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Abstract— We present a technique for dense 3D recon-
struction of objects using an imaging sonar, also known as
forward-looking sonar (FLS). Compared to previous methods
that model the scene geometry as point clouds or volumetric
grids, we represent the geometry as a neural implicit function.
Additionally, given such a representation, we use a differ-
entiable volumetric renderer that models the propagation of
acoustic waves to synthesize imaging sonar measurements. We
perform experiments on real and synthetic datasets and show
that our algorithm reconstructs high-fidelity surface geometry
from multi-view FLS images at much higher quality than was
possible with previous techniques and without suffering from
their associated memory overhead.

I. INTRODUCTION

Imaging or forward-looking sonar (FLS) is an extensively
used sensor modality by Autonomous Underwater Vehicles
(AUV). The key motivation for using FLS sensors is their
ability to provide long-range measurements, unlike optical
cameras whose range is severely limited in turbid water—a
common situation in the field. Their versatility has resulted in
their incorporation as a core sensor modality in applications
including robotic path planning [1, 2], localization [3]-
[7], and the automation of tasks potentially dangerous or
mundane for humans such as underwater inspection [8] and
mapping [9]-[12].

FLS outputs 2D image measurements of 3D structures by
emitting acoustic pulses and measuring the energy intensity
of the reflected waves. While the sonar resolves azimuth and
range, the elevation angle is ambiguous, and an object at a
specific range and azimuth can be located anywhere along
the elevation arc. Hence, the task of 3D reconstruction using
FLS measurements can be equivalently framed as the task of
resolving the elevation ambiguity from the image readings.
Existing algorithms for 3D reconstruction from FLS mea-
surements can be grouped into geometry-based, physics-
based and, more recently, learning-based methods. How-
ever, most existing approaches either place restrictions on
the robotic/sensor setup (elevation aperture, motion of the
vehicle, etc.); rely on volumetric grids that are prohibitively
expensive for large scenes or scenes with fine-grained ge-
ometry; or, specific to learning approaches, require the use
of large labeled training sets that are difficult to collect in
underwater environments.

To address these shortcomings, we approach the problem of
underwater FLS-based 3D reconstruction through the lens
of differentiable rendering and leverage the representational
power of neural networks to encode the imaged object
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as an implicit surface. Our overall reconstruction approach
comprises the following components:

o A differentiable volumetric renderer that models the
propagation of acoustic spherical wavefronts.
o A representation of 3D surfaces as zero-level sets of
neural implicit functions.
o A regularized rendering loss for 3D reconstruction using
imaging sonars.
To the best of our knowledge, this work is the first to
introduce a physics-based volumetric renderer suitable for
dense 3D acoustic reconstruction using wide-aperture imag-
ing sonars. We evaluate our approach against different unsu-
pervised methods on simulated and real-world datasets, and
show that it outperforms previous state of the art. We have
made our code and different datasets publicly available?.

II. RELATED WORK
A. 3D Reconstruction Using Imaging Sonar

Different methods have been introduced to produce both
sparse [S5, 10, 11, 13]-[15] and dense 3D reconstructions
using FLS. The focus of this work is on dense object-level
3D reconstruction. A number of algorithms enforced assump-
tions or constraints on the physical system to obtain reliable
3D models. Teixeira et al. [16] successfully reconstructed a
3D map of a ship hull by leveraging probabilistic volumetric
techniques to create submaps which are later aligned using
Iterative Closest Point (ICP). However, the sonar aperture
was set to 17 and all detected points were assumed to lie
on the zero-elevation plane which leads to reconstruction
errors and prohibits extending the method to larger apertures.
A line of work [17]-[20] uses two complementary sensors
(imaging and profiling sonars) and performs sensor fusion
to disambiguate the elevation angle. In our work, we restrict
our setup to a single imaging sonar. Westman et al. [21]
proposed a method to reconstruct specific points on surfaces
(aka. Fermat Paths). However, it places constraints on the
vehicle’s motion as it needs a view ray perpendicular to
the surface at each surface point and hence, requires a large
number of images collected from specific views.

