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Abstract
We give robust recovery results for synchronization on the rotation group, SO(D). In particular, we consider an adversarial
corruption setting, where a limited percentage of the observations are arbitrarily corrupted. We develop a novel algorithm that
exploits Tukey depth in the tangent space of SO(D). This algorithm, called Depth Descent Synchronization, exactly recovers
the underlying rotations up to an outlier percentage of 1/(D(D − 1) + 2), which corresponds to 1/4 for SO(2) and 1/8 for
SO(3). In the case of SO(2), we demonstrate that a variant of this algorithm converges linearly to the ground truth rotations.
We implement this algorithm for the case of SO(3) and demonstrate that it performs competitively on baseline synthetic data.

Keywords Robust synchronization · Structure from motion · Nonconvex optimization · Multiple rotation averaging

1 Introduction

The typical synchronization problem involves recovery of n
group elements from pairwise measurements between them.
It arises, for example, when solving the Structure from
Motion (SfM) problem.One subproblem of SfM is to recover
the three-dimensional orientations and positions of cameras
from pairwise orientations and positions in relation to a
scene (Özyeşil et al., 2017). Here, we specifically focus on
robust synchronization over SO(D), the rotation group for
R

D . That is, given pairwise rotations in SO(D), some of
which are corrupted, we aim to recover the original set of n
rotations.

We assume n unknown, ground truth elements of SO(D),
whichwedenote by R�

1, . . . , R
�
n .We formagraphG([n], E),

where [n] := {1, . . . , n} indexes then unknownelements and
E designates the edges for which measurements of relative
rotations are taken. For each jk ∈ E , we are provided with
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the measurement

R�
jk = R�

j R
��
k . (1)

We can think of R�
jk in the following way: If we are ori-

ented in the coordinate system with respect to node k, then
R�

jk rotates our coordinate system into the coordinate system
we would see if we were sitting at node j . This synchro-
nization formulation extends to any given group, where one
wishes to recover (g1, . . . , gn), an n-tuple of elements in the
group, givenmeasurements of the group ratios gi g

−1
j , i, j =

1, . . . , n.
In reality, we cannot hope to exactly measure all the

pairwise rotations in (1). In many real systems, both noisy
and corrupted measurements occur: our focus here is on
adversarially corrupted measurements. That is, within the
measurement graph G, the corruption model is assumed to
be fully adversarial. Our model is specified by partitioning
the measured data into two parts:

1. We observe corrupted (or “bad”) edges Eb ⊂ E , where
all edges in Eb have a corresponding arbitrary corruption.
The adversary is allowed to choose Eb (and thus may to
some degree influence the connectivity of E \Eb) as well
as the corrupted values R jk for jk ∈ Eb. For each node,
the adversary is only allowed to corrupt a limited fraction
of edges.

2. The rest of the observed edges are uncorrupted (or
“good”) edges Eg = E \ Eb, where each edge in Eg

has an associated measurement given by (1).
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Theoretically guaranteedmethods for robust synchroniza-
tion are still lacking, especially in adversarial and nonconvex
settings. The development of these methods is important
because in practice measurements are usually quite cor-
rupted, especially in applied problems like Structure from
Motion (Özyeşil et al., 2017). The results we establish
here are concerned with exact recovery. That is, given a
set of corrupted measurements, we wish to exactly recover
R�
1, . . . , R

�
n . We will show that this is possible for a noncon-

vex method even in the presence of a significant amount of
arbitrary corruption.

Our method falls into the class of multiple rotation
averaging algorithms (Govindu, 2004; Martinec & Pajdla,
2007; Hartley et al., 2013). These methods are effectively
coordinate descent algorithms, which are highly efficient
algorithms for nonconvex programs that are notoriously hard
to analyze. While their analysis is challenging, it is impera-
tive to develop a theoretical understanding of these methods
and their robust counterparts (Hartley et al., 2011; Chatterjee
& Govindu, 2017). Moreover, as we discuss later, there are
few robustness guarantees for group synchronization with
adversarial corruption. Among the limited guarantees, none
cover our model, and we thus make a significant contri-
bution to this area. This work is also of general appeal to
the nonconvex optimization community since we are able to
prove convergence results in the complex nonconvex land-
scape of robust multiple rotation averaging. Furthermore,
some energy landscapes associated with this problem exhibit
many local minima and spurious fixed points, which we are
able to avoid with our new method.

1.1 Contributions of ThisWork

The main contributions of this work follow.

1. As a warm-up, we develop an adversarially robust algo-
rithm for synchronization in SO(2), which we call
Trimmed Averaging Synchronization (TAS). In Theo-
rem 3, under a generic condition on the measurement
graph G, which we call the “well-connectedness”, and
proper initialization, we show that it can tolerate a frac-
tion of outliers per node that is bounded above by 1/4.
We further prove that it converges linearly for fully con-
nected observation graphs.

2. To extend this result to SO(D), we develop a new algo-
rithm that we callDepth Descent Synchronization (DDS)
based on Tukey depth in the tangent space of SO(D). To
our knowledge, this is the first application of a manifold
version of Tukey depth in an applied setting.

3. Assuming well-connectedness and good initialization,
the DDS algorithm exactly recovers an underlying sig-
nal in the presence of a significant amount of adversarial
outliers for D sufficiently small. This result is given in

Theorem 6 and is the first guarantee of robustness to
adversarial corruption for a multiple rotation averaging
algorithm. This result extends elegantly to sparse random
graphs, where we show that it achieves the information
theoretic rate with respect to graph sparsity for Erdös-
Rényi observation graphs in Sect. 4.5. These bounds are
state-of-the-art for rotation synchronization algorithms
in the cases of D = 2 and D = 3, which are the pri-
mary cases of interest in computer vision applications
like SfM.

4. We show that this algorithm can be efficiently imple-
mented for SO(3).We runbaseline experiments that show
it performs competitively on some baseline synthetic data
for SO(3) synchronization, which arises in the important
application of Structure from Motion.

While we carefully review related work later in Sect. 2,
we emphasize here our contributions in terms of the most
relevant works. Again, we note that we study an efficient,
nonconvex algorithm for rotation synchronization that has
guarantees for adversarial outliers.

A robustness result for SO(D) synchronization based
on semidefinite programming is given in Wang and Singer
(2013). However, the probabilistic model in this work is very
restrictive (see details in Sect. 2), and the proposed method
is slow for large n.

Huang et al. (2019) use a truncated least squares frame-
work to do robust rotation synchronization. The truncated
least squares framework was originally proposed by Huang
et al. (2017) in the context of translation synchronization,
and sequentially filters those pairwise measurements that are
furthest from the current estimated pairwise measurements.
Following this, Huang et al. (2019) show that this can be
extended to rotation synchronization. Under an appropriate
choice of a thresholding parameter, they demonstrate that it
is possible to exactly recover the ground truth in the pres-
ence of outliers if a certain generic condition is satisfied.
This method has two downsides. First, one must repeatedly
compute the lowest eigenvectors of the graph connection
Laplacian, which has a higher memory cost for dense graphs
than DDS and may also have issues of numerical stability.
Second, the bound on the fraction of outliers that they present
is not clear in general settings since it depends on the (1,∞)-
normof the pseudoinverse of the graph connectionLaplacian.
This quantity is hard to control, and so it is unclear how
their bound scales with various parameters as well as what it
would state for arbitrary outliers. On the other hand, Huang
et al. (2017) guarantees success of the truncated least squares
method for adversarial outliers when considering translation
synchronization in 1-dimension, but we do not see how to
extend these to the problem of rotation synchronization. In
review, it was pointed out to us that the proof of Huang et
al. (2019) can be extended to show that it can tolerate a con-
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stant fraction of corruption in the rotation synchronization
problem. However, this constant may be very small, and in
particular is much smaller than our bounds for the cases of
SO(2) and SO(3). We discuss this more in Sect. 5.

The only existing result for adversarial robust synchro-
nization was recently given by Lerman and Shi (2020). They
propose a general method, called Cycle-EdgeMessage Pass-
ing (CEMP), for group synchronization that is guaranteed to
be robust to adversarial corruption. However, their method
uses information from 3-cycles, that is, triangles in the graph,
and so it is less efficient than typical multiple rotation averag-
ing schemes by an order of n (the ratio between the number
of triangles and the number of edges in the graph). Beyond
this, multiple rotation averaging algorithms are also attrac-
tive because they are more memory efficient. A caveat to our
current work is that our newmethod is not as efficient as pre-
vious multiple rotation averaging algorithms. In particular,
we require the computation of a depth-based estimator, and
so each rotation update has complexity O(n3j log(n j )) for
SO(3), where n j is the number of neighbors of the node to
be updated. Therefore,we do not claim thatDDS is uniformly
most efficient for adversarially robust synchronization in
terms of time complexity, although it is more computation-
ally efficient than CEMP for very sparse graphs. However,
our depth descent method does still have the benefit of more
efficient memory complexity than Lerman and Shi (2020).

Beyond computational efficiency, the theoretical guar-
antees are also different: we bound the ratio of corrupted
edges, whereas Lerman and Shi (2020) bound the ratio of
corrupted triangles. The method of Lerman and Shi (2020)
degrades with extremely sparse graphs, due to the fact that
they need to ensure that it contains sufficiently many trian-
gles, whereas we require a well-connectedness condition of
the graph G that extends to extremely sparse cases. Other
well-connectedness conditions appear, sometimes implic-
itly, in works minimizing energy functions (Wang & Singer,
2013; Hand et al., 2018; Lerman et al., 2018; Huang et al.,
2017). Finally, CEMP is tailored to finding the corruption
level in the graph, but it does not have complete guarantees
for the recovery of the underlying rotations themselves.

1.2 Notation

Bold uppercase letters will be used to denote matrices, while
bold lowercase letters will be used to denote vectors. For
a set X in a Hilbert space, the convex hull is denoted by
conv(X ). The sphere inR

D iswritten as SD−1. For anordered
tuple of n rotations, R1, . . . , Rn ∈ SO(D), we write (R) =
(R1, . . . , Rn).

