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Abstract: The large population movement during the Spring Festival travel in China can considerably
accelerate the spread of epidemics, especially after the relaxation of strict control measures against
COVID-19. This study aims to assess the impact of population migration in Spring Festival holiday on
epidemic spread under different scenarios. Using inter-city population movement data, we construct
the population flow network during the non-holiday time as well as the Spring Festival holiday. We
build a large-scale metapopulation model to simulate the epidemic spread among 371 Chinese cities.
We analyze the impact of Spring Festival travel on the peak timing and peak magnitude nationally
and in each city. Assuming an R0 (basic reproduction number) of 15 and the initial conditions as
the reported COVID-19 infections on 17 December 2022, model simulations indicate that the Spring
Festival travel can substantially increase the national peak magnitude of infection. The infection
peaks arrive at most cities 1–4 days earlier as compared to those of the non-holiday time. While
peak infections in certain large cities, such as Beijing and Shanghai, are decreased due to the massive
migration of people to smaller cities during the pre-Spring Festival period, peak infections increase
significantly in small- or medium-sized cities. For a less transmissible disease (R0 = 5), infection
peaks in large cities are delayed until after the Spring Festival. Small- or medium-sized cities may
experience a larger infection due to the large-scale population migration from metropolitan areas.
The increased disease burden may impose considerable strain on the healthcare systems in these
resource-limited areas. For a less transmissible disease, particular attention needs to be paid to
outbreaks in large cities when people resume work after holidays.

Keywords: Spring Festival travel; epidemic spread; transportation network; metapopulation model;
China

1. Introduction

Human mobility can shape the transmission of epidemics at different geographical
scales [1–6]. Assessing how human movement impacts key epidemiological character-
istics of an outbreak, such as peak timing [7–9] and peak magnitude [10,11] of infec-
tions, can improve the preparedness for new outbreaks and policy-making for controlling
epidemic spread.

Mass vaccination can effectively reduce the incidence of severe illness caused by
Omicron [12]. With a high vaccination rate of Chinese residents and the circulation of the
less severe Omicron variants in many cities, China lifted its national prevention and control
policies on 7 December 2022. After the relaxation of epidemic control, it is expected that the
Spring Festival travel would likely return to the pre-pandemic level. The large-scale human
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movement during the Spring Festival travel can accelerate the spread of Omicron waves in
a largely susceptible population. Understanding the impact of such massive population
migration on the spread of Omicron and, more broadly, other infectious diseases can inform
better resource planning and improved mitigation measures. To develop appropriate
epidemic prevention measures for the Spring Festival travel population movement and
virus transmission characteristics, which will help people to travel normally for the festival
and resume work, production and school smoothly after the festival.

We use the pre-pandemic level inter-city mobility data to simulate population move-
ment across 371 Chinese cities after relaxing epidemic control measures. We construct a
large-scale metapopulation model using the inter-city traffic data. Using COVID-19 as
a motivating example, we analyze the impact of the Spring Festival travel on epidemic
spread at both national and city levels. Note that we do not aim to project the actual
spread of Omicron across China; instead, our objective is to use mathematical models and
simulations to study the impact of the Spring Festival travel on general epidemic spread.
In addition, we also run model simulations under different R0 to highlight the impact of
the Spring Festival travel on epidemics with various levels of disease transmissibility.

2. Materials and Methods

2.1. Data Collection

Using traffic flow data for epidemic simulation is an effective method [13]. This study
uses the inter-city population flows among 371 cities across 34 provinces in 2018, which
was provided by the Tencent location-based services. Daily numbers of travelers between
each pair of 371 cities were recorded each day from 1 January 2018 to 31 December 2018.
The mobility data in 2018 are assumed to be representative of the inter-city traffic after the
relaxation of epidemic prevention measures. This dataset has supported several modeling
studies on epidemic spread [14–16].

2.2. The City-Level Transmission Model

2.2.1. Using Mobility Data
According to the official definition, the 15 days before the Spring Festival and the

25 days (including the Spring Festival) after the Spring Festival, i.e., 1 February to 12 March
2018, were considered as the Spring Festival travel season. Other major official Chinese
holidays include New Year’s Day (30 December 2017–1 January 2018), Lantern Festival
(2 March 2018), Tomb-sweeping Festival (5 April 2018–7 April 2018), Labor Day (29 April
2018–1 May 2018), Dragon Boat Festival (16 June 2018–18 June 2018), Mid-Autumn Festival
(22 September 2018–24 September 2018), and National Day (1 October 2018–7 October
2018). This study considers the dates outside of these major official Chinese holidays as the
non-holiday time.