Another set of methods uses generative models to obtain
dense 3D reconstructions. Aykin et al. [22], [23] attempt to
estimate the elevation angle of each pixel by leveraging infor-
mation from both object edges and shadows which restricts
the object to be on the seafloor. Westman et al. [24] further
extended the idea to do away with the seafloor assumption
but still required estimates of object edges. Negahdaripour et
al. [25] proposed an optimization-based algorithm to refine
an initial 3D reconstruction obtained using space carving
by encouraging consistency between the actual sonar images
and the images produced by the generative model. However,
generative methods generally rely on assumptions of the
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surface reflectivity proprieties and on 3D estimates of object
edges which makes them impractical in real scenarios.
Various volumetric methods have also been proposed. Wang
et al. [26] introduced an inverse sonar sensor model to
update the occupancy in a voxel grid and later extended it to
handle errors in pose estimates by aligning local submaps
using graph optimization [27]. Although these methods,
as probabilistic frameworks, can be more robust compared
to space carving techniques [9, 22], they consider each
voxel independently and ignore inherent surface constraints.
Guerneve et al. [28] frame the problem of 3D volumetric
reconstruction as a blind deconvolution with a spatially
varying kernel which can be reformulated as a constrained
linear least squares objective. However, the method makes
a linear approximation to the vertical aperture and places
restrictions on the motion of the sonar limiting its practical
application. Westman et al. [29] noted the equivalence of
3D sonar reconstruction to the problem of Non-Line-of-Sight
(NLOS) imaging. It introduced a regularized least square ob-
jective and solved it using the alternating direction method of
multipliers (ADMM). All aforementioned volumetric meth-
ods, however, share similar limitations since extracting high-
fidelity surfaces from volumetric grids is difficult. These
approaches can also be computationally expensive for larger
scenes or a fine discretization of volumes.

More recently, learning-based methods were proposed to
resolve the elevation ambiguity. DeBortoli et al. [30] pro-
posed a self-supervised training procedure to fine-tune a
Convolutional Neural Network (CNN) trained on simulated
data with ground truth elevation information. Wang et al. [31]
use deep networks to transfer the acoustic view to a pseudo
frontal view which was shown to help with estimating
the elevation angle. However, these methods are limited to
simple geometries or require collecting a larger dataset of
real elevation data. Arnold et al. [32] propose training a
CNN to predict the signed distance and direction to the
nearest surface for each cell in a 3D grid. However, the
method requires ground truth Truncated Signed Distance
Field (TSDF) information which can be difficult to obtain.
In this work, we propose a physics-based renderer which
uses raw FLS images and known sonar pose estimates to
represent objects as zero-level sets of neural networks. It
does not require hand-labeled data for training nor does it
place restrictions on the setup or environment (voxel size,
need for reflectance information, etc.)

B. Neural Implicit Representation

NeRF [33] introduced a volume rendering method to learn
a density field aimed at novel view synthesis. It samples
points along optical rays and predicts an output color which
is then checked against that of the ground truth pixel. IDR
[34] introduced a surface rendering technique that contrary
to the volume rendering technique of NeRF, only considers
a single point intersection on a surface. Hence, it fails to
properly capture areas of abrupt changes in the scene. NeuS
[35] leveraged the volume rendering technique of NeRF to
perform 3D surface reconstructions and showed impressive
results against state-of-the-art neural scene representation
methods for scenes with severe occlusions and complex

structures. NeTF [36] applied ideas from NeRF to the prob-
lem of NLOS imaging which was shown in [29] to have close
similarity to FLS 3D reconstruction. All these methods focus
on 3D reconstruction using optical sensors, either intensity or
time-of-flight based. Our focus is on learning surfaces from
acoustic sonar images.

