1
Tyt — T2 <Chz+5(||r||H%+6(m +llrottll;20) YT €VI(Q), (1.6b)

where V(Q,) = {v € V : rotv € Q,}. Note that (1.5) implies (1.6), and we prove convergence of the
eigenvalue problem whenever there is a projection ITy, satisfying (1.6). In addition to linear Lagrange
elements on Powell-Sabin triangulations we prove the existence of such a projection on Clough—Tocher
splits using quadratic Lagrange elements, and on general triangulations using kth-degree Lagrange
elements with k > 4 (i.e., the Scott—Vogelius finite elements). For the Scott—Vogelius finite elements we
find the approximate eigenvalues are extremely sensitive if the mesh has nearly singular vertices, i.e.,
vertices that fall on exactly two ‘almost’ straight lines (cf. Section 3.3). We give numerical examples
that illustrate this behavior.

The analysis of composite triangulations (e.g., Clough—Tocher and Powell-Sabin) on problem (1.1)
goes back at least to the work of Costabel & Dauge (2002). Recently, Duan et al. (2019a,b) and Du &
Duan (2020) considered Lagrange finite elements for Maxwell’s eigenvalue problem in two and three
dimensions using composite triangulations. However, as noted earlier, they use a different formulation
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from the standard one (1.2). In particular, in Du & Duan (2020) they add a Lagrange multiplier and an
equation of the form (divu,, g,) = 0 appears, which can be thought of as a Kikuchi-type formulation
(Kikuchi, 1989), where one transfers the derivatives to ;. In Duan et al. (2019b) a similar formulation
is used with a regularization term.

As mentioned above, the main idea to show convergence of Lagrange elements using the standard
formulation (1.1) on certain triangulations is the construction of a Fortin-type operation with certain
approximation properties. On certain composite triangulations (e.g., Powell-Sabin, Clough—Tocher,
Alfeld, Worsey—Farin), exact sequences and/or Fortin projections have been developed; see for example
Christiansen & Hu (2018), Fu et al. (2020), Guzman et al. (2020a,b), Qin (1994), Zhang (2005). These
results have led to stable finite element for fluid flow problems; see for example Neilan (2020). In
this paper, for the Powell-Sabin and Clough—Tocher triangulations, we cannot directly use the Fortin
projections defined in Fu er al. (2020), Guzman et al. (2020a) since they require too much smoothness.
Instead, we preprocess with a Scott—Zhang-type interpolant that preserves the vanishing tangential
components, and then use the degrees of freedom in Fu et al. (2020), Guzman et al. (2020a). These
projections are sufficient for our purposes; however, it would be very interesting to see whether one can
construct an L2 bounded commuting projection for these sequences, as is done in the FEEC (Christiansen
& Winther, 2008). If bounded L?> commuting projections exist then the convergence of eigenvalue
problems follows from the general theory in FEEC (Arnold et al., 2006, 2010; Boffi, 2010).

The paper is organized as follows: in the next section we give a convergence proof for finite element
spaces with stable projections. In Section 3 we provide three examples of Lagrange finite element spaces
with stable projections: the piecewise linear Lagrange space on Powell-Sabin splits, the piecewise
quadratic Lagrange space on Clough—Tocher splits and the piecewise kth-degree Lagrange space on
generic triangulations. In Section 4 we provide numerical experiments and make some concluding
remarks in Section 5.

2. Convergence framework

Define the two-dimensional curl, rot, and divergence operators as

u ou ov av .
curlu = (—,—— T, rotv:—z——l, divy =

vy v,
Tt
ox;  0xy ox;  0x,

and define the Hilbert spaces

H,(rot, 2) = {v € L*(2) : rotv € L*(2), v - t|; = 0},
H(div, 2) = {v € L*(2) : divy € L*(2)},
Li(2)={g e L*(22): [5q=0},

where ¢ is a unit tangent vector of 9£2. Recall that V = Hy(rot, £2) N H(div, £2).
Let V,, C Hy(rot,$2) and Q,, C L%(.Q) be finite element spaces such thatrotV, C Q,,.
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2.1 Source problems

We will require the corresponding source problems for the analysis. To this end we define the solution
operators A : L?(2) — H(rot, 2) and T : L?(£2) — L}(£2) such that for given f € L*(2), there
holds

(Af,7) + (If,rott) =0, V7T € Hy(rot, £2), (2.1a)

(rotAf,q) = (f.q) VYqe L(z)(.Q). (2.1b)

Likewise, the discrete source problem is given by the following: find A,f € V; and T,f € Q,, such
that

A,f.t,) + (T f,rotT,) =0 VtreV, (2.2a)

(rotA,f,q,) = (f.q,) Yaq, € 0. (2.2b)

Note that Af = curl 7f, and so divAf = 0. Moreover, using that rotAf = f, we have that Af € V.
We define the operator norm:

(T = Tp)f 22y

(2.3)
rerznio Wl

IT =Ty =

We will use the next standard result, whicht states that the uniform convergence of the discrete source
problem implies convergence of the discrete eigenvalues.

This result is a consequence of the classical discussion in Babuska & Osborn (1991, Section 8) (see
also Boffi et al., 1999, Theorem 4.4, and Boffi, 2010, Section 9).

ProrosiTION 2.1 Let T and T}, be defined from (2.1) and (2.2), respectively, and suppose that || —
T, — 0as h — 0. Consider problem (1.3) and consider the nonzero eigenvalues 0 < A <D
---. Consider also (1.4) and its nonzero eigenvalues 0 < )L;ll) < )L;lz) < - --. Then, for any fixed i,
limy,_, o A0 = A0,

Therefore, to prove convergence of eigenvalues it suffices to show uniform convergence of the

discrete source problem. To prove this we will exploit the embedding V «— H %”(.Q) along with
an assumption on the finite element spaces. The embedding result is proved in three dimensions in
Amrouche et al. (1998), and we state the two-dimensional version here.

PROPOSITION 2.2 Let §2 be a contractible polygonal domain. Then there exist constants § € (0, %] and
C > 0 such that

171,143 6, < CUdIV Y20y + 0LVl 2(q)) Vv € V.

