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AbstractÐ We present a technique for dense 3D recon-
struction of objects using an imaging sonar, also known as
forward-looking sonar (FLS). Compared to previous methods
that model the scene geometry as point clouds or volumetric
grids, we represent the geometry as a neural implicit function.
Additionally, given such a representation, we use a differ-
entiable volumetric renderer that models the propagation of
acoustic waves to synthesize imaging sonar measurements. We
perform experiments on real and synthetic datasets and show
that our algorithm reconstructs high-fidelity surface geometry
from multi-view FLS images at much higher quality than was
possible with previous techniques and without suffering from
their associated memory overhead.

I. INTRODUCTION

Imaging or forward-looking sonar (FLS) is an extensively

used sensor modality by Autonomous Underwater Vehicles

(AUV). The key motivation for using FLS sensors is their

ability to provide long-range measurements, unlike optical

cameras whose range is severely limited in turbid waterÐa

common situation in the field. Their versatility has resulted in

their incorporation as a core sensor modality in applications

including robotic path planning [1, 2], localization [3]±

[7], and the automation of tasks potentially dangerous or

mundane for humans such as underwater inspection [8] and

mapping [9]±[12].

FLS outputs 2D image measurements of 3D structures by

emitting acoustic pulses and measuring the energy intensity

of the reflected waves. While the sonar resolves azimuth and

range, the elevation angle is ambiguous, and an object at a

specific range and azimuth can be located anywhere along

the elevation arc. Hence, the task of 3D reconstruction using

FLS measurements can be equivalently framed as the task of

resolving the elevation ambiguity from the image readings.

Existing algorithms for 3D reconstruction from FLS mea-

surements can be grouped into geometry-based, physics-

based and, more recently, learning-based methods. How-

ever, most existing approaches either place restrictions on

the robotic/sensor setup (elevation aperture, motion of the

vehicle, etc.); rely on volumetric grids that are prohibitively

expensive for large scenes or scenes with fine-grained ge-

ometry; or, specific to learning approaches, require the use

of large labeled training sets that are difficult to collect in

underwater environments.

To address these shortcomings, we approach the problem of

underwater FLS-based 3D reconstruction through the lens

of differentiable rendering and leverage the representational

power of neural networks to encode the imaged object
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as an implicit surface. Our overall reconstruction approach

comprises the following components:

• A differentiable volumetric renderer that models the

propagation of acoustic spherical wavefronts.

• A representation of 3D surfaces as zero-level sets of

neural implicit functions.

• A regularized rendering loss for 3D reconstruction using

imaging sonars.

To the best of our knowledge, this work is the first to

introduce a physics-based volumetric renderer suitable for

dense 3D acoustic reconstruction using wide-aperture imag-

ing sonars. We evaluate our approach against different unsu-

pervised methods on simulated and real-world datasets, and

show that it outperforms previous state of the art. We have

made our code and different datasets publicly available2.

II. RELATED WORK

A. 3D Reconstruction Using Imaging Sonar

Different methods have been introduced to produce both

sparse [5, 10, 11, 13]±[15] and dense 3D reconstructions

using FLS. The focus of this work is on dense object-level

3D reconstruction. A number of algorithms enforced assump-

tions or constraints on the physical system to obtain reliable

3D models. Teixeira et al. [16] successfully reconstructed a

3D map of a ship hull by leveraging probabilistic volumetric

techniques to create submaps which are later aligned using

Iterative Closest Point (ICP). However, the sonar aperture

was set to 1
◦

and all detected points were assumed to lie

on the zero-elevation plane which leads to reconstruction

errors and prohibits extending the method to larger apertures.

A line of work [17]±[20] uses two complementary sensors

(imaging and profiling sonars) and performs sensor fusion

to disambiguate the elevation angle. In our work, we restrict

our setup to a single imaging sonar. Westman et al. [21]

proposed a method to reconstruct specific points on surfaces

(aka. Fermat Paths). However, it places constraints on the

vehicle’s motion as it needs a view ray perpendicular to

the surface at each surface point and hence, requires a large

number of images collected from specific views.