1.3 Structure of the Rest of the Paper

We now outline the structure of this paper. First, we review
related work in Sect. 2. We then discuss the specific case
of synchronization over SO(2) in Sect. 3 and give a simple,
adversarially robust algorithm, called Trimmed Averaging
Synchronization. Following this, in Sect. 4 we develop our
novel Depth Descent Synchronization algorithm, which uti-
lizes Tukey depth to yield robust updates. Coupled with
this, we develop its theoretical guarantees of robustness and
convergence. In Sect. 5, we compare our results with exist-
ing theory. Section6 presents some baseline experiments
demonstrating the practical implementation of our proposed
method.

2 RelatedWork

Interest in the synchronization problem has grown in recent
years due to applications in computer vision and image pro-
cessing, such as SfM (Govindu, 2004; Martinec & Pajdla,
2007; Arie-Nachimson et al., 2012; Hartley et al., 2013;
Tron & Vidal, 2009; Ozyesil et al., 2015; Boumal, 2016),
cryo-electronmicroscopy (Wang&Singer, 2013) and Simul-
taneous Localization And Mapping (SLAM) (Rosen et al.,
2019).

The most common formulation for solving rotation and
other group synchronization problems involve a non-convex
least squares formulation that can be addressed by spectral
methods (Singer, 2011) or semidefinite relaxation (Bandeira
et al., 2017). On the other hand, the work of Wang and
Singer (2013) uses a semidefinite relaxation of a least abso-
lute deviations formulation to obtain a robust estimate for
SO(d) synchronization. They prove recovery for the pure
optimizer of this convex problem in a restricted setting. In
this setting the full graph is complete, every edge is cor-
rupted with a certain probability p (in the case of SO(2),
they require that p ≤ 0.543 and for SO(3) they require
p ≤ 0.5088) and the corrupted group ratios are distributed
uniformly on SO(D). In practice, they advocate using an
alternating direction augmented Lagrangian to solve their
optimization problem. One may also use methods like the
Burer-Monteiro formulation (Boumal et al., 2020), although
current guarantees require the rank of the semidefinite pro-
gram to be at least O(

√
n), which results in storing iterates

much larger than the underlying signal that is a matrix of size
n × D (Waldspurger & Waters, 2020). Another recent work
tries to leverage a low-rank plus sparse decomposition for
robust synchronization (Arrigoni et al., 2018). However, this
work does not contain robustness guarantees.
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2.1 Robust SynchronizationMethods

For a survey of robust rotation synchronization, see Tron
et al. (2016). Some early works on rotation synchronization
include Govindu (2001, 2006); Martinec and Pajdla (2007),
with later follow-up works by Hartley et al. (2013); Chat-
terjee and Govindu (2013, 2017). The later works discuss
some least absolute deviations based approaches to multiple
rotation averagingwhichwewill discuss later. For theoretical
foundations on averaging rotations, one can consultMoakher
(2002). For foundational work on optimization on the mani-
fold SO(d), see (Taylor & Kriegman, 1994; Arora, 2009).

Robust multiple rotation averaging algorithms were stud-
ied in Hartley et al. (2011) and Hartley et al. (2013). There,
the authors used a least absolute deviations formulation over
SO(3) using successive averagingwith aWeiszfeld algorithm
and a gradient-based algorithm. The authors also give a coun-
terexample that shows that local minima exist and thus the
global minimum of their problemmay be hard to find in gen-
eral. However, the authors give no guarantee of convergence
or recovery in any setting. Also, we have found that this
method may suffer from suboptimal fixed points in general,
which we analyze in more detail in a forthcoming work [see
also Section 5 of Maunu and Lerman (2020)].

2.2 Adversarially Robust Synchronization

Awork that does contain guarantees is that of Lerman andShi
(2020), which considers a message-passing procedure that
incorporates consistent information from cycles. This algo-
rithm was guaranteed to be robust for the adversarial setting
and applies to any compact group. Although its adversarial
setting is very general, it requires a bound on the ratio of
corrupted cycles per edge and not on the ratio of corrupted
edges. Furthermore, the use of cycles results in a potentially
more computationally intensive algorithm than the one in this
work that only uses pairwise information.

Guarantees for exact recovery with adversarial, or par-
tially adversarial, corruption appear in few other synchro-
nization problems. The adversarial corruption in Z2 syn-
chronization is very special since there is a single choice to
corrupt a group ratio. Under a special probabilistic model,
Bandeira (2018) established asymptotic and probabilistic
exact recovery for the SDP relaxation of the least squares
energy function of Z2 synchronization. The model assumes
that G([n], E) is an Erdös-Rényi graph with probability p of
connection, edges are randomly corrupted with probability
q and p (1 − 2q)2 ≤ 0.5. Hand et al. (2018) and Lerman
et al. (2018) established asymptotic exact recovery under
a probabilistic model for solutions of the different prob-
lem of location recovery from pairwise orientations. In this
problem ratios of the Euclidean group are normalized to the
sphere. They assume an i.i.d. Gaussian generative probabilis-

tic model for the ground truth locations and an Erdös-Rényi
model for the graph G([n], E) and further bounded the ratio
of maximal degree ofG([n], Eb) over n. In both works, these
bounds approach zero as n approaches infinity, unlike the
constant bound of this work.

Robust permutation synchronizationwas studiedbyHuang
and Guibas (2013), where they give a maximum corruption
percentage of 1/4 in the case of fully connected observation
graphs. Huang et al. (2017) analyzed a robust algorithm for
one-dimensional translation synchronization that uses a trun-
cated least squares formulation. They show that their method
achieves a maximum corruption percentage of 1/6 for fully
connected graphs. However, their generic condition is rather
complicated and in order to interpret it they must make the
fully connected assumption and they also restrict the maxi-
mal degree of G([n], Eb). In both (Huang & Guibas, 2013;
Huang et al., 2017), the bounds degrade for sparser observa-
tion graphs.

The results of Huang et al. (2017) were extended to the
problem of rotation synchronization in Huang et al. (2019).
Here, the authors show that a truncated least squares formula-
tion for rotation synchronization can recover the underlying
signal assuming a generic bound that includes the (1,∞)-
normof the pseudoinverse of the graph connectionLaplacian.

2.3 Synchronization in Other Settings

In contrast to corrupted settings, someworks have considered
estimation in a noisy setting. Bandeira et al. (2017) study
maximum likelihood estimation of the angular synchro-
nization problem and show that the associated semidefinite
relaxation is tight. More recently, message-passing algo-
rithms have been used for maximum likelihood estimation in
the Gaussian setting (Perry et al., 2018). Other recent results
leverage multiple phases to obtain better results in noisy set-
tings (Gao & Zhao, 2019). Minimax estimation under the
squared loss over SO(2) is considered in Gao and Zhang
(2021), and optimization methods for the squared error over
subgroups over the orthogonal group are considered in Liu
et al. (2020).

Another related problem over SO(2) is the synchroniza-
tion ofKuramoto oscillators. In particular, a primary question
is the minimal graph connectivity requirement ensuring that
the energy landscape is nice. The weakest known require-
ment is that every vertex is connected to at least 0.7889n
other vertices (Lu & Steinerberger, 2020). The conjectured
bound is 0.75n, which is reminiscent of the bound we require
for local recovery with adversarial corruption over SO(2).

2.4 Nonconvex Optimization

Optimization problems cast over SO(D) are usually non-
convex. We can think of our method as attempting to solve a
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nonconvex problemover SO(D) aswell. Therefore, ourwork
also fits in with the growing body of work analyzing noncon-
vex energy landscapes and procedures (Dauphin et al., 2014;
Hardt, 2014; Jain et al., 2014; Netrapalli et al., 2014; Yi et
al., 2013; Zhang & Yang, 2018; Ge et al., 2015; Lee et al.,
2016; Arora et al., 2015; Mei et al., 2018; Ge et al., 2016;
Boumal, 2016; Sun et al., 2015b, a; Lerman &Maunu, 2017;
Cherapanamjeri et al., 2017; Ma et al., 2018; Maunu et al.,
2019).

2.5 Tukey Depth

In ourmethod, we use a notion of tangent space depth, that is,
using Tukey or halfspace depth (Tukey, 1974) in the tangent
space of the manifold SO(D), to create a provable robust
method. Tangent space depth, for a general manifold, first
appears to have been discussed in Mizera & Volauf (2002),
where the author proves existence and depth bounds formax-
imum tangent depth estimators. Earlier work on Tukey depth
includes Rado (1946), which proves a depth lower bound for
general measures, and Danzer et al. (1963), which discusses
the relation to Helly’s Theorem. More recently, the classical
reference of Donoho and Gasko (1992) proves bounds on the
maximum depth achieved in a dataset under ellipticity condi-
tions. Computation of depth contours was considered in Liu
(2017); Hammer et al. (2022). Recently, an interesting con-
nection between depth estimators and generative adversarial
networks has been exhibited (Gao et al., 2019), which may
perhaps lead to more computationally efficient estimators.

2.6 Notions of Robustness

We finish by clarifying our setting in the context of robust-
ness. In order to quantify our notion of robustness, we
introduce the following terminology. Recall that we have an
underlying graph G([n], E) corresponding to the pairwise
measurements, where E is partitioned into an inlier set, Eg ,
and outlier set Eb. For any j ∈ [n], we define its neighbor-
hood as well as its inlier and outlier neighborhoods as

E j = E j
g ∪ E j

b , E j
g := {k ∈ [n] : jk ∈ Eg},

E j
b := {k ∈ [n] : jk ∈ Eb}. (2)

We will denote by α0 the maximum fraction of outliers per
node. That is, α0 is the maximum of #(E j

b )/n j over all j ∈
[n], where throughout the rest of the paper #(·) denotes the
number of points in a set and n j is the degree of node j ,
n j = #(E j ).

