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Abstract—In recent years, there have been significant advances
in the use of deep learning methods in inverse problems such as
denoising, compressive sensing, inpainting, and super-resolution.
While this line of works has predominantly been driven by prac-
tical algorithms and experiments, it has also given rise to a
variety of intriguing theoretical problems. In this paper, we sur-
vey some of the prominent theoretical developments in this line
of works, focusing in particular on generative priors, untrained
neural network priors, and unfolding algorithms. In addition to
summarizing existing results in these topics, we highlight several
ongoing challenges and open problems.

Index Terms—Inverse problems, generative priors, untrained
neural networks, unfolding algorithms, compressive sensing,
denoising, theoretical guarantees, information-theoretic limits.

I. INTRODUCTION

HE STUDY of inverse problems spans several research

communities, covering problems such as inpainting,
denoising, super-resolution, medical imaging, and more. Over
the years, research on inverse problems has seen a series of
paradigm shifts and new perspectives; for instance, the incor-
poration of low-dimensional structure such as sparsity led to
extensive research on compressive sensing [36], [41], [44].
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The most prominent new trend in inverse problems is the
incorporation of deep learning methods, which have been
utilized for signal modeling, decoder design, measurement
design, and more. These methods frequently attain state-
of-the-art performance in domains such as imaging, signal
processing, and communications. While research in this direc-
tion has predominantly been practically-oriented and relied on
experiments for evaluation, it has also given rise to a wide
variety of interesting theoretical developments and challenges.
In this paper, we provide an introductory overview of theoret-
ical frameworks and results relating to deep learning methods
in inverse problems, and highlight their strengths, limitations,
and directions for further research.

A. Background: Inverse Problems

The goal of an inverse problem is to recover (either exactly
or approximately) an unknown signal x* € R” from a set of
measurements y € R (often referred to as observations),!
which are related via a measurement model A (often referred
to as the forward model):

y = AKX") +n, ey

where 75 represents possible additive noise.> The measurement
model A may be known, unknown, or partially known.

An important special case is the class of linear models, in
which A is a linear operation:

y=Ax"+7 (2)

for some measurement matrix A € R™". We focus on the
case that A is known (unless stated otherwise), and the goal
is to design an algorithm that recovers x* from (A, y).
Linear models already capture numerous important prob-
lems, including denoising, inpainting, deblurring, and super-
resolution. Among these, we highlight the seemingly simplest
problem of denoising, in which A is the identity matrix:

y=x"+1. 3)

While this problem may appear limited in scope compared to
general linear or non-linear measurement models, it turns out
that effective solutions to the denoising problem can be used

IThe reals can also be replaced by the complex numbers or other
mathematical types, depending on the application.

2More generally, we could write A(x*, 7) to model noise that need not be
additive.
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as a powerful building block to solve more general inverse
problems via plug-and-play methods [94], [111], [136].

A crucial component of inverse problems and their associ-
ated algorithms/theory is the assumed prior knowledge on the
underlying signal x*. Such prior knowledge typically amounts
to an assumption that x* lies in or near some restricted set X',
which may be intrinsically low-dimensional despite R” being
a high-dimensional space. A ubiquitous example is the set of
sparse signals:

X =[x eR" : |xllo < s}, @)

where ||x||o denotes the number of non-zero entries in x, and
s is a suitably-chosen sparsity level, typically with s <« n.
Related notions include structured sparsity [11], [40], low-
rankness [107], and manifold structure [12], [61].

B. Deep Learning Methods for Solving Inverse Problems

Advances in neural networks and deep learning have
reshaped the field of machine learning, and are increasingly
impacting other domains throughout academia and indus-
try. As hinted above, inverse problems are no exception to
this trend. Previous surveys on deep learning methods in
inverse problems can be found in [91], [101], and the key
distinction of our survey is our focus on mathematical the-
ory. The reader is assumed to be familiar with basic neural
network concepts such as depth, width, training, empirical risk
minimization, gradient descent, generalization, convolutional
neural networks, and recurrent neural networks; an introduc-
tion to these concepts can be found in [148], among many
others.

There are many different ways in which deep learning can
play a role in designing methods for inverse problems. We
will focus on the following three themes in this survey:

1) Generative Priors: One of the tremendous successes of
deep learning has been deep generative modeling, in which a
neural network is trained on a large data set of signals/images,
and the resulting network G : RF — R (typically with
k <« n) serves as a model for the underlying class of signals,
i.e., for each input z € R¥, the output G(z) corresponds to
some signal (or image in vectorized form). The network is gen-
erative in the sense that it can generate new images different
to those used for training.

Building on practically-oriented works such as [38],
[80], [145], Bora et al. [17] introduced a theoretical frame-
work for studying generative model based priors in inverse
problems. In comparison to sparse modeling, the idea is to
replace the set X in (4) by the set

Xc = Range(G). (5)

By doing so, the prior knowledge can be much more specifi-
cally geared to the task at hand. For instance, while a sparse
prior in a suitably-chosen basis could model nearly all natural
images, a generative prior could specifically target a partic-
ular type of image (e.g., brain scans in medical imaging),
thus providing a much more precise form of prior information,
and leading to improved reconstruction accuracy and/or fewer
required measurements. We survey several relevant theoretical
results in Section II.

2) Untrained Neural Network Priors: It has recently been
observed that even neural networks with no prior training
can serve as excellent priors for inverse problems [57], [134].
In this approach, the prior information is implicitly encoded
in the neural network architecture, and decoding is done by
tuning the weights to produce a single image that fits the
measurements well.

Despite using neural networks, these methods are perhaps
more closely related to sparse priors, in the sense that the
priors are “broad” (e.g., capturing general natural images) and
are not targeted at specific data sets. On the other hand, their
empirical performance often significantly improves on that of
sparsity-based methods. We survey several relevant theoretical
developments in Section III.

3) Unfolding Methods: Another component of inverse
problems amenable to deep learning methods is the design
of the decoder, e.g., the algorithm for reconstructing x* from
(A,y) in the case of linear measurements. A variety of deep
learning approaches have been devised for this task, consist-
ing of trainable components that are optimized for the task at
hand, e.g., see [91], [101], [120], [121] for recent surveys.

In Section IV, we consider sparse signal priors and
survey the prominent approach of algorithm unfolding
[50], [96], which frequently provides state-of-the-art practical
performance. Briefly, the idea is to select a (recurrent) neu-
ral network structure that directly matches a classical iterative
algorithm, but to replace the fixed weights of that algorithm
with learnable weights. A detailed survey of algorithm unfold-
ing techniques can be found in [96], and our survey is again
distinguished by the focus on theory.

These three topics are by no means exhaustive; for instance,
there are many deep learning based decoders beyond unfold-
ing methods [91], [101], [120], [121] (as mentioned above),
and there are other aspects of inverse problems that also
admit deep learning methods, such as designing the mea-
surement matrix [98], [142]. In Section V, we will briefly
discuss some further relevant topics beyond the three that we
focus on.

C. Theoretical Guarantees for Sparse Recovery

To set the stage for the results that we overview in this
paper, it is useful to summarize some of the related results in
the literature on sparse recovery. For concreteness, we focus
on linear models of the form (2), and signals that are exactly or
approximate sparse according to (4), though many results are
known beyond this setting (e.g., see [44]). Among the wide
range of concepts and results in the literature, we focus on
a small sample that are particularly relevant to this survey,
and for which we consider closely-related notions for deep
learning methods throughout Sections II-1V.

Recovery guarantees: Theoretical results on sparse recovery
can differ considerably depending on the presence/absence of
noise, whether the signal is exactly or approximately sparse,
and the desired recovery guarantee. Particularly relevant to this
survey is the €2 /¢y for-each guarantee, which states that there
exists a randomized measurement matrix A such that given
y = Ax* (and A), the decoder outputs some X satisfying the
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following with high probability:
[% =x*], < € min|x —x"[, ©)

for some C > 1. That is, the estimation error is within
a constant factor of the best possible sparse approximation.
This guarantee can be achieved with constant probability and
m = O(slog %) [29], or more generally, with probability 1— p
and m = O(slog 2 + log %) [45].

To highlight the impact of the recovery criteria, we note that
deterministically attaining (6) (for all x*) with fixed A is only
possible when m = Q(n) [29], though analogous guarantees
are possible by using different norms on the left and right
sides of (6), known as £,/{, guarantees (e.g., p =g =1). In
contrast, when x* is exactly sparse and the measurements are
noisy (i.e., y = Ax*+19), the preceding difficulty is alleviated,
and one can attain a deterministic guarantee of the form

1% —x*[, < Clinll2 (7

for some constant C, with m = O(slog ’f) [22].

Importantly, the guarantees (6) and (7) (as well as other
related guarantees) with the above-mentioned bounds on m are
not only information-theoretically achievable, but are known
to be attained by practical decoding algorithms coupled with
suitably-chosen A. Some common choices of A and decoding
algorithms are discussed below.

Measurement matrix design and properties: The mea-
surement matrix A is often constrained by the application
(e.g., subsampled Fourier matrices in medical imaging), but
can sometimes be designed freely. In theoretical studies,
the most widely-considered type of measurement matrix is
i.i.d. Gaussian, in which each entry of A is independently
drawn from AN(0, 1), N(O, %), or similar (the choice of
normalization varies for convenience of the analysis). For
probabilistic guarantees such as (6), such designs are often
analyzed directly. For deterministic guarantees such as (7) the
typical approach is to (i) establish deterministic conditions
on A that suffice to obtain the desired recovery guarantee,
and (ii) establish that i.i.d. Gaussian (or other randomized)
measurements satisfy those conditions with high probability.

We highlight in particular the restricted isometry property
(RIP) [20]: The matrix A satisfies the RIP with parameters
(s, &5) if, for every x € A, it holds that

(1 —89xI3 < IAX|13 < (1 +8,)[IxI3. (8)

Intuitively, this property states that A is nearly orthonormal
when restricted to sparse vectors. Certain works instead only
required the lower bound on ||AX||% in (8), and this variant is
known as the restricted eigenvalue condition (REC) [16].

Information-theoretic lower bounds: In the above discus-
sion, we highlighted that various upper bounds on the number
of measurements have been obtained for attaining recovery
guarantees such as (6) and (7). These are complemented
by information-theoretic lower bounds, which state that any
sparse recovery algorithm attaining a certain guarantee must
have a minimum number of measurements. Such results are
crucial in certifying the degree of optimality of practical algo-
rithms, and steering research towards cases where the greatest
improvements are possible.

Lower bounds for sparse recovery have been obtained for a
variety of recovery criteria (e.g., see [8], [21], [45], [103]),
often with scaling laws that match existing upper bounds.
Among these, we highlight the fact that any algorithm attaining
the £2/¢> guarantee in (6) with constant probability must have
m = Q(slog?), thus matching the above-mentioned upper
bound to within a constant factor. A proof of this result is given
in [103], based on a reduction to a communication problem
over a Gaussian channel.

