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Abstract1

In the first year of life, infants’ speech perception becomes attuned to the sounds of their2

native language. This process of early phonetic learning has traditionally been framed as3

phonetic category acquisition. However, recent studies have hypothesized that the attunement4

may instead reflect a perceptual space learning process that does not involve categories. In5

this article, we explore the idea of perceptual space learning by implementing five different6

perceptual space learning models and testing them on three phonetic contrasts that have been7

tested in the infant speech perception literature. We reproduce and extend previous results8

showing that a perceptual space learning model that uses only distributional information about9

the acoustics of short time slices of speech can account for at least some cross-linguistic10

differences in infant perception. Moreover, we find that a second perceptual space learning11

model which benefits from word-level guidance performs equally well in capturing cross-12

linguistic differences in infant speech perception. These results provide support for the general13

idea of perceptual space learning as a theory of early phonetic learning, but suggest that more14

fine-grained data are needed to distinguish between different formal accounts. Finally, we15

provide testable empirical predictions of the two most promising models and show that these16

are not identical, making it possible to independently evaluate each model in experiments with17

infants in future research.18

1 Introduction19

Infants’ speech perception changes in the first year of their life. For example, at the age of 6–820

months, English-learning and Japanese-learning infants are equally able to detect the difference21

between sounds [ô] (as in rock) and [l] (as in lock), whereas by the age of 10–12 months, the22

two groups diverge, showing attunement to the phonetic contrasts present in their input language23

(Kuhl et al., 2006). Similar results have been reported for many other languages, such as Catalan24

(Bosch & Sebastián-Gallés, 2003), Zulu (Best & McRoberts, 2003), Mandarin Chinese (Tsao,25

Liu, & Kuhl, 2006), French (Burns, Yoshida, Hill, & Werker, 2007), Hebrew (Segal, Hejli-Assi,26

& Kishon-Rabin, 2016), etc. This process of attunement is known as early phonetic learning,27

and a number of existing theoretical accounts have been proposed to explain such learning (e.g.,28

Best, 1994; Feldman, Goldwater, Dupoux, & Schatz, 2021; Kuhl & Iverson, 1995; Werker &29
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Curtin, 2005). At the same time, the exact mechanisms underlying early phonetic learning are30

not fully understood. One way to study such mechanisms is to implement them as computational31

models and then evaluate on data from experiments with infants. A computational implementation32

requires that each mechanism is specified in sufficient detail and guarantees that it can be easily33

tested on new data sets as they become available, ensuring the method’s scalability (Cruz Blandón,34

Cristia, & Räsänen, 2021). Here, we adopt computational modeling to answer the question: Which35

computationally implemented mechanisms of early phonetic learning, if any, can correctly predict36

the existing crosslinguistic data on infants’ phone discrimination?37

Until recently, no computational models could explain how the specific speech input to which38

infants are exposed leads to the observed changes in those infants’ discrimination of phonetic39

contrasts. In a recent study, Schatz, Feldman, Goldwater, Cao, and Dupoux (2021) presented40

such a computational model, which correctly predicted the documented cross-linguistic difference41

in infants’ discrimination of [ô] and [l] after learning from unsegmented speech. They explicitly42

simulated the learning process for Japanese and American English infants by (separately) training43

their model on unsegmented multispeaker speech recordings either in Japanese or in American44

English. They then measured the trained models’ ability to discriminate [ô] and [l]with the machine45

ABX task, a flexible measure of discrimination that can be applied to model representations in46

essentially any format. In this task, the Japanesemodel showed a significantly higher discrimination47

error than the American English model, a crosslinguistic pattern observed in 10–12-month-old48

infants (Kuhl et al., 2006). By testing the model on one phonetic contrast, Schatz et al. (2021)49

showed the feasibility of predicting crosslinguistic differences in phone discrimination by a model50

that applies distributional learning mechanisms to unsegmented speech data. For this purpose,51

a single phonetic contrast provides sufficient evidence. At the same time, the success of Schatz52

et al.’s approach calls for a more rigorous testing of their model, to determine whether this is a53

plausible model of early phonetic learning. Our first goal is to test whether Schatz et al.’s model can54

correctly predict crosslinguistic differences in infants’ discrimination of other phonetic contrasts in55

other languages.56

Our second goal relates to the particular model choice in Schatz et al. (2021). To our knowledge,57

this is the only model proposed in the literature that learns from unsegmented speech and has been58

shown to correctly predict crosslinguistic discrimination patterns. To simulate a learner capable59
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of handling realistic input, they selected a cognitively plausible model for unsupervised learning60

from speech, proposed in the context of engineering applications. At the same time, the model61

implements a relatively simple unsupervised clustering algorithm. Many other cognitively plausible62

models have been recently proposed in the context of engineering applications (e.g., Chung, Hsu,63

Tang, & Glass, 2019; Kamper, 2019; Kamper, Elsner, Jansen, & Goldwater, 2015). These models64

implement various versions of perceptual space learning from the speech signal, i.e., a process65

of transforming the acoustic similarity space, leading to changes of the distances between speech66

sounds (Feldman et al., 2021). Although Schatz et al. (2021) showed that early phonetic learning67

can be modeled in terms of such perceptual space transformations, perceptual space learning is not68

a single unified theory, and we need to understand which mechanisms better explain the existing69

data. Therefore, we test which learning mechanisms, as implemented in specific computational70

models, lead to results qualitatively matching infants’ behavioral data.71

To address these two issues, in Study 1 we apply the model of Schatz et al. (2021) to three72

crosslinguistic phone discrimination tasks grounded in infant studies from different languages. We73

consider Schatz et al.’s (2021) original American English data in order to reproduce the reported74

findings and two other data sets (Mandarin Chinese and Catalan) in order to determine whether the75

findings generalize to other contrasts and languages. We find that the model can correctly predict76

the crosslinguistic pattern for the Mandarin Chinese contrast, but not for the Catalan contrast. In77

Study 2, we consider four other models developed in the speech technology community; these78

models are all state-of-the-art extensions of the well-known autoencoder neural network (Kramer,79

1991) commonly used in modeling statistical language learning (e.g., Jones & Brandt, 2020;80

Mareschal & French, 2017; Plaut & Vande Velde, 2017). We evaluate these four algorithms on the81

same three data sets, to study whether any of the algorithms can correctly predict the discrimination82

patterns for all the three contrasts, potentially providing a better model of infant phonetic learning83

than the one proposed in Schatz et al. (2021). Doing so allows us to gain insight into the kinds of84

representations and learning mechanisms that infants are likely to employ.85

Wefind that onemodel (Kamper, 2019) shows infant-like crosslinguistic discrimination patterns86

for the same two contrasts as Schatz et al.’s model— the American English [ô]–[l] and theMandarin87

Chinese contrast — while three other models appear less successful as models of early phonetic88

learning. As a result, we have two models — Schatz et al. (2021) and Kamper (2019) — that89
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substantially differ in their learning mechanisms, but make qualitatively identical predictions on90

the three target contrasts. An important implication of this result is that the existing discrimination91

data sets allow us to rule out some of the models, but are equally compatible with more than one92

model of early phonetic learning. Ideally, we would like to have a large collection of infants’93

phone discrimination data that would include a wide variety of phonetic contrasts across languages94

from multiple experiments. However, such experiments can be costly to run, and therefore, it95

is important to carefully select phone contrasts that are likely to yield crosslinguistic differences96

in discrimination. To help identify such contrasts, we further use our two “best” computational97

models to make predictions about discrimination difficulty of various contrasts. These predictions98

can further guide experiments with infants.99

The models that we use learn from unsegmented speech data and do not rely on symbolic100

representations of phones (see next section for a relevant discussion). To better understand the101

representations that emerge in our models, we provide additional analyses of these representations,102

focusing on how well they match known phonetic categories. The results suggest that the phonetic103

representation space of either model cannot be easily separated into areas that would correspond104

to meaningful adult-like phonetic categories in a given language, although the information about105

such categories may be easier to access in the representation space of Schatz et al.’s (2021) model106

than in the space of Kamper’s (2019) model.107

Our study contributes to understanding the mechanisms of early phonetic learning, and percep-108

tual space learning in particular, by providing a systematic crosslinguistic evaluation of five relevant109

computational models implementing such mechanisms, by generating concrete predictions using110

two of these models, and by analyzing these models’ representations. In the following section, we111

briefly introduce various accounts on early phonetic learning, describe phone discrimination tasks112

that these accounts build on, and provide an overview of relevant computational work.113
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2 Background114

2.1 Accounts of early phonetic learning115

Theoretical accounts of infant phonetic learning (e.g., Best, 1994; Feldman et al., 2021; Kuhl116

& Iverson, 1995; Werker & Curtin, 2005) explain how infants move from language-universal to117

language-specific phonetic perception. Traditionally, these accounts have assumed that infants learn118

phonetic categories, and the emergence of such language-specific categories affects infants’ ability119

to perceive differences between some phones in other languages. Recently, such accounts have120

been challenged (Feldman et al., 2021; McMurray, 2022), and an alternative view was proposed121

(Feldman et al., 2021): infants start by learning perceptual spaces, while category learning comes122

later in life. Under this view, infants’ discrimination ability changes due to the transformation of the123

acoustic similarity space. While this account may contradict some commonly made assumptions124

in the existing literature, Feldman et al. (2021) explain that the discrimination data alone cannot125

provide sufficient evidence in favor of category learning, making both accounts equally viable. As126

a result, it is unclear whether infants have acquired phonetic categories before they start learning127

words, an important question in language acquisition literature.128

Formal computationally implemented models can help us evaluate the existing explanatory129

theories (Robinaugh, Haslbeck, Ryan, Fried, & Waldorp, 2021) and better understand which130

account of phonetic learning is more viable (Cruz Blandón et al., 2021). With regards to the131

category learning account, there are no models that show how phonetic categories are acquired132

from naturalistic input to infants. Instead, most existing modeling work has focused on learning133

phonetic categories from highly idealized stimuli. To give a few examples, Vallabha, McClelland,134

Pons, Werker, and Amano (2007) and Feldman, Griffiths, Goldwater, and Morgan (2013) trained135

their models on the pre-computed values of simple features of vowel tokens (first two formants136

and duration), while McMurray, Aslin, and Toscano (2009) only used voice onset time of stop137

consonants. Such manual selection of phones and features makes the models’ learning task much138

easier than the one infants face. Natural speech that infants are exposed to is very noisy and139

is not aligned along the acoustic dimensions relevant in a given language (see Feldman et al.,140

2021, for a relevant discussion). For example, statistical learning of the vowel length contrast in141

Japanese from individual phone duration values is not a trivial task due to overlapping distributions142
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(Bion, Miyazawa, Kikuchi, & Mazuka, 2013). As a result, when the above-mentioned models are143

evaluated on the kinds of data that better resemble naturalistic speech data, their ability to learn is144

drastically reduced (Antetomaso et al., 2017). This is why it is essential to show how computational145

models learn from uncurated speech, as has been done by, e.g., Miyazawa, Kikuchi, and Mazuka146

(2010); Miyazawa, Miura, Kikuchi, and Mazuka (2011); Nixon and Tomaschek (2021); Schatz et147

al. (2021). At the same time, some of these studies only evaluate models in terms of how well their148

representations match adult phonetic categories (Miyazawa et al., 2010, 2011), without looking149

at infants’ data. To test the viability of the perceptual space learning account, it is important to150

test the models on actual behavioral data from infants (i.e., from discrimination tasks), as has151

been done by Nixon and Tomaschek (2021) and Schatz et al. (2021), without making assumptions152

about the underlying representations. Nixon and Tomaschek (2021) evaluate their model on the153

data from one language, German. Therefore, the only study that considers cross-linguistic phone154

discrimination data is Schatz et al. (2021), who tested one model on one phonetic contrast. Their155

model implements a particular version of the perceptual space learning account, which we introduce156

in the next section. At the same time, there is a variety of mechanisms that fit various versions157

of this account in principle (Feldman et al., 2021). In this article, we consider additional models158

and additional phonetic contrasts to further evaluate the account of early phonetic learning without159

phonetic categories. If such models are able to successfully predict crosslinguistic differences in160

infants’ phone discrimination, this can help us better understand which mechanisms the infants are161

more likely to rely on.162

2.2 Sources of information available to the learner163

Typically developing infants can listen to the low-level speech signal and naturally learn from it164

using distributional learning mechanisms, i.e., by tracking the statistical distribution of phonetic165

variation (Maye, Werker, & Gerken, 2002). At the same time, there is evidence that 6–8-month-old166

infants can segment and recognize some word forms in the input (Bortfeld, Morgan, Golinkoff, &167