The following notion of recovery threshold is related to the
notion of a breakdown point in robust statistics. However, our
goal is somewhat different, sincewe desire an exact estimator
rather than an approximation, as is typically considered for

classical breakdown points. This is similar to the notion of
RSR breakdown point given in Section 1.1 of Maunu and
Lerman (2019).

Definition 1 (Recovery Threshold) The recovery threshold
of a robust rotation synchronization algorithm is the largest
value of α0 such that the algorithm outputs an estimator (R̂)

that satisfies (20).

The simplest information-theoretic bound for the recovery
threshold isα0 ≤ 1/2. Indeed, ifα0 > 1/2, then an adversary
could easily choose Eb to have a subgraph that dominates Eg

with a consistent set ofmeasurements for an alternative signal
(Rb) = (Rb

1, . . . , R
b
n). That is, the observations would be

R jk =
{
R��

j R�
k, jk ∈ Eg

Rb�
j Rb

k , jk ∈ Eb.
(3)

If the adversary chooses the partition Eg and Eb properly,
then one could easily think that Rb is the true underlying
signal. For our method, we obtain recovery thresholds for α0

that are smaller than 1/2.
On the other hand, the information theoretic bound may

be much higher in special models. For example, suppose
that G([n], E) is an Erdös-Rényi graph with parameter p.
Suppose further that each edge in E is corrupted indepen-
dently with probability q, and the corrupted measurements
are i.i.d. uniformonSO(D).Wang and Singer (2013) call this
the uniform corruptionmodel. Then, Singer (2011) and Chen
et al. (2016) established the following information theoretic
threshold for the rotation synchronization problem:

q = 1− �

(√
1

p

log(n)

n

)
. (4)

Notice that one needs p � log(n)/n to ensure that the under-
lyingErdös-Rényi graph is connected. For fixed p, notice that
one can take q arbitrarily close to 1 (and so α0 is then very
close to 1) as long as n is sufficiently large. We later discuss
how our main results extend to this model in Sect. 4.5, where
we show that the DDS algorithm achieves optimal recovery
rates with respect to p (i.e., it can tolerate extremely sparse
observation graphs).

3 An Adversarially Robust Algorithm for
SO(2) Synchronization

To begin to build motivation for our method, we consider
the case of synchronization over SO(2), where the method
becomes considerably simpler due to its 1-dimensional man-
ifold structure. First, Sect. 3.1 gives definitions of some
geometrical objects on SO(2), which we identify with C1
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Fig. 1 The angular distance function d	 (eiθ , 1)

for mathematical convenience. Then, in Sect. 3.2, we define
our SO(2) synchronization method, which we call Trimmed
Averaging Synchronization (TAS) and is a special case of our
later DDS algorithm. Finally, Sect. 3.3 discusses the initial-
ization and well-connectedness assumptions and uses these
to give an adversarial recovery guarantee for the TAS algo-
rithm.

3.1 The Geometry ofC1

We define a few structures related to the manifold C1. The
tangent space can be identified with R. Let v ∈ TzC1 be
a unit direction in the tangent space at z j (i.e., v = ±1).
The geodesic originating at z j in the direction v is given
by γ (t) = eivt z j , t ∈ [0, π/|v|]. The exponential map
and inverse exponential map (logarithm map) on this 1-
dimensional manifold are given by

Expz(θ) = eiθ z, θ ∈ (−π, π ], Logz(y) = arg(yz). (5)

Finally, the cut-locus of a point z ∈ C1 is defined as the set
of points for which there is not a unique geodesic from z. It
is not hard to see that this is given by cut(z) = {−z}.

Recall that we seek an underlying signal z� ∈ C
n
1. Notice

that its elements, z�j ∈ C1 for j ∈ [n], can be param-

eterized by angles, z�j = eiθ
�
j . This angle is also known

as the argument of the complex number, and so we write
arg(eiθ ) = θ , where θ ∈ (−π, π ]. The angular, or geodesic,
distance between z1 and z2 ∈ C1 is

d	 (z1, z2) = | arg(z1z2)|. (6)

For later reference, we plot the extended angular distance
function in Fig. 1.

Recall that if jk ∈ Eg , then the edge measurement is
correct, that is, z jk = z�jk , where z�jk := z�j z

�
k is defined

analogously to (1). For jk ∈ Eb, the measurement z jk is
assumed to be an arbitrary element of C1. From the mea-

surements z�jk , jk ∈ Eg , z� is only identified up to a global

rotation, due to the ambiguity that z�j z
�
k = z�j yyz

�
k , y ∈ C1,

and so z�y generates the same pairwise measurements as z�.
To deal with this ambiguity, the following function will

be used to demonstrate convergence of a sequence to z�:

δ(z) = max
jk∈E d	 (z�j z j , z

�
k zk). (7)

We call the products z�j z j the unrotated estimates, and (7)
measures the maximum distance between unrotated esti-
mates. Notice that δ(z) = 0 ⇐⇒ z = z�y for some
rotation y ∈ C1. Therefore, convergence of δ(z) to zero
indicates convergence of z to z�, and an algorithm exactly
recovers z� iff δ(z) → 0.

3.2 Trimmed Averaging Synchronization

A natural way to solve the rotation synchronization problem
involves energyminimization.The simplest strategy (Govindu,
2001; Martinec & Pajdla, 2007) attempts to minimize

min
z∈Cn

1

F	 (z) :=
∑
jk∈E

d2	
(
z j , z jk zk

)
. (8)

A coordinate descent strategy to solve (8) involves updating
z j by solving the averaging problem

min
z∈C1

∑
k∈E j

d2	
(
z, z jk zk

)
. (9)

Applying this sequentially over the indices j = 1, . . . , n
results in the multiple rotation averaging (MRA) discussed
in more detail in Hartley et al. (2013). While such coordi-
nate descent strategies generally lack coordination across
all objects like global synchronization methods, they lead
to algorithms that are more memory efficient and that can be
decentralized easily.

A simple way to robustify (9) is to select the average
of all points that fall within a trimmed set, which results
in a trimmed averaging procedure. To account for the 1-
dimensional manifold structure of SO(2), we propose to do
this trimming in the tangent space, which yields the TAS
algorithm. An illustration of one trimmed averaging step is
given in Fig. 2. Here, at the point z j = z = i , the observa-
tions z jk zk , k ∈ E j are given in blue and projected to the
tangent space. The trimmed average update would take the
average of the green points and ignore the red points.

More concretely, for a discrete X ⊂ R and a fraction
0 < p < 1, we write the pth quantile of X by Xp. It is
convenient to define the trimming operator

TτX =
{
x ∈ X : Xτ ≤ x ≤ X1−τ

}
. (10)
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Fig. 2 Illustration of the TAS algorithm at a fixed step and a fixed node
j . The measurement is z j = z = i . After projecting into the tangent
space, the outermost points in red are filtered, and the green points are
averaged. This trimmed average is then projected back to the manifold
(Color figure online)

We also denote the average of a dataset X ⊂ R by ave(X ).
That is, ave(X ) = ( ∑

x∈X x
)
/#(X ).

For clarity, we give the TAS algorithm in Algorithm 1. To
allow for damping of the updates, we include the step-size
parameter η ∈ (0, 1]. When η < 1, we refer to the algorithm
as Damped TAS or DTAS for short.

Algorithm 1 Damped Trimmed Averaging Synchronization
Require: z(0), number of iterations T , damping parameter η ∈ (0, 1],
trimming parameter τ

for t = 1, . . . , T do
j = t mod n

z j (t + 1) ← Expz j (t+1)

[
η · ave

(
Tτ

{
Logz j (t+1)

(
z jk zk(t)

)
: k ∈

E j
})]

zk(t + 1) ← zk(t), k 	= j
end for
return z(T )

Due to the simplified geometry of SO(2), we will show
in the following that using this trimmed rotation averaging
scheme converges to the underlying solution linearly when
the percentage of outliers is atmostα0 < 1/4whenG is fully
connected. In the case where (G, [n]) is not fully connected,
the result is a corollary of our later Theorem 6 under a con-
nectedness assumption on (G, [n]).We note that this fraction
is similar to the one given in Lerman and Shi (2020), although
there the bound is formulated for corrupted triangles in the
graph.

3.3 Recovery Guarantees for DTAS

Webegin by discussing the assumptions that will make a syn-
chronization problem tractable for TAS. The first assumption
we require is a good initialization, which is common in the
analysis of such nonconvex methods.

Assumption 1 The initial set of rotations z(0) ∈ C
n
1 lies

within a π/2-neighborhood of z�: that is, there exists a
w ∈ C1 such that

d	 (z�j z j , w) < π/2, j = 1, . . . , n. (11)

Note that this is equivalent to the assumption that δ(z) < π .

While the corrupted edges and measurements are arbi-
trary, we require an assumption on the underlying graph
(G, [n]). It essentially requires that the graph is sufficiently
well connected.

Assumption 2 (ζ -Well-connectedness condition) For a fixed
ζ ∈ (0, 1], for any J ⊂ [n] such that #(J ) ≤ n/2, there
exists an index j ∈ J such that

(2
ζ
− 1

)
#
[
E j ∩ ([n] \ J

)]
> #

[
E j ∩ J

]
. (12)

In words, this assumption requires that inside any set of
at most n/2 nodes, there is a node that is connected to a
significant number of nodes outside this set. The condition
in this assumption is equivalent to requiring that

#
[
E j ∩ J

]
<

(
1− ζ

2

)
n j . (13)

We include a discussion of this condition and its connection
with random graphs, conductance, and expanders later in
Sect. 4.5.

For the case of Assumption 2 with ζ = 1, we just call the
graph well-connected. While fully connected graphs satisfy
this condition, there exist many more examples of graphs
satisfying it with ζ = 1 as well, and we give some examples
of some simple graphs that meet this assumption in Fig. 3.