Practical decoding techniques: Recovery guarantees, often
with a near-optimal number of measurements, have been
attained for a wide range of practical decoding techniques.
For instance, the RIP and/or REC have been used as a tool for
studying guarantees of convex relaxation algorithms, thresh-
olding algorithms, and greedy algorithms (e.g., see [44, Ch. 6]
and [16]). The class of convex relaxation algorithms can
roughly be viewed as trying to find x such that both ||y —Ax]||»
and ||x||p (the number of non-zeros in x) are small, but to
circumvent the combinatorial nature of the latter, the convex
proxy [Ix||1 is used. A famous example is the least absolute
shrinkage and selection operator (Lasso) method, in which X
is the solution to

minly — Ax|)3 + A[x/|; ©)

for some regularization parameter A > 0. This is a convex
optimization problem for which numerous solvers are available
that converge to the optimal solution.

In principle, (9) could be solved using off-the-shelf convex
optimization solvers, but due to the ubiquity of Lasso, several
special-purpose iterative algorithms have also been devised. In
Section IV, one such algorithm called the iterative shrinkage
thresholding algorithm (ISTA) [35] will play a major role.

D. Overview of the Paper

Our goal is to provide an introduction to several theoreti-
cal results on deep learning methods in inverse problems. In
addition, we seek to highlight interesting connections between
these results, and to discuss ongoing challenges and open prob-
lems. We provide intuition behind several of the associated
proofs, but avoid going into significant technical detail.

The structure of the paper is as follows.

o In Section II, we overview several theoretical develop-
ments concerning generative priors in inverse problems,
including statistical guarantees, information-theoretic
limits, and optimization guarantees.

o In Section III, we overview theoretical developments
regarding neural network priors with no prior training,
including provable recovery guarantees for denoising and
compressive sensing.

o In Section IV, we overview theoretical developments
regarding unfolding algorithms, focusing on sparse signal
priors and neural network structures that are based on the
classical ISTA algorithm.

o In Section V, we discuss other uses of deep learning in
inverse problems, highlighting additional relevant exist-
ing theory, as well as scenarios where theory is currently
lacking but may be of interest. Several directions for
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Neural Network

Fig. 1. High-level structure of a typical deep generative model. In the case
of 2D images, the length-n vector represents the vectorized form.

future research are additionally mentioned throughout
Sections II-IV.
We emphasize that our goal is not to be exhaustive or near-
exhaustive in covering the existing literature. While we seek
to cover a diverse set of perspectives and results, the ones
that we focus on are naturally heavily influenced by our own
backgrounds and interests.

Notation: We make frequent use of the standard asymp-
totic notation O(-) and Q(-) (note that f, = Q(g,) <
gn = O(fy)). The ReLU function is given by relu(z) =
max{0, z}, and is applied element-wise when applied to
vectors. Further notation will be introduced throughout the
relevant sections.

II. GENERATIVE PRIORS

In this section, we overview a recent line of works studying
theoretical guarantees for inverse problems with generative pri-
ors. We begin by outlining the relevant background, and then
state some statistical upper and lower bounds. We then turn
to guarantees for specific optimization procedures.

A. Background

As outlined in Section I-B, the idea of this line of works is
to replace conventional priors (e.g., sparse or low-rank mod-
els) by data-driven generative priors that can be much more
specifically targeted to the task at hand. Given a generative
network G : R¥ — R” that accurately models the signals we
are interested in, it is natural to decode by outputting a sig-
nal in Range(G) that best matches the measurements in some
sense (e.g., |y — AG(z)||2 is small). This idea is captured by
equations (11)—(12) and (14)—(15) to follow.

The structure of a typical generative model is depicted
in Figure 1. The function G maps a low-dimensional input
z € R¥ to a high-dimensional signal x € R”, with the internal
structure of G typically being a neural network. As a toy
example, with k = 1 and n = 2, the function

G(2) = [sin(2), cos@)]" (10)

maps z € [—m, ] to points on the unit circle in R%. As a
more realistic example, for a relatively simple data set such as
MNIST, G might consist of k in the tens and produce 28 x 28
images (i.e., n = 784), whereas a generative model for face
images might have k in the hundreds, and a number of pixels
in the thousands or more.

Broadly, the use of generative priors in inverse problems
consists of two main steps that are typically decoupled.

(1) Given suitably representative training data, train the
generative model G (or find a pre-trained one).

(i1) Given the generative model G and compressed measure-
ments such as y = Ax*, run an optimization procedure
(e.g., (11)—(12) below) to produce an estimate X of x*
lying in (or near) the range of G.

Step (i) has been widely studied in the machine learning litera-

ture, with prominent methods including generative adversarial

networks [48], variational autoencoders [76], and so on.

At first glance, performing a theoretical analysis for signal
recovery in this setup may appear to be daunting. A typi-
cal neural network induces a highly complicated non-linear
mapping; the network architecture and training algorithm may
play a major role; and using training data inevitably leads to
challenges relating to generalization error.

The pioneering work of Bora et al. [17] circumvented
these challenges by identifying simple properties of typical
generative models that suffice to give meaningful recovery
guarantees. As a result, more fine-grained issues centered
around training, generalization, and representation error are
essentially abstracted away (though their further study would
still be of significant interest).

Specifically, the following two mathematical classes of
generative models were proposed in [17].

(i) G is a Lipschitz continuous function, with Lipschitz
constant denoted by L;

(i) G is a neural network with ReLU activations,” and the
width and depth of the network are denoted by w and d.

The Lipschitz assumption can easily be shown to be satis-
fied by neural networks with Lipschitz activation functions
(e.g., ReLU, sigmoid, and more) and bounded weights, and
the ReLU network assumption is also natural in view of the
ubiquity of ReLU networks in practice. While the second class
is essentially encompassed by the first, it is still of interest
to study it separately, since doing so yields slightly stronger
results, as well as further insights via a distinct analysis.

B. Statistical Upper Bounds on the Reconstruction Error

The following two theorems give upper bounds on the
reconstruction error (in terms of the number of measure-
ments m) under the Lipschitz and ReLU assumptions, respec-
tively, considering a (possibly impractical) decoding rule based
on solving a constrained £;-minimization problem.

Theorem 1 (Upper Bound for Lipschitz Generative
Models [17, Th. 1.2]): Let G : RF — R” be an L-Lipschitz
generative model, and let the measurement matrix A € R™*"
have iid. N(0, n%) entries. Suppose that, upon observing
y = Ax* 4+ n for some noise vector 7, the decoder forms the
estimate

where
ly — AG(2)||>.

>
|

= G(3).
arg min
zeRK |zl <r

(11)
12)

N>
|

30ther piecewise linear activations can also be considered, but ReLU is of
primary interest due to its widespread use in practice.
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Then, for any § € (0, 1), if m = Q(klog %) with a sufficiently
large implied constant, then it holds with probability 1—e~$2(™
that

min

[f—x"[, =6
zeRF : |zl <r

|G@) —x*[[, + 3l +28. (13)

Theorem 2 (Upper  Bound for ReLU  Generative
Models [17, Th. 1.1]): Let G : R¥ — TR" be a neural
network with ReLU activations, width w, and depth d, and
let the measurement matrix A € R™*" have i.i.d. N (0, %)
entries. Suppose that, upon observing y = Ax* + 5 for some
noise vector 7, the decoder forms the estimate

X = G(i), where (14)
Z = argmin |ly — AG(z)||>. (15)
zeRK

Then, if m = Q(kdlogw) with a sufficiently large implied
constant, then it holds with probability 1 — e~2(" that

Hf(—x*“z 56min||G(z)—x*”2+3||11||2. (16)
zeRK

We note that these results provide non-uniform recovery
guarantees, holding with respect to the randomness in A for
fixed x*. However, as noted in [89, Remark 1], if there is
no representation error (i.e., x* € Range(G) and the first term
in (13) or (16) is zero), the proofs in [17] also provide stronger
uniform guarantees, establishing that a single matrix A works
for all x*.

The first term in (13) (and (16)) amounts to being within a
constant factor of the best approximation (thus measuring the
representation error), and the second term captures the effect
of noise. The 2§ term in (13) is more subtle, and captures the
fact that more measurements are needed to accurately recover
details of the signal at increasingly fine scales [17]. In contrast,
no such term is present in (16).

The number of measurements above can be contrasted with
the typical O(slogn) scaling for sparse priors. The most
important distinction here is not the different logarithmic
terms, but rather, the fact that for accurate modeling, the
required k (generative priors) may be much smaller than the
required s (sparse priors) due to G being more targeted to the
task at hand.

Slightly more general statements are given in [17], in which
the minimization problem in (12) or (15) is only solved to
within €, and 2¢ is added to the right-hand side of (13) or (16).
While gradient-based methods can be highly effective in prac-
tice [17], rigorously guaranteeing e-optimality for small € > 0
may be very difficult due to the potentially complicated (e.g.,
highly non-convex) optimization landscape. In Section II-D,
we summarize some results that overcome this limitation, at
the expense of imposing stronger assumptions on G.

Overview of proofs: The proofs of both Theorems 1 and 2
are based on the set-restricted eigenvalue condition (S-REC),
which formalizes the intuition that Ax; and Ax, should not
be too close relative to the separation between two possible
signals x| and x;. For instance, if Ax; = Ax; then clearly the
two cannot be distinguished. More generally, x; — X should
be far from the nullspace of A.

Definition 1 (Set-Restricted Eigenvalue Condition (S-REC)
[17, Definition 1]): Fix § C R", along with y > 0 and § > 0.
The matrix A € R™*" is said to satisfy the S-REC(S, v, 3)
if, for all x; and x; in &, it holds that ||[A(X; — X2)|2 >
viIxi —x2f2 — 4.

Notice that this definition bounds ||A(x; — X»)||2, whereas
analogous definitions based on sparsity simply bound [|Ax]||>
for sparse x (e.g., see (8)). Intuitively, this is because ||A(x; —
x2)|l2 is the more directly relevant quantity, but ||Ax| can
be used for sparse signals since the difference of two sparse
signals is still sparse (unlike for general generative priors).

It is shown in [17] that the S-REC(S, y,§) with y = 1,
coupled with a simpler property of the form |Ax| < 2|x||
(for some fixed x), suffices to establish a recovery guarantee
of the form (13) or (16), with the minimum being taken over S.
Since ||Ax|2 < 2||x]||> holds with high probability by standard
Gaussian concentration, it only remains to show that Gaussian
matrices satisfy the S-REC with high probability.

When G satisfies the Lipschitz property (Theorem 1), the
idea is to establish the desired behavior on a finite subset of
S ={G(z) : ||z|l» < r}, and then transfer this to the full set.*
When working with a finite subset, one can study the norm-
preserving properties of Gaussian matrices, as pioneered by
Johnson and Lindenstrauss [71]. The rough intuition behind
the scaling on m is that we need to cover S such that every sig-
nal in S is §-close to some point, and by the Lipschitz property
of G, this amounts to similarly covering {z € R : |zll» < r}
with closeness % This is known to be possible with a set of
size exp(O(klog %)), and the scaling on m arises as the log
of this size.

For ReLLU neural networks (Theorem 2), the idea is that
since the ReLU activation function is piecewise linear, so
is the overall function G (possibly with a huge number of
pieces). Within a linear region, one can again appeal to stan-
dard norm-preserving properties of Gaussian matrices, and a
union bound can then be applied over all pieces. A counting
argument reveals that there are w?*® such pieces, and the
bound on m arises as the log of this number.