Another set of methods uses generative models to obtain

dense 3D reconstructions. Aykin et al. [22], [23] attempt to

estimate the elevation angle of each pixel by leveraging infor-

mation from both object edges and shadows which restricts

the object to be on the seafloor. Westman et al. [24] further

extended the idea to do away with the seafloor assumption

but still required estimates of object edges. Negahdaripour et

al. [25] proposed an optimization-based algorithm to refine

an initial 3D reconstruction obtained using space carving

by encouraging consistency between the actual sonar images

and the images produced by the generative model. However,

generative methods generally rely on assumptions of the
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surface reflectivity proprieties and on 3D estimates of object

edges which makes them impractical in real scenarios.

Various volumetric methods have also been proposed. Wang

et al. [26] introduced an inverse sonar sensor model to

update the occupancy in a voxel grid and later extended it to

handle errors in pose estimates by aligning local submaps

using graph optimization [27]. Although these methods,

as probabilistic frameworks, can be more robust compared

to space carving techniques [9, 22], they consider each

voxel independently and ignore inherent surface constraints.

Guerneve et al. [28] frame the problem of 3D volumetric

reconstruction as a blind deconvolution with a spatially

varying kernel which can be reformulated as a constrained

linear least squares objective. However, the method makes

a linear approximation to the vertical aperture and places

restrictions on the motion of the sonar limiting its practical

application. Westman et al. [29] noted the equivalence of

3D sonar reconstruction to the problem of Non-Line-of-Sight

(NLOS) imaging. It introduced a regularized least square ob-

jective and solved it using the alternating direction method of

multipliers (ADMM). All aforementioned volumetric meth-

ods, however, share similar limitations since extracting high-

fidelity surfaces from volumetric grids is difficult. These

approaches can also be computationally expensive for larger

scenes or a fine discretization of volumes.

More recently, learning-based methods were proposed to

resolve the elevation ambiguity. DeBortoli et al. [30] pro-

posed a self-supervised training procedure to fine-tune a

Convolutional Neural Network (CNN) trained on simulated

data with ground truth elevation information. Wang et al. [31]

use deep networks to transfer the acoustic view to a pseudo

frontal view which was shown to help with estimating

the elevation angle. However, these methods are limited to

simple geometries or require collecting a larger dataset of

real elevation data. Arnold et al. [32] propose training a

CNN to predict the signed distance and direction to the

nearest surface for each cell in a 3D grid. However, the

method requires ground truth Truncated Signed Distance

Field (TSDF) information which can be difficult to obtain.

In this work, we propose a physics-based renderer which

uses raw FLS images and known sonar pose estimates to

represent objects as zero-level sets of neural networks. It

does not require hand-labeled data for training nor does it

place restrictions on the setup or environment (voxel size,

need for reflectance information, etc.)

B. Neural Implicit Representation

NeRF [33] introduced a volume rendering method to learn

a density field aimed at novel view synthesis. It samples

points along optical rays and predicts an output color which

is then checked against that of the ground truth pixel. IDR

[34] introduced a surface rendering technique that contrary

to the volume rendering technique of NeRF, only considers

a single point intersection on a surface. Hence, it fails to

properly capture areas of abrupt changes in the scene. NeuS

[35] leveraged the volume rendering technique of NeRF to

perform 3D surface reconstructions and showed impressive

results against state-of-the-art neural scene representation

methods for scenes with severe occlusions and complex

structures. NeTF [36] applied ideas from NeRF to the prob-

lem of NLOS imaging which was shown in [29] to have close

similarity to FLS 3D reconstruction. All these methods focus

on 3D reconstruction using optical sensors, either intensity or

time-of-flight based. Our focus is on learning surfaces from

acoustic sonar images.

III. APPROACH

A. Image Formation Model

An FLS 2D image I comprises pixels corresponding to

discretized range and azimuth (ri, θi) bins. Each pixel value

is proportional to the sum of acoustic energy from all

reflecting points {Pi = (ri, θi, ϕi);ϕmin ≤ ϕi ≤ ϕmax}, ϕi

being the elevation angle (Fig. 1c). However, the elevation

angle ϕi is lost since each column θi of an FLS image is

the projection onto the z = 0 plane of a circular sector πi

constrained to the sonar vertical aperture (ϕmin, ϕmax) and

containing the z axis (Fig. 1b).