Rathbun, 2005; Jusczyk & Aslin, 1995; Jusczyk, Houston, & Newsome, 1999), and it has been168

shown that such top-down guidance can aid the process of phonetic learning (Feldman et al., 2013;169

McMurray, Danelz, Rigler, & Seedorff, 2018). Both of these strategies, which we call bottom-up170
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and top-down, respectively, have been implemented in computational models. Those computational171

models implemented phonetic category learning theories and asked which sources of information172

could help models converge on the correct set of categories for the training language.173

Similar questions arise in the context of perceptual space learning. The computational learner174

of Schatz et al. (2021), whose setup we follow in Study 1, uses a relatively simple algorithm —175

Dirichlet process Gaussian mixture model — that clusters short slices of speech (frames) in an176

unsupervised way. This algorithm implements a bottom-up distributional learner, which only relies177

on the low-level information about the acoustic spectrum, or the distribution of energy across various178

acoustic frequencies. At the same time, some of the existing neural network models in the speech179

engineering literature implement the top-down strategy by exposing the learner to acoustic words180

or word-size units (e.g., Kamper et al., 2015; Thiollière, Dunbar, Synnaeve, Versteegh, & Dupoux,181

2015). In Study 2, we employ such top-down models to simulate early phonetic learning and182

compare them to the model of Schatz et al. (2021), and to other, more closely matched, bottom-up183

models, in terms of their ability to predict crosslinguistic patterns of phone discrimination observed184

in infants. Therefore, our two studies can additionally inform the discussion on the usefulness of185

bottom-up and top-down strategies for infant phonetic learning.186

2.3 Infants’ phone discrimination data187

Infants cannot be directly tested on tasks that require explicit instruction, and the field predominantly188

relies on data fromphone discrimination tasks (Best&McRoberts, 2003; Bosch&Sebastián-Gallés,189

2003; Burns et al., 2007; Kuhl et al., 2006; Segal et al., 2016; Tsao et al., 2006; Werker & Tees,190

1984, etc.), using paradigms such as conditioned head turn (Kuhl, 1979) or habituation (Best,191

McRoberts, & Sithole, 1988). While there are many studies testing a group of infants on native and192

non-native contrasts (see, e.g., an overview for vowels by Tsuji & Cristia, 2014), there are far fewer193

studies which test two groups of infants (native and non-native) on the same phone contrast. We194

adopt the latter setup and focus on data sets from three such experiments, based on the availability195

of corresponding speech corpora for training computational models:1196

1In principle there are other suitable contrasts to test based on infant data, for example, Thompson [k’]–[q’], Hindi
[t]–[ú] (Werker & Tees, 1984), Zulu [ì]–[Ð], [kh]–[k’] and [p]–[á] (Best & McRoberts, 2003), but suitable corpora for
these languages were either unavailable or difficult to obtain.
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1. Kuhl et al. (2006) testedAmerican English and Japanese infants on the English [ô]–[l] contrast.197

English- and Japanese-learning infants showed similar discrimination rates for synthesized198

[ôa]–[la] stimuli at the age of 6–8 months, but English-learning infants showed higher rates199

at the age of 10–12 months. Similar findings are reported in Tsushima et al. (1994).200

2. Tsao et al. (2006) testedMandarinChinese andAmericanEnglish infants on theMandarin [C]–201

[tCh] contrast. Mandarin- and English-learning infants showed similar discrimination rates202

for synthesized [Ci]–[tChi] stimuli (commonly denoted in pinyin as xi and qi, respectively) at203

the age of 6–8 months, but Mandarin-learning infants were better at 10–12 months. This is204

also consistent with the results reported by Kuhl, Tsao, and Liu (2003).205

3. Bosch and Sebastián-Gallés (2003) tested Catalan- and Spanish-learning infants on the Cata-206

lan [e]–[E] contrast. At the age of 4 months both groups could discriminate between pseu-207

dowords [deDi] and [dEDi] (in this case, stimuli recordedwith human speakers), but at 8months208

only the Catalan group showed successful discrimination. Similar results are reported by209

Albareda-Castellot, Pons, and Sebastián-Gallés (2011).210

We use these three data sets to evaluate the computational models on their ability to correctly211

predict the described qualitative crosslinguistic patterns of phone discrimination. The next section212

provides methodological details of our simulation setup, data processing, and models.213

3 Method214

3.1 General setup of the simulations215

We carry out two studies: Study 1 seeks to answer whether the model of Schatz et al. (2021)216

correctly predicts two other crosslinguistic data sets in addition to the English–Japanese result they217

report on. Study 2 tests four neural network models on the same three data sets. In each study218

we train computational models on unsegmented speech data from three data sets (i.e., language219

pairs). Each data set focuses on one phonetic contrast (such as American English [ô]–[l]) for which220

cross-linguistic phone discrimination data for infants exist. For each computational model, we221

train two different versions: a ‘native’ model, which simulates a learner of the language from222

which the contrast is drawn (American English, in this example), and a ‘non-native’ model, which223
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Table 1: Training and test conditions.

Data set Test language Training language Listener type

1 EN English (EN) Native
Japanese (JA) Non-native

2 ZH Mandarin (ZH) Native
English (EN) Non-native

3 CA Catalan (CA) Native
Spanish (ES) Non-native

simulates a learner of another language that does not contain the relevant contrast (here, Japanese).224

Models are trained on corpora of natural speech. We then test each model by simulating a phone225

discrimination task, using real examples from the language where the contrast exists. To show an226

infant-like pattern, the ‘native’ trained version of the model should display better discrimination227

than the ‘non-native’ trained version of the model.228

The training and test data sets are summarized in Table 1 and correspond to the experiments with229

infants described in Section 2.1. Data set 1 is designed to test models learning American English230

and Japanese on the English [ô]–[l] contrast, where English learners show better discrimination than231

Japanese learners. Data set 2 is designed to test models learning Mandarin Chinese and American232

English on the Mandarin [C]–[tCh] contrast, where Mandarin learners show better discrimination233

than English learners. Finally, data set 3 is for testing Catalan- and Spanish-learning models on the234

Catalan [e]–[E] contrast, where Catalan learners show better discrimination than Spanish learners.235

In the experiments with infants, each phonetic contrast was tested in a particular phonetic context236

(e.g., [ôa]–[la]). We report the results averaged over all phonetic contexts (to have sufficient test data237

for our models), but the results for the restricted contexts that were actually used in the experiments238

can be found in Supplementary Materials S2.239

3.2 Simulating phone discrimination tasks240

To test a model’s ability to discriminate a phonetic contrast, similar to the tests carried out with241

infants such as conditioned head turn, we use the machine ABX task (Schatz et al., 2013).2 In this242

task, A and X are two instances of the same phone (e.g., [l]), while B is an instance of a different243

2https://github.com/bootphon/ABXpy
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phone (e.g., [ô]). Note that while the order of item presentation (A followed by B or vice versa)244

is important in human experiments, it plays no role in our modeling setup. If A and X are closer245

to each other in a model’s representation space than B and X, the model’s prediction is correct,246

otherwise it is not. We use Kullback–Leibler divergence to measure distances in the representations247

for one of the models (DPGMM, see Table 2), and angular distance (which is similar to cosine248

distance, but not the same) for the other models. For models using frame-level representations249

(see Table 2), we align the frames in each pair of phones using dynamic time warping (Vintsyuk,250

1968), and compute the distance as an average over the framewise distances. This method follows251

earlier studies (e.g., Jansen et al., 2013; Matusevych, Kamper, Schatz, Feldman, & Goldwater,252

2021; Schatz, Bach, & Dupoux, 2018; Schatz et al., 2021).253

A model is evaluated by considering the proportion of ABX triplets for which it makes correct254

predictions: 0% error rate corresponds to perfect discrimination, 50% to chance performance,255

and 100% means that for no triplets the discrimination was made correctly. Following Schatz et256

al. (2021), we sample ABX test triplets in such a way that all three phones — A, B, and X —257

appear in the same neighboring phonetic context and are uttered by the same speaker. This is a258

within-speaker version of the ABX task, which tests discrimination of phones produced by the259

same speaker and which we believe better matches the setup of most discrimination experiments260

with infants, compared to the across-speaker version. An alternative to using the machine ABX261

task would be to test the model on the exact test stimuli from the original experiments, but these are262

often synthesized. Using synthetic stimuli to test a computational model trained on natural speech263

could make the model perform poorly due to a confounding factor, the quality of mapping between264

synthetic stimuli and natural speech. Therefore, we only test whether a model can discriminate265

natural speech stimuli in a way similar to human infants.3 Instead, we use the machine ABX task,266

which is a conceptual analogue of infant discrimination studies that is robust to the noise in the267

data given the large number of data points.268

To test whether the difference between the ABX error rates in a given pair of simulated listeners269

(native vs. non-native) is significant, we fit mixed-effects regressions (using lme4 package; Bates,270

Mächler, Bolker, & Walker, 2015) to the error rates of the two models in question. Each regression271

3The Catalan test stimuli in Bosch and Sebastián-Gallés (2003) were recorded with human speakers, but we could
not obtain the original recordings from the authors.
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includes main effects of simulated listener type (native vs. non-native) and data subset (as shown272

in Table 3 in Section 3.4) and random intercepts, to account for the variation among data subsets,273

speakers and phonetic contexts. In the Mandarin data, tones often substantially change the pitch274

contour of the vowel, and we consider vowels (but not consonants) to be different if they come from275

syllables with different tones: e.g., in syllables [Ci
Ă
£] and [CiĘ£] the target consonant [C] is considered276

to be the same phone, but the right context is different: [i
Ă
£] vs. [iĘ£]. Significance for the effect277

of simulated listener type is then determined using two-tailed ANOVA tests (with Satterthwaite278

degrees of freedom approximation; Kuznetsova, Brockhoff, & Christensen, 2017) on the predicted279

values of the regressions.4280

3.3 Computational models281

In total we consider five models: the one used in Schatz et al. (2021) in Study 1, and four neural282

networkmodels inspired by existingwork in unsupervised speech representation learning in Study 2.283

All these models show high performance in low-resource speech technology applications, making284

them a good starting point for modeling unsupervised infant learning. In addition, at test time all285

the models provide a way to compute distances between speech sequences (in this case, phones)286

of any duration. The models differ along two dimensions, as summarized in Table 2. Three of287

the models learn representations at the level of speech frames (i.e., 25-millisecond-long chunks of288

speech commonly used in automatic speech recognition), while two learn to encode word-sized289

units of variable length as vector representations of fixed length (i.e., acoustic word embeddings,290

analogous to the semantic word embeddings often used as vector representations of word meaning).291

This distinction also corresponds to how the models deal with the time dimension: for the first292

three models, temporal information is encoded only weakly, by including first- and second-order293

derivatives of the acoustic spectrum in the representations of individual frames (see Section 3.4294

below), while for the other two models the order of frame presentation is important too. In addition,295

three models are strictly unsupervised (i.e., bottom-up learners), while two others rely on top-down296

guidance from known word forms. In all cases, we use existing implementations developed for297

4Note that this approach assumes independent data samples, which is not the case for our subsets of the Catalan
corpus (as explained below in Section 3.4). This could potentially lead to underestimating variance and overestimating
statistical significance.
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Table 2: Models of early phonetic learning used in our studies. The DPGMM was used by Schatz
et al. (2021), the other models have not been tested before in this capacity.