C. Information-Theoretic Lower Bounds

To assess the degree of optimality of the upper bounds,
it is useful to establish information-theoretic lower bounds
(i.e., converse/impossibility results) stating that no estima-
tion procedure can hope to improve beyond a certain limit,
in terms of the estimation error and/or number of measure-
ments. Results of this kind were independently established by
Kamath et al. [73] and Liu and Scarlett [89].

The following theorem of [73] provides such a lower bound
in the case of Lipschitz continuous generative priors, and
serves as a counterpart to the upper bound in Theorem 1.

Theorem 3 (Lower Bound for Lipschitz Generative
Models [73, Th. 1.1]): For any input/output sizes k and n,
and positive constants L, r, and § such that log% > 1,
there exists a generative model G : R¥ — R” such that the

4More precisely, to avoid a worsened logarithmic factor, [17] adopts a
chaining argument that studies a sequence of finite sets corresponding to
increasingly fine scales.
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following holds: If there exists a random measurement matrix
A and a decoder (with access to A and y = Ax™*) that is
guaranteed to return X satisfying
min

[f—x",=cC
2eRF : ||z||<r

|G@) —x*|, + 6 (17)
with probability at least % for some absolute constant C, then

it must be the case that
. Lr
m= Q(mm {klog 5 n})

This result establishes that O(k log %’) is indeed the correct
scaling (in the most interesting regime where this quantity is
below O(n)), and that the additive dependence on § in (13)
is unavoidable, unlike the case of a sparse prior (see (6)). We
note that this result holds for a “worst-case” generative model
satisfying the assumptions of Theorem 1; it may very well
be the case that further assumptions on G can decrease the
required m.

Theorem 3 concerns the case that there is no noise (i.e.,
n = 0), but crucially relies on considering signals with rep-
resentation error in order to establish the hardness result. The
opposite approach was taken in [89], in which it was assumed
that there is no representation error, but that » is present in the
form of i.i.d. Gaussian noise. An analog of Theorem 3 was
given, though Theorem 3 has the advantage of holding for
general combinations of (n, k, L, r, §), whereas [89] requires
n to be large enough such that log %r = O(log 7).

An advantage of the approach in [89], on the other hand,
is that it also provides a lower bound establishing conditions
under which Theorem 2 is near-optimal, i.e., handling the spe-
cific case of ReLU generative models, and characterizing the
dependence on the network depth and width.

Before stating this lower bound for ReLU networks, it is
useful to highlight what the upper bound in Theorem 2 gives
in the case of Gaussian noise and no representation error. As
stated in [89, Corollary 2], if we have

(18)

x* € Range(G), and n ~ N(O, ﬁIm) (19)
m

for some « > 0, then there exists a measurement matrix’

A € R™" with squared Frobenius norm ||A||% < n such that

the mean squared error is upper bounded by

EHﬁ—ﬁﬁ]gomy (20)

Intuitively, this amounts to accurately reconstructing x with
the amount of error matching the noise level.

The lower bound in this setting is more complicated than
the case of Lipschitz generative models, so we provide an
informal statement, and refer the reader to [89] for the details.

Theorem 4 (Lower  Bound  for  ReLU  Networks
(Informal) [89, Th. 7]): Consider the case that G : R¥ — R”
is a ReLU network with depth d and width w. Suppose that

5 Equation (20) also holds when A is ii.d. Gaussian according to
Theorem 2, but it is convenient to work with fixed A in this part. As dis-
cussed following Theorem 2, the upper bound with fixed A crucially relies
on having no representation error. In view of this, Theorem 4 as stated may
appear to have a weakness of only lower bounding the number of measure-
ments under a stricter uniform recovery guarantee. However, it is discussed
in [89, Remark 1] that the proof readily provides a similar statement for
non-uniform recovery.

there exists a measurement matrix A with ||A||12: <nand a
decoder such that when (19) holds, the resulting estimate X is
guaranteed to satisfy (20). Then, we have the following:

o There exists G with depth d = 2 and large width w such

that it must be the case that m = Q (klogw).

o There exists G with width w = O(n) and large depth d

such that it must be the case that m = Q (kd).

o There exists G with simultaneously large width and large

depth such that it must be the case that m = Q (kd 11(())ggw)'

Observe that the number of measurements matches the
O(kdlog w) upper bound to within a constant factor (first case)
or an O(logn) factor (second and third cases). We note that
certain cases are known where the logarithmic factor in the
upper bound can be slightly reduced [99].

Overview of proofs: As is common in proving information-
theoretic lower bounds, the high-level idea behind Theorems 3
and 4 is to establish that the relevant recovery guaran-
tee implies being able to reliably distinguish certain well-
separated signals. If there are many such signals, then reliably
distinguishing them amounts to learning a certain amount of
information, and since each measurement only provides a lim-
ited amount of information, a lower bound on the number of
measurements follows.

In [73], the details are based on a reduction to communica-
tion complexity. A subset Xy of well-separated binary-valued
signals is formed with log |Xp| = Q2 (min{k log %, n}), and x
is restricted to be a weighted linear combination of several
such signals plus a small Gaussian perturbation. A communi-
cation game is set up in which one party wishes to identify
one of the binary-valued signals, and for which a lower bound
on the number of bits transmitted is known for achieving
constant-probability success. It is shown that transmitting a
fine discretization of y = Ax* € R™ suffices for such success,
from which a lower bound on m follows.

In [89], to prove Theorem 4 and a counterpart to Theorem 3,
a different approach is taken. The idea is to construct a gener-
ative model G that produces sparse signals,® and then apply
standard lower bounding techniques (e.g., based on Fano’s
inequality) that characterize the hardness of sparse recovery.
By studying the Lipschitz constant and/or the depth and width
of G, and combining these with the relevant lower bounds for
sparse recovery, the desired results follow. An illustration of
why neural networks can produce sparse signals is shown in
Figure 2; the piecewise linear functions can readily be imple-
mented using ReLU networks. An analog of Theorem 1 is
obtained by forming a network that produces k-sparse signals
(with input z € R¥), whereas Theorem 2 is based on produc-
ing kko-sparse signals with ko > 1, using recursively-defined
mappings that operate at ko different scales.

We refer the reader to [73], [89] for the full details of the
above proof outlines.

D. Optimization Guarantees for Random Generative Priors

As we mentioned above, finding an optimal or near-optimal
solution to problems such as (12) and (15) may not be
possible with an efficient algorithm. Thus, there is substantial

6The ability of ReLU networks to produce sparse signals was also noted
in [73], but no analog of Theorem 4 was sought.
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Fig. 2. Example function mapping z € R to X = (x[, xp,x3,X4) € R* such
that the resulting signal is 1-sparse (or is the zero vector).

motivation to give recovery guarantees for specific tractable
optimization procedures (which comes at the expense of
stronger assumptions on G). In this subsection, we outline
some examples of such guarantees.

We again consider G R — TR”" being a ReLU
neural network, but now with two main additional assump-
tions, namely, (i) sufficient expansivity (i.e., increase in the
number of nodes) from layer to layer, and (ii) random
Gaussian network weights. Due to the second assumption,
such networks would not produce meaningful signals in prac-
tice. However, as noted in [55], some trained networks do
exhibit Gaussian-like statistics, and more importantly, under-
standing random networks is already highly challenging and
serves as a good starting point towards increasingly more
realistic scenarios.

We focus primarily on the results of Hand and
Voroninski [55] and Huang et al. [62]. It was first shown
in [55] that the optimization landscape in formulation (15)
is favorable for gradient algorithms if the network architec-
ture satisfies certain deterministic properties and if there are a
sufficient number of random Gaussian measurements. Inspired
by this landscape, [62] introduced a specific subgradient algo-
rithm that provably converges. It was additionally established
in [55] that under the above-mentioned assumptions of expan-
sivity and random weights, the desired deterministic properties
are satisfied with high probability. The assumptions made were
then relaxed in various subsequent works [28], [34], [72],
several of which we will discuss in Section II-E.

1) Model for G: We consider a generator G : R¥ — R”
given by a d-layer fully connected neural network with ReLU
activations and no bias terms. That is,

G(z) =relu(W, .. .relu(W; relu(Wiz)) .. .), 2n

where relu(-) = max{-, 0} applies entry-wise, W; € R"%>*"i-1
fori=1,...,d, and no = k and ng = n.

2) Deterministic Conditions Used in the Analysis: Here we
present two useful deterministic conditions on the genera-
tive model and measurement model. The results to follow
will show that these deterministic conditions are sufficient
for certain recovery guarantees, and are satisfied with high
probability for i.i.d. Gaussian distributions on G and A.

The first condition is the Weight Distribution Condition
(WDC), which applies to individual weight matrices W;.

Definition 2 (Weight Distribution Condition (WDC) [55]):
A matrix W e R<*¢ satisfies the Weight Distribution
Condition with constant ¢ if, for all non-zero u,v € R¢, it

439
holds that

K

Z ]lwi-u>0]1w,~-v>0 : WiWiT - Qu,v <€,

i=1 2

T—0 sin 0
with Qu,y = I+ —Myy, (22)
’ 2 2 ’

where wiT € RY is the i-th row of W; @ is the angle between
uand v; My € R** is the matrix that maps m — ﬁ
W > m, and t — O for all t orthogonal to span({u, v});
and 1y is the indicator function on S.

This condition can be viewed as a generalization of an
approximate isotropy condition; for example, if u = v, the
clondition states that Zi'(:l 1w, u>0lw,v=0 - wiwiT is close to
1. The indicator functions in the summation arise from taking
the derivative of the ReLLU function.

The second condition is the Range Restricted Isometry
Condition (RRIC), which applies to the pair (G, A).

Definition 3 (Range  Restricted  Isometry  Condition
(RRIC) [55]): A matrix A € R"™ " satisfies the Range
Restricted Isometry Condition with respect to G with constant

e if, for all z1, 2y, 23,24 € R, it holds that

(A(G(z1) — G(2)), A(G(z3) — G(z4)))

bl

—(G(z1) — G(22), G(2z3) — G(z4))

< €lG(z1) — G(22) 211G (z3) — G(z4) 2. (23)

This condition states that A acts like an isometry when
acting on pairs of secant directions (i.e., differences of two
signals) with respect to the range of G.

3) Favorable Landscape for Compressive Sensing With
Gradient Algorithm Under Deterministic Conditions: Under
the deterministic conditions given above, it can be established
that the loss landscape is favorable for optimization. Consider
a signal given by x* = G(z*) for some z*, and let the mea-
surement vector be y = Ax* 4+ n with i.i.d. Gaussian 5. We
are interested in the optimization problem

minf(z), f(z) = |AG() - yli3.

The following result shows that under the WDC and RRIC,
f does not have any spurious local minima outside of z and
a negative multiple of z. Here and subsequently, when we
write poly(d), we mean that the result holds true when this is
replaced by d¢ for a suitable constant ¢ > 0 (possibly differing
in each occurrence). In addition, we let Dyf(z) denote the
directional derivative with direction v € R, and let B(z, r)
denote the radius-r ball centered at z.