We simulated the spread of epidemics during the period of non-holiday time (i.e.,
20 November to 29 December 2018) versus during the Spring Festival travel season (i.e.,
1 February to 12 March 2018).

2.2.2. Model Framework
The partitioned model includes interactions between various categories of individuals

(e.g., susceptible individuals, infectious individuals, cured individuals), which is central to
many epidemiologic models. Simulation of disease transmission using mathematical mod-
els is an effective method for predicting epidemic development [17–22], such as ordinary
differential equation (ODE) models [23,24] and partial differential equation (PDE) mod-
els [25,26]. This study focuses on models of infectious disease in the context of population
mobility patterns, which requires consideration of not only individual shifts in infection
status but also spatial changes in the population of cities. We developed a mathematical
model to simulate the spatiotemporal dynamics of epidemic transmission among 371 Chi-
nese cities [14]; the model takes into account the population movement of people between
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cities. The transmission model incorporates information on human movement within the
following metapopulation structure [27–29]:
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, and Ni are the susceptible, exposed, documented infected, undocu-

mented infected, and total population in city i. We define patients with symptoms severe
enough to be confirmed as documented infected individuals, whereas other infections
are defined as undocumented infected individuals. We define a transmission rate b for
documented infected individuals. The transmission rate for undocumented individuals is
reduced by multiplying a factor µ. In addition, a is the fraction of documented infections,
Z is the latency period, and D is the duration of infection. Spatial coupling within the
model is represented by the daily number of people traveling from city j to city i (Mij) and
a multiplicative factor q, which corrects for reporting bias of human movement. We assume
that individuals in the I

r

i
group do not move between cities, though these individuals can

move between cities during the latency period. In this study, each city is defined separately
as a spatial system, and the elementary jump (population movement) of each spatial system
is calculated based on empirical traffic flow data in which the actual population movement
between each city system is included.

The basic reproduction number (R0) is an indicator of the infectiousness or transmissi-
bility of infectious and parasitic agents; it is defined as the average number of secondary
cases generated by a case in a fully susceptible population [30]. The R0 of an infectious
disease event is usually reported as a single value or low–high range; if the value of R0
is >1, the outbreak continues, and if the value of R0 is <1, the outbreak will end [31]. The
potential size of an outbreak or epidemic is usually based on the magnitude of the R0 value
for that event [32].

The R0 value used in the manuscript was calculated by the researchers, not our
own derivation. We used the epidemiological characteristics of Omicron in model sim-
ulations as the primary analysis. The basic reproductive number R0 was set to 15, the
median value of R0 between Omicron BA.2 and BA.5 [33]. We assumed that I

r

i
and I

u

i

have the same infectivity, setting µ as 1. Considering possible double counting of trav-
elers in the Tencent data, we set q to 0.40. We further set the latency period as 2 days
and the duration of infection as 5 days [33], the fraction of infections that develop severe
symptoms a as 0.033 [34], and the transmission rate b as 3 computed using the equation
R0 = abD + (1 � a)µbD [14]. We used the sum of Ei, I

r

i
, and I

u

i
to represent the total

number of active infections in each city. To initiate the outbreak, we set the initial infec-
tions in each city as the confirmed COVID-19 cases as of 17 December 2022 (after the
control relaxation).

This study considers only the virus transmission during the Spring Festival travel
season and uses forty days of traffic flow data. It is difficult to reach steady states, and
therefore we did not study the steady states of the model. Since this study focuses on the
effect of Spring Festival travel on susceptible and infected individuals, the removal state
individuals were not reflected in the formula. However, in order to satisfy the compartment
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conservation law of the model, the removal of infectious individuals was present in the
actual simulation.