Model Representation type Top-down guidance
Dirichlet process Gaussian mixture model
(DPGMM)

Frames No

Autoencoder (AE) Frames No
Correspondence autoencoder (CAE) Frames Yes
Autoencoding recurrent neural network (AE-RNN) Word-sized No
Correspondence-autoencoding recurrent neural
network (CAE-RNN)

Word-sized Yes

processing speech without supervision or with a weak teaching signal from the word level (Kamper,298

2019; Kamper et al., 2015; Schatz et al., 2021), we adopt the previously used training options, and299

we do not retune hyperparameters. A description of each model is provided in the sections for the300

individual studies below.301

3.4 Input to the models302

To prepare input to the models from unsegmented speech data, we follow a standard approach in303

speech processing: we divide the speech data into 25-millisecond-long frames (sampled every 10304

milliseconds) and extract mel-frequency cepstral coefficients (MFCCs), together with their first-305

and second-order time derivatives, from each frame using Kaldi (Povey et al., 2011). The frequency306

range is set to be within the standard Kaldi values of 20 and 7, 800 Hz (i.e., close to 0 and 8, 000307

Hz, respectively, where the latter value is the Nyquist frequency equal to half of our sampling308

rate of 16, 000 Hz). The MFCCs encode the auditory spectrum for each frame, while the first-309

and second-order derivatives encode the change of this spectrum over time. The three types of310

features are concatenated, resulting in a vector of 13 × 3 = 39 features. Representing speech using311

its auditory spectrum is grounded in human auditory processing and is different from traditional312

accounts of phonetic learning, which assume phonetic feature detectors (see Schatz et al., 2021, for313

further discussion).314

Additionally, for testing the models on the ABX discrimination of individual phones, as de-315

scribed in Section 3.2, we need to extract series of frames (i.e., ‘chunks’ of speech) corresponding to316

the target phones. To identify which frames correspond to which phone, we use phone alignments,317
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Table 3: Corpus samples used in the simulations. WSJ refers to theWall Street Journal CSR corpus
(Paul & Baker, 1992), GP to the Globalphone, a multilingual text and speech database (Schultz,
2002), Buckeye to the Buckeye corpus of conversational speech (Pitt et al., 2005), CSJ to the corpus
of spontaneous Japanese (Maekawa, 2003), AIShell to the open-source Mandarin speech corpus
(Bu et al., 2017), and Glissando to the corpus for multidisciplinary prosodic studies in Spanish
and Catalan (Garrido et al., 2013). For the training data set 2, we used two different samples (2B
and 2D) from the English WSJ corpus, to match the data available in the respective samples (2A
and 2C) from the Mandarin AIShell and GP corpora. For the data set 3, we used two different
training/test splits (3A/3E and 3C/3F) from the same Catalan corpus. For data set 1, all training/test
combinations originated from different corpora and therefore were considered (i.e., 1A and 1B
tested on 1E, 1A and 1B tested on 1F, etc.). For the other two data sets, to ensure that no data from
the same speakers appeared both in the training and in the test data, some training/test combinations
were excluded from the analyses: 2C and 2D were not tested on 2F; 3A and 3B were not tested on
3F; 3C and 3D were not tested on 3E. Rd and Sp stand for read and spontaneous speech registers,
respectively.

(a) Training data.

Data set Language Sample Corpus Register Amount of data (hh:mm) No. of spk.

1

EN A WSJ Rd 19:30 96
JA B GP Rd 19:33 96
EN C Buckeye Sp 9:13 20
JA D CSJ Sp 9:11 20

2

ZH A AIShell Rd 58:59 166
EN B WSJ Rd 58:49 166
ZH C GP Rd 11:51 48
EN D WSJ Rd 11:49 48

3

CA A Glissando Rd+Sp 7:41 26
ES B Glissando Rd+Sp 7:41 26
CA C Glissando Rd+Sp 7:02 17
ES D Glissando Rd+Sp 7:03 17

(b) Test data.

Data set Language Sample Corpus Register Amount of data (hh:mm) No. of spk.

1 EN E WSJ Rd 9:39 47
F Buckeye Sp 9:01 20

2 ZH E AIShell Rd 58:45 165
F GP Rd 11:51 48

3 CA E Glissando Rd+Sp 1:15 2
F Glissando Sp 2:19 11
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i.e., labels that map series of frames to their corresponding phones. We obtain such alignments318

using the Montreal Forced Aligner (McAuliffe, Socolof, Mihuc, Wagner, & Sonderegger, 2017);319

lists of phones that we used are provided in Supplementary Materials S1.5320

Ideally, wewould use transcribed high-quality speech recordings of infant-directed speech. Such321

recordings may be available for English but are difficult to obtain for other languages. Because we322

needed matching samples (in terms of the register, number of speakers, etc.) to train the native and323

the non-native version of the model (e.g., English–Japanese, Mandarin–English), we used various324

other corpora in our simulations. In each case we train and test models on two different subsets325

of speech data per language, in order to ensure that the results for each model are robust across326

various data sets. Ideally, each subset should come from a different corpus, and the corpora should327

represent two different speech registers: spontaneous and read, which was the approach taken by328

Schatz et al. (2021). In practice, our choices are limited to the available speech corpora, so that329

for the Mandarin–English simulations (data set 2) we use corpora of read speech only, and for the330

Catalan–Spanish simulations (data set 3) all our data come from the same bilingual corpus (see331

Table 3). In all cases, we ensure that no data from the same speakers appear both in the training332

and the test data. To further reduce potential variability across corpora, we sample the audio signal333

in each corpus at 16 kHz and balance the speakers’ gender within each corpus sample.334

We now turn to our two studies that follow this methodological setup.335

4 Study 1: Testing the DPGMM on other phonetic contrasts336

In this study, we run the simulations described above using the model of Schatz et al. (2021).337

Training and testing the model on data set 1 here effectively reproduces their study, while data338

sets 2–3 enable us to test whether their model can correctly predict the discrimination patterns339

found in Mandarin- vs. English-learning and Catalan- vs. Spanish-learning infants. In other words,340

this study reproduces and extends the work of Schatz et al. (2021) to new phonetic contrasts.341

5For English and Japanese in data set 1, we obtained the existing alignments (Schatz et al., 2021) generated
with Kaldi (Povey et al., 2011). For the Catalan data, the transcription quality in the original corpus turned out to
be low (confirmed in consultation with a native Catalan speaker), and we replaced word transcriptions with standard
transcriptions for words available inWiktionary (approximately 11.6% of the word types): http://wiktionary.org.
This, however, did not change the models’ qualitative patterns compared to our preliminary simulations with the data
aligned using the original transcriptions.
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4.1 Model description342

The model is a Dirichlet process Gaussian mixture model (DPGMM; Chen, Leung, Xie, Ma, & Li,343

2015) based on a commonly usedGaussianmixture clustering algorithm. Specifically, theDPGMM344

is a probabilistic generative model that takes individual speech frames as input and groups them345

into ‘soft’ clusters (Gaussian components), i.e., each frame can be assigned to multiple clusters with346

various probabilities. As described above in Section 3.4, each frame is represented as a vector that347

includesMFCC features and their time derivatives. A frame is considered to have been generated by348

a mixture of Gaussian probability distributions. Based on how likely each frame is to originate from349

each distribution, the model updates the mixture weights and the parameters of these distributions.350

More specifically, the model maximizes the likelihood of the data sample using Bayesian inference,351

specifically parallel Markov chain Monte Carlo (MCMC) sampling, following Chang and Fisher III352

(2013); Schatz et al. (2021). The model is non-parametric: i.e., the number of clusters is not353

specified in advance, but is derived from the data. It learns in a fully unsupervised bottom-up354

manner. The result of the learning process is a mixture of Gaussian components (clusters) fitted to355

the training data in the vector space of MFCC features and their derivatives.356

For testing, we first represent each test frame into the same vector space as the training frames:357

each frame is encoded using the sameMFCC feature extraction process as during the training phase358

(including the extraction of derivatives). We then can compute the probability of a test frame given359

each component. The model’s output for each frame is, therefore, a vector of posterior probabilities360

with a size equal to the number of Gaussian components in the model, or a posteriorgram. A361

sequence of speech frames (in our case, a phone) is encoded in the model’s representation space as362

a sequence of posteriorgrams. In this space, distances between phones (in our case, KL divergence)363

can be computed to perform the ABX discrimination task as described above in Section 3.2.364

We use the DPGMM implementation6 based on Chang and Fisher III (2013) and Schatz et al.365

(2021) and parameter settings from Schatz et al.: the model is initialized with 10 clusters and is366

trained for 1500 iterations, at which point there are between 348–1535 clusters in our simulations.367

This high number is consistent with Schatz et al. (2021), who found that the learned clusters are368

much more fine-grained than phonetic categories. The exact number of clusters depends on the size369

of the training data (i.e., larger data sets yield more clusters), the language (e.g., more clusters in370
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Figure 1: ABX error rates of the native and non-native DPGMMmodels in the three discrimination
tasks (EN [ô]–[l], ZH [C]–[tCh] and CA [e]–[E]). The number of data pairs (i.e., different speaker–
phonetic context combinations) in each test set is shown on top of each bar. Red lines indicate
model’s error rates averaged over all consonant (for EN and ZH) or all vowel (for CA) contrasts, with
the number of different contrast–speaker–context combinations varying between approximately 10K
for CA to 53K for ZH to 260K for EN. To match the infant pattern of discrimination, the native
model in each pair must show significantly lower error rates than the non-native model. The number
of asterisks denotes significance level: ∗∗∗ corresponds to ? < .001, and ∗∗ to ? < .01.

models trained on Japanese vs. English), and potentially other factors that contribute to the amount371

of variation in the training data. We refer to Appendix and the two above-mentioned studies for a372

more detailed model description.373

4.2 Results374

The model’s ABX error rates across languages are shown in Figure 1, together with the average375

performance of each model across all consonant (for English and Mandarin Chinese) or vowel376

(for Catalan) contrasts (red lines in the figure). In this figure, results are averaged over multiple377

ABX triplets, speakers, neighboring phonetic contexts, and subsets of the corpus, but the mixed-378

effects models fitted to the data take into account all of these variables (as previously discussed in379

Section 3.2). The reported patterns are consistent over the two corpus subsets. In what follows, we380

compare the performance of each simulated ‘native’ listener to its corresponding simulated ‘non-381

6https://github.com/Thomas-Schatz/perceptual-tuning-pnas
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native’ listener. Note that comparing the absolute error rates across the data sets (i.e., language382

pairs) is not meaningful, as the amount of training data and number of speakers differed depending383

on the data set, and interpreting the magnitude of the differences between native vs. non-native384

model across the data sets may not always be straightforward7. In data set 1, where the models385

are tested on the English [ô]–[l] contrast, the model correctly predicts the discrimination pattern386

observed in infants: the error rate of the simulated native listener is significantly lower compared387

to the simulated non-native listener (10.0% vs. 14.1%). This reproduces the result of Schatz388

et al. (2021). On this contrast, both native and non-native models show the discrimination error389

comparable to the average error rates on all English consonant contrasts (red lines in the figure, 8.3%390

and 9.3% for the native and non-native model, respectively). In other words, the [ô]–[l] contrast is391

only somewhat more difficult to discriminate than an average English consonant contrast.392

In data set 2, with the Mandarin [C]–[tCh] contrast, the model also correctly predicts the infants’393

discrimination pattern: the error rates are significantly lower in the simulated native than non-native394

listener (19.2% vs. 21.1%). This difference of 1.9% is smaller than on the English contrast in data395

set 1 (4.1%), possibly because this is a generally difficult contrast to learn for the model. Indeed, the396

discrimination error on this contrast is noticeably higher than the average error over all Mandarin397

consonant contrasts (red lines, 5.3% and 6.8% for native and non-native model, respectively). In398

other words, the [C]–[tCh] discrimination is difficult for the model. This may be due to the kinds399

of phones in this contrast: one of them, [C], is a fricative; the other, [tCh], is an affricate, which400

sounds a bit like a combination of a short [t] followed by a ‘breathy’ version of [C]. An example401

of a similarly sounding fricative–affricate distinction in English is the difference between the first402

phones in cheap vs. sheep. As a result, one of the phones, [C], is almost a ‘subchunk’ of the other403

phone, [tCh], a distinction potentially difficult to learn for our models. Nevertheless, the native404

model shows lower error rate than the non-native model.405

In data set 3, the model predicts no significant difference for the Catalan [e]–[E] contrast. In406

general, this contrast is more difficult for both native and non-native model (32.5% and 40.3% error,407

respectively) than an average Catalan vowel contrast (17.7% and 18.5%), and we discuss possible408

reasons for that below.409

7This is because the discrimination error rates are expressed in percentages, and the true size of the target effect is
not necessarily a linear function of the difference between percentages: i.e., the 5% difference in 50 − 45% vs. 6 − 1%
likely corresponds to different effect sizes.
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4.3 Summary410

We have reproduced the result of Schatz et al. (2021) and also shown that their DPGMM model411

can correctly predict the cross-linguistic differences in infants’ phone discrimination on another412

contrast from Mandarin Chinese. At the same time, the model struggles with predicting the413

infants’ data for the Catalan contrast. On the one hand, this may be because of the smaller size or414

potentially lower quality of the Spanish–Catalan data set. On the other hand, there is a chance that415

the DPGMM model is simply not a good model of phonetic learning. For example, in the domain416

of phonetic category learning, bottom-up distributional models have been shown to perform poorly417

when trained on uncurated data (e.g., Antetomaso et al., 2017), and it has been argued that infants418

can use top-down guidance (i.e., word-level information) to constrain phonetic learning (Feldman et419

al., 2013; McMurray et al., 2018; Swingley, 2009). In the speech engineering literature, word-level420

information has been integrated into some of the neural network models, and in the next section,421

we test two such models, together with two corresponding models without top-down guidance, to422

see whether they can correctly predict the crosslinguistic patterns for the three target contrasts.423

