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In delegation problems, a principal does not have the resources necessary to complete a particular task, so they

delegate the task to an untrusted agent whose interests may differ from their own. Given any family of such

problems and space of mechanisms for the principal to choose from, the delegation gap is the worst-case ratio

of the principal’s optimal utility when they delegate versus their optimal utility when solving the problem

on their own. In this work, we consider the delegation gap of the generalized Pandora’s box problem, a

search problem in which searching for solutions incurs known costs and solutions are restricted by some

downward-closed constraint. First, we show that there is a special case when all random variables have binary

support for which there exist constant-factor delegation gaps for matroid constraints. However, there is no

constant-factor delegation gap for even simple non-binary instances of the problem. Getting around this

impossibility, we consider two variants: the free-agent model, in which the agent doesn’t pay the cost of

probing elements, and discounted-cost approximations, in which we discount all costs and aim for a bicriteria

approximation of the discount factor and delegation gap. We show that there are constant-factor delegation

gaps in the free-agent model with discounted-cost approximations for certain downward closed constraints

and constant discount factors. However, constant delegation gaps can not be achieved under either variant

alone. Finally, we consider another variant called the shared-cost model, in which the principal can choose

how costs will be shared between them and the agent before delegating the search problem. We show that the

shared-cost model exhibits a constant-factor delegation gap for certain downward closed constraints.
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1 INTRODUCTION
We take the natural next step in the study of delegated stochastic search problems involving

multivariate decisions, constraints, and costs. The work of Bechtel and Dughmi [3] has provided a

fairly thorough understanding of principal-agent delegation in the presence of “hard” constraints

on the search procedure — scenarios of this form can be viewed as a principal delegating a stochastic
probing problem to an agent. In this paper, we build a similar understanding when search is

associated with cardinal costs instead. Scenarios of this form feature a principal who delegates, to

an agent, a combinatorial generalization of the famous Pandora’s box problem of Weitzman [12].
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As in the most relevant prior work on delegation, we imbue the principal with the power of

commitment, rendering this a mechanism design problem.
1

The conceptual starting point in this area is the work of Kleinberg and Kleinberg [10], who

consider a principal delegating the selection of one option (we say element) out of finitely many to

an agent. As a running example, consider a firm (the principal) delegating the selection of one job

candidate out of many (the elements) to an outside recruitment agency (the agent). Each element

is associated with a stochastic reward for both principal and agent, with independence across

elements. The agent is tasked with “exploring” (we say probing) these rewards and proposing one

of them, which the principal may choose to accept or reject.

Problems of this form are most natural when exploration is not free, and Kleinberg and Kleinberg

[10] consider one model featuring a hard constraint on the number of options explored, and a

second model featuring cardinal costs associated with exploration for both principal and agent.

Bechtel and Dughmi [3] generalize the first model, in particular to settings in which exploration is

combinatorially constrained (this is referred to as the outer constraint), and multiple elements may

be selected subject to another combinatorial constraint (this is referred to as the inner constraint).
When multiple elements are selected, rewards are additive for both the principal and the agent.

In this paper, we similarly generalize the second model of [10]: there is no outer constraint on

exploration, but rather per-element probing costs for the principal and agent. Moreover, there again

is an inner constraint (which we will often refer to simply as the constraint) on the set of elements

selected. Rewards and probing costs are now both additive across elements. The problem being

delegated here is a generalized Pandora’s box problem, as in [11].

There are multiple natural ways of instantiating the utilities of both the principal and the agent,

depending on who we assume incurs the exploration (i.e., probing) costs. Some ways in which costs

may be shared include:

• The principal and agent each pay a fixed percentage of the total probing cost. In our running

example, the recruitment agency may have a policy in which they only pay a fixed fraction of

the cost of interviewing each candidate. Such scenarios fall under our first model which we

refer to as the standard model of utilities.2 Kleinberg and Kleinberg [10] assumes cost-sharing

according to the standard model of utilities.