Theorem 5 (Favorable Optimization Landscape [56,
Th. 4]): Fix € > 0 such that Kipoly(d)e!/* < 1, and let
d > 2. Suppose that G is such that W; satisfies the WDC with
constant € for all i = 1, ..., d, and that A satisfies the RRIC
with respect to G with constant €. Then, for all non-zero
z and z*, there exists v, € RF such that the one-sided
directional derivatives of f satisfy

(24)

€ poly(d)
D_y, .f(2) < —K3‘/_p2—dy max {|zl2, 212}, (25)
Dif(0) < . |z*
8m2d 2z
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VE£0,2 & {0} U B(z*, szoly(d)e‘/“uz*uz)

UB(—pz*, Kopoly@e'12"I2),  (26)
where p = pg is a positive number that converges to 1 as
d — o0, and K, K>, and K3 are universal constants.

While the above expressions are somewhat technical, the
simple idea is that except for points close to z* and —pz*,
we have a negative upper bound on the directional derivative,
which precludes spurious minima. Moreover, the radius around
z* and —pz* becomes arbitrarily small as € decreases.

There is an explicit formula for vy 2+, given by

{ Vf(z) differentiable at z,
VZ,Z* —

lims o Vf(z + 82') otherwise, @7

where z' can be arbitrarily chosen such that G is differentiable
at z + 8z’ for sufficiently small §. Such a z' exists by the
piecewise linearity of G, and can be generated randomly with
probability one.

Note that the dependence on 2¢ in the bounds is an arti-
fact of the underlying scaling of f(z), and does not indicate
a vanishingly small derivative. Roughly speaking, the ReLU
activation functions zero out around half of its arguments.
Hence, while W; has spectral norm approximately one, the
rows of W; that are retained by the ReLU will have spectral
norm approximately % Thus, f(z) itself is on the order of 2~¢
under the RRIC and WDC for appropriately small €.

4) Subgradient Algorithm and Convergence Guarantee
Under Deterministic Conditions: Building on Theorem 5, [62]
proposed a subgradient algorithm and showed that it has a rig-
orous convergence guarantee. Since the cost function f(z) is
continuous, piecewise quadratic, and not differentiable every-
where, the algorithm is defined with respect to a generalized
gradient, called the Clarke subdifferential, generalized subd-
ifferential, or generalized subgradient (e.g., see [27] for the
definition).

The algorithm operates as follows given some initialization:

« Compute a vector in the subgradient of the objective at

the current iterate;

« Update the current position using the subgradient and a

fixed step size;

« If negating the current iterate reduces the value of the

objective, then do so;

o Repeat until a stopping criterion is met.

Note that the third step is non-standard, and is motivated by
the landscape properties stated in Theorem 5.

Theorem 6 (Optimization Guarantee [62, Th. 1]): Suppose

that the WDC and RRIC hold with € < m, and the noise 5

Collz* |l
poly(d)24/2* ;
by the preceding algorithm with step size v = Cgm. There
exists a number of iterations, denoted by T and upper bounded

Cuf (29)2¢
by T = SR @ele

|z: —z*||, < Cspoly(d)v/€|z* |12 + Copoly(@)2/*[In]2. (28)

satisfies ||9]l2 < Consider the iterates {z;} generated

when the initialization is zg, such that

In addition, for all # > 7, we have

|21 — 2], < T llze — 2¥lly 4+ C292 Ill2, (29)

and

1G(@s1) — G2 < 25 CH = lze — 2% ]2 + 1.2C7 [ ll2.
(30)

where C =1 — 21&,% € (0, 1). Here, Cy, ..., Cy are universal
positive constants.

In accordance with the above discussion on the dependence
on 24, the initial value f(zp) scales with respect to d as 2-d
under the WDC and RRIC. Hence, and in view of the assump-
tion € < m, we find that Theorem 6 establishes that after
a number of iterations that is polynomial in d, the modified
subgradient algorithm converges linearly to z*, up to the noise
level. Note that this convergence guarantee applies for an arbi-
trary initialization, though more iterations may be required for
initializations that are large in norm. As with Theorem 5, while
the landscape is non-convex, the theorem establishes under
the WDC and RRIC that the non-convexity is mild and does
not result in spurious minima, except —pz* which the above
algorithm avoids.

5) Random G Satisfies the Deterministic Conditions With
High Probability: Finally, the following result establishes
that the WDC (Definition 2) and RRIC (Definition 3)
are satisfied with high probability provided that (i) G has
ii.d. Gaussian weights and is sufficiently expansive, and (ii) A
has i.i.d. Gaussian entries and sufficiently many rows.

Proposition 1 (High-Probability Behavior of Random
Models [56, Proposition 6]): Fix 0 < € < 1. Assume that
G follows the structure in (21) with n; > cn;—1logn;_; for
all i = 1,...,d, and that m > ckdlog I'Ilen,'. Moreover,
assume that the entries of W; are ii.d. N (0, nll_), and the

entries of A are iid. N(O, n%). Then, W,; satisfies the
WDC with constant € for all i and A satisfies the RRIC
with respect to G with constant € with probability at least
1— O(Zf.l:1 nie~Y"i-1 —¢~¥™) Here ¢ and y~! are constants
that depend polynomially on e~

Observe that the leading term in the number of measure-
ments is kd, as is the case in Theorem 2. However, depending
on the expansivity, the logarithmic term log Hf’zlni can be
order-wise larger than log w, and accordingly could potentially
be improved.

The proof of Proposition 1 relies on tools from non-
asymptotic random matrix theory [137]. Typically, establishing
a matrix concentration result like the WDC with high prob-
ability would involve three steps: showing high probability
concentration of the matrix applied to fixed vectors (u, V),
bounding an appropriate Lipschitz constant, and taking a union
bound over a net whose size depends on that Lipshitz con-
stant. Because the matrix in the WDC is discontinuous with
respect to (u, v), this approach must be modified. The authors
of [56] show that the discontinuity can be smoothed to provide
a semidefinite upper bound on the desired expression, and also
smoothed to provide a semidefinite lower bound. Each of these
can then be controlled by the standard approach mentioned
above.

Along similar lines to the proof of Theorem 2, establishing
the RRIC involves showing that the output of linear maps with
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ReLU activations live in a union of linear spaces, and counting
the number of such subspaces.

E. Further Developments

In this subsection, we provide several examples of follow-
up theoretical results related to those outlined above. We keep
this summary brief, and refer the reader to the references given
for further details.

1) Statistical Guarantees: Some further developments
related to the results in Section II-B (and to a lesser extent,
Section II-C) are outlined as follows.

Mitigating representation error: While generative priors
have clear benefits over conventional priors, they can suffer
from the issue of representation error: If the signal x* is not
exactly in the range of G, then an optimization procedure such
as (12) will always incur some amount of error no matter how
many measurements m we take. In contrast, it is straightfor-
ward to devise sparsity-based solutions that are guaranteed
to become arbitrarily accurate as m increases. To overcome
this limitation, [37] proposed to model x* as the sum of a
generative component and a sparse component, and gave a
theoretical guarantee that combines the features of Theorem 1
and analogous sparse recovery results.

With a similar motivation but a very different approach, var-
ious methods were proposed in [31], [32], [51], [63] based on
optimizing intermediate layers in the neural network defining
G, which helps to expand the range of the generator and mit-
igate representation error. Conditions were given under which
the required number of measurements is provably smaller
than Theorem 2, and improvements in the out-of-distribution
robustness were observed experimentally.

Non-linear measurement models: While Theorem 1 con-
cerns linear observation models, analogous guarantees have
been provided for a variety of non-linear measurement mod-
els, including 1-bit observations [69], [85], [105], spiked
matrix models [7], [28], phase retrieval [53], [84], princi-
pal component analysis [87], and general single-index models
[83], [86], [88]. While these each come with their own chal-
lenges, the intuition behind their associated results is often
similar to that discussed above for the linear model, with the
m = O(klog %’) scaling typically remaining.

Robustness to outliers: Theorem 1 is primarily suited to
well-behaved noise, such as Gaussian or sub-Gaussian. In con-
trast, heavy-tailed noise with large outliers can considerably
worsen the performance, both in theory (e.g., due to the size of
Imll2 in (13)) and in practice (e.g., since (12) is not a robust
objective). Algorithms and theory addressing this challenge
were given in [68], [139]. Briefly, using robust estimation tech-
niques, one can attain an analog of Theorem 1 even when
a constant fraction of the data is drawn from a heavy-tailed
distribution that yields large outliers. See also [146] for a
theoretical study of outlier detection using generative models.

General probabilistic priors: Theorems 1 and 2 treat G as a
fixed function satisfying certain properties, without addressing
the fact that even over the range of G, some signals may be
more likely than others. This distinction is particularly impor-
tant when it comes to generative models that fail to satisfy

k < n (e.g., invertible generative models with k = n [5]). To
address this, compressive sensing with general probabilistic
priors was studied in [67]. Analogous to how covering prop-
erties play a key role in the proof of Theorem 1, it was shown
that a probabilistic form of covering dictates the required num-
ber of measurements. Moreover, it was shown that in broad
scenarios, using i.i.d. Gaussian measurements and letting X be
a random sample from the posterior of x* is near-optimal for
estimation.

2) Optimization Guarantees: Some further developments
related to the results in Section II-D are outlined as follows.

Weakening the expansivity condition: In Proposition 1, the
WDC and RRIC were established with high probability in the
case of layer-wise expansivity, that is, n; > cn;—1 logn;—1. This
assumption was weakened in [34] to n; > cn;_; by introducing
the notion of pseudo-Lipschitzness and by placing nets over
spheres in a suitably non-uniform manner.

Subsequently, it was shown in [72] and [28] that layer-wise
expansivity is not necessary. Specifically, the recovery guar-
antee is possible even if some layers are contractive (i.e., they
have fewer outputs than inputs), provided that all layers are
sufficiently large relative to the input dimensionality k. This
is shown in [72] in the case of a modified gradient algorithm,
and [28] observed that the WDC of a given layer only needs
to hold restricted to the range of previous layers.

Alternative architectures: The model (21) assumes that
the architecture of the neural network G is fully-connected.
In [90], a similar recovery guarantee was established in the
case that G has a convolutional architecture.

Other inverse problems: Signal recovery guarantees with
random generative priors have been established for a variety
of inverse problems, including denoising, blind demodulation,
phase retrieval, and spiked matrix models.

Various results on denoising can be found in [1], [55],
[58], [78].7 In particular, it is shown in [58] that solving
the optimization problem ming ||y — G(z)||% with a gradient
method yields an optimal denoising rate of O(S) provided
that the noise is sufficiently small and the generative model
has Gaussian weights and is sufficiently expansive. An alter-
native approach that avoids the need for random weights and
expansivity is given in [1], instead considering sparsity prop-
erties of the hidden layers (resulting from relu(z) = 0 for
7 <0).

In the case of phase retrieval with random weights and
expansivity, solving the optimization problem ming |y —
|AG(z)|||§ allows for signal recovery with m being propor-
tional to k (ignoring the n and d dependence) [53]. This
dependence is information-theoretically optimal, and it is note-
worthy that it is attained with an efficient algorithm under
random generative priors. In contrast, for sparse priors, there
is no known practical algorithm that achieves a recovery guar-
antee with a linear dependence on the sparsity s, even though
doing so is known to be information-theoretically possible. See
also [54] for simplified arguments in the case of phase retrieval
without prior information (i.e., general signals in R").