5 Study 2: Testing other models424

In this section, we train and test four neural network models on the same three data sets as before.425

These models have been proposed in speech technology research, in particular in low-resource426

settings where transcribed data may not be available, and showed high performance in word and427

phone discrimination tasks (Kamper, 2019; Kamper et al., 2015; Matusevych et al., 2021; Renshaw,428

Kamper, Jansen, & Goldwater, 2015). Figure 2 schematically shows the difference between the429

models’ architectures and input data. We consider two different versions of the models with top-430

down supervision (see the two panels on the right in Figure 2), which differ from each other in431

the kinds of representations they learn: frames vs. word-sized units. To be able to tell how much432

the word-level information is contributing, we also consider the corresponding versions of these433

models that have the same architectures but are trained without top-down guidance (see the two434

panels on the left in Figure 2). It is worth noting that these simpler versions have also been proposed435

as representation learning models in speech technology research in their own right, so it is possible436

that they will show good performance even without the word-level information. Below we provide437
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a brief description of each model, while formal definitions and parameter settings are summarized438

in Appendix.439

5.1 Models’ description440

All four models are based on the idea of auto-associative learning: they are provided with an input441

and an identical (or a very similar) output and try to reconstruct the output from the input. While442

autoassociators do not implement a biologically plausible learning mechanism at the algorithmic443

level, they are commonly used in cognitive science for unsupervised representation learning. They444

use gradient descent to slowly adjust neural connections between layers in order to minimize a given445

reconstruction loss. We are primarily interested in the models with top-down supervision, but we446

first introduce one of the corresponding baseline models (i.e., without top-down supervision) to447

ease the understanding.448

A basic version of the auto-associative learning mechanism is implemented in an autoencoder449

(AE; top left panel in Figure 2), a classic unsupervised feedforward neural network popularized450

by Kramer (1991). In our case, this is a ‘stacked’ autoencoder consisting of input, output, and451

multiple fully connected layers, see Appendix. While it is common to introduce a ‘bottleneck’ layer452

in the middle, which forces the model to compress the information, we use the implementation453

of Kamper et al. (2015)8, who found no benefit of using such a layer in a word discrimination454

task. The model reconstructs the input frame - (the orange vectors in Figure 2, top left panel) and455

learns by minimizing the mean squared error between the original and the reconstructed frame.456

This is a fully unsupervised model that does not use any top-down guidance. The learning results457

in the emergence of latent representations in the model’s hidden layers. Following Kamper et458

al.’s (2015) approach, we use the second-last layer for encoding our test data: for a given speech459

frame, we compute the vector encoding of the frame in that layer. A phone is then represented as a460

sequence of such vectors, and the distances (in this case, angular distances computed with dynamic461

time warping, as described in Section 3.2) between phones are computed for running the ABX462

discrimination task as described in Section 3.2.463

In Figure 2 we see how the basic stacked AE can be extended along two orthogonal dimensions.464

First, the model can be trained in a slightly different manner, so that it reconstructs not the same465

8https://github.com/kamperh/speech_correspondence
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Figure 2: Neural network models used in Study 2. The AE and the CAE learn frame-level
representations, while the AE-RNN and the CAE-RNN are recurrent models and learn word-sized
representations. The AE and the AE-RNN are strictly auto-associative and reconstruct the input
unit - itself (orange), while the CAE and the CAE-RNN reconstruct a different instance -′ (blue)
of the same type as the input unit - (orange). The layers from which we extract the models’
representations are shown in pink and marked with an asterisk (*).
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speech sequence (i.e., a spoken word), but another similar sequence (a different instance of the466

same word). This is the idea behind the correspondence autoencoder (CAE; Kamper et al., 2015,467

see top right panel in Figure 2). Instead of trying to encode and reconstruct each input frame to468

itself, as is done in the AE, it is given a pair of corresponding frames from two instances of the469

same word. The model tries to reconstruct a particular frame -′ in one instance of a word from470

the aligned frame - in the other instance, one frame at a time (cf. top left and top right panels471

in Figure 2, where the blue color indicates a frame -′ that is different from the orange frame -).472

Note that the two acoustic instances of the same word would normally have different duration (i.e.,473

different number of frames), and the correspondence between frames across the two instances is474

established using dynamic time warping (Vintsyuk, 1968). In this article, we obtain the pairs of475

word instances in a supervised way using forced alignment (a by-product of phone-level alignments476

described in Section 3.4), though unsupervised alternatives are possible (Kamper, 2019). Because477

the model learns by reconstructing a speech signal into a different version of that signal, the encoded478

representation must focus on linguistically meaningful information and abstract away from other479

variation between the aligned frames. Importantly for us, the top-down guidance in the form of480

weak word-level supervision can aid the process of early phonetic learning, as wementioned earlier.481

We use the same codebase as for the AE. Again, at test time each frame is encoded in the model’s482

second-last layer, and the angular distances are computed in the resulting representation space.483

Second, one can change the basic architecture of the AE model by turning it into a recurrent484

model capable of encoding sequential information. The bottom left panel in Figure 2 shows such485

a model, autoencoding recurrent neural network (AE-RNN; Chung, Wu, Shen, Lee, & Lee,486

2016). It is a sequence-to-sequence autoencoder, a type of AE in which both the encoder and the487

decoder are recurrent neural networks (RNNs). RNNs are commonly used in language modeling488

(see Linzen, 2019, for an overview), as they can process an input sequence as a whole. In our489

case, the model is given a random word-sized chunk of speech, - , although not necessarily a490

real word, one frame at a time, encodes it into a vector of fixed dimensionality, and then uses491

this vector to reconstruct the same chunk sequentially, frame-by-frame (see bottom left panel in492

Figure 2, where the orange vectors represent the model’s input/output frames). Here, we consider493

the model’s middle, or acoustic embedding layer, in which speech sequences are represented as494

fixed-dimensional vectors. We encode the test phones into this embedding space and compute495
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angular distances between them to run the ABX task. We use the implementation by Kamper496

(2019).9497

Finally, introducing both these changes at the same time yields our final model, a498

correspondence-autoencoding recurrent neural network (CAE-RNN; Kamper, 2019, see bot-499

tom right panel in Figure 2). This is similar to the AE-RNN, but instead of training on random500

chunks of speech, it is trained on pairs of instances of the same word (- and -′ in the bottom right501

panel in Figure 2; note the two colors indicating different instances of the same word) — i.e., like502

the CAE, it also relies on weak top-down supervision (cf. top right and bottom right panels), and503

in our study the pairs of word instances were obtained in a supervised way using forced alignment504

(as for the CAE). We use the same codebase as for the AE-RNN and the same approach to compute505

the distances between phones.506

Based on the differences between the four models, we can look for two patterns in the models’507

ability to predict the infants’ data. Aswepointed out in Section 3.3, because theAEand theAE-RNN508

do not require supervision from the word level, they are bottom-up models (cf. Table 2), whereas509

the CAE and the CAE-RNN receive additional top-down guidance. If the two latter, but not the510

former, models show infant-like discrimination patterns, it can be seen as additional computational511

evidence that top-down strategies can potentially be beneficial for phonetic learning (Feldman et al.,512

2013; Swingley, 2009). Also, the AE and the CAE learn frame-level representations and represent513

test phones as sequences of vectors, whereas the AE-RNN and the CAE-RNN encode word-sized514

units and represent each test phone as a fixed-dimensional vector. If the two latter, but not the515

former, models show infant-like discrimination patterns, this means that the holistic processing516

of longer units (word-sized during training, phone-sized during testing) may be beneficial for517

simulating phonetic learning. Note, however, that we only test specific implementations of the518

four models and do not change their architecture or retune hyperparameters, so the patterns we519

observe may not generalize to all instantiations of these models, and should be interpreted only520

as preliminary evidence. Most importantly, however, we are interested to know whether any of521

the models described above would show infant-like discrimination ability equal or better than the522

DPGMM model in Study 1.523

9https://github.com/kamperh/recipe_bucktsong_awe_py3

22



5.2 Results524

Figure 3 shows theABXerror rates of the fourmodels. In data set 1 (the English [ô]–[l] contrast), two525

models — the CAE and the CAE-RNN — correctly predict the discrimination pattern observed526

in infants: the error rate of the simulated native listener is significantly lower compared to the527

simulated non-native listener (CAE: 5.8 vs. 8.2%, CAE-RNN: 13.4 vs. 19.2%). The AE shows528

no significant difference between the two types of simulated learners (6.1% for both), and the AE-529

RNN predicts a significant difference in the wrong direction (i.e., lower error rate in the non-native530

listener: 19.7 vs. 16.2%). As in Study 1, all models’ error rates are comparable to the average error531

rates on English consonant contrasts (red lines in the figure). This suggests that the English [ô]–[l]532

contrast is generally easy to discriminate.533

In data set 2 (the Mandarin [C]–[tCh] contrast), a different set of two models — the AE-RNN and534

the CAE-RNN — correctly predict the infants’ discrimination pattern (AE-RNN: 26.6 vs. 30.0%;535

CAE-RNN: 25.9 vs. 30.5% for native vs. non-native listener). Two models — the AE and the CAE536

— predict no significant difference between the simulated native and the non-native listener (AE:537

18.1 for both; CAE: 16.1 vs. 16.0). As in Study 1, over all models, the discrimination error on this538

contrast is noticeably higher than the average error over allMandarin consonant contrasts, suggesting539

that the [C]–[tCh] discrimination is difficult (relative to other Mandarin consonant contrasts) for all540

models. Note, however, that on this contrast the CAE-RNN shows a difference of 4.6% between the541

native vs. non-native listener, which is larger compared to the DPGMM model in Study 1 (1.9%).542

This may indicate that the CAE-RNN makes more robust predictions on this contrast than the543

DPGMM, but the evidence is weak.544

In data set 3, no model predicts a significant difference for the Catalan [e]–[E] contrast (AE:545

33.3 vs. 33.4%; CAE: 32.5 vs. 32.6%; AE-RNN: 40.3 vs. 39.5%; CAE-RNN: 39.6 vs. 37.2%).546

Note that the models’ average error rates on Catalan are generally high, suggesting that the models547

could benefit from additional training data. At the same time, speaker idiosyncrasies in the test548

data are unlikely to affect the results, as we observe no meaningful differences in the discrimination549

error across the two test samples (consisting of data from 2 vs. 11 speakers, see Table 3). Thus,550

all models struggle to discriminate the Catalan [e]–[E] contrast, as well as to reproduce empirically551

observed cross-linguistic differences in its discrimination.552
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Figure 3: ABX error rates of the native and non-native neural network models in the three
discrimination tasks (EN [ô]–[l], ZH [C]–[tCh] and CA [e]–[E]). The number of data pairs (i.e.,
different speaker–phonetic context combinations) in each test set is shown on top of each bar. Red
lines indicate models’ error rates averaged over all consonant (for EN and ZH) or all vowel (for CA)
contrasts. To match the infant pattern of discrimination, the native model in each pair must show
significantly lower error rates than the non-native model: out of 5 total patterns with a significant
difference, 4 are in the predicted direction (black brackets) and 1 is in the wrong direction (orange
bracket). The number of asterisks denotes significance level: ∗∗∗ corresponds to ? < .001, and ∗∗
to ? < .01.
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At the end of Study 1, we considered a possibility that the DPGMMmodel did not make correct553

predictions on the Catalan data because it might not be a good model of phonetic learning. If that554

was true, the results from this study could suggest that none of our models make good models555

of early phonetic learning. But given their correct predictions on the English and the Mandarin556

contrasts, it is worth considering other explanations of the models’ incorrect predictions on the557

Catalan contrast and overall high discrimination error rates. To determine possible reasons why558

this contrast was particularly difficult for the models, we carried out additional analyses. First, we559

looked at various subsets of the test data controlled for the neighboring phonetic context, yet still560

did not find infant-like discrimination patterns in any model (see Supplementary Materials S2).561