ITII. APPROACH
A. Image Formation Model

An FLS 2D image Z comprises pixels corresponding to
discretized range and azimuth (r;, 6;) bins. Each pixel value
is proportional to the sum of acoustic energy from all
reflecting points {P; = (r;,0;,$:); dmin < &i < Omax}> G
being the elevation angle (Fig. 1c). However, the elevation
angle ¢; is lost since each column 6; of an FLS image is
the projection onto the z = 0 plane of a circular sector ;
constrained to the sonar vertical aperture (Pmin, Pmax) and
containing the z axis (Fig. 1b).
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Fig. 1: (a) Sound propagates as spherical wavefronts. An acoustic ray is
defined as the ray starting at the acoustic source and terminating at the
wavefront (figure inspired by the Discovery of Sound in the Sea project
[37]) (b) Each image column 6; is the projection of the circular arc ;
onto the plane z = 0. (c) Example of a sonar image. Each pixel at (r,0)
corresponds to the intensity reading of all points along the elevation arc.

We now present our rendering equation. Imaging sonars
are active sensors that emit a pulse of sound and measure
the strength of the reflected acoustic energy. Let E. be the
emitted acoustic energy by the sonar. Now, consider a unique
infinitesimal reflecting patch P; “illuminated” by the acoustic
wave and located on the arc A(¢) € ; which passes through
(r4,0;,0) (Fig. 2). The reflected acoustic energy at P; and
received by the sonar can be approximated as:

rite g I .
Er(mﬂi,@):/ I T (1, 0;, 6 )rdr
ri—€ T

(D

where 2e is the patch thickness, o is the particle density at
‘P;, and the factor ,% accounts for spherical spreading on
both the transmit and receive paths. 7" is the transmittance,
corresponding to exponential attenuation of a wave due to
particle absorption—equivalently, the probability that the
acoustic wave travels between two points unoccluded. We
note that, when the sonar emitter and receiver are collocated,
this probability is identical during the transmit (sonar to
‘P;) and return (P; to sonar) paths; thus, transmittance is
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accounted for only once for both paths. This is analogous
to the effect of coherent backscattering in optical wave
propagation with collocated emitter and receiver [38].
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Fig. 2: 1) All points P = (r, 6, ¢) on the arc are projected onto the z = 0
elevation plane. 2) An example of an infinitesimally small patch on the arc
P is shown in yellow. 3) Illustrating our sampling scheme: sampled pixels
are colored in blue. Sampled points on the arc are shown in black. For each
point on the arc, we construct the acoustic ray (green arrow) and sample
points on each ray (green points).

Now consider a surface composed of many such patches.
The received energy by the sonar is simply the sum of
the reflected energy by all patches {P;} € A(¢$) which
approximate the surface. Hence, we arrive at the following
image formation model:

Prmax T1+6E i ! '
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Note that although sound propagation through liquids is fun-
damentally different from that of light (longitudinal vs. trans-
verse waves), different geometric acoustic modeling tech-
niques still borrowed heavily from graphics and ray optics
[39]. These methods fundamentally rely on Huygen’s prin-
ciple of sound travel through mediums which approximates
the spherical wavefront as many energy-carrying particles
travelling at the speed of sound. Hence, analogous to the
concept of a light ray, we view an acoustic ray as the ray
starting at the sonar acoustic center and ending at P; (Fig. 1).

B. Rendering Procedure

Similarly to Yariv et al. [34] and Wang et al. [35], we repre-
sent the surface using two multi-layer perceptrons (MLPs): a
neural implicit surface, N, which maps a spatial coordinate
x = (1,0, ¢) to its signed distance; and a neural renderer, M,
which outputs the outgoing radiance at x. Once the surface
S is learned, we can extract it as the zero level set of N:

S={xecR¥: N(x)=0}. 3)

To train our network using the rendering loss (Eq. 2), we
leverage the following equation from Wang et al. [35] to
estimate the value of the density o(x) from the SDF:

—d® d(N(x))
o(x) =max | —%——0
P,(N(x))
where ®,(7) = (1+e7°7) ! is the sigmoid function used as

a smooth approximator of the occupancy indicator function
O(x) = 1|N(x) > 0].

4)

C. Sampling Procedure

Existing work that targets optical cameras leverages ray
optics where sampling points along a ray originating at some
pixel is sufficient to approximate the rendering loss. On the
contrary, our rendering loss in Eq. 2 requires producing point
samples along the arc at p; = (r;,0;) as well as samples
along each acoustic ray. To obtain a balanced dataset of zero
and non-zero intensity samples when processing an image,
we sample Np1 random image pixels as well as Np2 pixels
with an intensity I(r;,6;) greater than a threshold. Let P be
the set of sampled pixels.