The following theorem gives the main recovery result for
the DTAS algorithm.While the algorithm converges linearly,
the rate we derive depends on n and is worst-case. In the few
simulationswe have run, the algorithm seems to converge at a
faster rate that merits more study. Also, a more complicated
proof may yield linear convergence in the general case of
well-connected G, but for sake of brevity, we only prove it
for the fully connected case.

Theorem 3 Suppose that α0 < ζ/4, Assumption 1 holds, G
satisfies Assumption 2 with parameter ζ , and [z(t)]t∈N is the
sequence generated by DTAS, for η ∈ (0, 1) and τ = ζ/4.
Then, δ(z(t)) → 0, and the algorithm exactly recovers z�.
Furthermore, in the case where G is fully connected and
η ∈ ((n− 1)/(4n), (n− 1)/n), the DTAS algorithm linearly
converges to z�.

Proof (Theorem 3) The proof of convergence under well-
connectedness follows from the fact that, when updating
index j at iteration t , the selection rule defined by choos-
ing the trimmed average yields a point in the interior of
Tτ ({Logz j (t)(z jk zk(t)) : k ∈ E j }). The proof then follows
from the proof of Theorem 6.

To see linear convergence in the fully connected case,
we prove that all unrotated estimates z�j z j (t) contract during
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Fig. 3 Examples of graphs that
satisfy the well-connectedness
condition for n = 4, 5 and 6. In
each of these graphs, (12) is
satisfied with ζ = 1: that is, all
subsets J of size at most n/2,
there exists a node j ∈ J such
that #(E j ∩ ([n]\J )) >

#(E j ∩ J )

1 2

3 4

1

2 3

4 5

1

2 3

4 5

6

each pass over the dataset. Denote

δ j = θ j (t) − θ�
j ∈ [−δ(z(t))/2, δ(z(t))/2]. (14)

These are the translation of the unrotated estimates to the
angular coordinates of the points z1(t), . . . , zn(t). Also,
define the sets

I+(t) =
{
k : arg(z�j z j (t)) > 0

}
, (15)

I−(t) =
{
k : arg(z�j z j (t)) ≤ 0

}
.

In this proof, wewill write δ = δ(z(t)) as a shorthand. Notice
that we must have

min(#I+(t), I−(t)) ≤ n/2,

unless I+(t) = I−(t)) = [n], in which case z(t) = z�w for
some w ∈ C1 and z(t) recovers z�.

For the update with respect to index j , all good pairwise
measurements must lie in−δ j +[−δ/2, δ/2]. Since there are
at least 3n j/4 good measurements, all trimmed points must
lie in this interval as well. Therefore, for all j ∈ I−(t), after
updating we have

z�j z j (t) ∈ exp
[
i[−δ/2, ηδ/2)

]
. (16)

Using this fact, we will now show that the indices in I+(t)
must move inwards. Indeed, since #I+(t) ≤ n/2, we must
have #(E j

g ∩ I−(t)) ≥ 1 for all j ∈ I+(t). Therefore, for
each trimmed mean for j ∈ I+(t), we have

ave
(
T0.25

({
Logz j (t)(z jk zk(t)) : k 	= j

}))
≤ 2

n − 1

[
η

δ

2
− δ j +

(n − 1

2
− 1

)( δ

2
− δ j

)]
≤

(n − 3

n − 1
− 2

n − 1
η
)
· δ

2
− δ j . (17)

Thus,

ηave
(
T0.25

({
Logz j (t)(z jk zk(t)) : k ∈ E j

}))
+ δ j

≤ η
(n − 3− 2η

n − 1

)
· δ

2
+ (1− η)δ j

≤ η
(n − 3

n − 1

)
· δ

2
+ (1− η)

δ

2

= δ

2

(
1− η

[ 2

n − 1

])
. (18)

After the coordinate update, we have that for all j ∈ I+(t),

z�j z j (t) ∈ exp
(
i
[
− δ

2
,
(
1− η

( 2

n − 1

) δ

2

)])
. (19)

After repeating this argument for all j over the course of
an epoch, or pass over all indices j = 1, . . . , n, this yields
that

z�j z j (t + 1) ∈ exp
(
i
[
− δ

2
,
(
1− η

( 2

n − 1

) δ

2

)])
,

as long as η < (n − 1)/(n + 1). The width of this interval is
(n − 1− η)δ(z(t))/(n − 1), which yields the desired result.

��

4 Robust Synchronization over SO(D)

We now move on to our more general synchronization algo-
rithm and result over SO(D). This section presents a novel
algorithm for robust synchronization over the rotation group,
SO(D). We assume a fixed observation graphG that encodes
which pairwise rotations we observe. The pairwise rotations
are written as R jk ∈ SO(D), where the good edges jk ∈ Eg

have the associated observation R�
j R

��
k , and the bad edges

are arbitrarily chosen from G and have arbitrarily corrupted
measurements.

To proceed, we must make clear our goal for the synchro-
nization problem, since there is a well known ambiguity,
similar to the one encountered for SO(2) synchronization in
Sect. 3.1—we can only recover R� up to right multiplication
by an element of SO(D). This is because, after this multipli-
cation, one arrives at the same pairwise measurements in (1).
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This is a form of rotational symmetry in the nonconvex prob-
lem, which may be leveraged to develop tractable nonconvex
programs (Zhang et al., 2020). Exactly recovering the ground
truth measurements (R�) = (R�

1, . . . , R
�
n) ∈ SO(D)n up to

right multiplication by S ∈ SO(D) is equivalent to finding a
set of rotations (R) = (R1, . . . , Rn) such that

R��
1 R1 = · · · = R��

n Rn = S, (20)

for some S ∈ SO(D).We refer to the set of rotations R��
j R j ,

j = 1, . . . , n, as unrotated estimates since, when (R) =
(R�S), they reveal the normalization factor that multiplies
each element of (R�) from the right. One could extend this
discussion to the case of approximate recovery by requiring
that the unrotated estimates are approximately equal.

With our goal now in mind, we begin in Sect. 4.1 by dis-
cussing the geometry of the manifold SO(D) and presenting
some basic geometric results that will be used in our main
theorem.Following this, Sect. 4.2 reviews the concept of half-
space depth from robust statistics, which will be the core tool
that we use to construct our algorithm. In Sect. 4.3, we give
outline the DDS algorithm. Then, in Sect. 4.4, we give the
theoretical guarantees that constitute the main innovations
of this work. We finish in Sect. 4.5 with a discussion of the
assumptions we make in our theorem.

4.1 TheManifold Structure of SO(D)

The rotation synchronization problem is obviously a robust
recovery problem on the product Riemannian manifold
SO(D)n . Therefore, in the following, we freely use concepts
from Riemannian geometry, and specifically those concepts
related to the geometry of SO(D).

4.1.1 Riemannian Geometry of SO(D)

The set of rotations SO(D) is a D(D − 1)/2-dimensional
Lie group that has a natural Riemannian structure. The bi-
invariant distance metric d : SO(D)×SO(D) → [0, � D

2 �π ]
is given by

d(R1, R2) = ‖ log(R1R�
2 )‖F , (21)

where log is the matrix logarithm. The corresponding Lie
algebra is so(D), the set of D×D skew-symmetric matrices.
The tangent space of SO(D) at R ∈ SO(D) is

TR SO(D) = {Δs ∈ R
d×d : R�Δs ∈ so(D)}.

Notice that every tangent vector v ∈ TR SO(D) has a corre-
sponding element of so(D), which we denote by vso(D). The
corresponding Riemannian metric (which is an inner prod-
uct and thus should not be confused with a distance metric)

for v,w ∈ TR SO(D) is given by 〈v,w〉R = Tr(v�w)/2 =
Tr(v�so(D)wso(D))/2. Equipped with this metric, SO(D) is
a Riemannian manifold with nonnegative sectional curva-
ture. An open ball with respect to the metric d is written as
B(R, r), where the radius is r and the center is R. Its closure
and boundary are B(R, r) and ∂B(R, r), respectively.

The exponential map is given by

ExpR : TR SO(D) → SO(D), ExpR(U) = R exp(R�U),

(22)

where exp is the matrix exponential. The logarithmic map is
the inverse of this:

LogR : SO(D) → TR SO(D), LogR(S) = R log(R�S).

(23)

The geodesic between R, S ∈ SO(D) is written as
−→
RS(t) =

ExpR(t LogR(S)), for t ∈ [0, 1]. In the following, we use
the notation for a halfspace of TR SO(D),

H(R, v) = {u ∈ TR SO(D) : 〈u, v〉R > 0,

ExpR(tu)is a geodesic for t ∈ [0, 1]}. (24)

4.1.2 Local Convexity Properties of SO(D)

We continue by recalling some local convexity proper-
ties of manifolds like SO(D). The following result on the
convexity of sufficiently small balls is standard in the litera-
ture (Karcher, 1977; Afsari, 2009; Petersen, 2016).

Theorem 4 (Convexity of small balls) In a closed ball
B(C, r) ⊂ SO(D) with r < π/2, the squared distance met-
ric d2 is strictly convex. This implies, in particular, that for

all R0, R1 ∈ B(C, r),
−−−→
R0R1(t) ∈ B(C, r) for all t ∈ (0, 1).

Note that the closed ball in the previous theorem has the
property that the interior of any nonconstant geodesic lies
strictly in the interior of the ball. The following result is
also readily apparent. It states that, for boundary points on
a sufficiently small ball in SO(D), all interior directions are
contained in a halfspace.

Corollary 1 Let B be a ball on SO(D) with radius r < π/2
and R ∈ ∂B. Then, there is a halfspaceH ⊂ TR SO(D) such
that LogR B ⊂ H.