From now on § will refer to the delta of the above proposition. We will use the space

V(Q,) ={teV:rott € Q,}. 2.4)
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ASSUMPTION 2.3 We assume that rot V;, C Q, and the existence of a projection ITy, : V(Q;) — V,
such that

rotllyTr =rott V1 e V(Q),), (2.5a)
1Ty = Tllae) < @l 1 )+ lotTlig) VT e Vg, (2.5b)
Furthermore, we assume that the L?-orthogonal projection I : [2(2) > Q,, satisfies

1Ty — dll 22y < @ (Wllcurl @l 20y Y € H' () NLG($2).
Here, the constants are assumed to satisfy wg(h),w;(h) > 0, are bounded for & € (0, diam(§2)] and

THEOREM 2.4 Suppose that (V,,Q,) satisfy Assumption 2.3. Let T and T}, be defined by (2.1) and
(2.2), respectively. Then there holds

1T = T3l < Cleg(h) + @, ().
Note that Theorem 2.4 and Proposition 2.1 imply that the discrete eigenvalues in the finite element

method (1.2) converge to the correct values.

REMARK 2.5 In this paper we focus on the convergence to eigenvalues, but we do not explicitly explore
convergence rates. Proving convergence rates requires estimating 7 — T}, restricted to eigenspaces, so
that the regularity of the eigenfunctions can be taken into account (Boffi, 2010, Theorem 9.7).

To prove Theorem 2.4 we require two preliminary results.

LEMMA 2.6 Suppose that Assumption 2.3 is satisfied. Then there exists a constant C > 0 such that
AT of — Afll2) + ITHf — Tf 120y < Co(WIfll22y VS E L*(2).

Proof. Letf € L*>(2) andseto = Af,u=Tf, ¥ = All,f and w = TTI,f. We see that

(c—v¥, 1)+ w—w,rott) =0 V1t € Hy(rot, £2), (2.6a)
(rot(c —¥),v) = (f — Hyf,v) Vve Lg(.Q). (2.6b)
Setting v = w — u in (2.6b) and T = ¢ — ¥ in (2.6a) and adding the result yields |lo — 1/f||iz(m =

f—1II, Qf ,w — u). Furthermore, (2.6a) implies curl (u — w) = o — ¥. Therefore, there holds

—Iyf . ¢)
lo = Vli2g) < sup v of

peH (2)NI2(R2) lcurl 112 ()
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However, the properties of the L? projection and Assumption 2.3 give us

— 11 — 1T
sup (f Qf’ ¢)) _ su (f’ d) Q¢)

< wl(h)”f”[,z(g)'
peH (2)NL2(R2) lleurl @172y peH (DNLE(R) lleurl 1|2

Thus, we have shown
||AHQf _Af”LZ(_Q) < wl(h)”f”Lz(_Q)-
Finally, because Tf € L%(Q), we have by the Poincaré inequality,
ITof — Tfll 200, < Cllewrl (THof — T 20, = CIAMf — Afll2i0) < Coy Wl 20)- O

Next we prove that Assumption 2.3 implies the inf-sup condition for the pair (V,,, Q).

LEMMA 2.7 Suppose that Assumption 2.3 is satisfied. Then there exists a constant C > 0 such that for
every u;, € Qy, there exists ;, € V), such that rot t;, = u, and |7, ll;2(o) < Clluyll2(2)-

Proof. From Girault & Raviart (1986, page 81) we have the existence of T € H(l)(.Q) with rot T = u,
such that [|T|[g1 o) < Clluyll2 (o). Noting that T € V(Q)), we define 7, = Iy7 so that rott, =
rot T = u;. Moreover,

||Th||L2(_Q) < C(”T”H%”(Q) + ||r0tT||L2(_Q)) < C”T”HI(_Q) < C||“h||L2(Q)~ O

Now we can prove Theorem 2.4.

Proof of Theorem 2.4. Let f € L*>(2), and set ¢ = Af,u = Tf and o, = Af,u, = T,f. Let
¥ =Allyf andw = TI,f.
We first derive an estimate for IT, ¥ — o,. Using the inclusion rot V, C Q,, we see that

ITyy — oy, 7)) + UTgw —up,rotty,) = Iy — ¥, 7)) Vt, eV,

(rOt (Hvlli — O'h),vh) =0 VVh (S Qh

Setting 7, = I1,¥ — 0, and applying the Cauchy—Schwarz inequality yields
MY = 0)li20) < Iy =Pz < oUW,y o+ 10t 2 g)).
If we use Proposition 2.2 we get

”wHH%”(Q) < C(||diV![’||L2(_Q) + ||r0“ﬁ||L2(Q)) = C”rOt'ﬁ”LZ(Q) = C”HQf”LZ(_Q) < C|lf||L2(_Q)-
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Hence,

1Ty — 0 ,l12(02) < CogMIfll2 ) (2.7)

Using the inf-sup stability stated in Lemma 2.7, Assumption 2.3 and (2.7) we have

1w — wyll 200y < C(HTy¥ — ¥lp2i0) + T y¥ — 0 4ll12(0)) < CogWIfll2(0)-

Hence, we have

lw— uh”LZ(_Q) < Cwo(h)HfHLZ(_Q) + llw— HQW||L2(Q)
< Cop 2oy + @ (W llcurl wl 2.

But we have [lcurl wl| 2oy < CllTpf 120y < Clf ll12(o). and so

(T — Th)f”LZ(_Q) = |lu— uh”LZ(_Q) < C(wo(h) + wl(h))”f”LZ(_Q)- OJ

REMARK 2.8 Note that by Lemma 2.6,

llo — '/’||L2(_Q) + llw — M||L2(_Q) < Cw](h)|V‘||L2(Q)7

and therefore by (2.7) and Assumption 2.3,

1A —=Apfl2e) = llo — oyl
< o — ¢||L2(Q) + ||Uh - Hv'/’”LZ(Q) + ||Hv'/f - ¢||L2(Q)
< Cwo(h)”f”LZ(Q)-

Thus, we also have |[A — A, || < Coy(h).

3. Examples of Fortin operators

In this section we give examples of finite element pairs satisfying Assumption 2.3, where V, is taken
to be a space of continuous, piecewise polynomials, i.e., a Lagrange finite element space. Here we
use recent results on divergence-free finite element pairs for the Stokes problem to construct a Fortin
projection satisfying (2.5). A common theme of these Stokes pairs is the imposition of mesh conditions
for low-polynomial-degree finite element spaces; it is well known that Assumption 2.3 is not satisfied
on general simplicial meshes and for low polynomial degree. Before continuing, we introduce some
notation.