• The principal pays the full cost of exploration. In our running example, the recruitment

agency only commits to investing their time and expertise, whereas the principal bears the

entire cost of exploration. We refer this model as the free-agent model.

• The principal chooses as part of their strategy how individual costs are shared. In our running

example, the principal may be willing to pay a large fraction of the cost of interviewing

good (in expectation) candidates, but still allows the agent to interview bad (in expectation)

candidates so long as they bear most of the cost. We refer to this model as the shared-cost
model. This model provides the principal with much more power when delegating.

No matter our utility model and cost model, we seek mechanisms which approximate the principal’s

optimal non-delegated utility: the maximum expected utility the principal can obtain by solving the

search problem themselves. When such a mechanism matches the non-delegated utility up to a

factor 𝛼 , we refer to it as an 𝛼-factor mechanism.

1
In particular, a mechanism design problem without money.

2
As long as neither principal nor the agent pays the entire cost in the standard model, we can re-scale their utilities and

without loss of generality, assume that they pay equal costs.



Our Models and Results
In our first model — which we refer to as the standard model of utilities — we follow in the footsteps

of [10] by incorporating the probing costs into both the principal and agent’s utilities.
3
Our results

for this model are a mixed bag: When each element’s reward distribution has binary support,

we obtain constant-approximate delegation mechanisms when the constraint is a matroid. The

proof proceeds via a reduction to the matroid prophet inequalities against an almighty adversary

from [7]. This result generalizes the result of [10] for their second model, which also features

binary distributions. On the other hand, we obtain strong impossibility results for non-binary

distributions, ruling out any sublinear (in the number of elements) approximation to the principal’s

optimal non-delegated utility, even for the rank one matroid. This shows that the result of [10] for

their second model, which also features a rank one matroid constraint, can not be generalized to

non-binary distributions. Even more emphatically, we rule out certain bicriteria approximations

for the standard model of utilities: even if probing costs are discounted by any absolute constant,

the principal’s delegated utility can not approximate — up to any constant — their undelegated

utility in the undiscounted setting.

Motivated by our impossibility results for the standard model of utilities, we explore other models

of distributing the probing costs. In the free-agent model, the agent incurs no exploration costs,

which are born entirely by the principal. For various constraints such as matroids, matchings, and

knapsacks, we obtain bicriteria approximate mechanisms of the following form for various pairs of

constants 𝛼, 𝛿 : the principal’s delegated utility in the setting where probing costs are discounted

by 𝛿 matches, up to a factor of 𝛼 , their optimal undelegated utility in the undiscounted setting.

Our results proceed by reduction to the online contention resolution schemes against an almighty

adversary from [7]. We complement this with a negative result, ruling out the traditional uni-

criteria constant-approximate mechanisms. Specifically, absent any discount on probing costs, no

delegation mechanism approximates the principal’s optimal undelegated utility up to any constant.

Our final utility model allows the principal to declare, up front as part of their mechanism,

an arbitrary split of the probing cost for each element between the principal and the agent. We

refer to this as the shared-cost model. This turns out to be the most permissive of our models: for

constraints including matroids, matchings, and knapsacks, we obtain delegation mechanisms which

approximately match, up to a constant, the principal’s optimal undelegated utility.
4
Our results

here are again by reduction to online contention resolution schemes against an almighty adversary

from [7].

Lastly, we also begin a preliminary exploration of randomized mechanisms for delegating the

generalized Pandora’s box problem. We obtain negative results for a restricted class of randomized

mechanisms, and leave open the general question of whether randomization yields significantly

more power in this setting, including whether it overcomes some of our impossibility results for

deterministic mechanisms.

Additional Discussion of Related Work
For additional discussion of related work pertaining to delegation, stochastic probing problems,

prophet inequalities, and contention resolution, we refer the reader to [3]. Also relevant to this

3
Whereas it is not uncommon for the agent in delegation to bear the costs of completing the task, this model also incorporates

the costs into the principal’s objective. This can capture a principal concerned with optimizing a social objective, as well as

scenarios in which probing costs are shared by the principal and agent.