For each pixel p; € P, we use stratified sampling [40] to
obtain samples along the arc. We discretize the elevation
range [—dmin, Pmax) into N 4 equally spaced angles. Hence,
the difference between two consecutive angles is A¢ =
¢‘““ ¢"“" . We perturb these angles by adding N 4 randomly
generated noise values ~ Uniform(0,1)A¢ to obtain a set
of points A, = {P, = (r;,0;,¢p,))} on the arc.

For each sampled point P, we first construct the acoustic
ray Rp, which starts at the acoustic center of the sonar and
terminates at P, and then sample Nz — 1 points along each
ray. Specifically, we first sample N — 1 range values r’
such that ' < r and ' = ie, for some 7 > 0 (e, being the
sonar range resolution). We obtain the set of points Rp, =
{p = (r',0,¢p,)}. The points Rp, U A, constitute a set
of N points along the ray (Nz — 1 points along the ray
+ exactly 1 point on the arc). Finally, we perturb the range
value of all points by adding uniformly distributed noise ~
Uniform(0, 1)e, (Fig. 3).

Tmaz

. =

Tmin

e

|

Fig. 3: Sampling along radius r. We first sample range bins and then sample
one point in each bin (green points). This is the set Rp,,. The black point
is the perturbed point on the arc Py,.

Note that the points Rp, U A, are expressed in spherical
coordinates in the local sonar coordinate frame and hence
need to be re-expressed in a global reference frame common
to all sonar poses. We first transform the points to Cartesian
coordinates: © = rcos(f) cos(¢),y = rsin(f)cos(¢),z =
rsin(¢), and then transform to world frame by multiplying
RSOH&I’ tSOl’lal'
with the sonar to world transform T3 = { (;/‘; V[{ } .

The resulting set of points expressed in world frame RIVDVP U

AZV are used as inputs to the SDF neural network N. Finally,

the direction of each ray is defined by the unit vector

Té{(}narpp _ t?/({)/l’lar
D(Pp) = |TI§I(}naer _ tsv({/nar| (5)

Let X be the set of all sampled points across all pixels, arcs
and rays. This is the input batch to the neural network.
D. Discretized Image Formation Model

The discrete counterpart of the image formation model in
Eq. 2 is:

> TP Jolp,M(P,),
P,cA, P

I(r,0) = (6)
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where: A, is the arc located at (r,6), rp, is the range of
the perturbed point P, on the arc, M(P,,) is the predicted
intensity at P, by the neural renderer,

a[pi] =1 —exp (— /:M 0(p)dp> @)

is the discrete opacity [35] at a point p; (p; and p;+; being
consecutive samples along the ray) which was further shown
to equal:

®,(N(p;)) — 2 (N(pit1))
@ .

(N(py)) 0 @

a[p;] = max(

Finally,

TP, = [] (1-elp') ©9)

P'€ERp,
is the discrete transmittance value at P, (the endpoint of the
ray). This is the product of one minus the opacity values «
of all points on the acoustic ray excluding the o at P,,.

E. Training Loss

Our loss function is constituted of three terms: the intensity
loss in addition to eikonal and ¢; regularization terms. The
intensity loss
1 A
Lin = <z > 1) — 1)1,
pr T NP peEP

(10)

encourages the predicted intensity to match the intensity of
the raw input sonar images. The eikonal loss [41]

1

_1\2
NN T ) 2 (IVNGll =17 D

Leix =

is an implicit geometric regularization term used to regu-
larize the SDF encouraging the network to produce smooth
reconstructions. Finally, we draw inspiration from the NLOS
volumetric albedo literature [29, 42], and add the ¢; loss term

Lieg = (12)

1
N eIl
NrN4(Np + N32) );{
to help produce favorable 3D reconstructions when we use
sonar images from a limited set of view directions. Hence,

our final training loss term is:

L= Lint + AcikLeik + /\regﬁreg- (13)

IV. NETWORK ARCHITECTURE

We model N and M as two MLPs each with 4 hidden layers
of size 64 (Fig 4). We additionally apply positional encoding
to the input spatial coordinates and use weight normaliza-
tion similar to IDR. While existing works that use optical
cameras typically rely on larger networks to successfully
learn high-frequency color and texture information, we found
the proposed architecture to have sufficient capacity to learn
different shapes from FLS images. Decreasing the size of the
network was especially important to handle GPU memory
overhead during training caused by the added sampling
dimension (arcs).