We denote by T, a shape-regular, simplicial triangulation of 2 with iy = diam(7T) for all T € T,
and h = maxycq, hy. Let V{l, Vf , V,f denote the sets of interior vertices, boundary vertices and corner
vertices, respectively. Note that the cardinality of Vf is uniformly bounded due to the shape regularity
of T),. The set of all vertices is V, = Vi UV5. Likewise, €/ and €2 are the sets of interior and boundary
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edges, respectively, and &, = 82 U EE. We denote by T),(z) the patch of triangles that have z € V, as a
vertex. Likewise, Vi(T) and VE(T) are the sets of interior and boundary vertices of T € T, and Ei(T)
is the set of interior edges of 7.

For a non-negative integer k and set S C §2 let P, (S) to be the space of piecewise polynomials of
degree < k with domain S. The analogous space of piecewise polynomials with respect to T, is

P = [ PuD,

TeTy

and the Lagrange finite element space is
PET,) = Pp(T,) NHY($2).

Analogous vector-valued spaces are denoted in boldface, e.g., P, (T,) = [P,(T},)]*. Finally, the constant
C denotes a generic constant that is independent of the mesh parameter # and may take different values
at different occurrences.

In the subsequent sections we will employ a Scott—Zhang-type interpolant on the space V. We cannot
use the Scott—Zhang interpolant directly, as the canonical Scott—Zhang interpolant of a function in V
might not have zero tangential components at the corners of §2; hence, we have to modify the Scott—
Zhang interpolant at the corners of £2. This type of interpolant has been used for example in Bonito &
Guermond (2011, (2.14) and (2.15)). For completeness we give a detailed construction in the appendix
but we state the result here.

LEMMA 3.1 Let0 < § < % There exists a projection I, : H%J”S (£2) — P{(T},) with the bound

1

-1-5
- <
hT ”T Ihr”LZ(T) + ||Ihr||H%+B(T) NS C”r”H%'HS(w(T)) vVt S V, (31)

where o(T) = T'. Moreover, It - t|yo =0if T - t]5 = 0.

UT/eTh TNT' £4

3.1 Construction of a Fortin operator on Powell-Sabin splits

In this section we use the recent results given in Guzman et al. (2020a) to construct a Fortin projection
into the Lagrange finite element space defined on Powell-Sabin triangulations. For simplicity and
readability we focus on the lowest-order case; however, the arguments easily extend to arbitrary
polynomial degree k > 1.

Given the simplicial triangulation of T, of £2, we construct its Powell-Sabin refinement ‘J'ES as
follows (Guzman et al., 2020a; Lai & Schumaker, 2007; Powell & Sabin, 1977). First, adjoin the incenter
of each T € T, to each vertex of 7. Next, the interior points (incenters) of each adjacent pair of triangles
are connected with an edge. For any T that shares an edge with the boundary of §2 the midpoint of that
edge is connected with the incenter of T. Thus, each T € T, is split into six triangles; cf. Fig. 1.

Let 82 (‘.Tgs) be the points of intersection of the interior edges of T), that adjoin incenters, let Sf (‘J’ES)
be the intersection points of the boundary edges that adjoin incenters and set Sh(‘J'ZS) = SZ(TES) U
Sg (‘J'gs). Note that, by the definition of the Powell-Sabin split, the points in Sh(‘.TgS) are the singular
vertices in ‘IES, i.e, the vertices that lie on exactly two straight lines. In particular, for a vertex z € Si(‘TZS)

there exist four triangles ‘J’ES () = {Ti}j1 ;1 C ‘J'ZS such that z is a vertex of 7;. Without loss of generality
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we assume that these triangles are labeled in a counterclockwise direction. We then define for a scalar
function v,

0.(v) == vlp, (2) = Vg, (@) +vig, (@) — vig, @). (3.2)

We then define the spaces
V, = P{(T0%) N Hy(rot, 2), (3.3a)
0, =vePyTHNLYR2) : 6,(v) =0VzeSLHTM). (3.3b)

LEMMA 3.2 (Guzmdn et al. (2020a)). Let V;, and Q,, be defined by (3.3). Then there holds rot V;, C Q,,.

We now extend the results of Guzman et al. (2020a) to construct an appropriate Fortin operator that
is well defined for T € V(Q,,). To do so we require some additional notation.

For an interior singular vertex z € 8,(77") let T € T), be a triangle in T, such that z € 37T, and let
{K,,K,} C T be the triangles in TES such that K{,K, C T and K, K, € ‘J'Zs(z). Lete = 0K; N 0K,,
and let m; be the outward unit normal of K; perpendicular to e. We then define the jump of a scalar
piecewise smooth function at z (restricted to T') as

iy (2) = VIKI (z2)m; + v\Kz(z)mz.

Note that [v]; (z) is single valued for all v € Q,,. In particular, if z is an interior singular vertex with
z € 0T, N dT, for some T}, T, € T,, T} # T,, then vz, @ = vy, (@) for all v € Q, because
6,(v) = 0. Therefore, we shall omit the subscript and simply write [v] (z).

Next, for a triangle 7 € T, in the nonrefined mesh, we denote by T°' the resulting set of three
triangles obtained by connecting the barycenter of T to its vertices, i.e., T is the Clough—Tocher
refinement of 7. We define the set of (local) piecewise polynomials with respect to this partition as

P = [] Pu(&). (3.4)

KeT¢t

The following lemma provides the degrees of freedom for V;, and O, that will be used to construct
the Fortin operator. The result essentially follows from Guzman ef al. (2020a, Lemmas 10-11).