4
We note that, since the principal can offload much of the costs of exploration to the agent, there exist instances in which

the principal’s delegated utility strictly exceeds their undelegated utility. However, we also show that there are simple

instances in which the principal’s delegated utility is necessarily less than their undelegated utility, ruling out general

results with approximation factors exceeding 1.



paper is the work on generalizations of the Pandora’s box problem. In particular, Singla [11]

introduces a model generalizing the 1-uniform matroid “inner” constraint to arbitrary downward-

closed constraints and proposes constant-factor algorithms for matroids, matchings, and knapsack

constraints. Gamlath et. al. [9] and Fu et. al. [8] further improve approximation guarantees for the

generalized Pandora’s box problem with matching constraints.

2 PRELIMINARIES
2.1 Pandora’s Box
Weitzman’s Pandora’s box problem [12] is defined as follows: given probability distributions of

𝑛 independent random variables 𝑋1, . . . , 𝑋𝑛 over R≥0 and their respective probing costs 𝑐1, . . . , 𝑐𝑛 ,

adaptively probe a subset Probed ⊆ [𝑛] that maximizes the expected utility:

E

[︄
max

𝑖∈Probed
{𝑋𝑖 } −

∑︂
𝑖∈Probed

𝑐𝑖

]︄
. (1)

Weitzman [12] proposes a simple but optimal strategy for maximizing expected utility. For each

element 𝑖 ∈ [𝑛], this strategy chooses a cap value (sometimes called priority value or surplus value)

𝜏𝑖 satisfying E[(𝑋𝑖 − 𝜏𝑖 )+] = 𝑐𝑖 . Then it probes elements in decreasing order of cap value, stopping

the first time that the largest observed 𝑋𝑖 value exceeds the largest unprobed cap value. Finally, it

selects the element 𝑖 with maximum observed 𝑋𝑖 .

In this work, we focus on the more general version of the Pandora’s box problem defined in [11].

We are given a set of elements 𝐸 and a downward-closed constraint I ⊆ 2
𝐸
over the ground set

𝐸. The goal is to adaptively probe a set of elements Probed and select a set of feasible elements

𝑆 ⊆ Probed for which 𝑆 ∈ I that maximizes the following objective:

E

[︄∑︂
𝑖∈𝑆

𝑋𝑖 −
∑︂

𝑖∈Probed
𝑐𝑖

]︄
. (2)

For the remainder of the paper, we will write 𝑋 (𝑆) = ∑︁
𝑖∈𝑆 𝑋𝑖 and 𝑐 (𝑆) =

∑︁
𝑖∈𝑆 𝑐𝑖 in any setting

with utilities {𝑋𝑖 }𝑖∈𝐸 and costs {𝑐𝑖 }𝑖∈𝐸 . We will also refer to (𝑖, 𝑥) for any 𝑖 ∈ 𝐸 and 𝑥 ∈ R≥0 as a
possible outcome or realization of element 𝑖 .

Singla [11] proposes constant-factor approximation algorithms for the general Pandora’s box

problem for many constraints. In particular, these algorithms are optimal for matroids and 2-

approximate for both matching and knapsack constraints.

2.2 Greedy Prophet Inequality
An instance of the generalized prophet inequality problem is given by a set systemM with ground

set 𝐸 and feasible sets I and independent random variables 𝑋𝑖 supported on R≥0 for all 𝑖 ∈ 𝐸. We

take the perspective of the gambler, who knowsM and the distributions of the random variables