TThese works also study the question of when z* can be recovered from
G(z*) even in the absence of noise (e.g., see [78] for an NP-hardness result).
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Random generative priors have also allowed for recovery
results for the case of spiked matrix models [7], [28]. The
number of measurements is again shown to be information-
theoretically order-optimal using an efficient algorithm, unlike
in the case of sparse models.

Other optimization algorithms: Analogous guarantees to
Theorem 2 were given in [102], [119] for projected gradient
descent, which alternates between gradient steps and projec-
tions onto the range of G. However, a notable limitation of
such guarantees is that the projection step itself depends on
the landscape of G(z), and may accordingly be intractable.
The results in Section II-D overcome this limitation at the
expense assuming random weights (along with expansiv-
ity). Two further works gave guarantees that require neither
random weights nor exact projections, but instead adopt fur-
ther deterministic assumptions on G, roughly amounting to
certain forms of smoothness. Specifically, [47] studied an algo-
rithm based on Alternating Direction Method-of-Multipliers
(ADMM), and [100] studied an algorithm based on Langevin
dynamics. Algorithms based on Langevin dynamics have also
been explored in several other works on inverse problems
and beyond, e.g., see [67] for its use in posterior sampling
with general probabilistic priors, and [106] for a general
non-asymptotic analysis under non-convex objectives.

Another important class of algorithms uses approximate
message passing (AMP), which is a powerful technique
that has been utilized extensively in high-dimensional statis-
tics [42]. Variants of AMP have successfully been devised
with theoretical guarantees in several inverse problems with
generative priors, including linear forward models [43], [93],
spiked matrix recovery [7], and phase retrieval [6]. Similar
to Section II-D, these results consider generative models with
random weights and architectural assumptions such as expan-
sivity. A key advantage of AMP is that its analysis is often
powerful enough to attain precise constant factors, unlike
typical analyses of gradient descent algorithms.

F. Ongoing Challenges

Compared to explicit priors such as sparsity and low rank-
ness, the study of generative priors remains in its relatively
early stages. In this subsection, we overview some of the ongo-
ing challenges and open problems that may be considered in
future work.

Generative model properties: While the Lipschitz constant
and the depth/width are natural parameters to consider for the
generative model, these are “global” properties that may not
fully capture the precise structure imposed by typical genera-
tive priors. For instance, even if the global Lipschitz constant
is huge, it may be that the function is mostly sufficiently
smooth to ensure that few measurements suffice. In view of
this, it would be of significant interest to identify additional
properties that more precisely dictate the required number of
measurements.

Structured measurements: Studies of compressive sens-
ing with generative priors have predominantly focused
on ii.d. Gaussian measurement matrices. Non-Gaussian
i.i.d. designs have also been considered [68], as well as certain

classes of dependent measurements [99]. However, theory is
still largely lacking for several kinds of measurements that are
used in practice; for instance, in applications such as medical
imaging, one is confined to using subsampled Fourier mea-
surements due to the inherent design of the hardware. Very
recently, a study of such settings with generative priors was
initiated [15], and it was demonstrated that the required num-
ber of measurements can be characterized by a coherence
parameter measuring the interplay between the range of the
generative model and the measurement matrix.

Optimization — guarantees with milder assumptions:
Regarding the optimization results outlined in Section II-D
and the related follow-up works, perhaps the most significant
ongoing challenge is to expand the applicability of the theory
beyond the case of random generative models, and more
generally, to give analogous guarantees with as few restrictive
assumptions on G, A, and » as possible.

Constant factors: As exemplified in the results that we
stated, most existing works on the theory of inverse problems
with generative models have typically sought to characterize
the scaling laws of the number of measurements, and not
the finer question of precise constants. As discussed above,
progress has been made in addressing this question using
approximate message passing (AMP), but broadly speaking,
there remains substantial room for progress in understanding
the constant factors associated with bounds on the number of
measurements with generative priors.

Role of training data: As we discussed earlier, the consid-
eration of properties such as the Lipschitz constant essentially
abstracts away the complicated details of how the genera-
tive model was trained. On the other hand, to attain a more
complete picture of the entire learning and information pro-
cessing pipeline, a refined theory might explicitly incorporate
such aspects, e.g., explicitly quantifying notions such as repre-
sentation and generalization, and unifying such considerations
with the number of measurements in the inverse problem, the
optimization algorithm used for decoding, and so on. While a
completely holistic theory may be challenging, future research
could potentially take gradual steps towards this.

Out-of-distribution performance: One of the main potential
concerns of generative priors is that they may perform poorly
under distribution shift, i.e., when the training data is not fully
representative of the actual signal being recovered. Various
works have started to address this limitation (see Section II-E),
but overall, we believe that it remains under-explored relative
to its importance.

III. UNTRAINED NEURAL NETWORK PRIORS

In this section, we consider untrained neural network priors,
which, in contrast to the pre-trained generative priors consid-
ered above, work without any training data and solely based
on the network architecture and the choice of optimization
procedure for fitting the signal/image at inference time. For
instance, one of the earliest such techniques called Deep
Image Prior (DIP) [134] works by fitting a standard convolu-
tional auto-encoder (the popular U-net [113]) to a single noisy
image via gradient descent, and regularizing by early stopping.
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Untrained networks have emerged as a highly successful alter-
native to data-driven methods, yielding excellent performance
for a variety of problems, including denoising [57], [134] and
compressive sensing [19], [64], [66], [135], [138], [147].

Despite being neural network based, this class of meth-
ods is conceptually related to sparsity-based methods, in that
it is not data-driven and it relies on broader properties of
signals/images (e.g., smoothness) rather than capturing the
behavior of highly specific data distributions. Note that data
is typically still used for hyperparameter tuning, similarly to
sparsity-based methods.

On the other hand, untrained networks can provide signifi-
cant improvements over sparsity-based methods; for example,
they can give better image quality for accelerated magnetic
resonance imaging [33]. While the precise reason for this is
difficult to pinpoint, it may result from the architectures of
untrained networks (e.g., incorporating operations such as con-
volution) being able to represent typical signals/images more
effectively than sparsity-based priors (e.g., dictated by low
total-variation norm).

In this section, we first discuss how signal recovery can be
performed using untrained neural networks, and then overview
the existing theory behind this approach.

A. Background

Consider the problem of reconstructing a signal x* € R”
from noisy linear measurements, y = Ax*+ 7 € R™. The sig-
nal is often an image, in which case these equations correspond
to its vectorized form.

We let G : R — R” represent a neural network with p
weights; in contrast to the previous section, here G is a func-
tion of the network weights w € RP with a fixed input z
(typically chosen at random and then fixed thereafter). This is
the opposite of the previous section, where we treated w as
fixed (pre-learned) and z as varying. The function G(w) is our
untrained neural network, and the fixed input z is considered
part of the network.

The architecture of the network is critical, and is dis-
cussed in more detail later. For now, we note that a good
choice for images is a simple five-layer convolutional network.
We reconstruct an image by applying an optimization pro-
cedure (typically gradient descent) starting from a random
initialization of the network weights, using the least-squares
loss:

L(w) = ly — AGW)|I3. (31)

This optimization procedure, possibly with early-stopped iter-
ations for regularization, yields the estimate W, from which
we estimate the unknown signal as X = G(W).

This general approach is based on the empirical observa-
tion that untrained convolutional networks tend to fit a single
natural image significantly faster than pure noise when opti-
mized with gradient descent. However, for the method to work
well, a good choice of architecture, optimization procedure,
and regularization (e.g., early stopping) can be critical.

Deep image prior: Ulyanov et al. [134] first observed
that using a standard convolutional auto-encoder (the popu-
lar U-net [113]) as a generator network, and regularizing with

D—»H»H»H-v

-}lxl convolutions + convolution with fixed kernel + ReLU
-}Linear combinations, sigmoid

Fig. 3. A rough illustration of the deep decoder, a five-layer untrained
convolutional neural network. The network performs 1x1 convolutions (i.e.,
linear combinations of channels) followed by convolutions with a fixed kernel
to map one volume to another. Convolution with a fixed kernel often includes
an upsampling operation, as displayed here.

early stopping, enables excellent denoising performance. This
method has been termed deep image prior.

Deep decoder: Many elements of auto-encoders turn out to
be largely irrelevant to the strong performance of deep image
prior. A more recent paper of Heckel and Hand [57] proposed a
much simpler network architecture, termed the deep decoder.
This network can be seen as retaining only the most rele-
vant components of a convolutional autoencoder architecture
to function as an image prior, and can be obtained from a
standard convolutional autoencoder by removing the encoder,
the skip connections, and perhaps most notably, the trainable
convolutional filters of spatial extent larger than one.

B. Theory

Untrained neural networks enable provable denoising and
compressive sensing. Here we discuss the associated recovery
guarantees, along with intuition on when and why untrained
neural networks enable accurate signal reconstruction.

1) Under-Parametrized Untrained Neural Networks: We
say that an untrained neural network is under-parametrized
if it has fewer parameters p (i.e., the dimension of w)
than its output dimension n, and over-parametrized other-
wise. Untrained networks enable signal reconstruction in both
regimes. We start with the under-parametrized regime, since
it is conceptually simpler.

The deep decoder [57] is a neural network that transforms
a random input volume® By € R"0*0 to an output image by
applying convolutions with a fixed convolutional upsampling
kernel, followed by weighted linear combinations of the chan-
nels, followed by an application of ReLU nonlinearities, and
repeating these operations several times, e.g., five times for
a five-layer network. See Figure 3 for a visualization. In the
simpler case of only two layers, we have By € R2*k0_ and the

deep decoder network is described as follows:
G(w) = relu(UpBoWo)wi, (32)

where Uy € R™3 is a linear operator implementing a convo-
lution with a fixed upsampling operator, and Wy € R¥0*%0 i a

8The input vector that we previously denoted by z corresponds to the
vectorization of B(. Here it is convenient to work with a matrix-valued input.
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parameter matrix forming linear combinations of the channels
UpBy. Finally, we apply a ReLU non-linearity and again form
linear combinations through multiplication with the param-
eter vector w; € R, which yields the output image. The
parameters of the network are the weights w = (Wo, wyp).

When the number of layers and the number of channels
ko are not too large, this network is a concise image model,
in that it can represent a natural image with much fewer
network parameters than pixels. For example, [57, Fig. 1]
shows that representing (or compressing) natural images with a
deep decoder network that has 30 times fewer parameters than
weights gives only a small loss in image quality. Moreover,
for a given storage requirement, the image quality typically
surpasses that of sparse wavelet representation, which is the
basis for the JPEG2000 compression standard.

To summarize, the deep decoder can represent a natural
image with very few parameters. At the same time, in the
under-parametrized regime, it cannot represent random noise
well; informally, an n-dimensional Gaussian noise vector
requires roughly p parameters to represent a fraction of % of
its energy. For the two-layer deep decoder, this is formalized
in the following proposition.

Proposition 2 (Lack of Noise Fitting With Under-
parametrized Networks [57, Proposition 1]): Consider the
two-layer deep decoder (32) with p parameters and arbitrary
upsampling and input matrices. Let 5 be zero-mean Gaussian
noise with identity covariance matrix. Then, with high
probability,

min||G(w) — 71 > ||n||%(1 - k,’f”) (33)
where ¢ is a numerical constant.

Here and throughout this section, we state most results with
the terminology “with high probability” used informally to
avoid overly technical statements, but the precise forms can
be found in the references given.