(a) (b) (c)

Fig. 1: (a) Sound propagates as spherical wavefronts. An acoustic ray is
defined as the ray starting at the acoustic source and terminating at the
wavefront (figure inspired by the Discovery of Sound in the Sea project
[37]) (b) Each image column θi is the projection of the circular arc πi

onto the plane z = 0. (c) Example of a sonar image. Each pixel at (r, θ)
corresponds to the intensity reading of all points along the elevation arc.

We now present our rendering equation. Imaging sonars

are active sensors that emit a pulse of sound and measure

the strength of the reflected acoustic energy. Let Ee be the

emitted acoustic energy by the sonar. Now, consider a unique

infinitesimal reflecting patch Pi ªilluminatedº by the acoustic

wave and located on the arc A(ϕ) ∈ πi which passes through

(ri, θi, 0) (Fig. 2). The reflected acoustic energy at Pi and

received by the sonar can be approximated as:

Er(ri, θi, ϕi)=

∫ ri+ϵ

ri−ϵ

Ee

r2
e−

∫ ri
0

σ(r′,θi,ϕi)dr′

︸ ︷︷ ︸

T

σ(r, θi, ϕi)rdr

(1)

where 2ϵ is the patch thickness, σ is the particle density at

Pi, and the factor 1
r2

accounts for spherical spreading on

both the transmit and receive paths. T is the transmittance,

corresponding to exponential attenuation of a wave due to

particle absorptionÐequivalently, the probability that the

acoustic wave travels between two points unoccluded. We

note that, when the sonar emitter and receiver are collocated,

this probability is identical during the transmit (sonar to

Pi) and return (Pi to sonar) paths; thus, transmittance is
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accounted for only once for both paths. This is analogous

to the effect of coherent backscattering in optical wave

propagation with collocated emitter and receiver [38].

Fig. 2: 1) All points P = (r, θ, ϕ) on the arc are projected onto the z = 0
elevation plane. 2) An example of an infinitesimally small patch on the arc
P is shown in yellow. 3) Illustrating our sampling scheme: sampled pixels
are colored in blue. Sampled points on the arc are shown in black. For each
point on the arc, we construct the acoustic ray (green arrow) and sample
points on each ray (green points).

Now consider a surface composed of many such patches.

The received energy by the sonar is simply the sum of

the reflected energy by all patches {Pi} ∈ A(ϕ) which

approximate the surface. Hence, we arrive at the following

image formation model:

I(ri, θi) =

∫ ϕmax

ϕmin

∫ ri+ϵ

ri−ϵ

Ee

r2
e−

∫ ri
0

σ(r′,θi,ϕ)dr′σ(r, θi, ϕ)rdrdϕ

=

∫ ϕmax

ϕmin

∫ ri+ϵ

ri−ϵ

Ee

r
T (r, θi, ϕ)σ(r, θi, ϕ)drdϕ. (2)

Note that although sound propagation through liquids is fun-

damentally different from that of light (longitudinal vs. trans-

verse waves), different geometric acoustic modeling tech-

niques still borrowed heavily from graphics and ray optics

[39]. These methods fundamentally rely on Huygen’s prin-

ciple of sound travel through mediums which approximates

the spherical wavefront as many energy-carrying particles

travelling at the speed of sound. Hence, analogous to the

concept of a light ray, we view an acoustic ray as the ray

starting at the sonar acoustic center and ending at Pi (Fig. 1).

B. Rendering Procedure

Similarly to Yariv et al. [34] and Wang et al. [35], we repre-

sent the surface using two multi-layer perceptrons (MLPs): a

neural implicit surface, N, which maps a spatial coordinate

x = (r, θ, ϕ) to its signed distance; and a neural renderer, M,

which outputs the outgoing radiance at x. Once the surface

S is learned, we can extract it as the zero level set of N:

S = {x ∈ R
3 : N(x) = 0}. (3)

To train our network using the rendering loss (Eq. 2), we

leverage the following equation from Wang et al. [35] to

estimate the value of the density σ(x) from the SDF:

σ(x) = max

(
−dΦs(N(x))

dx

Φs(N(x))
, 0

)

(4)

where Φs(τ) ≡ (1+e−sτ )−1 is the sigmoid function used as

a smooth approximator of the occupancy indicator function

O(x) ≡ 1[N(x) ≥ 0].