An important component of our later theoretical results
relies on showing that the radius of the smallest ball con-
taining a set of rotations shrinks. The final lemma of this
section states that if a discrete set of rotationsR is contained
in a ball, and if half of the ball contains no boundary mea-
surements, then the set R is actually contained in a ball of
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smaller radius. Thus, for such a set of rotations, this gives us
a sufficient condition for decreasing the radius of the smallest
containing ball.

Lemma 1 Let B = B(C, r) ⊂ SO(D) and R ⊂ B a finite
set of rotations. Suppose that there exists v ∈ TC SO(D) such
that

ExpC [H(C,−v)] ∩ ∂B ∩R = ∅.

Then, R is contained in a ball with radius less than r.

Proof (Lemma 1) Let c(t) be the geodesic ExpC(tv). We
claim that, for t sufficiently small,R ⊂ B(c(t), r), which is
an open ball. Heuristically, one should expect this to be true,
since the closed halfspace H(C,−v) contains no boundary
points, and so moving the center a small amount in the v

direction keeps all points within the ball.
By the first order approximation to d2(c(t), R) and since

	 (v,LogC R) < π/2, we have

d(c(t), R)2 < d(c(0), R)2, ∀R ∈ R ∩ ExpC(H(C, v)),

(25)

for t sufficiently small. On the other hand, since

ExpC [H(C,−v)] ∩ ∂B ∩R ⊂ B(C, r),

the distance to C over all R ∈ ExpC [H(C,−v)] ∩ ∂B ∩R
is bounded away from r . By continuity of d(c(t), S) for all
R ∈ R, this implies that there is an ε such that

d(c(t), R) < r , ∀ t ∈ (0, ε). (26)

Putting (25) and (26) together implies that a small shift of the
ball results in a newcenter such thatmaxR∈R d(c(t), R) < r .
In turn, this means that all points ofR lie in a ball B(c(t), r ′)
with r ′ < r . ��

4.2 Tukey Depth and its Properties

We will use the concept of Tukey depth to determine descent
directions on the manifold SO(D)n , although other notions
of depth could potentially be used as well (see Ch. 58 of Toth
et al. (2017) for a discussion of different notions of depth).
In Euclidean space, the Tukey depth of a point x ∈ R

D in a
dataset X = {x1, . . . , xn} ⊂ R

D is given by

depth(x,X ) = min
u∈SD−1

#{xi ∈ X : u�(xi − x) ≥ 0} (27)

The depth is therefore the minimum number of points con-
tained in any halfspace that has x in its separating hyperplane.
A natural robust estimator is then the point of maximum

depth, which is also called the Tukey median. The β-depth
level set for β ∈ [0, 1] is defined by

Dβ(X ) = { y ∈ R
D : depth( y,X ) ≥ β#(X )}. (28)

This level set is convex and compact, and its boundary is
made up of hyperplanes defined by sets of D points (Liu et
al., 2019). This function will be used in the construction of
our algorithm.

As an example, consider the 1-dimensional dataset X =
{xi }. Here, the formulation of depth is quite simple:

depth(x,X ) = min(#{xi ≤ x}, #{xi ≥ x}). (29)

With this in mind, the β-depth level set is Dβ(X ) =
[x(�βn�), x(�(1−β)n�)], where x(i) denotes the i th order statis-
tic. The Tukey median in this case is just the median.

We recall the following theorem, which bounds the maxi-
mum possible depth within a general dataset. Notice that, in
particular, this guarantees that the depth level set Dβ(X ) is
nonempty for all β ≤ 1/(D + 1).

Proposition 1 (Rado, 1946) Suppose that X is a set of n
points. Then, the maximum depth in X is bounded below by
�n/(D + 1)�.

A particularly useful property of Tukey depth is that it is
affine equivariant, that is, it is stable under affine transfor-
mations.

Lemma 2 (Donoho & Gasko, 1992)

depth(Ax + b, AX + b) = depth(x,X ).

This implies, in particular, that things behave nicely if we
change the inner product on R

D .

min
u∈SD−1

#{xi ∈ X : u�A(xi − x) ≥ 0} = depth(Ax, AX )

= depth(x,X ).

(30)

With this property, we can map between the depth regions in
(RD, 〈·, ·〉) and (RD, 〈·, A·〉) by

ADβ(X ) = Dβ(AX ). (31)

This affine equivariance implies, in particular, that Proposi-
tion 1 extends to datasets in tangent spaces of manifolds.

We finish with a simple lemma on depth level sets that will
be the key to the robustness guarantee for our later algorithm.
In simple words, this lemma guarantees sufficient conditions
for a depth level set to contain a nonzero value in a dataset
containing many zeros. In the following, datasets are repre-
sented by multisets and may contain duplicate points. For a
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halfspace H(0, v) := {x ∈ R
D : v�x ≥ 0} ⊂ R

D , we write
its separating hyperplane as L(0, v).

Lemma 3 Suppose thatwehaveadatasetX = {x1, . . . , xn} ∈
R

D and a subset Y ⊂ X that satisfies the properties i)
#(Y) > n − n(ζ/(2D + 2)), ii) There exists closed halfs-
pace H(0, v) ⊂ R

D such that H(0, v) ⊃ Y , and iii) the
only points of Y in L(0, v) are 0. Then, Dζ/(2D+2)(X ) ⊂
conv(Y) ⊂ (H(0, v)∪{0}). Beyond this, if #(Y∩L(0, v)) <

(1− ζ/2)n, then (Dζ/(2D+2)(X )) ∩ H(0, v) 	= ∅.
Proof (Lemma 3) It is obvious by the properties of depth that
Dζ/(2D+2)(X ) ⊂ conv(Y) ⊂ (H(0, v)∪{0}), since anypoint
on the boundary of conv(Y) has depth less than ζ/(2D+ 2).
By Proposition 1, there is a point of depth at least ζ/(2D+2),
and so Dζ/(2D+2)(X ) is nonempty.

Suppose that less than (1 − ζ/2)n points in Y are zero,
that is, #(Y ∩ L(0, v)) < (1 − ζ/2)n. We claim that
Dζ/(2D+2)(X ) ∩ H(0, v) 	= ∅. Define the auxiliary set
Z = X \ (Y ∩ L(0, v)), that is, Z removes the 0 values
in Y from X . Since #(Y ∩ L(0, v)) < (1− ζ/2)n, we have
that m = #(Z) ≥ (ζ/2)n. Within Z , there is a point ẑ of
depth at least m/(D + 1). Further, since n ≤ 2m/ζ and
#(X ∩ H(0,−v)) < nζ/(2D + 2), we have

#(H(0, v) ∩ Z) > m − nζ

2D + 2

≥ m − m

D + 1)

= m
D

D + 1
,

which implies that ẑ must lie in H(0, v). On the other hand,
since m ≥ ζn/2, we have that

depth( ẑ,X ) ≥ m

D + 1
≥ ζn

2(D + 1)
,

which means that ẑ is a point of depth at least ζ/(2D+ 2) in
X . ��

4.3 Depth Descent Synchronization

We now use the results of the previous sections to derive the
DDS algorithm.

4.3.1 The General DDS Algorithm

Weassume a selection ruleSR on convex, compact subsets of
TR SO(D) for all R ∈ SO(D). In particular, for our theorem,
we assume that this selection rule chooses a nonzero point
from the convex set if possible, and otherwise outputs zero.
To select this point, one selection rule could be to take a
point uniformly at random, or another could be to take the

center of mass. As our theorem makes clear, the choice of
this selection rule does not affect the exact recovery result,
but it may change convergence rates. Since we do not give
quantitative convergence rates in this work, we leave this
choice as arbitrary.

In any case, given a selection rule SR over such subsets
of TR SO(d), suppose our estimated rotations at time t are
(R(t)). Our update direction at this time for index j = t
mod n is defined by

v j (t) = SR(Dβ({LogR j (t) R jkRk(t) : k ∈ E j })). (32)

Inwords, the direction v j (t) is a direction in the tangent space
at R j (t) that is sufficiently deep with respect to the neighbor
measurements {LogR j (t) R jkRk(t) : k ∈ E j }. Given v j (t),
the algorithm updates

j = t mod n, R j (t + 1) = ExpR j (t)(η(t)v j (t)),

Rk(t + 1) = Rk(t) for k ∈ [n] \ { j}. (33)

for a chosen step size η(t) ∈ (0, η�(D)]. Our theory below
restricts this step size according to Theorem 4.2 of Afsari et
al. (2013): in the case of D = 2 or 3, one can take η�(D) = 1,
while for D > 3 the upper bound is more restrictive (the
reader can consult the discussion in Afsari et al. (2013) for a
more thorough discussion of the bound). For sake of clarity,
we write the full DDS algorithm in Algorithm 2.

Algorithm 2 Depth Descent Synchronization for SO(D)

Require: R(0), number of iterations T , selection rule S, η ∈
(0, η�(D)] step size, β depth parameter
for t = 1, . . . , T do

j = t mod n
v j (t) = SR(Dβ({LogR j (t) R jk Rk(t) : k ∈ E j }))
R j (t + 1) ← ExpR j (t)(ηv j (t))
Rk(t + 1) ← Rk(t), k 	= j

end for
return R(T )

One benefit of DDS is that there is no need to tune the
step size, which is due to the local convexity properties of
the manifold. As we outline in our main theorem, the step
size can be directly selected from the guidance of Afsari et
al. (2013).

As for computational complexity, at least in low-dimensions,
depth regions canbe calculated efficiently for small datasets (Liu
et al., 2019). In particular, themost straightforward algorithm
involves an exhaustive search over hyperplanes spanned by
D-subsets of X that cut off βn points in X . The time com-
plexity of this method for R

3 is O(n3 log(n)), and so could
be used for moderately sized datasets. Translating this to our
problem in SO(3), the time complexity for updating j ∈ [n]
is O(n3j log(n j )), and so we see that this method is efficient
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for sparser graphs. In an Erdös-Rényi model, the complexity
to update all n rotations is O(n4 p3) in expectation, where p
is the Erdös-Rényi parameter.