3. Results

We used model simulations to examine the impact of Spring Festival travel on the
spatiotemporal transmission of epidemics. Specifically, we focused on two metrics that
are crucial for policy-making and disease control: peak timing and peak magnitude
for active infections. Peak timing is defined as the date with the largest number of ac-
tive infections (the infection population (the sum of exposed population, documented
infected population, undocumented infected population) as a proportion of the total popu-
lation); peak magnitude represents the fraction of active infections at the peak among the
total population.

As shown in Figure 1A, the traffic flows during the 2018 Spring Festival travel season
were significantly greater than during the non-holiday time. The Spring Festival travel
season began with an increase in nationwide traffic. Population flow gradually decreased
before the Spring Festival and Lantern Festival, and the traveling population continued to
grow after the two festivals when people resumed work. At the end of the Spring Festival
travel season, the traveling population gradually decreased.
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Figure 1. National traffic flow during the Spring Festival travel season and the non-holiday time
in 2018. (A) The total traveling population during the Spring Festival holidays (Orange) and non-
holidays (Blue). The dates on the x-axis correspond to the orange lines (Spring Festival travel season),
and the blue line corresponds to the traffic flow from 20 November to 29 December 2018 without
holidays. (B) The average outflow and inflow of each city before the Spring Festival and after the
Spring Festival during the Spring Festival travel season, and during the non-holiday time.

A clear asymmetric travel pattern emerged during the Spring Festival travel (Figure 1B).
Before the Spring Festival (the period of returning home), people mainly traveled from large
cities to small- or medium-sized cities; after the Spring Festival (the period of returning to
work), the population traveled in reverse directions. In contrast, population outflow and
inflow during the non-holiday time were almost symmetric.

Under the initial condition of R0 = 15 and using the reported COVID-19 infection
on 17 December 2022 as the initial condition (Figure 2A), both the non-holiday time and
the Spring Festival travel season experience a rapid outbreak infecting almost the entire
population. As shown in Figure 2B,C, for the non-holiday time and Spring Festival travel
season, the peak timings are on day 14 and day 13 after model simulation with peak
magnitudes of 0.56 and 0.66, respectively. The extremely high peak magnitudes are caused
by the compound factors of a highly transmissible disease, an almost naive population,
widespread initial infections, and intense population movement across cities.
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Figure 2. (A) The distribution of the initial seed of infection nationwide (darker colors indicate a
larger initial infection size). (B) Cumulative infection scale and (C) existing infection scale over time
for Spring Festival travel season and non-holiday time nationwide.

Cities with initial infections peak more quickly (before day 14) during the non-holiday
time. During Spring Festival travel, most cities reach their peaks 1–4 days earlier compared
to the non-holiday time and most cities without initial infections peak before day 14 as well
(Figure 3).

As shown in Figure 4 when R0 = 15, most infections occur before the Spring Festival.
Pre-Spring Festival travel brings a large number of infections from large cities to smaller
cities. In addition, the migration from metropolitan areas greatly increases the susceptible
pool in other cities. This results in a significantly higher peak magnitude in small- or
medium-sized cities compared to the non-holiday time. In contrast, some large cities, such
as Beijing, Shanghai, Guangzhou, Shenzhen, and Hangzhou, have lower peak magnitudes
in the Spring Festival travel (Figure 5).
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calculated as days after the first day in model simulation.
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Figure 4. Under the conditions of different R0 and using the reported infection on 17 December 2022
as the initial seeds, the cumulative infection scale of (A) Spring Festival travel season, (B) pre-Spring
Festival, and (C) post-Spring Festival. The blue line is the result of the same number of days of
non-holiday time.
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Figure 5. Peak magnitude in each city during non-holiday time and Spring Festival travel season.
Peak magnitude is calculated as the fraction of active infections among residential population at
peak timing. The size of the node indicates the number of residential populations. Blue squares
are provincial capitals or municipalities. The dotted line is the diagonal line y = x. Note that peak
magnitude can be greater than 1 because the number of infections in the city can be larger than
residential populations due to influx from other cities.

To more comprehensively analyze the impact of Spring Festival travel on the spread
of different viruses, we set different R0 and used the reported infection on 17 December
2022 as the initial seeds for the simulation, where we mainly analyzed the impact of Spring
Festival travel on the whole country and each city.