C. Sampling Procedure

Existing work that targets optical cameras leverages ray

optics where sampling points along a ray originating at some

pixel is sufficient to approximate the rendering loss. On the

contrary, our rendering loss in Eq. 2 requires producing point

samples along the arc at pi = (ri, θi) as well as samples

along each acoustic ray. To obtain a balanced dataset of zero

and non-zero intensity samples when processing an image,

we sample NP1 random image pixels as well as NP2 pixels

with an intensity I(ri, θi) greater than a threshold. Let P be

the set of sampled pixels.
For each pixel pi ∈ P , we use stratified sampling [40] to

obtain samples along the arc. We discretize the elevation

range [−ϕmin, ϕmax] into NA equally spaced angles. Hence,

the difference between two consecutive angles is ∆ϕ =
ϕmax−ϕmin

NA
. We perturb these angles by adding NA randomly

generated noise values ∼ Uniform(0, 1)∆ϕ to obtain a set

of points Ap = {Pp = (ri, θi, ϕPp
))} on the arc.

For each sampled point Pp, we first construct the acoustic

ray RPp
which starts at the acoustic center of the sonar and

terminates at Pp and then sample NR−1 points along each

ray. Specifically, we first sample NR − 1 range values r′

such that r′ < r and r′ = iϵr for some i > 0 (ϵr being the

sonar range resolution). We obtain the set of points RPp
=

{p = (r′, θ, ϕPp
)}. The points RPp

∪ Ap constitute a set

of NR points along the ray (NR − 1 points along the ray

+ exactly 1 point on the arc). Finally, we perturb the range

value of all points by adding uniformly distributed noise ∼
Uniform(0, 1)ϵr (Fig. 3).

Fig. 3: Sampling along radius r. We first sample range bins and then sample
one point in each bin (green points). This is the set RPp

. The black point
is the perturbed point on the arc Pp.

Note that the points RPp
∪ Ap are expressed in spherical

coordinates in the local sonar coordinate frame and hence

need to be re-expressed in a global reference frame common

to all sonar poses. We first transform the points to Cartesian

coordinates: x = r cos(θ) cos(ϕ), y = r sin(θ) cos(ϕ), z =
r sin(ϕ), and then transform to world frame by multiplying

with the sonar to world transform T sonar
W =

[
Rsonar

W tsonar
W

0T 1

]

.

The resulting set of points expressed in world frame RW
Pp

∪

AW
p are used as inputs to the SDF neural network N. Finally,

the direction of each ray is defined by the unit vector

D(Pp) =
T sonar
W Pp − tsonar

W

|T sonar
W Pp − tsonar

W |
(5)

Let X be the set of all sampled points across all pixels, arcs

and rays. This is the input batch to the neural network.

D. Discretized Image Formation Model

The discrete counterpart of the image formation model in

Eq. 2 is:

Î(r, θ) =
∑

Pp∈Ap

1

rPp

T [Pp]α[Pp]M(Pp), (6)
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where: Ap is the arc located at (r, θ), rPp
is the range of

the perturbed point Pp on the arc, M(Pp) is the predicted

intensity at Pp by the neural renderer,

α[pi] = 1− exp

(

−

∫ pi+1

pi

σ(p)dp

)

(7)

is the discrete opacity [35] at a point pi (pi and pi+1 being

consecutive samples along the ray) which was further shown

to equal:

α[pi] = max(
Φs(N(pi))−Φs(N(pi+1))

Φs(N(pi))
, 0). (8)

Finally,

T [Pp] =
∏

p1∈RPp

(1− α[p1]) (9)

is the discrete transmittance value at Pp (the endpoint of the

ray). This is the product of one minus the opacity values α

of all points on the acoustic ray excluding the α at Pp.

E. Training Loss

Our loss function is constituted of three terms: the intensity

loss in addition to eikonal and ℓ1 regularization terms. The

intensity loss

Lint ≡
1

N1
P
+N2

P

∑

p∈P

||Î(p)− I(p)||1, (10)

encourages the predicted intensity to match the intensity of

the raw input sonar images. The eikonal loss [41]

Leik ≡
1

NRNA(N1
P
+N2

P
)

∑

x∈X

(||∇N(x)||2 − 1)2, (11)

is an implicit geometric regularization term used to regu-

larize the SDF encouraging the network to produce smooth

reconstructions. Finally, we draw inspiration from the NLOS

volumetric albedo literature [29, 42], and add the ℓ1 loss term

Lreg ≡
1

NRNA(N1
P
+N2

P
)