As discussed in the introduction, the time complexity of
the DDS algorithm is not necessarily more efficient than that
of Lerman and Shi (2020). Indeed, the complexity of their
message-passing algorithm is O(n3) for a single update to all

rotations, while for our method it is O
(∑

j n
3
j log(n j )

)
for

SO(3) (and much larger for higher dimensions). Therefore,
DDS has better complexity for sparse graphs, while Lerman
and Shi (2020) has better complexity for dense graphs. On
the other hand, our complexity is uniformly better in SO(2),
where depth contours can be easily found in O(n log(n))

by sorting, and it thus takes O(n2 log(n)) time to update
all nodes. Finally, we also note that our method has bet-
ter scaling in terms of memory usage: the multiple rotation
averaging scheme takes O(n j ) memory while the message-
passing scheme takes O(n3).

4.3.2 The Approximate DDS Algorithm

To make the DDS algorithm more computationally efficient,
we employ a few strategies to develop an approximate DDS
algorithm.

First, so that we do not need to resort to computing full
depth contours, we instead take the average of the deepest
points in the set {LogR j (t) R jkRk(t) : k ∈ E j } as our update
direction at each iteration.

Second, to avoid computation of the full depth of every
point in this set, we instead use an approximation of depth
based on sampling. Suppose that we wish to approximate the
depth of the vectors inY = { y1, . . . , yn} ⊂ R

D with respect
to Y . We can sample a set of vectors u1, . . . , um ∈ SD−1.

Then, for each yi ∈ Y , the approximation of depth, d̃epth,
is

d̃epth( yi ,Y) = min
j∈[m]min

(
#({ yk ∈ Y : y�k u j ≥ y�i u j }),

#({ yk ∈ Y : y�k u j ≤ y�i u j })
)
. (34)

Notice that d̃epth replaces the minimum over u ∈ SD−1

in (27) by the minimum over the discrete set of vectors
{u1, . . . , um}. For R

3 (which corresponds to the tangent
space for SO(3)), computation of the full depth for all points
would take O(n3j ) time, where for each xi one would need
to search over all planes defined by triplets xi , x j , xk , for
distinct i, j, k. On the other hand, the computation of the
approximate depth using (34) takes O(n2jm) and can bemore
efficiently implemented due to the fact that the u1, . . . , um
are shared between all yi .

The approximate DDS algorithm is given in Algorithm 3.
Here, we use the notation SR j (t) SO(D) for the set of all unit
vectors in TR j SO(D).

Algorithm 3 Approximate Depth Descent Synchronization
for SO(D)

Require: R(0), number of iterations T , selection rule S, η ∈ (0, 1)
step size, m: number of depth vectors
for t = 1, . . . , T do

j = t mod n
Y(t) = {LogR j (t) R jk Rk(t) : k ∈ E j }
u1, . . . , um

i .i .d.∼ Unif(SR j (t) SO(D))

v j (t) = argmax y∈Y(t)

[
minui

(
min(#{ y′ ∈ Y(t) : u�i ( y′ − y) ≥

0}, #{ y′ ∈ Y(t) : u�i ( y′ − y) ≤ 0})
)]

R j (t + 1) ← ExpR j (t)(ηv j (t))
Rk(t + 1) ← Rk(t), k 	= j

end for
return R(T )

4.4 Exact Recovery for DDS

For many nonconvex methods, good initialization is quite
important (Li et al., 2019;Maunu et al., 2019; Qu et al., 2019;
Chi et al., 2019; Qu et al., 2020). We only obtain a recovery
result for DDS if we can initialize in a suitable neighborhood
of R�.

Definition 2 A set of n rotations (R) lies within a ρ-
neighborhood of (R�) if the unrotated estimates R��

j R j all
lie in a ball of radius ρ. That is, there exists a C ∈ SO(D)

such that

d(R��
j R j ,C) < ρ, ∀ j = 1, . . . , n.

With this terminology, our main assumption is that we can
initialize in a π/2-neighborhood of (R�). This is the analog
of Assumption 1 for SO(D).

Assumption 5 The initial set of rotations (R(0)) for our algo-
rithm lies within a π/2-neighborhood of (R�).

As we discuss in Sect. 4.5, we believe that this assumption
is not so restrictive, and we later give some intuition for how
this might occur in a real scenario.

The following theorem constitutes the main theoretical
result of this work. It states that, with proper initialization and
well-connectedness, the recovery threshold of Algorithm 2
is 1/(D(D−1)+2). As examples when ζ = 1, in the case of
SO(2), Theorem 6 yields a corruption threshold of α0 < 1/4.
In the case of SO(3), Theorem 6 yields a corruption level of
α0 < 1/8.
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Theorem 6 Suppose that α0 < ζ/(D(D− 1)+ 2), Assump-
tions 5 and 2 hold, and [(R(t))]t∈N is generated by (33)
with β = ζ/(D(D − 1) + 2). Further assume in the case of
D = 2, 3 that η ∈ (0, 1], and in the case of D > 3 that η

is chosen according to Theorem 4.2 of Afsari et al. (2013).
Then, d(R��

j R j (t), R��
k Rk(t)) → 0 for all j, k, and the

DDS algorithm exactly recovers (R�).

Proof (Theorem 6) To aid in the proof, we denote the smallest
ball enclosing our unrotated estimates as

B(t) := argminB(C,ρ)ρ, s.t. R��
1 R1(t), . . . , R��

n Rn(t)

∈ B(C, ρ). (35)

The center of B(t) is C(t) and its radius is r(B(t)). Our goal
will be to show that r(B(t)) → 0, t → ∞.

The proof of the theorem is broken into three parts. In the
first part, we prove that the sequence [(R(t))]t∈N remains in
a nested sequence of balls. In the second part, we show that,
after sufficiently many iterations, the radius of the smallest
enclosing ball must shrink. We finish in the third part by
appealing to a general convergence theorem for monotonic
algorithms.

Part I: B(t + 1) ⊆ B(t): First, we show that at time
t , no matter which index is updated, the unrotated esti-
mates remain in B(t). This is true at t = 0, so assume
that it is true at a time t . Let j = t mod n and consider
the pairwise measurements in the tangent space at R j (t):

for each k ∈ E j
g , the corresponding point in the tangent

space is given by LogR j (t)(R
�
j R

��
k Rk(t)). By assumption,

we have that R�
j R

��
k Rk(t) ∈ R�

j B(t) for all k. Since
α0 < ζ/(D(D − 1) + 2) and β = ζ/(D(D − 1) + 2),

Dζ/(2D+2)({LogR j (t)(R jkRk(t)) : k ∈ E j })
⊂ conv({LogR j (t)(R jkRk(t)) : k ∈ E j

g }),

since the set in the right-hand side of the display contains
more than a 1 − β fraction of points. We can now apply
Theorem 3.7 of Afsari et al. (2013). This follows from
the fact that the update direction v j (t) is the gradient of
the Frechét mean function for a weighted combination of
{LogR j (t)(R jkRk(t)) : k ∈ E j

g } (since it lies in the convex

hull of of these points). More formally, letting m = #(E j
g ),

since v j (t) ∈ conv({LogR j (t)(R jkRk(t)) : k ∈ E j
g }), there

exist weights a1, . . . , am such that

v j (t) =
m∑
i=1

ai LogR j (t) R jki Rki (t)

=
m∑
i=1

ai LogR j (t) R
�
j R

��
ki Rki (t)

= −grad
m∑
i=1

aid
2(R��

ki Rki (t), ·)
∣∣∣
R j (t)

.

Therefore, choosing the step size as in Afsari et al. (2013)
implies that R��

j R j (t + 1) ∈ B(t), and further that

R��
j R j (t + 1) ∈ B(t) when v j (t) 	= 0. In turn, this

implies that B(t + 1) ⊆ B(t) and, if R j (t) ∈ B(t), then
R j (t + 1) ∈ B(t) as well (i.e., interior points cannot move
to the boundary).

In the case of SO(3), Theorem 3.7 of Afsari et al. (2013)
tells us that choosing η ∈ (0, 1] suffices. The case of SO(D)

for D > 3 is dealt with in a similar way using Theorem 4.2
of Afsari et al. (2013).

Part II: r(B(s+Δs)) < r(B(s)):We nowmust show that
after sufficiently many iterations, the radius of B(t) strictly
decreases. To this end, fix a time s. At this time, at least
one unrotated estimates R��

j R j (s) must lie on the boundary
∂B(s). For convenience, define the index set J (s) of bound-
ary rotations at time s by

J (s) :=
{
j : R��

j R j (s) ∈ ∂B(s)
}
.

We will show that there exists a Δs > 0 such that at some
future time s + Δs ,

r(B(s + Δs)) < r(B(s)). (36)

To this end, pick a direction w uniformly at random from
TC(s) SO(D) such that ‖w‖C(s) = 1. This vector separates
TC(s) into two halfspaces, and thus partitions B(s) into two
halves. One of these halves contains at most n/2 points
LogC(s)(R

��
j R j (s)), and we will denote the corresponding

halfspace of TC(s) SO(D) byH. Since the directionw is cho-
sen uniformly at random, there are no points on the boundary
of this halfspace with probability 1.

Let K (s) denote the set

K (s) := {k : R��
k Rk(s) ∈ ExpC(s)(H) ∩ ∂B(s)},

that is, the set of indices corresponding to boundary unrotated
estimates at time s. At each time t = s+m form > 0, if none
of the unrotated estimates R��

k Rk(t), k ∈ K (s), lie in ∂B(s),
then set Δs = m and we can apply Lemma 1 to yield (36).

Otherwise, by Assumption 2, there is at least one index
k ∈ K (s) such that R��

k Rk(s) is in ∂B(s) and

#
(
Ek \ K (s)

)
> #

(
Ek ∩ K (s)

)
.