{𝑋𝑖 }𝑖∈𝐸 . The gambler starts with an empty set 𝑆 of accepted elements and then observes each

element in 𝐸 in an order chosen by an adversary
5
. When the element 𝑖 ∈ 𝐸 arrives, the gambler

learns the realization of 𝑋𝑖 and has to decide online whether to accept element 𝑖 or not based

on (𝑖, 𝑥𝑖 ) and the previously accepted elements 𝑆 . However, they can only accept 𝑖 if 𝑆 ∪ {𝑖} is
feasible inM. The gambler seeks to maximize their utility E(𝑋 (𝑆)) = E [∑︁𝑖∈𝑆 𝑋𝑖 ], and in particular

to compete with a prophet who plays the same game and knows the realizations of all random

variables in advance. If the gambler has a strategy guaranteeing an 𝛼 fraction of the prophet’s

5
For the purposes of this paper, we play against the almighty adversary defined in [7], the strongest possible adversary, who

knows all the coin flips of the gambler’s strategy.



expected utility in expectation, we say that we have an 𝛼-factor prophet inequality. We now define

a particular class of strategies for the gambler:

Definition 2.1 (Greedy monotone strategy A𝑡 ). A greedy monotone strategy A𝑡 for the gambler

is described by choice of thresholds 𝑡 = {𝑡𝑖 : 𝑖 ∈ 𝐸} and a downward closed system I𝑡 ⊆ I, and
can be expressed as A𝑡 = {{(𝑖, 𝑥𝑖 ) : 𝑖 ∈ 𝑆} : 𝑆 ∈ I𝑡 and 𝑥𝑖 ≥ 𝑡𝑖 for all 𝑖 ∈ 𝑆}. A gambler following

A𝑡 accepts element 𝑖 with outcome (𝑖, 𝑥𝑖 ) if and only if 𝑥𝑖 ≥ 𝑡𝑖 and set of elements accepted so far

along with the element 𝑖 stays in I𝑡 .

Greedy monotone strategies for the gambler is proposed in [7] for matroid, matching, and

knapsack constraints that achieve 1/4, 1/2𝑒 , and 3/2 −
√
2 factor prophet inequality respectively.

2.3 c-Selectable Greedy OCRS Schemes
We will give a brief overview of online contention resolution schemes [7] in this section. Given

a downward-closed family I over the ground set of elements 𝐸 with |𝐸 | = 𝑛, let 𝑃I ⊆ [0, 1]𝑛 be

the convex hull of the indicator vectors of all feasible sets: 𝑃I = conv({1𝐹 : 𝐹 ∈ I}). We say

that a convex polytope 𝑃 ⊆ [0, 1]𝑛 is a relaxation of 𝑃I if it contains the same {0, 1}-points, i.e.
𝑃 ∩ {0, 1}𝑛 = 𝑃I ∩ {0, 1}𝑛 .
Consider the following online problem: given some I as above and some 𝑥 ∈ 𝑃I , let 𝑅(𝑥)

be a random subset of active elements, where each element 𝑖 ∈ 𝐸 is active with probability 𝑥𝑖
independently of all others. The elements in 𝐸 are revealed online in an order chosen by an adversary,

and when each element 𝑖 is revealed, we learn whether or not 𝑖 ∈ 𝑅(𝑥). After we learn the state

of element 𝑖 , we must irrevocably decide whether or not to select 𝑖 . An OCRS for 𝑃 is an online

algorithm that selects a subset 𝑆 ⊆ 𝑅(𝑥) such that 𝑆 ∈ I.

Definition 2.2 (Greedy 𝑐-selectable OCRS). Let 𝑃 ⊆ [0, 1]𝑛 be a relaxation of 𝑃I . A greedy OCRS

𝜋 for 𝑃 is an OCRS that for any 𝑥 ∈ 𝑃 defines a downward-closed family of sets I𝑥 ⊆ I. Then an

active element 𝑖 is selected if, together with the already selected elements, the obtained set is in I𝑥 .
Moreover, we say the greedy OCRS is 𝑐-selectable if for all 𝑥 ∈ 𝑃 and 𝑖 ∈ 𝐸

Pr[𝐼 ∪ {𝑖} ∈ I𝑥 for all 𝐼 ⊆ 𝑅(𝑥) and 𝐼 ∈ I𝑥 ] ≥ 𝑐.