∑

x∈X

||α[x]||1, (12)

to help produce favorable 3D reconstructions when we use

sonar images from a limited set of view directions. Hence,

our final training loss term is:

L = Lint + λeikLeik + λregLreg. (13)

IV. NETWORK ARCHITECTURE

We model N and M as two MLPs each with 4 hidden layers

of size 64 (Fig 4). We additionally apply positional encoding

to the input spatial coordinates and use weight normaliza-

tion similar to IDR. While existing works that use optical

cameras typically rely on larger networks to successfully

learn high-frequency color and texture information, we found

the proposed architecture to have sufficient capacity to learn

different shapes from FLS images. Decreasing the size of the

network was especially important to handle GPU memory

overhead during training caused by the added sampling

dimension (arcs).

64646464 64646464

3

1

64

3

1

Fig. 4: Our neural network architecture. The neural implicit representation
N takes 3D spatial coordinates x as input and outputs their signed distance
to the surface as well as a learned feature vector F(x). We use PyTorch’s
autodiff [43] to compute ∇N(x), the gradient of the signed distance at x.

V. EVALUATION

As our comparison metric, we use the mean and root mean

square (RMS) Hausdorff distance defined as:

dH(M1,M2) = max( max
p∈M1

min
q∈M2

||p− q||2,

max
q∈M2

min
p∈M1

||p− q||2)
(14)

M1 and M2 being respectively the ground truth (GT)

and reconstructed meshes. We evaluate our method against

back-projection (BP) and volumetric albedo (VA) [29], two

state-of-the-art optimization-based methods for unsupervised

object-centric 3D reconstruction using imaging sonar 1. BP is

similar to the occupancy grid mapping method (OGM) as it

uses the inverse sensor model to update the voxel occupancy

while, however, ignoring the correlation between grid cells.

We note that both VA and BP generate a density field F(σ).
Hence, for each possible density σ (i.e., σ ∈ [0, 1]), we

extract a surface using marching cubes and report the metrics

based on the best σ value. The mesh quality generated by

VA also depends on the regularization weight terms which

we empirically tuned for each object. With our approach,

extracting the zero-level set of N directly generates a high-

quality mesh. However, for the purpose of metric generation,

we also try different level-sets near zero: S = {x ∈ R
3 :

N(x) = s | s ∈ [−0.1, 0.1]}. We run our experiments on

a system with an NVIDIA RTX 3090 GPU, an Intel Core

i9-10900K, and 32GB of RAM. Our network training time

until convergence is ∼ 6 hours.

A. Simulation

We use HoloOcean [44, 45], an underwater simulator to col-

lect datasets of different objects of various shapes and sizes.

We use the simulator’s default noise parameters; namely a

multiplicative noise wsm ∼ N (0, 0.15) and additive noise

wsa ∼ R(0.2) (where R is the Rayleigh distribution and

parameters are in units of normalized pixel intensity in the

range [0, 1]). We also enable the simulation of multipath

effects. The maximum range of the sonar was set to 8m.

Before feeding the raw data to the three algorithms, we

perform minimal filtering of speckle noise in the images by

1We use the implementation of Westman et al. [29].
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zeroing out pixels whose intensities are less than a threshold.

After generating the meshes, we align them to the GT using

ICP and report in Table I the mean and RMS Hausdorff

distance to the GT for different objects and two sonar

vertical apertures (14◦ and 28◦). Figure 5 shows example

3D reconstructions obtained using each algorithm. We see

Ground truth Back-Projection (BP) Volumetric Albedo (VA) Ours

B
o
a
t 

1
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2
P

la
n

e
 1

P
la

n
e
 2
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ck

 1
C

o
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u
b

m
a
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n
e

Fig. 5: 3D reconstructions generated by each method using simulated data
from HoloOcean with a 14◦ elevation angle. Qualitatively, our method
outputs more faithful 3D reconstructions compared to VA and BP.

that our method produces more accurate reconstructions

compared to the baselines in terms of 3D reconstruction

accuracy and mesh coverage. The neural network implicit

regularization combined with the eikonal loss favors learning

smooth surfaces while avoiding bad local minimas when the

input images potentially do not contain enough information

to completely constrain and resolve the elevation of every

3D point in space. For large objects (specified by an asterisk

in the table), we decreased the grid voxel resolution of

the baseline methods by one-half (increased the voxel size

from the default value of 0.025m to 0.05m) to prevent the

system from running out of memory (OOM): the VA and

BP baselines do not leverage stochastic updates and hence,

need to construct the optimization objective by processing

all images in one go. This leads to memory overhead for

larger objects, objects that require a fine discretization of

the volume, or in the presence of a large number of non-

zero pixel intensities 2. In contrast, we train our renderer

on a different subset of images in every iteration and use

stochastic updates (the Adam optimizer) to optimize the

function which significantly reduces memory requirements.