Second, we looked at the duration of the target [e] and [E] vowels in the test data, which revealed that562

some instances were very short, compared to the lab stimuli used with infants. Because we could563

not obtain the original stimuli of Bosch and Sebastián-Gallés (2003) from the authors, we instead564

filtered out very short (< 80 milliseconds) phones from the test data. This reduced the overall error565

rates, but still yielded similar performance between the ‘native’ and ‘non-native’ models. Third, we566

asked whether the target contrast can be learned from the training data at all. As an upper-bound567

baseline, we trained and tested a supervised phoneme recognizer model (see Appendix) on the same568

data, and the error rates for the target contrast were still high, although somewhat lower than for569

our models, 31.5 ± 2.8%. This suggests that either the target contrast is very difficult to learn from570

this data set, or that the test data is noisy. At the same time, a Spanish phoneme recognizer model571

that we trained on the same Spanish data showed significantly higher error rates on the Catalan572

contrast, 41.4 ± 0.2%, suggesting that a supervised model can correctly predict the infants’ phone573

discrimination pattern.574

To summarize, none of themodels could capture all three crosslinguistic discrimination patterns.575

At the same time, the CAE-RNN, just like the DPGMM in Study 1, correctly predicts two patterns576

out of three. The CAE and the AE-RNN only predict one pattern each, while the AE makes no577

correct predictions. On the one hand, because the CAE-RNN and the DPGMMmake equally good578

predictions, comparing just these two models does not let us conclude which of their mechanisms579

better explain infants’ phone discrimination. On the other hand, recall that our four neural network580

models arematched on two dimensions, andwe can lookmore closely at how themodels’ predictions581

differ along those dimensions. If we first compare the two models with the top-down strategies (the582
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CAE and the CAE-RNN) to the two corresponding models without such strategies (the AE and the583

AE-RNN), we can see that the top-down strategies can be beneficial for phonetic learning. Second,584

if we compare the two models which process word-sized units holistically (the AE-RNN and the585

CAE-RNN) to those that do not (the AE and the CAE), we find that the holistic processing can586

potentially benefit the models’ predictions as well. These results, however, should be interpreted587

with caution, as there is no guarantee that similar patterns would replicate in other classes ofmodels:588

i.e., designing a mechanism to provide the DPGMM with word-sized units would not necessarily589

improve its predictions.590

The two models that perform best in our two studies — the DPGMM and the CAE-RNN— use591

very different learning algorithms and representation formats, effectively presenting two alternative592

hypotheses about early phonetic learning, yet theymake qualitatively identical predictions regarding593

the crosslinguistic discrimination of three phone contrasts. Both hypotheses have been argued for in594

the literature on early phonetic learning. The DPGMM embodies a purely distributional bottom-up595

learning account (see Schatz et al., 2021, for a detailed account), while the CAE-RNN brings in the596

top-down guidance from the word level (Swingley, 2009). Therefore, our results on the English and597

the Mandarin contrast are compatible with both theories. But because these are contrasting theories598

in the acquisition literature, the field could benefit from a method that could distinguish between599

them computationally. This is why in the next section we use the two models — the DPGMM600

and the CAE-RNN — to make predictions about the difficulty of discrimination of specific phone601

contrasts which have not yet been tested with infants.602

6 Models’ predictions for other phone contrasts603

In this section, we identify phone contrasts for which the two models — the DPGMM and the604

CAE-RNN—make different crosslinguistic predictions in the discrimination tasks. We follow the605

general method of Schatz et al. (2021) for deriving models’ predictions. We only focus on data606

set 1 — that is, English and Japanese models tested on English phone contrasts.607

We first split our English and Japanese training corpora into 10 parts and train the DPGMM and608

the CAE-RNN on 1/10th of the data. As in our Study 1 and 2 above, for each model we compute609

ABX discrimination scores for all English contrasts in the native (English) and the non-native610
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Table 4: Contrasts for which the DPGMM and/or the CAE-RNN predict robust crosslinguistic
differences in the discrimination difficulty. All contrasts are predicted to be easier to discriminate
for the English learner than for the Japanese learner.

DPGMM CAE-RNN

Contrast Mean difference Contrast Mean difference

[n]–[ô] 4.9 [f]–[z] 6.9
[d]–[ô] 4.9 [2]–[OU] 5.8
[Ç]–[l] 4.9 [f]–[s] 5.5
[Ç]–[I] 4.9 [l]–[ô] 4.8
[h]–[ô] 4.6 [m]–[ô] 4.5
[2]–[Ç] 4.4 [ô]–[w] 4.5
[m]–[ô] 4.5 [2]–[AU] 4.3
[D]–[ô] 3.8 [A]–[2] 3.0
[l]–[ô] 3.7
[ô]–[v] 3.4
[ô]–[t] 2.6

(Japanese) versions of that model. We then compute the differences between the ABX scores611

of the native vs. non-native version on each English phone contrast, and look for the contrasts612

with robust crosslinguistic discrimination differences. A difference is considered robust when it is613

(1) statistically significant from zero across the ten data subsets for each corpus, (2) in the same614

direction across the two training/test data registers. These two criteria are based on the method615

of Schatz et al. (2021), but are somewhat relaxed compared to theirs, to ensure we obtain robust616

predictions from both models. To give an example, the [ô]–[l] contrast should be more difficult to617

discriminate for the Japanese model than for the English model when trained and tested on read618

speech as well as on spontaneous speech, and this difference in the discrimination difficulty should619

be statistically significant, in order for the difference to be considered robust.620

We report the contrasts with such robust differences in Table 4. Note that both models predict621

that some contrasts are easier to discriminate for the native (English) than non-native (Japanese)622

learner, and no contrasts are predicted to have robust differences in the opposite direction. For the623

DPGMM, we see that the robust differences are only detected for contrasts involving the rhotic624

consonant [ô] or the rhotacized vowel [Ç]. This is less so for the CAE-RNN: while its predictions625

also include three contrasts with [ô] (but not [Ç]), there are also contrasts with fricative sounds626
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([f]–[z] and [f]–[s]), as well as vowel contrasts, all of which involve [2] (none of these contrasts are627

phonemic in Japanese). First, the models’ predictions can be directly used to inform future research628

on early phonetic learning, as infants can be directly tested on the contrasts for which our models629

predict crosslinguistic differences, and the results of those tests can be further used to understand630

which model is a better model of early phonetic learning. In particular, if Japanese-learning infants631

would show significantly worse discrimination rates than English-learning infants on contrasts with632

the rhotacized vowel [Ç] (but not on fricative consonant contrasts or the vowel contrasts with [2]),633

this would speak in favor of the DPGMM model. The reverse pattern — i.e., difficulties with634

fricatives and [2], but not [Ç] — would speak in favor of the CAE-RNN model. Note, however,635

that the absence of a particular phonetic contrast in Table 4 does not mean that the model predicts636

no difference for that contrast, but rather no robust difference. In other words, if Japanese-learning637

infants show more difficulties on, e.g., [2]–[OU] contrast (which only appears among the CAE-RNN638

predictions) than English-learning infants, this does not necessarily rule out the DPGMM model.639

Second, these results show that the two models do not make identical predictions on various640

phone contrasts. This is a positive result, because, as we mentioned above, experiments with infants641

can help us distinguish between the two models.642

At the computational level, an analysis of the models’ representations can help us understand643

what leads to different predictions. Below, we focus on comparing the models’ representations644

to adult-like phonetic categories. Recall that the models we are using simulate perceptual space645

learning, a framework that challenges the existing accounts which attribute infants’ behavior to646

phonetic category learning. This is why we are interested to know whether the representations that647

the two models learn contain readily accessible information about adult-like phonetic categories.648

We address this question in the next section.649

7 Analyzing models’ representations650

We have considered five models that implement various versions of perceptual space learning.651

Because these models do not rely on symbolic representations of phones, it would be helpful to652

know what kind of representations they learn. Here, we analyze the representations that emerge653

in the DPGMM and the CAE-RNN, the two models that correctly predicted two out of three654
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crosslinguistic patterns of phone discrimination in our two studies. Representation analysismethods655

are commonly used to study not only neural networks, but also phone encoding in human brain656

(e.g., Evans & Davis, 2015; Levy & Wilson, 2020; Reh, Hensch, & Werker, 2021).657

The DPGMM representations have been earlier studied by Schatz et al. (2021), who showed that658

the individual Gaussian components in the model do not correspond to phonetic categories: the659

number of components was an order of magnitude larger than the number of phonetic categories in660

English, and each component was on average activated only for under 20milliseconds, much shorter661

than the average duration of a phoneme. It is an important result that the models of perceptual space662

learning, such as the DPGMM, do not use explicit phonetic categories yet make correct predictions663

about infants’ phone discrimination. However, it is possible that categories may still be found664

implicitly in the model’s posteriorgram space. Here, we look for structure in the representation665

spaces of both the DPGMM and CAE-RNN, by running unsupervised clustering and supervised666

classification of phone instances encoded in the two models’ representation spaces, as explained667

below in the respective sections.668

For both clustering and classification, we consider the DPGMM and the CAE-RNN model669

trained on a specific corpus (e.g., WSJ) and use a test sample from a different corpus in the same670

language (here, Buckeye for English). From the test corpus, we sample 100 acoustic realizations671

of each phone and remove phones which appear fewer than 100 times in the corpus. We consider672

the model’s representations for that sample and compute pairwise distances (KL divergence for the673

DPGMM and angular distance for the CAE-RNN, for consistency with our ABX discrimination674

simulations) between all phone instances. These distances are then used in both clustering and675

classification tasks as described below. Note that this is different from the comparison of crosslin-676

guistic discrimination patterns in Study 1–2. First, here we only consider models trained and677

tested on the same language: English, Japanese, or Mandarin. Second, we only consider models678

trained and tested on samples from different corpora, to exclude the possibility that our models679

learn some corpus-specific properties (e.g., register or channel effects) that could make clustering680

and classification easier. For this reason, we do not consider Spanish and Catalan models here, for681

which we only have a single corpus (as shown in Table 3 above). At the same time, we do provide682

the relevant results for these two languages in the Supplementary Materials S3.683

As an upper-bound baseline, we additionally train and test a supervised phoneme recognizer684
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(see Appendix) on the same data sets to analyze its representations using an analogous setup.685

7.1 Clustering686

Cluster quality. First, we examine whether phone instances in each model’s representation space687

naturally group into clusters that align with adult-like phonetic categories. We split the data688

described above in Section 7 into 10 equal parts (10 acoustic realizations per phone) for robust689

estimation and, using the distance matrices between phone instances, we run an agglomerative690

hierarchical clustering algorithm, with the number of clusters equal to the true number of different691

phones in the sample. Following some of the existing studies that compare unsupervised clusters692

to phonetic categories (Frank, Feldman, & Goldwater, 2014; Shain & Elsner, 2019), we use three693

information-theoretic measures ranging from 0 to 1 to evaluate the cluster quality: homogeneity694

(�), completeness (�), and V-measure (+). Homogeneity is the highest when each cluster only has695

phones of the same type, completeness is maximized when all phones of the same type are put in696

the same cluster. V-measure is a harmonic mean of the two (Rosenberg & Hirschberg, 2007).697

High clustering performance would mean that the phonetic categories are easily separable in698

a model’s representation space. Our results (see Figure 4) for the two target models of perceptual699

space learning are lower compared to the supervisedmodel (whichwe consider to be an approximate700

upper-bound baseline). In other words, the clustering performance is far from perfect in all cases701

and is not as good as the performance of the supervised model, suggesting that adult-like phonetic702

categories may not be the most natural clusters in the models’ learned phonetic spaces. On average,703

the clustering performance for the DPGMM-based representations is somewhat higher than for704

the CAE-RNN-based representations (except for the Japanese and the Mandarin models tested on705

GlobalPhone). A mixed-effects linear regression model fitted to the data showed that the described706

differences are statistically significant on all three measures: i.e., on average the supervised model707

has the highest cluster quality, followed by the DPGMM, followed by the CAE-RNN (except that708

the difference between the DPGMM and the CAE-RNN using � measure was not significant).709

Cluster-to-phone mappings. For illustration purposes, we also show a confusion matrix710

between the true phonetic category labels and the unsupervised clusters, computed on the full711

data set with 100 acoustic realizations per phone. Note that there is no immediate correspondence712
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Figure 4: Quality of the unsupervised clusters, found by clustering the representations in the
two most successful models (DPGMM and CAE-RNN) and the supervised baseline in English,
Japanese, and Mandarin. Plots display homogeneity (left), completeness (middle), and +-measure
(right) averaged over the 10 data splits, error bars show standard error of the mean.