3 DELEGATION MODEL
In this paper, we will use several slightly different models of delegation which can be viewed as

variants of a single standard model of delegated Pandora’s box. This model formally consists of:

two players called the principal and the agent; a ground set of elements 𝐸; for each element 𝑖 ∈ 𝐸,

an independent distribution 𝜇𝑖 over R≥0 × R≥0 giving possible utility pairs for the principal and

agent, respectively; for each element 𝑖 ∈ 𝐸, a probing cost 𝑐𝑖 ∈ R≥0; and a downward-closed set

system M = (𝐸,I) with feasible sets I over the ground set 𝐸 (i.e. I ⊆ 2
𝐸
and if 𝑆 ∈ I then 𝑇 ∈ I

for any 𝑇 ⊆ 𝑆).

Given an element 𝑖 , we let 𝑋𝑖 and 𝑌𝑖 be random variables denoting the random value obtained

for the principal and agent from element 𝑖 with joint distribution (𝑋𝑖 , 𝑌𝑖 ) ∼ 𝜇𝑖 , where 𝑋𝑖 and

𝑌𝑖 may be arbitrarily correlated but are independent of random variables from other elements.

For any (𝑥,𝑦) ∈ supp(𝜇𝑖 ), we call (𝑖, 𝑥,𝑦) an outcome or realization of element 𝑖 . For any set of

outcomes S = {(𝑖1, 𝑥1, 𝑦1), . . . , (𝑖𝑘 , 𝑥𝑘 , 𝑦𝑘 )} such that 𝑆 = {𝑖1, . . . , 𝑖𝑘 } ∈ I for distinct 𝑖1, . . . , 𝑖𝑘 , we

call S a solution. In general, we denote the set of all possible outcomes as Ω = {(𝑖, 𝑥,𝑦) : (𝑥,𝑦) ∈
supp(𝜇𝑖 ), 𝑖 ∈ 𝐸} and the set of all solutions with respect to the constraint I as ΩI ⊆ 2

Ω
.

Given such an instance as described above, the principal and agent play an asymmetric game

in which the principal alone has the power to choose the mechanism and accept a solution, and

the agent alone has the power to search for solutions. More specifically, in order to learn about



the true realization (𝑋𝑖 , 𝑌𝑖 ) of an element 𝑖 , the agent can probe element 𝑖 . We allow them to probe

elements adaptively, choosing what to probe next based on previously realized outcomes. Let us

say that the agent ultimately probes the set Probed ⊆ 𝐸, obtaining outcomes 𝑇 . Depending on the

mechanism, they can choose to share information about 𝑇 with the principal. The principal can

accept any valid solution 𝑆 ⊆ 𝑇 , yielding a net utility of

∑︁
(𝑖,𝑥,𝑦) ∈𝑆 𝑥 − ∑︁

𝑖∈Probed 𝑐𝑖 for the principal
and

∑︁
(𝑖,𝑥,𝑦) ∈𝑆 𝑦 − ∑︁

𝑖∈Probed 𝑐𝑖 for the agent. The principal can alternatively choose to reject all
solutions and maintain the status quo, yielding a net utility of −∑︁

𝑖∈Probed 𝑐𝑖 for both players. Both

players have common knowledge of the setup of the problem, including all distributions {𝜇𝑖 }𝑖∈𝐸
but excluding the true realizations of elements, and they each act to maximize their own expected

utility.

As in the models from previous work, we assume that the agent cannot lie by misrepresenting

the utilities of a probed outcome or by claiming to have probed an unprobed element. We believe

that this is a natural assumption in many settings where outcomes can be easily verified by the

principal. Additionally, we assume that the principal has commitment power, i.e. the agent can

trust the principal to follow the rules of whatever mechanism they choose. The principal can force

the agent to also follow the rules of the mechanism insofar as they can detect violations of the rules.