2A re-implementation of the baselines which solves the optimization
problem using stochastic updates can help dealing with OOM errors.

BP VA Ours

RMS Mean RMS Mean RMS Mean

Boat 1 14◦ 0.092 0.068 0.100 0.073 0.055 0.042

(3.8× 1.7× 0.84) 28◦ 0.196 0.149 0.136 0.101 0.063 0.046

Boat 2 14◦ 0.121 0.090 0.084 0.064 0.076 0.062

(5.7× 2.3× 1.2) 28◦ 0.101 0.071 0.111 0.081 0.083 0.068

Plane 1 14◦ 0.204∗ 0.138∗ 0.191∗ 0.147∗ 0.160 0.096

(13.5× 11.5× 3.6) 28◦ 0.256∗ 0.206∗ 0.236∗ 0.165∗ 0.167 0.098

Plane 2 14◦ 0.204∗ 0.167∗ 0.181∗ 0.139∗ 0.122 0.082

(9.1× 12.6× 3.0) 28◦ 0.333∗ 0.251∗ 0.313∗ 0.224∗ 0.166 0.116

Rock 1 14◦ 0.194 0.153 0.187 0.132 0.109 0.081

(5.7× 3.5× 2.8) 28◦ 0.202 0.159 0.202 0.159 0.139 0.098

Rock 2 14◦ 0.083 0.065 0.079 0.060 0.071 0.056

(2.2× 2.2× 2.0) 28◦ 0.084 0.065 0.082 0.063 0.072 0.058

Rock 3 14◦ 0.149 0.093 0.149 0.098 0.102 0.082

(3.2× 3.7× 2.8) 28◦ 0.192 0.152 0.166 0.114 0.148 0.103

Coral 14◦ 0.241∗ 0.192∗ 0.241∗ 0.176∗ 0.134 0.106

(4.4× 5.6× 3.3) 28◦ 0.289∗ 0.232∗ 0.285∗ 0.218∗ 0.212 0.166

Concrete column 14◦ 0.125 0.097 0.128 0.099 0.084 0.055

(1.9× 1.2× 4.3) 28◦ 0.149 0.113 0.150 0.115 0.094 0.060

Submarine 14◦ 0.187∗ 0.122∗ 0.204∗ 0.144∗ 0.173 0.101

(5.1× 16.7× 4.7) 28◦ 0.229∗ 0.176∗ 0.237∗ 0.181∗ 0.149 0.102

TABLE I: Size (W×L×H), root mean square (RMS) and mean Hausdorff
distance errors (all in meters) for different simulated objects. For certain
objects (*), we increased the voxel size from 0.025m to 0.05m to prevent
OOM errors with the baseline methods.

We analyze our method’s performance as a function of the

training set size. We vary the size of the training set while

maximizing object coverage for the submarine object (this

is the largest object which also contains varied geometric

details. The maximum training set size is ∼ 1300 images).

We report in Fig. 6 the associated performance metrics. We

note that the reconstruction quality improves significantly

with ∼ 200 images and plateaus after ∼ 600 images.

This potentially suggests the existence of an optimal set of

sonar collection points which minimize the number of data

samples and maximize reconstruction quality. We leave the

investigation of such active policy for future work.

Fig. 6: Reconstruction quality as a function of the training set size for the
simulated submarine dataset. The maximum training set contains ∼ 1300
images collected with a 14◦ vertical aperture.

B. Water Tank Experiments

(a) Test structure (b) Water test tank (c) Collection points

Fig. 7: (a) Test structure. (b) Test tank (height=3m and radius=3.5m). (c)
Sample positions where a sonar image was taken. Over 900 images were
collected for 1◦ and over 400 images for 14◦ and 28◦.