between a set of true phonetic category labels and a set of unsupervised clusters, and we need to find713

the best assignment between true labels and unlabeled clusters. One classic method commonly used714

for this purpose is the Hungarian algorithm, a global combinatorial optimization method which715

solves the assignment problem in polynomial time (Kuhn, 1955). We present the resulting confusion716

matrix for English (trained on WSJ, tested on Buckeye). Figure 5 shows fragments of the matrices,717

while full matrices can be found in Supplementary Materials S4. Comparing the diagonal values718

in Figure 5a vs. 5b, we can see that the alignment between the true and the predicted phone labels719

is better for the DPGMM-based representations, where confusions are observed between similar720

sounds (e.g., vowels or fricative consonants). By contrast, the CAE-RNN-based representations721

have at least two clusters (with indices 36 and 2) whose boundaries cross many phones with very722

different acoustic characteristics (e.g., vowels [2] and [U], but also consonants [p] and [D]). This723

difference is also noticeable in Figure 6, which shows that the label assignment to clusters is more724

accurate for the DPGMM than the CAE-RNN representations. This is consistent with the results725

in terms of the �, �, and + measures above.726

Summary. Overall, our analyses show that the clusters computed on top of the CAE-RNN727

representations have lower quality than the clusters computed on the DPGMMposteriorgrams: they728

are less homogeneous, less complete and alignworsewith true phonetic categories. Recall, however,729

that we used different distance measures for the two models, following our main simulations using730

ABX discrimination task — KL divergence for the DPGMM vs. angular distance for the CAE-731
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Figure 5: Fragments of confusion matrices between the true phone labels vs. best matching clusters
on English Buckeye data. The clusters are obtained using unsupervised agglomerative clustering
on each model’s representations of 100 instances for each English phone, and the matching is
done by solving the assignment problems between true categories and predicted clusters using the
Hungarian Algorithm. See Supplementary Materials S4 for full matrices.
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RNN — and the latter may be less suitable for clustering. To see whether this is the case,732

we applied the same clustering algorithm to the CAE-RNN representations using the Euclidean733

distance measure. The clusters that include very different phones (such as [2] and [D] in Figure 5b)734

no longer occurred, but the overall cluster quality was not substantially higher.10 The CAE-RNN735

confusion matrix computed with Euclidean distances is provided in Supplementary Materials S5736

for reference.737

7.2 Classification738

The goal of our unsupervised clustering analysis was to test whether each model’s representations739

of phone instances naturally group into classes corresponding to adult-like phonetic categories.740

Here, we test if — and to what extent — such phonetic categories can be inferred from each741

model’s representations by an algorithm explicitly trained on this task. For this, we train a linear742

10To ensure that our main ABX results in Study 2 were not affected by the choice of the distance measure for the
CAE-RNN model, we ran the discrimination experiments with this model using the Euclidean distance measure (KL
divergence could not be used, because it requires each representation to be a valid probability distribution), and the
main patterns of results for out target phone contrasts in all languages did not change; see Supplementary Materials S5.
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Figure 6: Accuracy of the mapping between true phone labels and the best matching clusters in
English, Japanese, and Mandarin, computed using the Hungarian Algorithm.
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Figure 7: Accuracy of the :-NN phone classifier trained and tested on the representations of phone
instances in the DPGMM and the CAE-RNN model for English, Japanese, and Mandarin. Bands
show the standard error of the mean for 10 random training–test data splits.

:-nearest neighbors classifier (we use : = 10) using the precomputed distances between phone743

representations in each model described above. For each distance matrix, we use an 80–20% split744

(for each phone) for training and testing, respectively. We always use the full test data (i.e., 20%)745

for evaluating the classifier, but variable amounts of data for training, between 10 and 100% of746

the all training data instances, in increments of 10%, and look at how much data is needed for747

achieving high classification accuracy. The less data is needed, the more readily available the748

phone categories are in the model’s representations.749

Figure 7 shows that the classifier trained on the representations of the supervised model,750

unsurprisingly, achieves the highest accuracy on all corpora (the solid orange lines), between 54.6751

and 77.0%. Moreover, the lines are not steep: the classifier trained on the supervised models’ data752

achieves near-ceiling accuracy already after seeing only 20% of the data. This is not the pattern753
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we see for the classifier trained on the representations of the two perceptual space learning models:754

classification accuracy keeps increasing with more training data, suggesting that the information755

about phonetic categories is not readily available in the representations of the DPGMM and CAE-756

RNN.757

Next, DPGMM representations (dotted pink lines) nearly always result in higher classification758

accuracy than the CAE-RNN representations (dashed blue lines). The only exception is the759

Japanese GlobalPhone corpus, where the two models yield nearly identical classification accuracy760

(the dotted pink and the dashed blue line closely follow each other). This pattern of results761

suggests that the information about the phones is more readily available in the DPGMM than762

CAE-RNN representations. To summarize, our clustering and classification results are consistent763

in providing evidence that the DPGMM encodes more information about phonetic categories than764

the CAE-RNN.765

8 Discussion766

8.1 Phone discrimination in computational models767

Using computational modeling on realistic input, we compared possible models of early phonetic768

learning in their ability to predict the changes in discrimination empirically observed in infants.769

In the first study, we tested Schatz et al.’s (2021) DPGMM model on three phone contrasts from770

different languages, using a phone discrimination task. We first reproduced their result for the771

crosslinguistic discrimination of the English [ô]–[l] contrast, and then found that their model also772

shows the infant-like pattern of discrimination for the Mandarin [C]–[tCh] contrast. This means that773

their earlier result was not specific to a particular English contrast. In the second study, we tested774

four neural network models. One of these models, the CAE-RNN, also made correct predictions775

on the same two contrasts as the DPGMM. Although no model predicted the correct pattern for the776

Catalan vowel contrast [e]–[E], the fact that two of them make correct predictions on the other two777

contrasts is promising. This result supports the idea that models learning perceptual spaces directly778

from unsegmented natural speech can correctly predict some of the infant phone discrimination779

data (Feldman et al., 2021; Schatz et al., 2021). Based on the results of this study, the DPGMM780
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and the CAE-RNN show some promise as models of early phonetic learning. Their lack of correct781

predictions on the Catalan contrast may have to do with the amount of noise in the training and/or782

test data, because a supervised phoneme-recognizer trained and tested on the same data also showed783

high discrimination error. This suggests that our results on Catalan might be seen as an absence of784

evidence in favor or against any of the models. However, the noise in the data cannot explain why785

the supervised model could correctly predict the differences in the discrimination of the Catalan786

contrast for the Catalan- vs. Spanish-learning infants, and ideally our models should be evaluated787

on different suitable corpora, once they become available. Although we have been able to show that788

only two out of the five tested models are likely candidates for modeling infant speech perception,789

the existing infants’ phone discrimination data may simply not be sufficient for distinguishing790

between the two more successful models.791

8.2 Mechanisms of early phonetic learning792

The second focus of our studies was the distinction between bottom-up vs. top-down learning793

mechanisms. In particular, the DPGMM, the AE, and the AE-RNN are purely unsupervised794

models that learn from frame-level data. In contrast, the CAE and the CAE-RNN use weak795

top-down guidance from the word level (although the word forms could also be detected in an796

unsupervised way, see Kamper, 2019). The DPGMM and the CAE-RNN were equally successful797

in predicting the infants’ crosslinguistic phone discrimination patterns. At the same time, these two798

models represent very different algorithms. If we comparemodels that use the same architectures—799

AE vs. CAE and AE-RNN vs. CAE-RNN—we can conclude that, everything else being equal, the800

top-down guidance can help in making predictions that are more similar to infants’ data on phone801

discrimination across languages. At the same time, recall that the pairs of acoustic words instances802

for the CAE and the CAE-RNN models in our case were obtained using supervised alignment803

methods. Training these models on a noisier set of word pairs obtained using fully unsupervised804

word discovery methods, as in Kamper (2019), could potentially diminish the benefits of the805

top-down guidance.806

An orthogonal distinction we have made relates to the representation unit the models are trained807

on: frames vs. word-sized units. Recall that at test time this corresponds, respectively, to represent-808
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ing phones either as sequences of frames or as holistic units. Again, if we compare the models with809

similar architectures that differ primarily in their representation type (AE vs. AE-RNN and CAE810

vs. CAE-RNN), we can conclude that processing longer units holistically in the recurrent models811

results in better predictions. Therefore, such holistic processing of sequences is advantageous for812

our autoencoder-based models of infant speech perception. There may be at least two mechanisms813

providing this advantage. First, at test time, the recurrent models integrate the information from814

the whole series of frames (corresponding to a phone) into a holistic representation, and compar-815

ing such integral representations to each other in an ABX task may be a better model of infants’816

discrimination behavior than the alternative, i.e., comparing sequences of individual 25-ms-long817

frames to each other. Second, representation spaces in the recurrent models are built based on818

sequences longer than a frame or even a phone, and this is compatible with some early theories of819

phonetic learning (Jusczyk, 1992, 1993), which argue that infants store representations for speech820

sequences that are longer than a phone.821

Because we have only tested four neural network models and did not explore whether their822

behavior changes depending on the exact architecture and hyperparameters, our results regarding the823

two distinctions above only present inconclusive evidence and may not be generalizable. Relatedly,824

while we cannot provide a fair comparison of the neural networks to the DPGMM model, we can825

speculate that a version of the DPGMMmodel that could better integrate the information over time826

could be a better model of early phonetic learning.827

8.3 Models’ predictions for future testing with infants828

To test whether the DPGMM and the CAE-RNN make similar predictions on all phone contrasts,829

we used the general method proposed by Schatz et al. (2021) to derive English contrasts for which830

each of the two models predicts robust differences in discrimination by the Japanese vs. English831

learner. Such contrasts can inform future experimental studies with infants: it is costly to run832

experiments with infants, and our models’ predictions can inform future testing with Japanese- and833

English-learning infants. While there are some contrasts, such as [l]–[ô] and [m]–[ô], for which834

both our models— the DPGMM and the CAE-RNN— predict robust crosslinguistic differences in835

discrimination rates, our analysis shows that the models do not always make identical predictions836
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about discriminability, and some contrasts are predicted to yield such differences only by one of837

the models. Because of this disagreement between the models, the outcomes of future studies838

with infants can help one decide whether the DPGMM or the CAE-RNN is a better model of839

early phonetic learning. In this respect, specific recommendations include testing Japanese- and840

English-learning infants on two groups of contrasts: (1) contrasts that include the rhotacized vowel841

[Ç] (predicted to yield a crosslinguistic difference by the DPGMMmodel), and (2) vowel contrasts842

that include [2] and some fricative consonant contrasts with [f] (predicted by the CAE-RNN843

model). If Japanese-learning infants find it more difficult (compared to English-learning infants) to844

discriminate contrasts from group (1) but not (2), this would speak in favor of the DPGMMmodel;845

an inverse pattern would lend support to the CAE-RNN model. If Japanese-learning infants find846

both groups of contrasts challenging, this would speak in favor of both our models, while a lack847

of difference between Japanese- and English-learning infants on either group of contrasts would848

suggest that either our models are not sufficiently detailed models of early phonetic learning, or849

that the mechanism of deriving robust predictions should be improved. To summarize, consistent850

discrimination results in infant experiments would speak in favor of one or the other model, or851

against both, thus making it possible to falsify one or both models on the ground of their ability852

to generate the effects of interest rather than correctly predict those already observed (Palminteri,853

Wyart, & Koechlin, 2017).854

8.4 Phonetic category information in models’ representations855

To investigate to what extent the information about adult-like phonetic categories is readily available856

in the representations of our two ‘best’ (in terms of predicting infants’ patterns) models, andwhether857

the two models are similar in the amount of such information they encode, we carried out an858

unsupervised clustering and a supervised classification analyses on the phone representations in the859

DPGMM and the CAE-RNN models. The results across the two types of analyses were consistent860

in that the DPGMM representations are organized in such a way that the information necessary to861

discriminate between adult-like phonetic categories can be derived more easily, compared to the862

CAE-RNN representations. In their study, Schatz et al. (2021) analyzed the representations of the863