LEmMA 3.3 A function T € V), is uniquely defined by the conditions

1(z) VzeVi (3.52)
T(2)-n Vze Vf\\?f, (3.5b)
/(r )  Veeé&l, (3.5¢)

[rott] @)  Yze8,(TH), (3.5d)
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/T(rotr)r VrePy(TYNLYT), VT € T,

Moreover, a function v € Q,, is uniquely determined by the values

VG  Vze8, T,

/ vr VrePy(T, VT €T,
T

673

(3.5¢)

(3.6a)

(3.6b)

THEOREM 3.4 Let V, and Q,, be defined by (3.3), and let V(Q,,) be defined by (2.4). Then there exists

a projection ITy, : V(Q,) — V,, such that rot IT\,p = rotp for all p € V(Q,). Moreover,

1
”T - HVT”LZ(Q) < C(h2+8||‘[||H%+8(Q) + h“rOtT”L2(Q)) Vte V(Qh)

Proof. Fix t € V(Qy), and let It € P{(T,) N Hy(rot, $2) C V), be the modified Scott—-Zhang

interpolant of T established in Lemma 3.1. We then construct IT T via the conditions
(ITyt)(z) = I,7)(2) Vze Vi,
(ITyt)(2)-n=I;T)(2) - n Vze VE\VE,

/(Hvr).tz/r~t Vee&fz,
e e

[rotl ]| @) = [rottl(2)  Vze§,(TH),

/(rotHV'r)r = /(rot r Vre Py(T ﬂLé(T), VT €T,
T T

The arguments given in Guzman et al. (2020a) show that rot IT,T =rott,
By scaling, there holds for each o), € V, andoneach T € T},

Il <C[i( X l@P+ D loy@ - nP)

zeVI(T) 2eVEM\VE$(T)
2, 2
+ Z /ah .t‘ +h7 sup )/(rotoh)r’
ecel “°¢ rePo(T) T
h Il 2 y=1

it > |[roto,] ]

z€8,(T)

(3.7a)

(3.7b)

(3.7¢)

(3.7d)

(3.7e)
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where 8, (T) is the set of singular vertices contained in T. Now set o 5 = Iyt — I, 7. Using the above
estimate and (3.7) then yields

2 2
1Tyt — 1y, < CH/ (r—Ihr)-t‘ +H sup ’/rot(r — L) (3.8)
aT rePo(Tety | JT

Il 2 =1

+ 3 z ’[[rot(r—lhr)]](z)|2].

z€8,(T)

Because rot (r —I,7) € Q,, we use the degrees of freedom (3.6) and a scaling argument to conclude
that

2
sup /(rot (r —Lo)r| +h3 Z | [rot (v — I, )] (z)|2 (3.9)
rePo(re) /T 2€8,(T)
”r”LZ(T):l

2
< Clirot (x = 1;7) 72y
We then use an inverse estimate to get

ot (z = I, D) 1727y < Cllrotzl3s 7 + IV T 17 ] (3.10)

—14268
< C[lirot |2, + k7't ”I"T”il%“(r)]'

(1)

Applying estimates (3.9)—(3.10) to (3.8) we obtain

2
_ 2 _ ) 2 2 —1425 2
(V8% 4 IhT”LZ(T) < CH /aT(r I,7) t) + hT(IIrotrlle(T) +hy ”IhT”H%*‘S(T))]

+ hillrot T |7,

2 1+28 2
< Clhzllt =Lzl + by Tl ol

(1)

A trace inequality yields (cf. Ern & Guermond, 2017, Lemma 7.2)

2

hllT = 11227 < ClIT = 1Tl

LR 2 ’
L AT

and therefore

+ hillrot 7,

_ 2 _ 2 1428 2 14282
1y =052y < QT =1yl + W2 T2 42 o)

>
We then apply (3.1) and sum over T € T, to obtain

1
1Tyt — LTl 20 < C[h2+5||r||H%+5(m + hlrot T2 |-
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Therefore

||T — HVT”Lz(Q) < ||T —IhT”LZ(Q) + ”HVT _IhT”LZ(Q)

1
< C[h2+6||1:”]~[%+5([2) + h”rOtT”LZ(Q)]. |:|

3.2 Construction of a Fortin operator on Clough—Tocher splits

The Clough—Tocher refinement of TJ), is obtained by connecting the barycenter of each T € T with its
vertices; thus, each triangle is split into three triangles. In this section we show that there exists a Fortin
projection mapping onto the Lagrange finite element space satisfying Assumption 2.3. This result holds
for all polynomial degrees k > 2 but, for simplicity, we only consider the lowest-order case k = 2.

Let 75! be the resulting Clough-Tocher refinement of T, and define the spaces

V, = P5(T5Y) N Hy(rot, £2), (3.11a)
0, = L3(2) NP (TH. (3.11b)

It is well known that rot V;, C Qy, (Fu er al., 2020).
Below we modify the results in Fu er al. (2020) to build a Fortin projection that is well defined on

Hot (£2) and has optimal-order convergence properties in L?*(£2). To this end we first provide a useful
set of degrees of freedom for V;, (Fu et al., 2020).

LemMA 3.5 A function T € V), is uniquely determined by the values

1(z) Vze Vi (3.12)
T(x)-n Vze VAV, (3.13)
/r Veee!, (3.14)
e
/r-n Vee &5, (3.15)
/T(rotr)r Vre P (TYNLT), VT €T), (3.16)

where P, (T) is defined by (3.4).

THEOREM 3.6 Let V), and O, be defined by (3.11), and let /1, be the L? projection onto 0;,- Then there
exists a projection ITy, : V(Q;) — V,, such thatrot Ty, = HQ (rot T), Moreover,

1
It — Myt < C(h2+5||1||H%+8(9) + hlrot Tll;2(0)) VT €V,
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Proof. Define IT, uniquely by the conditions

(Myt)(z) = d,7)(z) VzeVi (3.17a)
(Myt)(z)-n={,T)z)-n  VYVzeVAEVE, (3.17b)
/e(HV‘r) =/er Veeé&l, (3.17¢)

/e(HVT n) = /Ez n Vee&h (3.17d)
/T(rotHVr)r = /T(rotr)r VreP (TYNLIT), VT € T, (3.17¢)

The arguments given in Fu er al. (2020) show that rotIT\,t = IIyrott. The same scaling arguments

given in Theorem 3.4 show that ||t — ITyT||;2o) < C(h%M”T”H%“(Q) + hllrotrlle(Q)). 0

3.3 Construction of a Fortin operator on general triangulations

In this section we construct a Fortin operator for the original Scott—Vogelius pair developed in Scott &
Vogelius (1985). This pair essentially takes the space V), to be the Lagrange space of degree k > 4, and
Q,, to be the space of piecewise polynomials of degree (k—1). As pointed out in Scott & Vogelius (1985)
the exact definition of these spaces and their stability is mesh dependent and depends on the presence
of singular or ‘nearly singular’ vertices.