The large R0 and the unmitigated transmission are the main reasons the pathogen
can spread rapidly in both scenarios. For other R0 values, Spring Festival travel can still
accelerate peak timing at the national level, with a higher national peak magnitude com-
pared to the non-holiday time. The increase in R0 can accelerate the national peak during
the Spring Festival travel season and non-holiday time, with increased peak magnitudes.
Further increases in R0 can reduce the difference in peak timing between the two periods
from 3 days to 1 day, while the impact of increased R0 on the increased peak magnitude
during Spring Festival travel is more pronounced for R0 < 10 (Figure 6).

We further discussed the results for each city at R0 of 10, 5, and 2. Experimental results
are shown in the Supplementary Materials. The increase in R0 allows the cities to reach the
peak time faster and with a larger peak magnitude. Spring Festival travel can accelerate
the peak timing for cities and make the non-initial infection cities peak on similar days
as the initial infection cities. The peaks of most cities are reached before day 19, before
day 31, and before day 84, respectively (Figures S1, S3 and S5). The acceleration of the peak
timing by the Spring Festival travel is approximated under different R0. Therefore, we
should pay more attention to the peak timing under each R0, analyze the epidemiological
characteristics of each type of virus, assess its infectiousness, and thus make different
preventive responses.
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Figure 6. Under the conditions of different R0, (A) peak timing and (B) peak magnitude of the whole
country during the non-holiday time and the Spring Festival travel season. The unit of peak timing is
the day.

The four different peak timing and the growth in the cumulative infection scale around
the Spring Festival (Figure 4) illustrate the epidemic spread of viruses with R0 of 15, 10,
5, and 2 occurring mainly before the Spring Festival, around the Spring Festival, after the
Spring Festival, and after the Spring Festival travel, respectively. As shown in Figure S2,
the epidemic spread with R0 of 10 is similar to with R0 of 15, and influenced by mass flow
from large cities to smaller cities, which also shows a decrease in the peak magnitude in
large cities and an increase in the peak magnitude in small or medium cities during the
Spring Festival travel.

The epidemic spread with R0 of 5 is influenced by the large outflow from large cities
before the Spring Festival and the return of people to large cities after the Spring Festival.
During the Spring Festival travel, compared to non-holiday time, the reduction in the
number of susceptible people within cities due to population outflow can result in lower
peak magnitudes in some large cities, while population return can result in approximate or
greater peak magnitudes in some large cities (Figure S4).

When R0 = 2, the population drifts between large and small cities, and mass population
movements during the Spring Festival travel have less impact on the epidemic as the
increase in cases mainly occurs after the Spring Festival travel, when the peak magnitude
increases in some large cities, while there is no clear pattern in smaller cities (Figure S6).

The temporal difference in the number of infections among travelers can dynamically
impact the spatial distribution of infected and susceptible populations in all cities, which
further determines the variation in local peak timing and magnitude. For instance, for a
less transmissible disease (R0 = 5), peaks in large cities are delayed until after the Spring
Festival, when a large number of susceptible and infected people return to large cities and
fuel the epidemic spread. The peak magnitude is similar to or even higher than in the
non-holiday time, which could stress the capacity of healthcare systems.

In summary, different R0 can have different effects on virus transmission, such as the
difference in infection scale around the Spring Festival and the peak timing of infection
nationwide and in each city. Therefore, in the process of epidemic prevention and control,
preventive measures should be formulated according to the transmission characteristics
of the virus, and medical resources should be dispatched based on the scale and peak
timing of infection in each period. During the Spring Festival travel season, the asymmetry
of population movement before and after the Spring Festival is a key factor to consider
when assessing the risk of virus transmission. If the virus spreads mainly before the Spring
Festival, the mobility characteristics of the population shifting to smaller cities make it
appropriate to focus on infections in smaller cities; if the virus spreads mainly after the
Spring Festival, we should focus on the importation of cases to large cities and the growth
of infections within large cities.
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4. Discussion

Travel during the Spring Festival holiday in China is one of the largest population
migrations on earth. Using historic inter-city traffic flow data and a city-level epidemic
transmission model, we simulated the epidemic spread across 371 Chinese cities under pre-
pandemic travel conditions. We analyzed the impact of the massive population movement
during the Spring Festival Travel on the spread of epidemics, focusing on peak timing and
peak magnitude.