Proposition 2 reveals that when fitting an under-
parametrized deep decoder to a noisy image (by minimizing
the loss in (31)), we expect to fit only a small amount of noise,
thus enabling denoising. The number of network parameters,
p, trades off how well the network fits the underlying signal
(larger is better) and how much noise it fits (smaller is better).

Beyond denoising, similar ideas can be applied to compres-
sive sensing. Specifically, the proof of Proposition 2 estab-
lishes that any signal generated by an under-parametrized deep
decoder lies in a union of low-dimensional subspaces. Hence,
taking measurements with sufficiently many i.i.d. Gaussian
measurements guarantees that only one such signal is con-
sistent with the measurements.

2) Over-Parametrized Untrained Neural Networks: A suf-
ficiently over-parametrized convolutional neural network can
fit any single image perfectly, including noise. Thus, at first
sight, it may seem surprising that over-parametrized untrained
networks can enable accurate signal reconstruction. The rea-
son reconstruction is still possible is that, when optimization
is performed with gradient descent, the network fits a natural
image significantly faster than it fits noise. This is illustrated
in Figure 4, where gradient descent is applied to fit a clean

(a) noisy image (b) clean image (c) noise
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Fig. 4. Fitting an over-parametrized deep decoder network to (a) a noisy

image, (b) a clean image, and (c) pure noise. Here, MSE denotes Mean
Square Error of the network output with respect to the clean image in (a) and
fitted images in (b) and (c). While the network can fit the noise due to over-
parameterization, it fits natural images with significantly fewer iterations than
noise. Hence, when fitting a noisy image, the image component is fitted faster
than the noise component, which enables denoising via early stopping. The
curves when using other common convolution networks (e.g., a convolutional
generator network of a U-net) are very similar.

image (Fig. 4(b)) and pure noise (Fig. 4(c)), by minimizing
the least-squares loss (31) with A = 1. After about 300 itera-
tions the network fits the clean example image, but it requires
around 3000 iterations to fit the noise. If we apply gradient
descent with a noisy image (Fig. 4(a)), the network first fits
the image part of the noisy image and only later the noise
part. Thus, early stopping at about 300 iterations denoises the
image.

For denoising with an over-parametrized untrained network,
regularization via early stopping is critical for performance,
since with enough iterations the network fits the entire noisy
image. The early stopping time plays an analogous role to
the number of parameters for image reconstruction with an
under-parametrized neural network: More iterations amounts
to fitting the image part better, but also fitting more noise.

Empirically, untrained neural networks often perform best
in the over-parametrized regime. Several variants of convo-
lutional generator networks work well, including the deep
decoder, a U-net, and a convolutional generator network [33],
[57], [134].

Provable denoising with over-parametrized convolutional
networks: Here we state a theoretical result formalizing the
statement that convolutional generators optimized with gradi-
ent descent fit natural images faster than noise, and that fitting
convolutional generators via early stopped gradient descent
provably denoises “natural” images.

As a suitable model for natural images, we consider smooth
signals. Specifically, a signal x € R" is g-smooth if it can be
represented as a linear combination of the g first trigonometric
basis functions (illustrated in Figure 5). As motivation for this
definition, [125, Fig. 4] shows that the power spectrum (i.e.,
the energy distribution by frequency) of a natural image decays
rapidly from low frequencies to high frequencies.

We consider a randomly initialized network of the
form (32). The result stated below relies on the insight that the
behavior of large over-parametrized neural networks is dictated
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Fig. 5. The Ist, 2nd, 6th, and 21st trigonometric basis functions in dimension
n = 300.

by the spectral properties of its Jacobian mapping at initializa-
tion.? The left-singular values of the expected Jacobian of this
convolutional network at initialization are the trigonometric
basis functions vy, ...,Vv,. Provided that the fixed convo-
lutional filter of the convolution operation Uy in the deep
decoder network is relatively narrow (which it is in prac-
tice), the associated singular values o7 > o2 > --- > 0y,
decay rapidly, so that large singular values are associated with
low-frequency trigonometric basis functions and small singular
values are associated with high-frequency basis functions.

The following result shows that for untrained convolutional
networks, gradient descent fits the components of the noisy
measurement y = x* + 5 that align with the trigonometric
basis functions at speeds determined by the associated singular
values.

Theorem 7 (Denoising Guarantees With Over-Parametrized
Networks [60, Th. 2]): Assume that x* is a p-smooth signal,
and let » be an arbitrary noise vector. Suppose that we fit a ran-
domly initialized network of the form (32) via gradient descent

with step size o < ﬁ for ¢ iterations to minimize the least-

1
squares loss £(w) = [|G(w) — yII% with y = x* 4+ 5. Suppose
that the network is sufficiently wide, namely, kg > Q(e%),
for some € > 0. Then the estimate of the untrained network
based on the #-th iterate w; obeys, with high probability over
the random initialization,

t
[ow) =x", = (1-aa;) |x*],

n , 2 172
+ <Z<(1 - aa,?) — 1) nTv,-) te, (34
i=1

where {o0;}]"_| are the singular values described above.

In this result, € is an error term that becomes negligible
if the network is sufficiently wide. The first term is the error
for fitting the signal, and the second term corresponds to the
noise fitted after ¢ iterations. The signal-fitting term decreases
to zero in the number of iterations, while the noise-fitting term
increases in the number of iterations, up to the noise energy.
Thus, there is a trade-off between signal-fitting and noise-
fitting. After sufficiently many iterations, (1 — aapz)t is small,
and thus so is the signal fitting error. At the same time, after
such a number of iterations, only the components of the noise
that align with (roughly) the p-many lowest frequency trigono-
metric basis functions are fitted, provided that the singular
values decay sufficiently fast.

A consequence of this result (see [60, Th. 1]) is that there
is an optimal number of iterations such that for denoising a

9The Jacobian of the function G : RP? — R” is the matrix J € R"¥P
whose (i, j)-th entry is equal to the derivative of the i-th output value with
respect to the j-th input value.

signal corrupted with Gaussian noise § ~ N(0, I), the estimate
based on early-stopped gradient descent obeys

oo =], = 0(3)

This ensures that only a fraction ’;’ of the noise energy is fitted,
and the rest of the noise that lies outside of the signal sub-
space spanned by the p-lowest frequency trigonometric basis
functions is filtered out. That is, up to a constant factor, one
attains optimal performance for denoising a p-smooth signal
with Gaussian noise.

Provable compressive sensing with over-parametrized con-
volutional networks: Here we consider signal reconstruction
from m < n noiseless random Gaussian measurements with
an untrained network, using gradient descent applied to the
loss (31). For this setup, perhaps surprisingly, no regularization
is necessary (in contrast to the denoising problem discussed
above) since the network has an interesting self-regularization
property.

The following result is a specialized version of that in
[59, Th. 2], which considers general decay patterns of the sin-
gular values of the Jacobian. Sufficiently fast decay is needed
for accurate reconstruction, and the following result focuses on
geometric decay, which is motivated by the fast decay typically
observed in practice.

Theorem 8 (Compressive Sensing Guarantees With Over-
Parametrized Networks; Corollary of [59, Th. 2]): Let A €
R™ " be an i.i.d. Gaussian random matrix, and suppose that
we are given noiseless measurements y = Ax* of an % -smooth
signal x*. Consider the two-layer neural network (31), with the
convolutional kernel (of the convolution operator Up) chosen
so that the singular values of the Jacobian of the network
at initialization decay geometrically, i.e., O'iz = yi for some
y € (0, 1). Moreover, suppose the network is sufficiently wide,
namely, the number of channels satisfies kg > CZ for some
& € (0, 1) and a numerical constant C. Then, with high proba-
bility, the estimate W, obtained by applying gradient descent
to the loss (31) until convergence satisfies

m/3
6w I} = 0 £

nxﬁ>+sﬂmW§ (35)
-V

This result guarantees the almost perfect recovery of an %Z-
smooth signal from only m noiseless measurements, which
is optimal up to a constant. Note that the guarantee is non-
uniform, i.e., it holds with high probability over A for fixed x*.
The mechanism underlying this result is that gradient descent
fits the lowest-frequency components of the signal before the
higher frequency component, similar to the denoising result
stated in Theorem 7.

C. Discussion and Ongoing Challenges

Linear approximation and its limitations: The proofs of
Theorems 7 and 8 rely on relating the dynamics of gradient
descent applied to fitting an over-parametrized network to that
of gradient descent of an associated linear network. This proof
technique has been used in a variety of recent works [39], [65],
[112], [128]. As such, the analysis readily extends to deeper
neural networks.
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However, the main shortcoming of the analysis is that it is
constrained to networks operating in a regime where it behaves
similar to an associated linear model (implicitly entering via
the large-width assumption). This is a reasonable first-order
approximation of what untrained networks actually do, but
in practice untrained networks typically do not operate in the
regime where they behave like associated linear models. What
makes untrained networks work so well compared to linear
models for denoising and signal reconstruction cannot be cap-
tured by this analysis, and therefore, an important avenue for
future research is to develop a finer analysis for lower-width
untrained networks.

Beyond convolutional networks: In this section, we focused
on image reconstruction with untrained convolutional neu-
ral networks. We end this section by discussing architectures
beyond convolutional networks, and signals beyond images,
for which untrained neural networks can still serve as a
powerful approach.

For example, coordinate-based neural representations for
images, 3D shapes, and other signals have recently emerged
as an alternative for traditional discrete representations such as
sparse representations or convolutional neural networks. They
have been employed for surface reconstruction [140], repre-
senting scenes and view synthesis [95], and for representing
and working with images. Such networks are untrained neural
networks, as they perform reconstruction without any training,
in a similar fashion to convolutional networks.

A key component of many of the coordinate-based neural
representations are sinusoidal mappings in the first layer [95],
[126], [132]. These networks are closely related to convolu-
tional untrained neural networks, since they can be shown to be
equivalent to convolutional architectures if sufficiently wide.

Finally, untrained neural networks have also been
used to reconstruct graph signals [110], as well as
continuously-indexed objects through fitting probabilistic
models [114], [150]. We expect that there is significant poten-
tial for further theoretical (and practical) developments in these
directions.

IV. UNFOLDING METHODS

Recent years have witnessed a surge of interest in algo-
rithm unfolding (also known as unrolling) techniques to tackle
various inverse problems arising in signal processing, image
processing, and machine learning [96].

Unfolding methods map an iterative solver (algorithm) of
an inverse problem onto a recurrent neural network structure.
The different iterations of the iterative algorithm correspond
to different layers of the neural network structure, with layer
parameters corresponding to solver parameters. Instead of
fixing the layer parameters, they are optimized in a data-
driven manner using learning algorithms, such as empirical
risk minimization via stochastic gradient descent, by leverag-
ing a dataset consisting of input-output examples (i.e., training
data). Compared to most standard neural network architec-
tures, unfolding methods directly capture domain knowledge
according to the iterative algorithm they are based on, and
they often contain considerably fewer parameters. Empirically,

unfolding methods have achieved state-of-the-art performance
in a variety of applications of interest, e.g., being featured
prominently in the fastMRI competition.'®

We will focus our attention on how unfolding techniques
apply to the classical sparse recovery problem, in view of the
fact that — in addition to its myriad of applications — this is
where much of the existing theory-oriented work has arisen.
Moreover, sparse recovery is the problem for which algorithm
unfolding was originally proposed in the pioneering work of
Gregor and LeCun [50]. We refer the reader to recent review
articles that overview how unfolding applies to numerous other
inverse problems in various fields [96], [120], [121].