Recall that a singular vertex is a vertex in 7J), that lies on exactly two straight lines. To make this
precise, for a vertex z€ V,,, we enumerate the triangles that have z as a vertex as T, (z) ={T}, T, ..., Ty }.
If z is a boundary vertex then we enumerate the triangles such that 7} and T, have a boundary edge.
Moreover, we enumerate them so that Tj, T] .1 share anedge forj=1,...,N — 1 and Ty and T, share
an edge in the case z is an interior vertex. Let 6; denote the angle between the edges of 7} originating
from z. We define

max{| sin(®, + 6).....[sin@y_, + O, | sin@y + 0|} ifz e VI,
O(z) = ymax{|sin(8; + 0,)I,. .., |sin(Oy_; + 6y} ifz e Vf and N > 2, (3.18)
0 ifzerandN:l.

DEFINITION 3.7 A vertex z € V, is a singular vertex if ©(z) = 0. It is nonsingular if & (z) > 0.

We denote all the singular vertices by
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We further let 82 denote the set of interior singular vertices, 85 the set of boundary singular vertices and
S,? the set of corner singular vertices. Equivalently,

8l ={z€8,: #7,(2) = 4},
S8 =(ze8,: #7,(2) € {1,2}},
8f =1{ze8,: #T,x) = 1}.

DEFINITION 3.8 We set

@ . = min ©O(2). 3.19
in (69) (3.19)

For a non-negative integer k we define the spaces

Vv, = P5(T,) N Hy(rot, £2), (3.20a)

0, =(veldENP_(T): 6,0 =0Vze8, vz)=0VzeS8), (3.20b)

where we recall that 6,(v) is defined by (3.2).
First we note that the rot operator maps V, into Q,, (Scott & Vogelius, 1985).

LemMA 3.9 There holdsrott € Q) forall T € V.

Let I}, be Scott—Zhang interpolant onto P{ (T;,)NH(rot; £2) C V. Then define I, : H 3+ (£2) -V,
as follows:

Lt =Lt(x) VzeV,

/Ilr-wlfz/r-i// forally e P,_,(e), Ve e &,
e e
/Ilrwﬁ:/ro:ﬁ forally e P,_5(T), VT € T,,.
T T

Standard arguments yield the following result.

LEMMA 3.10 There holds for all T € H>3(£2),

3+8
Iz =1zl < Ch2 IITIIH%M(Q) (3.21)

and

145
ot )20y < h ™2 ”T”H%M(Q)' (3.22)
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Moreover, for k > 2,

/rotll't:/rott VT €T, (3.23)
T T

The following result follows from Guzmén & Scott (2019, Lemma 6).

LeEMMA 3.11 Suppose that & > 4. Then there exists an injective linear operator J; : Q;, — V/, such that

rot(J () =v(z) VzeV, (3.24a)
/ rot(J)dr =0 VT eT, (3.24b)
T
W vll2e + RIVI V2, < Ch(@ + 1) W20 (3.24c)
min

The next result follows from Falk & Neilan (2013), Guzman & Scott (2019), Scott & Vogelius
(1985).

LEmMA 3.12 Define
Q,={veQ,: [;v=0VTeT,, andv(z) =0Vz eV}
Then there exists an injective operator J, : Q, — V,, such that

rot(J,v) = v,

||~12V||L2(_Q) + h||VJ2V”L2(_Q) < Ch”VHLZ(_Q)-

THEOREM 3.13 Let V;, and O, be defined by (3.20) with k > 4. Then there exists a projection ITy, :
V(Q;) — V,, such that

rot(Il,t) =rott
with the following bound

—1\p,448
It — My7ll2g) < C(1 + O, h2 ”T”H%-%—S(Q)'
Proof. Define
Ny =Lt +Jvi+Jyv, €V,

where

vy =rot(t — I, 7) € Q), vy = v —r1otJ v|) € 0.
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By Lemma 3.11 and the definition of v, we see that
v(2) =0 VzeV,

and

/vzz/(vl—rot(lel))z/vlz/rot(r—llr)zo
T T T T

by Lemma 3.10. Therefore v, € Q,, and so J,v, is well defined (cf. Lemma 3.12).
We then use Lemma 3.12 to get

rot(ITyt) = rot(;t) +rot(J;v;) + rot(J,v,)
= rot(l;T) +rot(J,v;) + v,
=rot(l;7) +rot(Jv|) + (v{ —rot(J|v;))
=rot(l;T) + v,
=rot(l;t) +rot(r — I, 7)

=rotT.
Now we note that, by (3.22),

||I'0t(1' _IIT)HLZ(.Q) < ||I'OtT||L2(_Q) + ”rOt (Ilt)”Lz(.Q)

_1
< ot Tl 20y + I 2+5||T|IH%+3(Q). (3.25)
Next, by Lemma 3.11 and (3.25), we obtain
||J1V1||L2(Q) < Ch(@ + 1)||v1||L2(_Q) (326)
min
1
< Ch( + 1) otz — 1,0 200
@min
3+
< C(@ —+ 1)(h||r0tr||Lz(Q) FRPNT )

min
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Likewise, we use Lemmas 3.12 and (3.25) to obtain

||JZV2||L2(.Q) < Ch”Vz”LZ(Q) (327)
< Ch(Ivyllz2 gy + Irotl v llz2(a))
é C(h||r0t(‘r —11 T)”LZ(_Q) + ”lel ||L2(Q))

N

1 1
C + 1) h||rot +h2t? _
(@min ( ”I'O T”LZ(Q) ||T||H%+5(Q))

We then use the triangle inequality, Lemma 3.10, (3.26) and (3.27) to obtain the L2 error estimate:

It —Oytl2e < It —LiTlee + Wvillze) + IWovallze

1 1
i+s
<C(g—+1)niTl

min @)

Finally, if T € V,, then I,7 = 7 and so v; = 0. It then follows that J;v; = 0, and J,v, =
—J,(rot(Jyv;)) = 0. Therefore IT,T =I,7 = 7, i.e., Il is a projection. O

4. Numerical experiments

In this section we confirm the theoretical results with some numerical experiments on a variety of
meshes and finite element spaces. All the numerical experiments were performed using FEniCS (Alnaes
et al., 2015). In the first four tests we take the domain to be the unit square £2 = (0, 1)2. The exact
eigenvectors, corresponding to nonzero eigenvalues, are u™ (x,y) := curlp®™ where p"™ =
cos(mnx) cos(rmy), with eigenvalues A" := 72(n?> + m?) for n,m € N U {0} and nm # 0. In the
following we relabel the nonzero eigenvalues A in nondecreasing order: 0 < 2D <A@ <a® .l

4.1 Linear Lagrange elements on Powell-Sabin triangulations

In these series of tests we compute the finite element method (1.2) using piecewise linear Lagrange
elements defined on Powell-Sabin triangulations. We create a sequence of generic Delaunay triangula-
tions J;, with mesh size hj = 27/ forj = 3,4,5,6, and perform the refinement algorithm described in

Section 3.1 to obtain a Powell-Sabin triangulation 7, ES for each mesh parameter.