1 L1 1 1 1 L

Neural Implicit Surface Representation N Neural Renderer M

Fig. 4: Our neural network architecture. The neural implicit representation
N takes 3D spatial coordinates x as input and outputs their signed distance
to the surface as well as a learned feature vector F'(x). We use PyTorch’s
autodiff [43] to compute VN(x), the gradient of the signed distance at x.

V. EVALUATION

As our comparison metric, we use the mean and root mean
square (RMS) Hausdorff distance defined as:

di (My, Mz) = max( max min [[p — g2,
. (14
max min [|p—qf|2)
M; and My being respectively the ground truth (GT)
and reconstructed meshes. We evaluate our method against
back-projection (BP) and volumetric albedo (VA) [29], two
state-of-the-art optimization-based methods for unsupervised
object-centric 3D reconstruction using imaging sonar . BP is
similar to the occupancy grid mapping method (OGM) as it
uses the inverse sensor model to update the voxel occupancy
while, however, ignoring the correlation between grid cells.
We note that both VA and BP generate a density field F (o).
Hence, for each possible density o (i.e., o € [0,1]), we
extract a surface using marching cubes and report the metrics
based on the best o value. The mesh quality generated by
VA also depends on the regularization weight terms which
we empirically tuned for each object. With our approach,
extracting the zero-level set of N directly generates a high-
quality mesh. However, for the purpose of metric generation,
we also try different level-sets near zero: S = {x € R3:
N(x) = s | s € [-0.1,0.1]}. We run our experiments on
a system with an NVIDIA RTX 3090 GPU, an Intel Core
19-10900K, and 32GB of RAM. Our network training time
until convergence is ~ 6 hours.

A. Simulation

We use HoloOcean [44, 45], an underwater simulator to col-
lect datasets of different objects of various shapes and sizes.
We use the simulator’s default noise parameters; namely a
multiplicative noise w*™ ~ A/(0,0.15) and additive noise
w¥® ~ R(0.2) (where R is the Rayleigh distribution and
parameters are in units of normalized pixel intensity in the
range [0,1]). We also enable the simulation of multipath
effects. The maximum range of the sonar was set to 8m.
Before feeding the raw data to the three algorithms, we
perform minimal filtering of speckle noise in the images by

IWe use the implementation of Westman et al. [29].
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zeroing out pixels whose intensities are less than a threshold.
After generating the meshes, we align them to the GT using
ICP and report in Table I the mean and RMS Hausdorff
distance to the GT for different objects and two sonar
vertical apertures (14° and 28°). Figure 5 shows example
3D reconstructions obtained using each algorithm. We see

Ground truth Back-Projection (BP) Volumetric Albedo (VA)

©
e
S
o

Submarine

Fig. 5: 3D reconstructions generated by each method using simulated data
from HoloOcean with a 14° elevation angle. Qualitatively, our method
outputs more faithful 3D reconstructions compared to VA and BP.

that our method produces more accurate reconstructions
compared to the baselines in terms of 3D reconstruction
accuracy and mesh coverage. The neural network implicit
regularization combined with the eikonal loss favors learning
smooth surfaces while avoiding bad local minimas when the
input images potentially do not contain enough information
to completely constrain and resolve the elevation of every
3D point in space. For large objects (specified by an asterisk
in the table), we decreased the grid voxel resolution of
the baseline methods by one-half (increased the voxel size
from the default value of 0.025m to 0.05m) to prevent the
system from running out of memory (OOM): the VA and
BP baselines do not leverage stochastic updates and hence,
need to construct the optimization objective by processing
all images in one go. This leads to memory overhead for
larger objects, objects that require a fine discretization of
the volume, or in the presence of a large number of non-
zero pixel intensities 2 In contrast, we train our renderer
on a different subset of images in every iteration and use
stochastic updates (the Adam optimizer) to optimize the
function which significantly reduces memory requirements.