Suppose that we update this index k at time t = s + m. We
are in a situation where we can apply Lemma 3, with

X = {LogR j (t) R jkRk(t) : k ∈ E j },
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Y = {LogR j (t) R jkRk(t) : k ∈ E j
g },

which yields that v j (s + m) ∈ conv(Y) and v j (s + m) 	=
0. Thus, for sufficiently small η, R j (s + m + 1) ∈ B(s).
Repeating this sequentially for all elements of K (s), there
must exist a Δs such that

R��
j R j (s + Δs) ∈ B(s), ∀ j ∈ K (s).

We are left in a situation where R��
1 R1(s + Δs), . . . ,

R��
n Rn(s + Δs) ∈ B(s), and there exists a w such that

H(C(s),−w) contains no boundary points. By appealing to
Lemma 1, we know that (R(s + Δs) lies in a ball of radius
smaller than r(B(s)), and therefore r(B(s)) has a strictly
monotonic subsequence.

Part III: Strict monotonicity implies convergence: By
Mizera&Volauf (2002), as long as β ≤ 1/(D(D−1)/2+1),
the point to set mapping

R j (t)  → Dβ({logR j (t)(R jkRk(t)) : k ∈ E j })

is non-empty and outer semicontinuous with respect to the
empirical measure on

{LogR j (t) R jkRk(t) : k ∈ E j }.

Therefore, the associated algorithm (33) is upper semi-
continuous in the sense of Theorem 3.1 of Meyer (1976),
and we obtain convergence of R(t) to a fixed point of (33).

We finish by examining fixed points of the algorithm (33).
Suppose that R is a fixed point of this sequence, such that v j

as defined by (32) is zero.
The fixed point is characterized by d(R j , R�

j R
��
k Rk) =

0 for at least (1 − ζ/2)n j measurements k. By ζ -well-
connectedness, for all subsets J of size at most n/2, there is

an index j such that #
[
E j∩J

)
< (1−ζ/2)n j , because other-

wise Lemma 3would yield a nonzero update direction. Thus,
there is an index k ∈ E j \[J ] such that d(R j , R�

j R
��
k Rk) =

0. This implies that d(R j , R�
j R

��
k Rk) = 0 for all j, k. ��

4.5 Discussion of Assumptions

The ζ -well-connectedness condition in Assumption 2 bears
some similarity to the notions of conductance and graph
expansion. From the perspective of graph theoretical results,
we note that a sufficient condition for Assumption 2 with
ζ = 1 is for the conductance of the graph to be greater than
or equal to 1/2. This follows from a simple pigeonhole argu-
ment. It is unclear if this condition holds for Erdös-Rényi
graphs. Indeed, if one uses Cheeger’s inequality, one would
need the spectral gap to be greater than or equal to 1, but for
Erdös-Rényi graphs one only expects this gap to concentrate
around 1 in practice (Hoffman et al., 2021).

A sufficient condition for (13) is for the conductance to
be bounded below by ζ/2, which can be achieved with high
probability for any fixed ζ < 1 by Erdös-Rényi graphs when
p � log(n)/n (see, for example, Hoffman et al. (2021)), as
well as expander graphs (see, for example, Friedman (2003)).

Our result in Theorem 6 holds with high probability for
the uniform corruptionmodel discussed in Sect. 2.6 with q <

α0 = ζ/(D(D − 1) + 2) and p � log(n)/n. This means
that DDS achieves the information theoretically optimal rate
with respect to p in this model. Indeed, we can read (4) as

p = �
(

1
(1−q)2

log(n)
n

)
.

Assumption 5 requires that we initialize the DDS algo-
rithm so that the unrotated estimates lie in sufficiently small
ball. This can be achieved in practice for cameras whose ori-
entations lie close enough together. That is, suppose that all
of the rotations R��

1 , . . . , R��
n lie in B(S, ρ) for all j , for

some S and ρ < π/2. Then, if the initial point for the DDS
algorithm is chosen to be (I, . . . , I), then it is not hard to
see that

R��
j I = R��

j ∈ B(S, ρ), ∀ j ∈ [n]. (37)

which directly shows that Assumption 5 holds. Notice that
B(S, π/2) is a large ball that essentially makes up half of the
manifold SO(3), since the distance from any point to its cut-
locus is π . For example, if one considers reconstruction of an
object from many images taken from points on a sphere that
surrounds this object, then our requirement would essentially
boil down to needing all of the images being taken from a
single hemisphere.

We conjecture that one can weaken this initialization con-
dition to only require that neighboringunrotated estimates are
close to each other, but we leave weakening of this assump-
tion to future work.

5 Comparison with Existing Theory

Themain works wemust compare our theoretical guarantees
with are Lerman and Shi (2020) and Huang et al. (2019). For
context, we primarily consider the practical cases of D = 2
or D = 3, which are the cases of interest for us and of
high relevance for the computer vision community. We note
that our bounds degrade for larger D. While our method does
extend to larger D, we do not have themotivation for studying
such a problem in the context of computer vision.

In these regimes, our breakdown points for adversar-
ial outliers are fractions of 1/4 for D = 2 and 1/8 for
D = 3 corrupted edges per node, assuming the generic well-
connectedness condition.

As mentioned in the review of related work, Lerman and
Shi (2020) achieve a bound on the ratio of corrupted triangles
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per node up to 1/4. This bound is a bit different from ours, as
we instead bound the number of corrupted edges per node.
Furthermore, as we mentioned earlier, the method of Ler-
man and Shi (2020) degrades for sparse graphs, whereas ours
elegantly extends to sparse graphs with our generic well-
connectedness condition.

As for the second work, during review it was pointed out
to us that one can extend the results of Huang et al. (2019)
to a bound for arbitrary outliers. This method truncates the
graph connection Laplacian at each iteration to filter outliers.
A modification of the proof in Huang et al. (2019, Section
C.7) demonstrates a best possible bound on the fraction of
corrupted edges per node of 1/30. Furthermore, the upper
bound of 1/30 is under the assumption of a fully connected
graph, and it degrades for sparser graphs. The complicated
dependencies of the upper bound on the graph connectivity
make it hard to estimate in real scenarios. Compared to our
results, this bound is much worse for D = 2 and D = 3,
and so more work should be done to see if such a spectral
method can achieve better bounds in low-dimensional cases
or not. Thus, in the adversarial case for D = 2 and D = 3,
our bounds are state-of-the-art.

6 Empirical Evaluation

We run some synthetic experiments on the DDS and related
algorithms

The algorithms we compare with are MRA and L1-
MRA (Hartley et al., 2013), IRLS after L1-MRA initial-
ization (Chatterjee & Govindu, 2013), LTS (Huang et al.,
2019), CEMP (Lerman & Shi, 2020), andMPLS (Shi & Ler-
man, 2020). Default parameters of all methods are used. For
CEMP, the method computes the corruptions levels first to
determine which edges aremost corrupted. Then, using these
corruption levels, it finds a minimum spanning tree, from
which one can fix R1 = I and then propagate from this to
find the other rotations along this tree. For LTS, we imple-
ment the truncation step with parameter γ = 0.96 and run
for 40 iterations. The approximate DDS algorithm is run for
40 epochs (or passes over the data, which means we take
T = 40n) with a step size of η = 0.7 and number of depth
vectors m = 20.

We compute the distance between the estimated rotations
(R̂) and (R�) by first aligning them by solving

S = argminS′∈SO(3)

n∑
i=1

‖R�
i − R̂i S‖2. (38)

The error is then computed as

err(R̂, R�) = max
i=1,...,n

d	 (R̂i S, R�
i ). (39)

All algorithms take less than a minute to run on each indi-
vidual dataset on a Macbook Air with a 1.6 GHz Dual-Core
Intel Core i5 and 8 GB of RAM.

Figure 4 presents a first comparison of these algorithms
on synthetic data. The model is the uniform corruption
model, which is discussed in Sect. 2.6. The graph is Erdös-
Rényi on n = 50 nodes with varying parameter p, and
each edge on this graph is corrupted with probability q.
The underlying rotations, (R�

1, . . . , R
�
n), are distributed uni-

formly on SO(D). The bad measurements, Rb
jk , are also

uniformly distributed on SO(D). For each set of parame-
ters (p = 0.1, 0.2, . . . , 0.5 and q = 0.05, 0.1, . . . , 0.3), 5
datasets are generated and the color represents the mean of
the log10-errors over these experiments. As we can see, the
approximate DDS algorithm performs on par with the other
most competitive methods (CEMP and MPLS).

As a second experiment, Fig. 5 presents a more challeng-
ing adversarial example on synthetic data. Here, the outliers
form a consistent set ofmeasurements themselves, and a sim-
ilar corruption model is discussed in Section 7.3 of Lerman
and Shi (2020), although here we extend this to SO(3) and
use a different model for the underlying rotations.

The graph is an Erdös-Rényi graph on n = 50 nodes
with parameter p, and each edge on this graph is corrupted
with probability q. The ground truth rotations approximately
come from a geodesic on SO(3), and the outliers are self-
consistent measurements that come from (approximately)
another geodesic on SO(3). The ground truth rotations are

R�
i = ExpI

(
− si (v + ξ i )

)
, (40)

where v is a fixed vector drawn uniformly from the sphere,
ξ i ∼ N (0, 10−4 I), and si = −1+2(i − 1)/50. The outliers
generated by pairwise measurements between another set of
rotations

Rb
i = ExpI

(
− si (v

′ + ξ ′i )
)
, (41)

where again v′ is a fixed vector drawn uniformly from the
sphere, ξ i ∼ N (0, 0.5I), and si = −1 + 2(i − 1)/50. As
before, for each set of parameters p and q, 5 datasets are gen-
erated and the color represents the mean of the log10-errors
over these experiments. As we can see again, the approxi-
mate DDS algorithm performs well in this experiment, and
in fact it performs on par with the most competitive rotation
synchronization algorithms (CEMP and MPLS).