In Table 1 we show the first 10 nonzero approximate eigenvalues and errors using method (1.2)
defined on ‘J’Zs for fixed &~ = 1/32. In Table 2 we list the rate of convergence of the first eigenvalue
with respect to h. The tables show an absence of spurious eigenvalues, which agrees with the theoretical
results, Theorems 2.4 and 3.4. In addition, we observe an asymptotic quadratic rate of convergence for
the computed eigenvalue.

4.2 Quadratic Lagrange elements on Clough—Tocher triangulations

In this section we compute the finite element method (1.2) using quadratic Lagrange elements defined
on Clough-Tocher triangulations (cf. Section 3.2). As before we create a sequence of meshes 7T, with
h; = 27/ (j = 3,4,5,6), and construct the Clough-Tocher refinement ‘Tflt by connecting the vertices of
each triangle in T, with its barycenter; see Fig. 2.
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TABLE 1

Approximate eigenvalues of (1.2) using the piece-
wise linear Lagrange finite element space on a Powell-Sabin
triangulation. The mesh parameter is h = 27>

i iy D — )

1 9.872556542826 2.952141736802360E—3
2 9.872647617226 3.043216136799032E—3
3 19.75126057536 1.205177318315975E—2
4 39.52514303832 4.672543396706175E—2
5 39.52979992791 5.138232355238159E—2
6 49.42354393173 7.552192628650545E—2
7 49.43033089264 8.230888719544538E—2
8 79.15457141878 1.977362100693938E— 1
9 89.06160447391 2.351648641029839E—1
10 89.07453060702 2.480909972125715E~1

681

TABLE 2 The rate of convergence with respect to h of the
first nonzero eigenvalue using the Powell-Sabin split and the
linear Lagrange finite element space

h A — D] Rate

273 1.084194558097806E—1

24 3.835460507298371E—2 1.8228
273 2.952141736802360E—3 1.8768
276 7.488421347368046E—4 1.9790
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Fi1G. 2. A Clough—Tocher triangulation with i = 273,

In Table 3 we report the first computed 10 nonzero approximate eigenvalues using method (1.2).
As predicted by Theorems 2.4 and 3.6 the results show accurate approximations with no spurious
eigenvalues. In Table 4 we list the rate of convergence to the first eigenvalue for different values of

h. The table shows an asymptotic quartic rate of convergence: A1) — 2P| = O(h%).
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TABLE 3 Approximate eigenvalues using quadratic
Lagrange elements on a Clough—Tocher triangulation with

h=27°

i Ay @ — |

1 9.869606458779 2.057689641788E—6
2 9.869606625899 2.224809986018E—6
3 19.73922733515 1.853298115861E—5
4 39.47853970719 1.221028349079E—4
5 39.47855143244 1.338280896661E—4
6 49.34827341503 2.514095869017E—4
7 49.34829772352 2.757180775106E—4
8 78.95794423573 1.109027018615E—3
9 88.82788915584 1.449546038714E—3
10 88.82798471962 1.545109821734E—3

TABLE 4 The rate of convergence of the first nonzero
eigenvalue using the Clough—Tocher split and k = 2

h A — 2D Rate
273 2.98012061403341E—4

24 2.96722579697928E—5 3.3282
25 2.05768964178787E—6 3.8500
26 1.43249797801559E—7 3.8444

4.3 Quartic Lagrange elements on criss-cross triangulations

In this section we compute the finite element method (1.2) using fourth-degree Lagrange elements on
several types of triangulations. Theorems 2.4 and 3.13 indicate that this scheme leads to convergent
eigenvalue approximations as 7 — 0 if the quantity @ ;. is uniformly bounded from below. We recall
that the quantity ®,;, gives a measurement of the closest-to-singular vertex in the mesh, i.e., &, is
small if there exists a vertex in T, that falls on two ‘almost’ straight lines; see (3.19) and (3.18) for the
precise definition.

In the first series of tests we numerically study the effect of @, in finite element method (1.2). To
this end we first take T, to be the criss-cross mesh with & = 1/6 (cf. Fig. 3). This triangulation has 36
singular vertices, but @, is well behaved. Theorems 2.4 and 3.13 indicate that finite element scheme
(1.2) (with quartic Lagrange elements) leads to accurate approximations. Indeed, Table 5 lists the first
10 computed nonzero eigenvalues, and it clearly shows accurate results.

Next we perform the same tests but randomly perturb each singular vertex of the criss-cross mesh
by a factor ah for some o € (0, 1]. In particular, for each singular vertex z € §,, of the criss-cross
triangulation 7}, we make the perturbation z — z + (fah, ah). Figures 3(right), 4(left) and 4(right)
show the resulting triangulations with @ = 0.01, « = 0.05 and « = 0.1, respectively. We note that on
the resulting perturbed mesh, ®_;, ~ «, and therefore Theorem 3.13 suggests that the finite element
approximation (1.2) may suffer for small a-values.