Using the epidemiological features of Omicron as an example, we performed extensive
model simulations. At the national level, infection peaks before the Spring Festival and its
timing are not particularly affected by the Spring Festival travel for a highly transmissible
disease. However, peak magnitude for active infections increases by 0.1 compared to the
non-holiday time.

At the city level, infectious people migrate to cities with few initial infections during
Spring Festival travel, making their infection peak earlier than during the non-holiday time
with considerably higher peak magnitudes. Our simulations imply that, after the relaxation
of epidemic control policies, small- or medium-sized cities, usually with limited healthcare
resources, may be more impacted by the epidemic, especially for highly transmissible
viruses. Therefore, those cities with limited medical reserves and in rural areas should
focus on adopting social distancing to flatten the epidemic curve, stocking medicines to
reduce morbidity, and planning resources (ICUs, equipment, staffing) for patients with
severe illness. For less transmissible pathogens, we should pay attention not only to the
epidemic situation in small- or medium-sized cities during the homecoming period but
also to the rapid epidemic spread in large cities during the returning period after holidays.

The impact of the Spring Festival travel on epidemic spread is compounded by sev-
eral factors. First, population migration shapes the spatial distribution of infectious and
susceptible populations across cities. The asymmetric traffic before and after the Spring
Festival creates a temporal fluctuation of population present in each city, which strongly
impact local transmission dynamics. Second, disease transmissibility determines the speed
at which infections unfold within a population. The infection prevalence among travelers
in the homecoming and returning traffic depends on the temporal growth of epidemics in
each city. It is the combination of local infection dynamics and the timing of migration that
collectively determines the effect on peak timing and magnitude.

There are several limitations in this modeling study, both in terms of data and model.
The initial conditions of epidemic simulation (e.g., initial transmission time, initial infec-
tion size, and initial transmission seed) have a large impact on virus transmission, and
specific analyses should be conducted for each type of situation, a single model with some
parameters cannot profile all results. Tencent data do not fully cover mobility across all
pairs of cities, which leads to the absence of some inter-city traffic flows. The model only
considers the spatial variation of travelers on a particular day but does not consider the
duration of the specific trip. This study does not consider other holidays covered during
the simulation and mainly focuses on the differences between the Spring Festival travel
and the non-holiday time. In reality, vaccination or mask-wearing and other measures will
change model parameters, which will lead to different outcomes between the simulation
results and in reality. This study does not take into consideration the effects of intrinsic
fluctuations and the steady states of the model. We do not pay much attention to the
dynamic behavior of the epidemic model.

5. Conclusions

While reducing epidemic prevention and control measures and restoring the normal
life of the nation, research on various types of viruses should be maintained to reduce the
harm to the economy and life from outbreaks caused by new viruses and virus mutations,
and to focus on the differences between special periods and daily life to measure their
impact on the epidemic to develop targeted measures.
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The Spring Festival is an important traditional holiday in China, and the increase
in overall national population travel during the Spring Festival travel can accelerate the
epidemic spread and increase the peak magnitude of infections nationwide. Different
infectious viruses affect the infection rate of the population returning home before the
Spring Festival and the population returning to work after the Spring Festival, and cities
have asymmetries in the inflow and outflow of population before and after the Spring
Festival; these affect the peak time and peak magnitude of cities, with particular attention to
the impact of highly infectious viruses with R0 > 10 on small- or medium-sized cities and the
impact of viruses with R0 < 5 on large cities. This study provides a quantitative reference for
Spring Festival travel epidemic prevention and control for regional governments in China.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/v15071527/s1, Figure S1: When R0 = 10, the peak timing of cities in (A) non-holiday time
and (B) Spring Festival travel season. Figure S2: When R0 = 10, the peak magnitude in each city
during non-holiday time and Spring Festival travel season. Figure S3: When R0 = 5, the peak timing
of cities in (A) non-holiday time and (B) Spring Festival travel season. Figure S4: When R0 = 5, the
peak magnitude in each city during non-holiday time and Spring Festival travel season. Figure S5:
When R0 = 2, the peak timing of cities in (A) non-holiday time and (B) Spring Festival travel season.
Figure S6: When R0 = 2, the peak magnitude in each city during non-holiday time and Spring Festival
travel season.
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