We evaluate our method on real-world datasets of a test
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structure (Fig. 7a) submerged in a test tank (Fig. 7b) us-

ing a SoundMerics DIDSON imaging sonar mounted on a

Bluefin Hovering Autonomous Underwater Vehicle (HAUV).

The sonar can achieve three different elevation apertures

(1◦, 14◦, 28◦). We test our method on three different datasets,

one for each feasible aperture. The vehicle uses a high-end

IMU and a Doppler Velocity Log (DVL) to provide accurate

vehicle pose information (i.e., minimal drift for the duration

of data capture).

Fig. 9 shows the RMS and mean Hausdorff distance error of

the three methods. The quality of the mesh generated by VA

and BP depends on the selected marching cubes threshold σ.

Hence, we plot the metrics generated using different σs and

report the best value. With our method, we can extract the

zero-level set of N directly alleviating the need for a post-

processing step for surface generation. Since the structure

is submerged and lying at the bottom of the test tank (and

hence, no sonar image captures the backside of the object

- Fig. 7c), we limit the matching distance of the Hausdorff

metric to 0.15m, 0.2m, and 0.25m for the 1◦, 14◦, and 28◦

apertures respectively. We see that our method gener-

ates higher quality reconstructions especially when using

larger apertures: With 14◦, our method achieves an (RMS,

Mean)=(0.058m, 0.040m) while BP and VA are respectively

at (0.077m, 0.063m) and (0.069m, 0.052m). Similarly for a

28◦ aperture, our method achieves a lower (RMS, Mean)

= (0.072m, 0.055m) compared to BP (0.104m, 0.079m) and

VA (0.091m, 0.070m).

1 degree 14 degrees 28 degrees

B
ac

k-
Pr

oj
ec

ti
on

 
   

   
  (

B
P)

Vo
lu

m
et

ri
c 

A
lb

ed
o 

  
  
  

  
  
  

(V
A

)
O

u
rs

Fig. 8: The output 3D reconstructions for each method and each elevation
aperture. Our method is able to capture the main components of the
structures while VA and BP struggle for large vertical apertures.

Fig. 8 shows the resulting meshes for each method. While all

three methods perform well with a 1◦ aperture, the difference

in reconstruction quality becomes visually more apparent as

the aperture angle increases. With a 14◦ aperture, we begin to

lose the main feature of the object with VA and BP: the hole,

short piling and crossbar are not easily discernible. When the

aperture is increased to 28◦, both baseline methods perform

poorly: the hole, crossbar, and short piling are lost. On the

other hand, our proposed method successfully captures the

major components of the structure for all three different

apertures (a base, two vertical pilings, and a crossbar).

Fig. 9: Plots showing the root mean square (RMS) and mean Hausdorff
distance in meters for all three methods on the real datasets (1◦, 14◦, and
28◦ elevation apertures). To easily compare against the baselines, we add
the constant green dashed line to report our method’s metrics. Note however
that our algorithm does not depend on the σ values in the x axis.

VI. CONCLUSION AND FUTURE WORK

We proposed an approach for reconstructing 3D objects from

imaging sonar which represents imaged surfaces as zero-

level sets of neural networks. We performed experiments on

simulated and real datasets with different elevation apertures

and showed that our method outperforms current state-of-

the-art techniques for unsupervised 3D reconstruction using

FLS in terms of reconstruction accuracy. While existing

volumetric methods can suffer from memory overhead as

well as require a separate step to extract meshes from

volumetric grids (a process often difficult and prone to error),

our method allows for easy surface extraction from implicit

representations and uses stochastic updates to lessen the

computational requirements.

Our algorithm has some limitations, all of which create

opportunities for future work. First, we currently focus on

single-object reconstruction but plan to expand our method

to large-scale reconstruction of marine environments at the

scale of harbors by taking inspiration from techniques such

as Block-Nerf [46]. Second, our method is currently mostly

suited for offline 3D reconstructions but using techniques

such as Instant-NGP [47] and Relu-Fields [48] can bring

it to real-time performance needed for robotic navigation

applications. Finally, our experiments now use only sonar but

underwater robots are typically equipped with other sensors

such as optical cameras. Hence, another direction from future

work is to fuse multi-modal sensor inputs (acoustic and

optical) where, for example, optical cameras are used to

obtain high resolution models of specific interest areas in the

scene while a sonar, with longer range, is used elsewhere.
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