A. The Classical ISTA Algorithm

We consider the problem of recovering a sparse vector x*
given (noisy) linear measurements of the form y = Ax*+7, as
outlined in Section I. A classical iterative algorithm to recover
x* is iterative shrinkage thresholding algorithm (ISTA) [35].
ISTA is closely connected to the Lasso method, whose
optimization problem we repeat here for convenience:

min [ly — Ax||3 + A]x]. (36)

The ISTA algorithm is an instance of a more general class of
techniques called proximal gradient methods, which roughly
work by performing gradient steps on one term (|ly — Ax||%
for Lasso) and applying a so-called proximal mapping that
encourages the other term to be small (A[x||; for Lasso).
More specifically, given an initialization X, the ISTA
algorithm produces the following iterates indexed by #:

1
X1 = Wase <Xz + - AT(Y - AXt))» (37

3
where £ is an upper bound on the largest eigenvalue of
ATA, and Wy(z) is the soft-thresholding function that is
applied on each element of a vector argument as follows:
Wy (x) = sign(x) - max{0, |x| — 6}.

The most well-known unfolding method — Learned Iterative
Shrinkage-Thresholding Algorithm (LISTA) [50] — leverages
this approach to solve the sparse recovery problem using a
neural network in a data-driven manner, and is described in
the following subsection.

B. The Unfolding Principle: LISTA

The pioneering work of Gregor and LeCun [50] recognized
that one can map the iterations of the ISTA algorithm to differ-
ent layers of a neural network structure. Concretely, by letting
W, = %AT, W, =1- éATA, 6 = % in (37), we can write
the t iterations of the ISTA algorithm as follows:

Xir1 = Vo (Wiy + Wax,), t=0,1,....,t—1. (38)

This gives rise to a t-layer recurrent neural network structure
where different layers correspond to different iterations of the
ISTA algorithm; see Figure 6. The network non-linearity cor-
responds to the soft-threshold operator in lieu of the standard
ReLU.

lOhttps://fastmri.org/
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Fig. 6. (Top) Recurrent neural network structure defined using a feedback
connection. (Bottom) Unrolled feed-forward neural network structure.

Moreover, by letting W, W5, and 6 be iteration-dependent
(and accordingly denoted by W ;, W2 ;, and 6;), we can write
the iterations as follows:

i1 = Vo (Wiy +Wox), 1=0,1,...,7—1. (39)

This gives rise to a t-layer feed-forward neural network with
side connections, with weight matrices Wy, and W5 ;, and
non-linearity thresholds 6;, as illustrated in Figure 6.

In [50], it was proposed to optimize the parameters of the
resulting t-layer feed-forward neural network in a data-driven
manner. Specifically, given access to a dataset consisting of
various (measurement, target) pairs corresponding to the linear
model in (2), ie., S = {(y},x)),i = 1,..., N} with y; € R”
and x; € R”, one can consider the following empirical risk
minimization problem:

i g Al A2
. ;IIXZ- ()3
where X(y;) is the t-layer neural network output associ-
ated with the network input yg.” This problem can then be
solved using optimization techniques such as stochastic gra-
dient descent. Note that the measurement matrix A does not
need to be known to apply LISTA, though knowing it can be
useful for forming other variations (to be described below).

A common variation is to tie the parameters across the var-
ious layers of the network, i.e., Wi ; = Wi, Wy, = Wy, and
6; = 6. This is particularly helpful when the training set is
small.

The reformulation of T ISTA iterations onto a t-layer neural
network with parameters that can be further tuned, as described
in (38), (39), and (40), is referred to as LISTA. It is often
referred to as a model-based learning method, because the
network architecture is specifically defined according to a par-
ticular measurement model (the linear model), optimization
procedure (Lasso), and iterative solver (ISTA). This idea can
naturally be extended to many other settings, optimization
problems, and solvers.

It has been shown empirically that, in comparison with
ISTA, LISTA can deliver a more accurate sparse vector
with significantly fewer layers/iterations (e.g., see [50]). The
success of LISTA has spurred numerous applications of algo-
rithm unrolling over the years, in imaging applications [10],

(40)

HNot to be confused with regression and classification problems in which
y often denotes the label to be predicted.

[70], [116], [118], [127] and beyond [74], [109], [149] (see
[96, Table I] for a longer list). More recently, significant
interest has arisen in the theoretical foundations of unfolding
algorithms.

C. Theoretical Foundations of Unfolding Methods

Theoretical studies of unfolding methods broadly fall under
the following two categories.

Optimization/Convergence Results: This class of results
regards convergence properties, studying whether LISTA-type
network architectures can produce an accurate solution faster
compared to ISTA under idealized choices of weights.!?
This class of contributions also often demonstrates that one
can simplify the classical LISTA approach of [50], e.g.,
by exploring certain relations/dependencies/couplings between
the LISTA learnable parameters. Works giving results of this
kind include [24], [25], [81].

Learning-Theoretic Oriented Results: Another class of con-
tributions concentrates on learning-theoretic aspects, studying
how the generalization error — corresponding to the differ-
ence between the expected error and the empirical error —
behaves as a function of various quantities relating to the learn-
ing problem, including the number of training samples. Works
giving results of this kind include [14], [26], [117], [124].

We proceed by highlighting some key results of both kinds.

1) Optimization/Convergence Results: In [24], Chen et al.
showed that the LISTA learnable weight matrices asymptoti-
cally admit a partial weight coupling relationship given by

Wy, =1—-Wj,A. 41

Accordingly, they simplified the LISTA structure as follows:

X1 = g, (x, + W (y — Axy)). (42)

Note that this simplification requires knowledge of the matrix
A, which is not always known in practice. This simplified
version of LISTA — which involves learning only a single
weight matrix and threshold per layer — admits the following
convergence guarantee.

Theorem 9 (Adapted From [24, Th. 2]): Assume that x* €
{x € R"|xllo < s,lXllc < B} and |Inlli < o. Moreover,
assume that A satisfies a coherence condition, and that s is
sufficiently small as a function of the associated coherence
parameter (see [24, Appendix B] for a formal statement).
Then, there exists a sequence of parameters {W;, 6;} such that
the sequence of iterates in (42) with xg = 0 satisfies

||xt —x* H2 < sBexp(—ct) + Co, (43)

where ¢ > 0 and C > 0 are scalars that depend only on the
linear operator A and signal sparsity s.

This result shows that a LISTA-like structure can produce
a sequence of iterates that is linearly convergent for some
sequence of parameters. In contrast, ISTA is generally sublin-
early convergent until its iterates settle on a support [13]. Thus,

121t should be noted, however, that these results typically impose stronger
assumptions on the signal, noise, and measurement matrix compared to
classical ISTA theory.
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this result provides theoretical evidence that a LISTA-like
structure can outperform conventional methods. '3

It should be noted that the sequences of parameters shown
to exist in Theorem 9 do not necessarily correspond to the
parameters learned using empirical risk minimization. Thus,
results of this kind serve as a justification for the architecture,
rather than a justification of the training procedure. Proving
analogous results for empirical risk minimization would be of
significant interest in future work.

Another variation considered in [24] is

X4 = W (44)

D16, (Xt + WtT(y - AXz)),

where one replaces the original soft-thresholding operator
Wy, () with a thresholding operator with support selection
\I/SS 0, (-). This operator retains a proportion p; of the entries as
the ‘trusted support” at layer ¢, where p; is a hyper-parameter
that is manually tuned. Specifically, it is proposed to choose
p: proportional to ¢ and capped to a maximal value:

i = min{pt, pmax}, (45)

leaving only p and ppax to be tuned. This LISTA-like architec-
ture with support selection can exhibit a convergence guarantee
that is slightly better than that of Theorem 9, as stated in the
following.

Theorem 10 (Adapted From [24, Th. 3]): Under the con-
ditions of Theorem 9, there exists a sequence of parameters
{W4, 6;} such that the sequence of iterates in (44) with xo = 0
and p; in (45) satisfies

-1
/ /
[Ix; — x|l 5sBexp<— ci) + Co,
i=0

(46)

where c;. > ¢ (Vi) and C' < C, with (¢, C) coming from
Theorem 9. Moreover, under an additional assumption that
the SNR is not too small [24, Assumption 2], we have the
strict inequalities ¢; > ¢ for large enough i, and C’ < C.

Recent works have also shown that the LISTA structure can
be simplified further, without affecting (or even improving) the
convergence rates; we proceed by outlining some examples.

Analytic LISTA (ALISTA): In the noiseless setting, it was
shown in [81] that the LISTA structure in (44) can be
simplified further to

X1 =W, (% + W (y — Ax)). (47)

The matrix W — which is fixed across different layers — can
be pre-computed by solving a data-free optimization problem
(which depends only on A), whereas the layer-wise thresh-
old parameters {60:},Z 701 and the layer-wise step-size parameters
{y,} _0 are optimized using data. The parameters {pt} _0 are
again chosen according to (45). This scheme, known as ana-
lytic LISTA (ALISTA), has considerably fewer parameters to
learn/train compared to the scheme in [24] or conventional

131t has been shown that ISTA can exhibit faster convergence rates provided
that one can choose the Lasso regularization parameter A adaptively over
iterations [52], [143]. This idea is actually adopted in LISTA, because the
parameters {0};>1 correspond to a path of Lasso parameters {A};>1.

LISTA [50]. Moreover, this simplified structure retains the lin-
ear convergence properties of the structure in [24]. Note that
this variation requires knowledge of A.

Hyper-LISTA: In [25], it was proposed to augment the
ALISTA structure in (47) with an additional momentum term:

A ) (x + v W (y — Ax) + Bi(xi — Xi-1)). (48)

This structure contains the learnable parameters p;, 6;, i,
and B;, with W being pre-computed by solving a data-free
optimization problem (again depending only on A). With
this momentum term, it was shown in [25] that the resulting
network can exhibit a better linear convergence rate. They also
prove that with instance-optimal parameters — where p;, 6;, ¥4,
and B; depend on x; — the network exhibits super-linear con-
vergence. Importantly, with such instance-optimal parameters,
it is shown that the tuning procedure involves learning only
three hyper-parameters. This ultra lightweight scheme, known
as HyperLISTA, is therefore much simpler than the original
LISTA or even ALISTA.

Other works: There have been various other works suggest-
ing how to further improve unfolded ISTA networks and its
variants [2], [79], [141]. For example, [2] studies strategies
for LISTA that involve learning only step sizes — named Step-
LISTA (SLISTA) — and that can outperform standard LISTA.
Other earlier works studying the merit of unfolding meth-
ods include [97], [144], and cover distinct algorithms such
as iterative hard thresholding (IHT).

2) Learning Results: We now overview learning-theoretic
oriented results that further illuminate the merits of LISTA
networks in comparison to standard neural networks. This
class of emerging results expound how the expected (popu-
lation) error deviates from the empirical error as a function of
certain quantities relevant to the learning problem.