DPGMM model and showed that those were not similar to adult-like phonetic categories in any864
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meaningful sense. Our result shows that the representations of the CAE-RNN are even less similar865

to phonetic categories, compared to the DPGMM representations. At the same time, note that a866

model encoding more information about adult-like phonetic categories is not necessarily a better867

model of infant phonetic learning, and vice versa.868

Irrespective of the exact differences between the DPGMM and the CAE-RNN, it is not a trivial869

finding that the models encode non-negligible amount of information about phonetic categories870

in their representations. This finding is interesting for the existing accounts of perceptual space871

learning, because these accounts argue that categories are learned later in life by carving up the872

acquired perceptual space (Feldman et al., 2021). The models of perceptual space learning only873

simulate the early part of this complex learning process, before infants acquire adult-like phonetic874

categories. Indeed, our classification analyses show that the information about categories may not875

be readily available in the models’ representation spaces. At the same time, our clustering analyses876

show that even after training computational models of perceptual space learning on small amounts877

of data (compared to what an infant hears by her first birthday), their perceptual spaces can already878

be carved up into clusters that vaguely resemble phonetic categories, potentially mimicking infants’879

very first steps towards adult-like categories. Finally, note that our clustering and classification880

results should be interpreted with caution, as they only present indirect evidence for or against the881

emergence of actual phonetic categories in the models’ representations. Even if phonetic categories882

could be separated nearly perfectly in a model’s representations, it does not mean that the model883

uses top-down categorical information during the learning or at test time (see Feldman et al., 2021,884

for a relevant discussion).885

8.5 Future directions886

In this work, we have only tested our models of phonetic learning on a particular kind of infants’887

phone discrimination data, where two groups of infants — native and non-native learners of a888

certain language — are tested on a given phone contrast from that language. In other kinds of889

experiments, infants from a single group were tested only on a native or a non-native phonetic890

contrast (e.g., see an overview for vowel contrasts in Tsuji & Cristia, 2014), and in the future the891

field can benefit from carrying out a meta-analytic evaluation of how well our and similar models892
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predict this kind of data, as in the framework proposed by Cruz Blandón et al. (2021).893

Moreover, our work has only focused on particular implementations of five computational894

models. The field of speech engineering has recently seen a large increase in the number of895

available models for unsupervised and weakly supervised learning (see reviews by Aldarmaki,896

Ullah, Ram, & Zaki, 2022; Mohamed et al., 2022). Some of these models have been evaluated897

against adults’ categorical phone representations (e.g., Cruz Blandón & Räsänen, 2020) or against898

behavioral data (e.g., Millet & Dunbar, 2022), and future work could evaluate them on infants’899

phone discrimination data of the kind used in our work.900

Another research direction worth exploring is using more ecological data for training the901

models. While our study is a step forward compared to work in which models are trained on902

idealized laboratory stimuli, there is still a gap between the type of data we used and naturalistic903

input that infants are exposed to. In particular, the performance of a computational model in the904

machine ABX discrimination task varies depending on the type of input to the model (read speech905

vs. child-centered recordings, see Lavechin et al., 2023) and the exact composition of the input906

(in terms of the number of speakers and their gender, see Li, Schatz, Matusevych, Goldwater, &907

Feldman, 2020). We have used a combination of read and spontaneous adult speech corpora thanks908

to their availability, and Schatz et al. (2021) showed that qualitative patterns were consistent for both909

speech registers on their data set. At the same time, once data sets of child-directed recordings for910

the target languages become available, our models can be trained and tested on such data for their911

more ecologically valid evaluation. Moreover, training the models on more naturalistic data would912

also be the first step towards measuring the fit between models’ error rate and infants’ behavior,913

rather than evaluating it qualitatively, as in this work.914

9 Conclusion915

It has recently been proposed that infants’ phone discrimination data can be explained in terms916

of perceptual space learning, without use of phonetic categories (Feldman et al., 2021; Schatz917

et al., 2021). Here, we have evaluated five computational models of early phonetic learning918

from naturalistic speech data on three phonetic contrasts, for which infants’ phone discrimination919

data is available. We have found that the generative probabilistic model of Schatz et al. (2021),920
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DPGMM, and a neural network with weak top-down supervision from the word level, CAE-RNN,921

can correctly predict qualitative patterns of phone discrimination exhibited by infants on two out of922

three phonetic contrasts. While Schatz et al. (2021) found that their model’s representations did not923

resemble phonetic categories, we have observed that the representations of the other model, CAE-924

RNN, resemble phonetic categories to an even lesser extent. Thus, our findings extend the previous925

proof-in-principle that perceptual space learning is a viable account of early phonetic learning926

and contribute to the growing body of work which argues against the unconditional assumption927

of phonetic category learning in infancy (Feldman et al., 2021; McMurray, 2022). Finally, three928

other models that we tested appeared to be less successful at predicting infants’ discrimination929

data. This result suggests that the existing data from infants can help us distinguish between some930

(but not all) formal algorithms of phonetic learning and calls for collection of more fine-grained931

data. Such data would help us test whether the purely bottom-up distributional learning account,932

as in the DPGMM, or the account with weak top-down guidance from the word level, as in the933

CAE-RNN, makes a better theory of early phonetic learning. The fact that the two models make934

different predictions on other phonetic contrasts suggests that more data would help in resolving935

this issue, and we have provided concrete suggestions about which contrasts may be promising for936

future data collection with infants.937
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Appendix: Formal models1198

Here we provide formal definitions and the hyperparameters values of the DPGMM (Study 1), the1199

four neural network models (Study 2), as well as the supervised baseline.1200

Dirichlet process Gaussian mixture model1201

The Dirichlet process Gaussian mixture model (DPGMM) is a generative probabilistic model, a

GMM with a non-parametric Dirichlet process prior. It learns by maximizing the likelihood of its

 components ( changes during learning) given the input speech frame -:

L(Θ|-) =
| |∑
8=1

c8 ?(- |`8,Σ8) (1)

where Θ is a set of the model’s parameters, and `8 and Σ8 are the parameters of component 8: mean1202

and covariance, respectively. The mixture weights c8 are generated through the stick-breaking1203

process (a particular version of the Dirichlet process), while `8 and Σ8 of component 8 are sampled1204

from the normal-inverse Wishart distribution. The inference is done using a parallel Markov chain1205

Monte Carlo sampler (Chang & Fisher III, 2013). More details can be found in Chen et al. (2015);1206

Schatz et al. (2021).1207

Neural network models1208

Autoencoder (AE) is a classic auto-associative model which uses reconstruction loss (here: mean

squared error) between the feature representation - of an input acoustic frame and its output

representation -̄:

ℓ(-) = | |- − -̄ | |2 (2)

We follow Kamper et al. (2015) and use a stacked version with 8 hidden layers (7× 100 and 1× 391209

units). The model is pretrained for 5 epochs per layer plus 5 epochs of final fine-tuning, without1210

early stopping, with Adadelta optimization with adaptive learning rate (Zeiler, 2012) and decay1211

0.95. At test time, the second-to-last hidden layer is used to encode individual frames from the test1212

data into the model’s representation space.1213
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Correspondence autoencoder (CAE) only differs from the AE in that it is trained on pairs

of acoustic frames: a feature representation - of the acoustic frame from one instance of a given

word type and a feature representation -′ of the aligned (using dynamic time warping) frame from

another instance of the sameword type. The loss is then computed between -′ and the reconstructed

version -̄ of the representation -:

ℓ(-, -′) = | |-′ − -̄ | |2 (3)

Following Kamper et al. (2015), we initialize the CAE using the AE (with parameters as described1214

above), and then train the CAE with the same architecture for 120 epochs.1215

Autoencoding recurrent neural network (AE-RNN) includes an encoder RNN and a decoder

RNN. The encoder reads an input sequence and updates its hidden state. The final state of the

encoder is then transformed into an acoustic embedding and passed to the decoder, which uses it to

generate an output sequence. Each input sequence consists of a sequence of MFCC feature vectors,

- = (®G1, . . . , ®G) ), where ) is the sequence length. The loss for a single training item is:

ℓ(-) =
)∑
C=1
| | ®GC − ®5C (-) | |2 (4)

where - is the input sequence, and 5C (-) is the Cth decoder output conditioned on the embedding z,1216

which is obtained by transforming the encoder’s final state (i.e., reducing the number of dimensions).1217

At test time, a phone sequence is encoded into the model’s fixed-dimensional acoustic embedding1218

space. We use the parameters of Kamper (2019): 3 hidden layers (400 gated recurrent units each)1219

in both the decoder and the encoder, embedding dimensionality of 130, 15 epochs training without1220

early stopping using Adam optimization (Kingma & Ba, 2015) with a learning rate of 0.001.1221

Correspondence-autoencoding recurrent neural network (CAE-RNN) uses an identical

architecture, but each input consists of word pairs - and -′, which are different acoustic realizations

of the same word type. The loss for a single training pair in this case is:

ℓ(-, -′) =
) ′∑
C=1
| | ®G′C − ®5C (-) | |2 (5)
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where - is the input and -′ the target output sequence, and 5C (-) is the Cth decoder output1222

conditioned on the embedding z. Following Kamper (2019), we use the AE-RNN to initialize the1223

parameters of the CAE-RNN and then train it (with parameters analogous to those of the AE-RNN)1224

for 3 epochs.1225

Supervised baseline1226

Our supervised baseline is a phoneme recognizer, with the same architecture and settings described1227

in Schatz et al. (2021). We use a standard training recipe commonly used in speech recognition.1228

It is adapted from the Wall Street Journal corpus recipe available in Kaldi. Specifically, each1229

phoneme recognizer is a combination of an acoustic hidden Markov model Gaussian mixture1230

model (HMM-GMM) and a phoneme-level bigram language model trained using the Kaldi toolkit1231

(Povey et al., 2011). The acoustic model is a probabilistic generative model, where each phoneme is1232

represented as a set of variants conditioned on their positionwithin aword as well as the neighboring1233

phonetic context (i.e., preceding and following phonemes). Furthermore, each variant is modeled1234

as a standard tri-state left-to-right HMM. Each acoustic model is trained using speaker-adaptive1235

training (SAT) through feature maximum likelihood linear regression (fMLLR). The test data is1236

then processed using the acoustic model and the language model together, with the acoustic scale1237

parameter for decoding set to 0.1 (i.e., the probabilities from the language model are weighted1238

higher than the probabilities from the acoustic model).1239
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Supplementary materials1240

S1 Lists of phones1241

Table 5 provides lists of phones which we used for each corpus. These lists were largely based on1242

the existing transcriptions of the corpora.1243

S2 Results controlled for phonetic context1244

Here, we present extended results for Study 1 and Study 2. While the respective studies only1245

report the models’ ABX discrimination error rates for the target phone contrasts in all neighboring1246

phonetic contexts, here we present results for neighboring phonetic contexts that better resemble1247

the experimental setup in the original experiments with infants. Figure S1 shows the error rates for1248

the DPGMM model from Study 1, and Figure S2 shows the error rates for the four neural network1249

models from Study 2. Note that the number of data pairs (i.e., different speaker–phonetic context1250

combinations) in some conditions is very low (see the numbers above each pair of bars in the1251

figures: e.g., for the target Catalan contrast in the ‘Right only’ condition we only have 2 data pairs),1252

so that the results are likely not to be robust.1253
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Table 5: Lists of phones used in each corpus sample.

Language Corpus List of phones

EN WSJ, Buckeye A:, æ, 2, O:, aU, aI, b, Ù, d, D, E, Ç, eI, f, g, h, I, i:, Ã, k, l, m, n, N,
oU, OI, p, ô, s, S, t, T, U, u:, v, w, j, z, Z

JA GP F, ð, tC:, k:, p:, s:, C:, t:, ä, ä:, b, ţ, tC, d, e, e:, g, h, i, i:, k, m, n,
o, o:, p, r, s, C, t, W, W:, w, j, z, ý

JA CSJ F, ð, ţ:, tC:, k:, p:, s:, C:, t:, ä, ä:, b, ţ, tC, d, e, e:, g, h, i, i:, k, m,
n, o, o:, p, r, s, C, t, W, W:, w, j, z, ý