The computed eigenvalues, with values o = 0.01, « = 0.05 and o = 0.1, are reported in Tables 6,
7 and 8, respectively. Table 8 shows that, for relatively large perturbations (¢ = 0.1), we compute
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TABLE 5 Approximate eigenvalues using quartic Lagrange
elements on a criss-cross mesh with h = 1/6

i Ay A — |
1 9.869604401309 2.199112003609E—10
2 9.869604401309 2.200408744102E—10
3 19.73920880459 2.414715538634E—09
4 39.47841782951 2.251546860066E—07
5 39.47841782951 2.251547499554E—-07
6 49.34802238840 3.829525141441E-07
7 49.34802238840 3.829534165334E—07
8 78.95683762620 2.417486058448E—06
9 88.82645223886 1.262905662713E—05
10 88.82645223886 1.262905958299E—05

10 S —— 10 -

081 | ‘ 081 |

061 | 06 -

04 04 1

02| ‘ 021

00 - L NSNS NL N 001

00 02 04 06 08 10 00 02 04 06 08 10

FiG. 3. Left: criss-cross mesh with 2 = 1/6. Right: the mesh obtained by randomly perturbing the singular vertices of the
criss-cross mesh by 0.01%.

10 e 10
081 ‘ 08 |
06| | 056 -
041 | | 04
021 | ‘ 021
0.0 - SN NSNS 0.0 -
00 02 04 06 08 10 00 02 04 06 08 10

Fi1G. 4. Criss-cross meshes with singular vertices randomly perturbed by 0.054 (left) and 0.1/ (right).
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TABLE 6 Approximate eigenvalues using quartic Lagrange
elements on a 0.01h-perturbed criss-cross mesh with h =

1/6.

i ! D — )

1 1424154538647 8.445449862442
2 1471404605901 8.398199795188
3 1477776343297 18.26143245888
4 1.502342236815 37.97607536754
5 1.526468793982 37.95194881038
6 1540736126805 47.80728587864
7 1.552154885100 47.79586712035
8 1556952619119 77.39988258960
9 1566640464185 87.25979914562
1 1.580713040988 8724572656882

TABLE 7 Approximate eigenvalues using quartic Lagrange
elements on a 0.05h-perturbed criss-cross mesh with h =

1/6

i i) D — )|

1 9.869604401311 2.212932059820E—10
2 9.869604401311 2.215134742301E~10
3 19.73920880479 2.614239491550E—09
4 35.63498774612 3.843429858239

5 3648359498561 2.994822618752

6 36.92351459416 12.42450741128

7 37.63299206644 11.71502993900

8 37.78514981304 41.17168539568

9 38.10084364520 5072559596460

10 38.35191236801 50.47452724179

relatively accurate eigenvalue approximations with similar convergence properties found on the criss-
cross mesh (cf. Table 5). On the other hand, for smaller perturbations (¢ = 0.05 and « = 0.01), the
results drastically differ. Table 6 clearly shows extremely poor approximations for all eigenvalues, and
Table 7 only computes the first few eigenvalues with reasonable accuracy before the results deteriorate.
These numerical tests indicate the approximation properties of the computed eigenvalues are highly
sensitive to the quantity @, .

4.4 Quartic Lagrange elements on generic triangulations

Our next series of tests compute finite element method (1.2) using quartic Lagrange elements on generic
Delaunay triangulations. Again, Theorem 3.13 and the previous set of tests indicate the approximation
properties of the computed eigenvalues are highly sensitive to the quantity ® ;. In light of this, for a
given (generic) triangulation J7,, we randomly move each interior vertex with four neighboring triangles
by a 0.1h-perturbation; see Fig. 5.
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FiG. 5. (left) Unstructured mesh with 2 ~ 1/10, (right) randomly perturbing interior vertices who have four triangles by at most

0.1h.
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TABLE 8 Approximate eigenvalues using quartic Lagrange
elements on a 0.1h-perturbed criss-cross mesh with h = 1/6
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78.95683842488
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88.82645276747
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TABLE 9 Maximum error of the first 20 eigenvalues on
perturbed Delaunay triangulations using quartic Lagrange
elements

h max; ;<o [A@D — AS)I Rate
272 8.3861134511E—03

273 5.6183112093E—05 7.2217
24 2.2360291041E—07 7.9731
25 8.9832496997E—10 7.9595

0.8

685

Table 9 shows the maximum errors of the first 20 computed eigenvalues on these perturbed meshes
forh =277 (j =2,3,4,5). The table clearly shows convergence with rate O(hg). On the other hand, the
errors of the computed eigenvalues on ‘non-perturbed’ meshes do not converge, as shown in Table 10.
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TABLE 10 Maximum error of the first 20 eigenvalues
on (nonperturbed) Delaunay triangulations using quartic
Lagrange elements. Note that for h = 272 and h = 273, the
mesh T, does not have any vertices with four neighboring

triangles

h max; ;<0 11O — 45| Rate
272 8.38611345105E—03

23 5.61831120933E—05 7.2217
24 59.2176263988 —20.008
273 59.2176264065 0.000

TABLE 11 L-shaped domain: the rate of convergence of the
first nonzero eigenvalue using the Powell-Sabin split and

k=1
h IAM — D] Rate
273 5.29957E—03

24 2.42718E—03 1.12659499
25 1.07087E—03 1.18049541
26 5.5788E—04 0.94076660
277 1.8099E—04 1.62402935
28 7.273E—05 1.31537097

It is interesting to note that Costabel & Dauge (2002) showed that using quartics one has convergence
on any mesh if the stabilization term (div, div) is added to the formulation (at least for convex polygons).
However, here we see that the results are more sensitive with formulation (1.1).

4.5 L-shaped domains

In this example we consider an L-shaped domain: £2 = [, n]z\([O, ] X [—m, 0]). The first nonzero
eigenvalue corresponds to an eigenvector that is not in H' and the approximate value of this eigenvalue
is given by (D~ 0.149511749824251 (Dauge, 2003). In Table 11 we give the error using Lagrange
elements with k = 1 on Powell-Sabin splits. In Table 12 we give the error using Nédélec elements
of the second kind with k = 1 on the same meshes. As we can see, the rate of convergence seems to
be tending to 4/3 for both finite elements, although the errors using the Nédélec elements give more
accurate approximations. However, the Nédélec space has significantly more degrees of freedom than
the linear Lagrange finite element space. The next eigenvalues correspond to eigenvectors that belong
to H! and the convergence rates increase to 2 for both elements, but we do not present the errors here.