Suppose that we have access to a training set S =
{(yi, x] )}N | containing a series of input-output i.i.d. samples of
(measurement target) pairs associated with the model in (2).
This training set is used to learn the learnable parameters of the
model-based network (e.g., LISTA) using a learning algorithm
such as empirical risk minimization.

We define the population error and the empirical error asso-
ciated with a certain model-based network /4 taken from a class
of model-based networks H as

Le(h) =E[eh; (y,x)], Leh) =

Ze

yl’ l
(49)

where £(-; -) represents a per-sample loss function, taken here
to be the ¢;-loss between the model-based network output for a
given input and the associated ground truth. The generalization
error is defined as follows:

Gen(h) = |Lp(h) — Le(h) |, (50)

which quantifies how much the expected error deviates from
the empirical error for a certain model & € H.

The behaviour of the generalization error for a certain class
of model-based networks is discussed by Behboodi et al. [14].
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Their structure differs slightly from the classical LISTA struc-
ture and its variations discussed above. Specifically, in view of
the fact that [14] assumes that the signal of interest is sparse in
some orthogonal dictionary rather than being sparse itself (i.e.,
they write the vector of interest X in terms of a sparse vec-
tor z as Xx = &z for some orthogonal dictionary ® € R"*"),
their network structure is composed of a LISTA-like multi-
layer encoder that converts the measurement vector onto a
sparse vector, followed by a linear decoder that converts the
sparse vector onto the vector of interest. For technical rea-
sons, the final output may also be further scaled to have a
bounded norm. Their network structure is also defined by var-
ious weight matrices — akin to LISTA — that depend on the
forward operator, the dictionary, and other quantities, but the
trainable parameters correspond only to the dictionary entries,
and are tied across layers. (i.e., the dictionary parameterizes
this class of model-based networks). Their approach therefore
also requires knowledge of A.

Theorem 11 (Adapted From [14, Th. 2]): The generaliza-
tion error associated with the above-described 7-layer model-
based network behaves as follows with high probability'*:

2
Gen(h) < O(\/mnlogr}—\l/—n logr>’

(G

provided that A has a bounded spectral norm and ||x*||, is
bounded (see [14] for the precise conditions).

This result, whose proof relies on a Rademacher complexity
analysis, suggests that model-based networks may exhibit bet-
ter generalization capabilities than traditional neural networks,
in line with empirical results [50]. Concretely, this gener-
alization error bound for LISTA-like model-based networks
depends on the number of layers only logarithmically, whereas
generalization error bounds for traditional neural networks
(albeit in classification settings) can scale exponentially in the
number of layers [14], [117]. On the other hand, the depen-
dence on m and #n in (51) remains fairly strong, and it would be
of interest to determine if it can be reduced, e.g., by exploiting
sparsity (notice that the sparsity level s is absent in (51)).

Other works: Extensions of the above generalization results
are covered in [14], [117], [124], involving different learn-
able parameters or different degrees of weight-sharing between
different layers and a variety of network architectures.
Notably, [124] offers a Rademacher complexity and local
Rademacher complexity analysis of the generalization error
and estimation error of model-based networks, respectively,
showing that the soft-thresholding nonlinearity can play a key
role in guaranteeing that model-based networks perform better
than traditional neural networks. They also show that with a
proper choice of parameters, the generalization error bound
decays as a function of the number of layers. This result
does not hold for standard ReLU networks, demonstrating the
power of model-based networks. In [104], further guarantees
were given for model-based networks, by deriving a bound on

14For example, with probability 0.99 or any other fixed value in (0, 1) (the
precise value only affects the hidden constant in the O(-) notation).

the number of training samples needed to ensure that the train-
ing loss decreases to zero as the number of training iterations
increases.

D. Discussion and Ongoing Challenges

We conclude this section by discussing some limitations of
the existing theory, and the associated ongoing challenges.

Convergence rates and training: As we already highlighted,
results such as Theorems 9 and 10 demonstrate the existence of
good weights for a given architecture, but it remains an impor-
tant open challenge to theoretically determine how effective
training procedures are in finding good weights, or whether
they have provable limitations. Moreover, previous results in
this line of works often impose somewhat restrictive assump-
tions (e.g., coherence properties of A and low sparsity) that it
would be of interest to relax or remove.

Improved generalization analyses: Overall, the general-
ization properties of model-based networks deriving from
unrolling techniques are still in their infancy. We highlighted
some recent results showing that such objects can, in princi-
ple, generalize better than classical neural networks. However,
a more complete picture may require a significantly better
understanding of both model-based networks and standard
networks. For instance, in over-parametrized settings, existing
theory may suggest overfitting, but in practice the network may
still generalize exceptionally well. It is of interest to develop
new theoretical machinery that captures the interplay between
key elements of the learning problem, including the influence
of the optimization procedure. Some initial results exploring
the interplay between algorithmic notions (e.g., convergence,
stability, and sensitivity) and statistical notions (e.g., general-
ization) appear in [26] within the context of deep architectures
with (unrolled) reasoning layers.

Beyond sparse recovery: We have focused on model-based
networks for sparse recovery problems, deriving from a Lasso
formulation and an associated ISTA solver. However, one
can also derive model-based networks for numerous other
inverse problems and information processing tasks. Thus, there
remains considerable room for expanding the scope of the
existing theory and algorithms, and understanding how model-
based networks compare to classical methods or standard
neural network architectures.

V. OTHER TOPICS ON DEEP LEARNING METHODS IN
INVERSE PROBLEMS

In this section, we briefly highlight some other topics that
have been considered regarding deep learning methods in
inverse problems (without seeking to be exhaustive), including
certain areas where theory is largely or completely lacking.

Plug-and-play methods: While denoising is a seemingly rel-
atively simple inverse problem, powerful strategies have been
devised for using denoising as a building block for consider-
ably more general inverse problems, e.g., [94], [111], [136].
As an example, the pioneering work [136] interpreted
the iterative ADMM algorithm as alternating between an
£>-regularized recovery problem and a denoising problem, and
accordingly proposed to use a generic denoiser for the latter
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(e.g., a pre-trained neural network based denoiser). The prior
information on the signal is then encoded in the denoiser, and
accordingly, this approach was termed plug-and-play priors.
Related ideas have since been used in AMP algorithms [94]
and regularization by denoising [111], among others.

A variety of theoretical guarantees, particularly optimization
convergence guarantees, have been devised for these meth-
ods, e.g., see [23], [82], [92], [92], [108], [115], [129], [133]
and the references therein. In particular, we highlight the
recent work [82], which adopted a restricted eigenvalue con-
dition (REC) analogous to the one used to prove Theorems 1
and 2. Specifically, the REC is defined with respect to the
range of the denoiser (rather than the range of a generative
model), and it is shown that this leads to accurate estima-
tion of the underlying signal under suitable boundedness and
Lipschitz assumptions on the residual function induced by the
denoiser.

Instabilities in deep learning methods: In the machine learn-
ing literature, it is widely understood that neural networks
for classification (and other tasks) can be highly sensitive
to adversarial perturbations in the input [130]. A detailed
theoretical and empirical study was recently given around anal-
ogous instability issues in inverse problems [49] (following a
related empirical study in [4]); we proceed by highlighting the
over-arching idea in this work.

The focus in [49] is on deep learning for the decoder, i.e.,
training a neural network to map y = Ax to x (or similarly with
noise). Suppose that such a network learns an accurate map-
ping for two signals x, X’ with outputs y, y’, and that A(x —x")
is small compared to x — x’ itself (i.e., x — X’ is close to the
nullspace or kernel of A). This means that we have two (rel-
atively) nearby y, y’ being mapped to two distant x, x". Then,
the network becomes unstable in the sense that the output is
significantly different for two nearby inputs, resulting in sen-
sitivity to adversarial noise. Perhaps more surprisingly, it is
shown in [49] that even sensitivity to well-behaved random
noise (e.g., Gaussian) can arise from this phenomenon, both
in theory and practice.

In some cases, these difficulties could be circumvented by
considering a sufficiently well-behaved measurement matrix
(e.g., i.i.d. Gaussian). However, when one does not have the
luxury of being able to design the measurements, the results
of [49] point to the idea that learning methods should be
kernel-aware in the sense of avoiding the above behavior for
pairs of signals whose difference is close to the kernel of A.
Further details and discussions can be found in [49], and addi-
tional results regarding accuracy and stability can be found
in [30].

Training, generalization, and out-of-distribution
performance: As we highlighted in Sections II and IV,
theoretical studies of data-driven deep learning methods for
inverse problems still largely lack a good understanding of
the precise role of training data, including the fundamental
notion of generalization. Beyond the works on unfolding
methods highlighted in Section IV, an example work on
the generalization error in inverse problems is [3], with the
generalization bounds depending on (i) a complexity measure
of the signal space, and (ii) norms of the Jacobian matrices

of both the network itself and the network composed with
the forward model.

Moreover, even provably small generalization error on
i.i.d. data may be insufficient in practical scenarios, where
one often requires robustness to out-of-distribution samples.
The above-mentioned works on instabilities [30], [49] study
an important special case of such issues, and another exam-
ple is mitigating representation error in the case of generative
priors [32], [37], which we discussed in Section II-E.

Another limitation of the learning-based works that we have
surveyed is that they are often based on the availability of
“clean” training data, e.g., for learning a generative prior or
tuning a neural network based decoder. To address this, various
works have explored methods for training with only samples
that are noisy (e.g., X 4 z instead of x) or compressed (e.g.,
Ax instead of x) [18], [77], [131].

Overall, despite this initial progress, we believe that much
more remains to be done around training and generalization,
and that these issues will play a crucial role in future studies
of data-driven methods.

Measurement matrix design: Beyond signal modeling and
decoding techniques, deep learning methods have been
proposed for designing the measurement matrix A in com-
pressive sensing [98], [142]. However, these works have
largely focused on algorithm design and empirical evalua-
tion, rather than theory. While theoretical analyses for certain
learning-based measurement designs do exist (e.g., [9]) with
the possibility of specializing to scenarios involving neural
networks, the theory of deep learning based measurement
design currently appears to remain largely open.

Other decoding techniques: As we outlined in Section IV,
there exist a variety of theoretical results for unfolding algo-
rithms of interest. However, unfolding methods are just one of
many classes of deep learning based decoders [101], varying
according to the architecture, the degree of prior knowledge
of A, and so on. Accordingly, there remains considerable
room for expanding the scope of theoretical studies in this
domain.

Specialized inverse problems: Theoretical guarantees for
deep learning based inverse problems have largely focused on
the important special cases of denoising and compressive sens-
ing, or problems closely related to these. Further theoretical
studies on other specialized inverse problems (e.g., inpainting,
super-resolution, etc.) could provide significant benefit to this
continually developing research area. We also highlight the
topic of deep learning for coding and communication [46],
[75], [122], [123], which similarly poses a variety of spe-
cialized inverse problems whose study has largely relied on
empirical evaluation.

VI. CONCLUSION

While studies of deep learning methods are typically driven
by their excellent practical performance, they also pose a vari-
ety of unique and exciting theoretical questions. We have
surveyed several prominent examples of the theory behind
deep learning methods for inverse problems, and outlined a
variety of ongoing challenges and open problems. Overall,
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despite the rapid growth of this line of works, we believe that
the topic remains in its early stages, with many of the most
exciting developments still to come.
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