2A re-implementation of the baselines which solves the optimization
problem using stochastic updates can help dealing with OOM errors.

BP VA Ours |
RMS Mean RMS Mean RMS | Mean
Boat 1 14° | 0.092 | 0.068 0.100 | 0.073 | 0.055 | 0.042
(3.8x1.7x0.84) | 28° | 0.196 | 0.149 0.136 | 0.101 | 0.063 | 0.046
Boat 2 14° | 0.121 | 0.090 0.084 | 0.064 | 0.076 | 0.062
(5.7x23x1.2) 28° | 0.101 0.071 0.111 0.081 | 0.083 | 0.068
Plane 1 14° | 0.204* | 0.138* | 0.191* | 0.147* ] 0.160 | 0.096
(13.5 x 11.5 x 3.6) | 28° | 0.256* | 0.206* | 0.236* | 0.165* | 0.167 | 0.098
Plane 2 14° | 0.204* | 0.167* | 0.181* | 0.139* | 0.122 | 0.082
(9.1 x 12.6 x 3.0) | 28° | 0.333* | 0.251* | 0.313* | 0.224* | 0.166 | 0.116
Rock 1 14° | 0.194 | 0.153 0.187 | 0.132 | 0.109 | 0.081
(5.7 x 3.5 x2.8) 28° | 0.202 | 0.159 0.202 | 0.159 | 0.139 | 0.098
Rock 2 14° | 0.083 | 0.065 0.079 | 0.060 | 0.071 | 0.056
(2.2 x2.2x2.0) 28° | 0.084 | 0.065 0.082 | 0.063 | 0.072 | 0.058
Rock 3 14° | 0.149 | 0.093 0.149 | 0.098 | 0.102 | 0.082
(3.2x3.7x2.8) 28° | 0.192 | 0.152 0.166 | 0.114 | 0.148 | 0.103
Coral 14° | 0.241* | 0.192* | 0.241* | 0.176* | 0.134 | 0.106
(4.4 x5.6 x3.3) 28° | 0.289* | 0.232* | 0.285* | 0.218* | 0.212 | 0.166
Concrete column 14° | 0.125 | 0.097 0.128 | 0.099 | 0.084 | 0.055
(1.9x 1.2 x4.3) 28° | 0.149 | 0.113 0.150 | 0.115 | 0.094 | 0.060
Submarine 14° | 0.187* | 0.122* | 0.204* | 0.144* | 0.173 | 0.101
(5.1 x16.7 x 4.7) | 28° | 0.229* | 0.176* | 0.237* | 0.181* | 0.149 | 0.102

TABLE I: Size (W X L X H), root mean square (RMS) and mean Hausdorff
distance errors (all in meters) for different simulated objects. For certain
objects (*), we increased the voxel size from 0.025m to 0.05m to prevent
OOM errors with the baseline methods.

We analyze our method’s performance as a function of the
training set size. We vary the size of the training set while
maximizing object coverage for the submarine object (this
is the largest object which also contains varied geometric
details. The maximum training set size is ~ 1300 images).
We report in Fig. 6 the associated performance metrics. We
note that the reconstruction quality improves significantly
with ~ 200 images and plateaus after ~ 600 images.
This potentially suggests the existence of an optimal set of
sonar collection points which minimize the number of data
samples and maximize reconstruction quality. We leave the
investigation of such active policy for future work.

—— RMS Hausdorff error 920

—— Mean Hausdorff error

200 400_ 600 : BBDv 5 1000 1200 200 400 600 800 1000 1200
Num images in training set Num images in training set

Fig. 6: Reconstruction quality as a function of the training set size for the
simulated submarine dataset. The maximum training set contains ~ 1300
images collected with a 14° vertical aperture.

B. Water Tank Experiments

(@) Test structure

(b) Water test tank (c) Collection points

Fig. 7: (a) Test structure. (b) Test tank (height=3m and radius=3.5m). (c)
Sample positions where a sonar image was taken. Over 900 images were
collected for 1° and over 400 images for 14° and 28°.