We would like to stress that although the eigenvalues do converge as we proved, the convergence
of the eigenvectors will not converge in H(div) N H(curl) if the eigenfunctions are not in H ! Instead
convergence should be sought in the H(curl) norm.
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TABLE 12 L-shaped domain: the rate of convergence of the
first nonzero eigenvalue using the Nédélec elements of the
second kind and k = 1

h A — D Rate
273 9.564E—05

24 6.285E—05 0.60567278
2-3 3.039E—05 1.04839118
2-6 1.763E—05 0.78534429
277 5.72E—06 1.62460510
2-8 2.41E—06 1.24527844

5. Concluding remarks

In this paper we studied and numerically verified the use of Lagrange finite element spaces for the two-
dimensional Maxwell eigenvalue problem. Using and extending the analysis of divergence-free Stokes
pairs we showed, on certain triangulations, convergence of the discrete eigenvalues.

While the focus of this paper has been on the two-dimensional setting, the tools developed here may
apply to three dimensions as well. In particular, smooth, discrete de Rham complexes using Lagrange
finite element spaces have been constructed in Fu et al. (2020), Guzman et al. (2020b), and these results
might be applicable to the three-dimensional Maxwell eigenvalue problem.
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Appendix A. Proof of Lemma 3.1

In order to describe the new interpolant we first remind the reader of the Scott—Zhang interpolant (Scott
& Zhang, 1990). For every z € 'V, we define ¢, € P{(T),) to be the hat function ¢_(y) = (Syz for all
y € V,,. Also for every z € V;, we identify an arbitrary edge e, of the mesh that contains z with the only
constraint that e, is a boundary edge if z is a boundary vertex. Then there exists a function ¥, € L>(e,)
such that

/ 1//Z¢y = 8},1, yeV, (A.1)
ez
Moreover,

C
1V Mo,y < el (A2)

.

The Scott—Zhang interpolant 1 . actingont € H 2+ (£2), is given by

Lrw=>" ( / I//z‘r)(]ﬁz(x). (A3)

ZEV;,

Although the Scott—Zhang interpolant has the approximation properties we need, it might not
preserve the tangential trace to be zero. More precisely, if t € H 2+ (£2) N Hy(rot; £2), then 1 nT -t
might not vanish on edges that touch a corner vertex. Therefore, we must modify the Scott—Zhang
interpolant on such vertices.

For every corner boundary vertex z € V,f we will consider the two boundary edges, e;, e?, which
have z as an endpoint. We let n! be the outward-pointing normal to ¢! and #. the tangent vector to ', that
is rotated 90 degrees counterclockwise. We then have the existence of wzi eL® (eé) such that

/ Ylp, =5  yeV, (A.4)
o
: c
Wl ey < —- (A.5)
2 |ez|

We can then define the modified Scott—Zhang interpolant as

Ltw= > ( / vfzr) 6.0+ D (1)), (A.6)

2€V\VS zeV§
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where

n; Iy 1 n; 202
ﬂ(T)i=—z/(T-t)1/f +—z/(f~t)1ﬂ~
z n%-tzl ol 2/ ¥z n;-t% g 2/ ¥z

We now proceed to prove Lemma 3.1 in four steps.
()1, : H%H(.Q) N H(rot; 2) — P{(T,) NHy(rot,2): If T € H%'*"S(.Q) N H(rot; §2), then clearly
I,t(z) =0forevery z € Vf. Also we have I;7(z) - ¢, = O forall z € Vh\\?f where £, is tangent to e_.
Thus we have that I;,7 - £ = 0 on 952.
(ii) I, is a projection: In order to show it is a projection we need to show that I;,7(z) = t(z) for all
z €V, and T € P{(T}). To this end let T € P§(T}). If z € V,\VS then I,,7(z) = fez ¥, 7. However,
fez ¥, T = 7(2) by (A.1), since 'r|eZ =1()P, + r(y)¢y where y is the other endpoint of e,. On the other
hand, if z € V¢ then I,7(z) = B,(). Then we have B_(7) - £ = Lz - )yl Using (A.1) we have
Li (T-£)y! = 7(2)-£.. Thus we have shown that I, 7 (2)-£. = 7(2) £, fori = 1,2 and thus 1,7(2) = 1(2).
( iii ) Stability estimate: We derive a stability estimate following the arguments of Ciarlet (2013), Scott &
Zhang (1990). First we note that by an inverse estimate we have

_1l_5
< Chp® Tl ey

LA

Thus, we only need to bound the L? norm. To do this we first note the trace inequality (cf. Ciarlet, 2013,
Proposition 3.1)

1
b
”T“Ll(ez) < C(”T”LZ(T) + hT |t|H%+5(T))’

for T € T, with e, C dT. We remind the reader that the number of corner points V< is finite and
independent of the mesh T}, and hence M := max, yc In‘l_ﬂ\ is finite. Thus, using (A.2) and (A.5), we

have

||IhT||L2(T)< Z ||¢Z||L2(T)||I/jzl|L°o(eZ)||T||L1(gz)
2€V\VE

zeT

1 2
+M DS 20y (19 e e 1Tl ey + 192l o) 1Tl 2))
zeV¢
zeT

3+
2
< O+ M (Il 2y + h2 "'H%M(w(r)))’

where we used that [|¢, [l ,2r) < Chy. Hence, combining the above results we obtain

3 3+8

T

| |H%”<w<T>)
: . ) _ 1 )

(iv) Estimate (3.1): Let w = 1o fw(T) 7; we have

3+8
It = w2y < Chy | (A.8)

Tl iy
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Estimate (A.8) for § = % is shown in Scott & Zhang (1990, Section 4). Estimate (A.8) for § € (0, %)
can be found for example in Drelichman & Duréan (2018, Proposition 2.1) and Bellido & Mora-Corral
(2014, Lemma 3.1). See also Ern & Guermond (2017, Lemma 5.6).

Because w is constant we have that I,w = w on T, and thus using (A.7) and (A.8) we obtain

I,z — T||L2(T) = (z —w)+ (W — T)”LZ(T)
3+8
<CA+M (It = w2y +h7 |

).

Similarly, |IhT|H%+5 o= I, —w|H%+,S "= |1, (T —w)|H%+8(T) and one can use (A.7) and (A.8) again

)

s iy

348
< C(1 + M) (h?
<Cad+ )( T |T|H%+5(a)(T))

to get IIhT'H%“(T) < C(1 + M) |t |g1/245 (41~ This completes the proof of Lemma 3.1.
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