MN AIShell ä
Ă
£, äĘ£, äŁŘ£, äČ£, äĂ£, aI

Ă
£, aIĘ£, aIŁŘ£, aIČ£, aIĂ£, AU

Ă
£, AUĘ£, AUŁŘ£, AUČ£, AUĂ£,

p, tsh, tùh, t, @
Ă
£, @Ę£, @ŁŘ£, @Č£, @Ă£, eI

Ă
£, eIĘ£, eIŁŘ£, eIČ£, eIĂ£, f, k, x, i

Ă
£, iĘ£,

iŁŘ£, iČ£, iĂ£, iä
Ă
£, iäĘ£, iäŁŘ£, iäČ£, iäĂ£, iAU

Ă
£, iAUĘ£, iAUŁŘ£, iAUČ£, iAUĂ£, iE

Ă
£,

iEĘ£, iEŁŘ£, iEČ£, iEĂ£, iU
Ă
£, iUĘ£, iUŁŘ£, iUČ£, iUĂ£, ioU

Ă
£, ioUĘ£, ioUŁŘ£, ioUČ£,

ioUĂ£, iu
Ă
£, iuĘ£, iuŁŘ£, iuČ£, iuĂ£, tC, kh, l, m, n, N, 7

Ă
£, 7Ę£, 7ŁŘ£, 7Č£, 7Ă£,

oU
Ă
£, oUĘ£, oUŁŘ£, oUČ£, oUĂ£, ph, tCh, õ, s, ù, th, u

Ă
£, uĘ£, uŁŘ£, uČ£, uĂ£,

uä
Ă
£, uäĘ£, uäŁŘ£, uäČ£, uäĂ£, uaI

Ă
£, uaIĘ£, uaIŁŘ£, uaIČ£, uaIĂ£, u@

Ă
£, u@Ę£,

u@ŁŘ£, u@Č£, u@Ă£, ueI
Ă
£, ueIĘ£, ueIŁŘ£, ueIČ£, ueIĂ£, uI

Ă
£, uIĘ£, uIŁŘ£, uIČ£, uIĂ£,

uO
Ă
£, uOĘ£, uOŁŘ£, uOČ£, uOĂ£, y

Ă
£, yĘ£, yŁŘ£, yČ£, yĂ£, yE

Ă
£, yEĘ£, yEŁŘ£, yEČ£,

yEĂ£, yŒ
Ă
£, yŒĘ£, yŒŁŘ£, yŒČ£, yŒĂ£, C, j, ts, tù

MN GP ä
Ă
£, äĘ£, äŁŘ£, äČ£, äĂ£, aI

Ă
£, aIĘ£, aIŁŘ£, aIČ£, aIĂ£, AU

Ă
£, AUĘ£, AUŁŘ£, AUČ£, AUĂ£,

p, tsh, tùh, t, @
Ă
£, @Ę£, @ŁŘ£, @Č£, @Ă£, eI

Ă
£, eIĘ£, eIŁŘ£, eIČ£, eIĂ£, f, k, x, i

Ă
£,

iĘ£, iŁŘ£, iČ£, iĂ£, iä
Ă
£, iäĘ£, iäŁŘ£, iäČ£, iäĂ£, iAU

Ă
£, iAUĘ£, iAUŁŘ£, iAUČ£, iAUĂ£,

iE
Ă
£, iEĘ£, iEŁŘ£, iEČ£, iEĂ£, 1

Ă
£, 1Ę£, 1ŁŘ£, 1Č£, 1Ă£, iU

Ă
£, iUĘ£, iUŁŘ£, iUČ£, iUĂ£, ioU

Ă
£,

ioUĘ£, ioUŁŘ£, ioUČ£, iu
Ă
£, iuĘ£, iuŁŘ£, iuČ£, iuĂ£, tC, kh, l, m, n, N, 7

Ă
£, 7Ę£,

7ŁŘ£, 7Č£, 7Ă£, oU
Ă
£, oUĘ£, oUŁŘ£, oUČ£, oUĂ£, ph, tCh, õ, s, ù, th, u

Ă
£, uĘ£,

uŁŘ£, uČ£, uĂ£, uä
Ă
£, uäĘ£, uäŁŘ£, uäČ£, uäĂ£, uaI

Ă
£, uaIĘ£, uaIŁŘ£, uaIČ£, uaIĂ£,

u@
Ă
£, u@Ę£, u@ŁŘ£, u@Č£, u@Ă£, ueI

Ă
£, ueIĘ£, ueIŁŘ£, ueIČ£, ueIĂ£, uO

Ă
£, uOĘ£,

uOŁŘ£, uOČ£, uOĂ£, y
Ă
£, yĘ£, yŁŘ£, yČ£, yĂ£, yE

Ă
£, yEĘ£, yEŁŘ£, yEČ£, yŒ

Ă
£, yŒĘ£,

yŒŁŘ£, yŒČ£, C, ts, tù
CA Glissando @, B, E, ñ, L, N, O, S, T, Z, a, b, d, Ã, dz, e, eI, f, g, h, H, i, j, k, l, m,

n, o, p, R, r, s, t, Ù, u, v, w, x, z
ES Glissando B, E, ñ, L, N, S, T, a, b, d, Ã, e, eI, f, g, h, i, j, J, k, l, m, n, o, p, R, r,

s, t, Ù, u, w, x
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Figure S1: Extended results for Study 1. ABX error rates of the native and non-native DPGMM
models in the three discrimination tasks (EN [ô]–[l], ZH [C]–[tCh] and CA [e]–[E]), with different
degree of control over the neighboring phonetic context of the target phones in the test data (any
context, left/right/both contexts as in the original experiments with infants). The number of data
pairs (i.e., different speaker–phonetic context combinations) in each test set is shown on top of
each bar. Red lines indicate model’s error rates averaged over all consonant (for EN and ZH) or all
vowel (for CA) contrasts. To match the infant pattern of discrimination, the native model in each
pair must show significantly lower error rates than the non-native model. The number of asterisks
denotes significance level: ∗∗∗ corresponds to ? < .001, ∗∗ to ? < .01, and ∗ to ? < .05.
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Figure S2: Extended results for Study 2. ABX error rates of the native and non-native neural
network models in the three discrimination tasks (EN [ô]–[l], ZH [C]–[tCh] and CA [e]–[E]), with
different degree of control over the neighboring phonetic context of the target phones in the test
data (any context, left/right/both contexts as in the original experiments with infants). The number
of data pairs (i.e., different speaker–phonetic context combinations) in each test set is shown on top
of each bar. Red lines indicate models’ error rates averaged over all consonant (for EN and ZH)
or all vowel (for CA) contrasts. To match the infant pattern of discrimination, the native model
in each pair must show significantly lower error rates than the non-native model (black brackets),
the inverse pattern is wrong even if the difference is significant (orange brackets). The number of
asterisks denotes significance level: ∗∗∗ corresponds to ? < .001, ∗∗ to ? < .01, and ∗ to ? < .05.
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S3 Representation analyses for Catalan and Spanish models1254

In this section, we report the results of the models’ representation analyses (i.e., clustering and1255

classification) for Catalan and Spanish. While the analyses in Section 7 are carried out across1256

corpora (i.e., each model is trained on one corpus and then tested on another corpus of the same1257

language), for both Catalan and Spanish we only had one corpus, and we run the analyses on two1258

samples from that corpus.1259

H C V

Supervised DPGMM CAE-RNN Supervised DPGMM CAE-RNN Supervised DPGMM CAE-RNN

0.0

0.2

0.4

0.6

0.8

Model

S
co

re

Test language / sample CA / 1 CA / 2 ES / 1 ES / 2

Measure

Figure S3: Quality of the unsupervised clusters, found by clustering the representations in the two
most successful models (DPGMM and CAE-RNN) and the supervised baseline in Catalan and
Spanish. Plots display homogeneity (left), completeness (middle), and +-measure (right) averaged
over the 10 data splits, error bars show standard error of the mean.

The quality of the unsupervised clusters for Catalan and Spanish is shown in Figure S3. The1260

general pattern of results is similar to that in other languages (cf. Figure 4): the supervised1261

model shows the highest quality on all three measures (0.55 ≤ � ≤ 0.66, 0.56 ≤ � ≤ 0.67,1262

0.56 ≤ + ≤ 0.67), and the perceptual space learning models show lower quality (0.14 ≤ � ≤ 0.37,1263

0.28 ≤ � ≤ 0.44, 0.19 ≤ + ≤ 0.38), with the DPGMM on average being somewhat better at this1264

clustering task than the CAE-RNN. We observe a similar pattern in Figure S4, which shows how1265

well the models’ clusters map onto true phone labels in Catalan and Spanish. Again, these results1266

are similar to what we report for the other languages (cf. Figure 6).1267
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Figure S4: Accuracy of the mapping between true phone labels and the best matching clusters in
Catalan and Spanish, computed using the Hungarian Algorithm.
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Figure S5: Accuracy of the :-NN phone classifier trained and tested on the representations of
phone instances in the DPGMM and the CAE-RNN model for Catalan and Spanish. Bands show
the standard error of the mean for 10 random training–test data splits.

Phone classification results for Catalan and Spanish (Figure S5), again, show patterns that we1268

also observe in the other languages (cf. Figure 7). Specifically, the supervised model achieves the1269

highest accuracy among all models, and it does so already after seeing a small share of the data1270

(20–30%). For the DPGMM and the CAE-RNN, the accuracy increases with the amount of the1271

training data, and the DPGMM achieves higher accuracy than the CAE-RNN.1272

Overall, the main patterns of results for Catalan and Spanish reported in this section, as well1273

as the performance in absolute terms, are consistent with what we observe in English, Japanese,1274

58



and Mandarin. This suggests that the structure of the perceptual spaces in our models does not1275

fundamentally change, whether the training and test data come from the same corpus or from1276

different corpora. At the same time, we can speculate that, because phones may be more consistent1277

within than across corpora, the clustering and classification performance of our models for Catalan1278

and Spanish would have been lower, had the training and test data come from different corpora.1279

This hypothetical result would indicate a lower quality of Catalan and Spanish representations1280

compared to the other languages, which would support our suggestion that the training/test data for1281

Catalan is noisy and explain our results on crosslinguistic discrimination, i.e., the models’ inability1282

to correctly predict the infants’ pattern for the target Catalan contrast.1283

S4 Full confusion matrices1284

In Section 7.1 (Figure 5), we presented fragments of confusion matrices between the true phone1285

labels and the clusters extracted from the DPGMM and the CAE-RNN representations. Here, we1286

present full confusion matrices for reference: Figures S6 and S7 show the results for the DPGMM1287

and the CAE-RNN, respectively. We observe that in the DPGMM representations most of the1288

confusions occur for acoustically similar phones (e.g., vowels or fricative consonants), whereas in1289

the CAE-RNN representations some clusters (with indices 36, 0, and 2) cross many phones with1290

very different acoustic characteristics.1291
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Figure S6: A confusion matrix between the true phone labels vs. DPGMM-based best matching
clusters on English Buckeye data. The clusters are obtained using unsupervised agglomerative
clustering on the DPGMM representations of 100 instances for each English phone, and the
matching is done by solving the assignment problems between true categories and predicted
clusters using the Hungarian Algorithm. KL divergence is used as a distance measure.
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Figure S7: A confusion matrix between the true phone labels vs. CAE-RNN-based best matching
clusters on English Buckeye data. The clusters are obtained using unsupervised agglomerative
clustering on the CAE-RNN representations of 100 instances for each English phone, and the
matching is done by solving the assignment problems between true categories and predicted
clusters using the Hungarian Algorithm. Angular distance is used as a distance measure.
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S5 CAE-RNN simulations with Euclidean distances1292

In the previous section, the confusion matrices are constructed using the default distance measures1293

we used in all our simulations (KL divergence for the DPGMM and angular distance for the CAE-1294

RNN). Angular distance may be less suitable for clustering than KL divergence, and ideally we1295

would use KL divergence for the CAE-RNN representations as well. However, this was not possible1296

because KL divergence between two vectors requires them to be proper distributions, which is not1297

the case for the CAE-RNN representations. Therefore, in Figure S8 we provide a confusion matrix1298

for the CAE-RNN representations constructed using Euclidean distance, which is more suitable1299

for clustering than angular distance. Comparing this confusion matrix to the one in Figure S7, we1300

can see that, unlike angular distance, Euclidean distance does not yield clusters that span across1301

multiple phones with very different acoustic characteristics.1302

To test how the choice of distance measure affected our representation analyses, we computed1303

the cluster quality for the CAE-RNN representations using Euclidean distance, and it was not1304

substantially different. Furthermore, to ensure that our choice of distance measure did not affect1305

our main results on the target phone contrast discrimination in Study 2, we used our CAE-RNN1306

models trained on English and Japanese to run ABX phone discrimination experiments on the1307

target English [ô]–[l] contrast using Euclidean distance. We compared the results with the original1308

discrimination results using angular distance, and the absolute discrimination rates were very1309

similar: when Euclidean distance was used, the rates were 13.9% (English model) vs. 19.3%1310

(Japanese model), while the original results using angular distance were 13.4% vs. 19.2% for1311

English and Japanese model, respectively, suggesting that the choice of a distance measure likely1312

did not play a significant role in our experiments.1313
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Figure S8: A confusion matrix between the true phone labels vs. CAE-RNN-based best matching
clusters on English Buckeye data. The clusters are obtained using unsupervised agglomerative
clustering on the CAE-RNN representations of 100 instances for each English phone, and the
matching is done by solving the assignment problems between true categories and predicted
clusters using the Hungarian Algorithm. Euclidean distance is used as a distance measure.
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