We evaluate our method on real-world datasets of a test
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structure (Fig. 7a) submerged in a test tank (Fig. 7b) us-
ing a SoundMerics DIDSON imaging sonar mounted on a
Bluefin Hovering Autonomous Underwater Vehicle (HAUV).
The sonar can achieve three different elevation apertures
(1°,14°,28°). We test our method on three different datasets,
one for each feasible aperture. The vehicle uses a high-end
IMU and a Doppler Velocity Log (DVL) to provide accurate
vehicle pose information (i.e., minimal drift for the duration
of data capture).

Fig. 9 shows the RMS and mean Hausdorff distance error of
the three methods. The quality of the mesh generated by VA
and BP depends on the selected marching cubes threshold o.
Hence, we plot the metrics generated using different os and
report the best value. With our method, we can extract the
zero-level set of IN directly alleviating the need for a post-
processing step for surface generation. Since the structure
is submerged and lying at the bottom of the test tank (and
hence, no sonar image captures the backside of the object
- Fig. 7¢), we limit the matching distance of the Hausdorff
metric to 0.15m, 0.2m, and 0.25m for the 1°,14°, and 28°
apertures respectively. We see that our method gener-
ates higher quality reconstructions especially when using
larger apertures: With 14°, our method achieves an (RMS,
Mean)=(0.058m, 0.040m) while BP and VA are respectively
at (0.077m, 0.063m) and (0.069m, 0.052m). Similarly for a
28° aperture, our method achieves a lower (RMS, Mean)
= (0.072m, 0.055m) compared to BP (0.104m, 0.079m) and
VA (0.091m, 0.070m).

14 degrees

1 degree

28 degrees
y

Back-Projection

Volumetric Albedo

Fig. 8: The output 3D reconstructions for each method and each elevation
aperture. Our method is able to capture the main components of the
structures while VA and BP struggle for large vertical apertures.

Fig. 8 shows the resulting meshes for each method. While all
three methods perform well with a 1° aperture, the difference
in reconstruction quality becomes visually more apparent as
the aperture angle increases. With a 14° aperture, we begin to
lose the main feature of the object with VA and BP: the hole,
short piling and crossbar are not easily discernible. When the
aperture is increased to 28°, both baseline methods perform
poorly: the hole, crossbar, and short piling are lost. On the
other hand, our proposed method successfully captures the
major components of the structure for all three different
apertures (a base, two vertical pilings, and a crossbar).
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Fig. 9: Plots showing the root mean square (RMS) and mean Hausdorff
distance in meters for all three methods on the real datasets (1°,14°, and
28° elevation apertures). To easily compare against the baselines, we add
the constant green dashed line to report our method’s metrics. Note however
that our algorithm does not depend on the o values in the z axis.

VI. CONCLUSION AND FUTURE WORK

We proposed an approach for reconstructing 3D objects from
imaging sonar which represents imaged surfaces as zero-
level sets of neural networks. We performed experiments on
simulated and real datasets with different elevation apertures
and showed that our method outperforms current state-of-
the-art techniques for unsupervised 3D reconstruction using
FLS in terms of reconstruction accuracy. While existing
volumetric methods can suffer from memory overhead as
well as require a separate step to extract meshes from
volumetric grids (a process often difficult and prone to error),
our method allows for easy surface extraction from implicit
representations and uses stochastic updates to lessen the
computational requirements.

Our algorithm has some limitations, all of which create
opportunities for future work. First, we currently focus on
single-object reconstruction but plan to expand our method
to large-scale reconstruction of marine environments at the
scale of harbors by taking inspiration from techniques such
as Block-Nerf [46]. Second, our method is currently mostly
suited for offline 3D reconstructions but using techniques
such as Instant-NGP [47] and Relu-Fields [48] can bring
it to real-time performance needed for robotic navigation
applications. Finally, our experiments now use only sonar but
underwater robots are typically equipped with other sensors
such as optical cameras. Hence, another direction from future
work is to fuse multi-modal sensor inputs (acoustic and
optical) where, for example, optical cameras are used to
obtain high resolution models of specific interest areas in the
scene while a sonar, with longer range, is used elsewhere.
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