In both experiments, we note that the other competitive
algorithms are CEMP and MPLS (Lerman & Shi, 2020; Shi
&Lerman, 2020). Asmentioned earlier, CEMP, and thus also
MPLS that uses ideas of CEMP, have higher memory cost
than DDS.
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Fig. 4 Rotation synchronization experiment with uniform outliers.
Here, p is the parameter of the Erdös-Rényi graph, and q is the per-
centage of corrupted edges. The underlying rotations are distributed

uniformly in SO(D), and the corrupted measurements of group ratios
are also uniform on SO(D). The color represents the mean of the log10-
errors over the 10 generated datasets (Color figure online)

Fig. 5 Rotation synchronization experiment with adversarial outliers.
Here, p is the parameter of the Erdös-Rényi graph, and q is the per-
centage of corrupted edges which are uniformly distributed across this
graph. The underlying rotations follow the model in (40), and the cor-

rupted measurements are pairwise measurements between rotations
generated by the separate set (41). The color represents the mean of
the log10-errors over the 10 generated datasets (Color figure online)

7 Conclusion

In this work, we developed the first adversarial robustness
guarantees for a multiple rotation averaging algorithm. Our
novel algorithm relies on finding descent directions using
Tukey depth in the tangent space of SO(D). To our knowl-
edge, this represents the first application of manifold Tukey
depth in an applied setting. In the case of D = 2 and D = 3,
which most frequently arise in practice, our recovery thresh-
olds are 1/4 and 1/8, and the algorithm can be implemented
efficiently. These are the most important settings for many
computer vision applications, and the results are state-of-the-

art for arbitrary outliers. We also show how to speed up the
algorithm with some approximations, and this approximate
algorithm performs competitively on simple synthetic exper-
iments. Future work should also examine if it is possible to
extend the analysis to the more practical approximate DDS
algorithm.

In practice, we have not found theDDS algorithm to be the
uniformly best choice of method. Yet, wemust comment that
this has not been themain aimof thiswork. Instead of offering
a new state-of-the-art practical method for rotation synchro-
nization, the purpose of this work has been to offer a first
justification for the robustness and benign energy landscape
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of a multiple rotation averaging algorithm. This also points
to new avenues for research in the development of multiple
rotation averaging algorithms. In some sense, using a depth
based method is similar to trimming procedures, where one
throws away a portion of the measurements at each iteration.
We believe that a fruitful direction for the development of
new practical methods will be in exploring trimmed rotation
averaging algorithms.

In terms of other strong contenders for multiple rotation
averaging algorithms, in the adversarial setting, it is possible
to show that the L1 minimization method of Hartley et al.
(2011) may suffer from sub-optimal stationary points. Such
a proof was given in an earlier version of this manuscript
which can be accessed at Maunu and Lerman (2020). On the
other hand, we observe that such methods perform well on
common SfM datasets and giving theoretical justification for
this fact should be the subject of future work.

Another direction for future work is to examine the limits
of our analysis. In particular, it would be interesting to know
if tighter analyses can yield larger recovery thresholds. At
least for the cases of SO(2) and SO(3), which arise in appli-
cations, the depth descent estimator discussed in this paper
has significant recovery thresholds, while also being compu-
tationally tractable. It is not clear what the optimal bounds
for recovery with adversarial corruption are in general. Fur-
thermore, if onemoves away from adversarial corruption and
instead considers special models of data like the uniform cor-
ruption model, the bounds could be much better.

Two more concrete directions for future work would be
to carry out further examination of the ζ -well-connectedness
condition in Assumption 2. In particular, it would be inter-
esting to see if it can be relaxed at all, what its implications
are, and when it actually holds.

Finally, perhaps the most important direction for future
work is to give theoretically justified algorithms for a larger
range of algorithms employed for SfM (Özyeşil et al., 2017;
Bianco et al., 2018). Indeed, such theoretical work can lead
to new and improved algorithms and also to the development
of novel state-of-the-art pipelines.
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Özyeşil, O., Voroninski, V., Basri, R., & Singer, A. (2017). A survey of
structure from motion*. Acta Numerica, 26, 305–364.

Perry, A., Wein, A. S., Bandeira, A. S., & Moitra, A. (2018). Message-
passing algorithms for synchronization problems over compact
groups. Communications on Pure and Applied Mathematics,
71(11), 2275–2322.

Petersen, P. (2016). Riemannian geometry (3rd ed., Vol. 171). Springer.
Qu, Q., Zhang, Y., Eldar, Y., & Wright, J. (2019). Convolutional phase

retrieval via gradient descent. IEEE Transactions on Information
Theory, 66(3), 1785–1821.

Qu, Q., Zhu, Z., Li, X., Tsakiris, M., Wright, J., & Vidal, R. (2020).
Finding the sparsest vectors in a subspace: Theory, algorithms, and
applications. arXiv preprint arXiv:2001.06970.

Rado, R. (1946). A theorem on general measure. Journal of the London
Mathematical Society, 1(4), 291–300.

Rosen, D. M., Carlone, L., Bandeira, A. S., & Leonard, J. J. (2019).
Se-sync: A certifiably correct algorithm for synchronization over
the special euclidean group. The International Journal of Robotics
Research, 38(2–3), 95–125.

Shi, Yunpeng, & Lerman, Gilad. (2020). Message passing least squares
framework and its application to rotation synchronization. In

123

http://arxiv.org/abs/2009.07514
http://arxiv.org/abs/1904.03275
http://arxiv.org/abs/2002.05299v2
http://arxiv.org/abs/2001.06970


986 International Journal of Computer Vision (2023) 131:968–986

International conference on machine learning, (pp. 8796–8806).
PMLR.

Singer, A. (2011). Angular synchronization by eigenvectors and
semidefinite programming.Applied andComputational Harmonic
Analysis, 30(1), 20–36.

Sun, J.,Qu,Q.,&Wright, J. (May2015a).Complete dictionary recovery
over the sphere. In Sampling Theory and Applications (SampTA),
2015 international conference on, (pp. 407–410). https://doi.org/
10.1109/SAMPTA.2015.7148922.

Sun, J., Qu, Q., & Wright, J. (2015b). When are nonconvex problems
not scary? arXiv preprint arXiv:1510.06096.

Taylor, C. J., & Kriegman, D. J. (1994). Minimization on the Lie group
SO(3) and related manifolds. Yale University, 16, 155.

Toth, C. D., O’Rourke, J., & Goodman, J. E. (2017). Handbook of
discrete and computational geometry. Chapman and Hall/CRC.

Tron, R., & Vidal, R. (2009). Distributed image-based 3-d localization
of camera sensor networks. In Decision and Control, 2009 held
jointly with the 2009 28th Chinese Control Conference. CDC/CCC
2009. Proceedings of the 48th IEEEConference on, (pp. 901–908).
IEEE.

Tron, R., Zhou, X., & Daniilidis, K. (2016). A survey on rotation opti-
mization in structure from motion. In Proceedings of the IEEE
conference on computer vision and pattern recognitionworkshops,
(pp. 77–85).

Tukey, JohnW. (1974). T6: Order statistics, in mimeographed notes for
statistics 411. Department of Statistics, Princeton University.

Waldspurger, I., & Waters, A. (2020). Rank optimality for the Burer-
Monteiro factorization. SIAM Journal on Optimization, 30(3),
2577–2602.

Wang, L., & Singer, A. (2013). Exact and stable recovery of rotations
for robust synchronization. Information and Inference.

Wang, L., & Singer, A. (2013). Exact and stable recovery of rotations
for robust synchronization. Information and Inference. https://doi.
org/10.1093/imaiai/iat005.

Yi, X., Park, D., Chen, Y., & Caramanis, C. (2016). Fast algorithms for
robust PCA via gradient descent. In NIPS, (pp. 4152–4160).

Zhang, T., & Yang, Y. (2018). Robust PCA by manifold optimization.
Journal of Machine Learning Research, 19(80), 1–39.

Zhang, Y., Qu, Q., & Wright, J. (2020). From symmetry to geometry:
Tractable nonconvex problems. arXiv preprint arXiv:2007.06753.

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such
publishing agreement and applicable law.

123

https://doi.org/10.1109/SAMPTA.2015.7148922
https://doi.org/10.1109/SAMPTA.2015.7148922
http://arxiv.org/abs/1510.06096
https://doi.org/10.1093/imaiai/iat005
https://doi.org/10.1093/imaiai/iat005
http://arxiv.org/abs/2007.06753

	Depth Descent Synchronization in `3́9`42`"̇613A``45`47`"603ASO(D)
	Abstract
	1 Introduction
	1.1 Contributions of This Work
	1.2 Notation
	1.3 Structure of the Rest of the Paper

	2 Related Work
	2.1 Robust Synchronization Methods
	2.2 Adversarially Robust Synchronization
	2.3 Synchronization in Other Settings
	2.4 Nonconvex Optimization
	2.5 Tukey Depth
	2.6 Notions of Robustness

	3 An Adversarially Robust Algorithm for `3́9`42`"̇613A``45`47`"603ASO(2) Synchronization
	3.1 The Geometry of mathbbC1
	3.2 Trimmed Averaging Synchronization
	3.3 Recovery Guarantees for DTAS

	4 Robust Synchronization over `3́9`42`"̇613A``45`47`"603ASO(D)
	4.1 The Manifold Structure of `3́9`42`"̇613A``45`47`"603ASO(D)
	4.1.1 Riemannian Geometry of `3́9`42`"̇613A``45`47`"603ASO(D)
	4.1.2 Local Convexity Properties of `3́9`42`"̇613A``45`47`"603ASO(D)

	4.2 Tukey Depth and its Properties
	4.3 Depth Descent Synchronization
	4.3.1 The General DDS Algorithm
	4.3.2 The Approximate DDS Algorithm

	4.4 Exact Recovery for DDS
	4.5 Discussion of Assumptions

	5 Comparison with Existing Theory
	6 Empirical Evaluation
	7 Conclusion
	Acknowledgements
	References