Finally, we also assume that all instances of this problem satisfy E[𝑋𝑖 ] > 𝑐𝑖 and E[𝑌𝑖 ] > 𝑐𝑖 for all

𝑖 ∈ 𝐸. The first assumption is without loss of generality, since E[𝑋𝑖 ] ≤ 𝑐𝑖 would imply that the

principal has no incentive to probe or accept element 𝑖 , so the agent would not probe it either. The

second assumption allows us to avoid uninteresting impossibilities for the delegation gap defined

in Section 3.1, since E[𝑌𝑖 ] ≤ 𝑐𝑖 would imply that the agent has no incentive to probe or propose

element 𝑖 but the principal may still be able to receive a lot of utility from element 𝑖 .

For this paper, we’re interested in single-proposal mechanisms as defined in [10] and used in [3].

A single proposal mechanism consists of an acceptable set R ⊆ ΩI containing all solutions that the

principal is willing to accept. In such a mechanism, the principal starts by declaring their choice of

R. The agent responds by adaptively probing any set of elements Probed ⊆ 𝐸 of their choosing,

receiving the set of outcomes 𝑇 = {(𝑖, 𝑋𝑖 , 𝑌𝑖 ) : 𝑖 ∈ Probed}. Once they are done probing, they can

propose some valid solution S ⊆ 𝑇 to the principal. Finally, the principal can either accept or reject

the solution S. If S is not a valid solution, S contains misrepresentations of the truth, or S ∉ R,
then the principal must reject S. We note that this mechanism is deterministic in the sense that

the principal chooses a deterministic R and their response to the agent’s choices is deterministic.

This is in contrast to the randomized mechanisms discussed briefly after Theorem 5.2 and lottery

mechanisms as defined in Appendix B. We also discuss more general mechanisms in Appendix A.

Given element 𝑖 , we define the cap value or surplus value for the principal 𝜏𝑥𝑖 as the solution

to E[(𝑋𝑖 − 𝜏𝑥𝑖 )+] = 𝑐𝑖 . We further define truncated random variables 𝑍min

𝑖 = min{𝑋𝑖 , 𝜏
𝑥
𝑖 } for the

principal for all 𝑖 ∈ 𝐸. We similarly define agent’s cap values 𝜏
𝑦

𝑖
as the solution to E[(𝑌𝑖 −𝜏𝑦𝑖 )+] = 𝑐𝑖 ,

and the truncated random variable for the agent as𝑊 min

𝑖 = min{𝑌𝑖 , 𝜏𝑦𝑖 }. Note that the expected
utility (including the probing cost) of a particular element is negative for the elements with negative

cap values. We sometimes drop superscript from the principal’s cap values and denote 𝜏𝑥𝑖 as 𝜏𝑖 for

𝑖 ∈ 𝐸 whenever it is clear.

3.1 Delegation Gap
As in [3, 10], we are not interested in finding optimal delegation mechanisms so much as finding

delegation mechanisms that approximate the principal’s optimal non-delegated utility. The optimal

non-delegated utility refers to the principal’s optimal utility when delegating to an agent who shares

their interests (alternatively, their optimal utility when they act as both the principal and agent, i.e.

they have the power to probe elements and accept solutions). Note that the non-delegated problem



that the principal faces is exactly the generalized Pandora’s box problem with a downward-closed

constraint. Therefore, our main model is a delegated version of this problem, hence why we call it

the delegated Pandora’s box problem.

Let E[OPT] be the principal’s optimal non-delegated utility. Singla [11] shows that for any

downward closed constraint I,

E[OPT] ≤ E
[︄
max

𝑆∈I

∑︂
𝑖∈𝑆

𝑍min

𝑖

]︄
.

Let E[DELR] be the expected utility of the delegating principal with single-proposal mechanism R,
i.e. the expected utility of the principal who delegates with acceptable set R to an agent who acts

in order to maximize their own expected utility given R.
Now, we define 𝛼-factor delegation strategies, which guarantee the principal at least an 𝛼-factor

of E[OPT] when they delegate.

Definition 3.1. Fix an instance of the delegated Pandora’s box problem. We say that a mechanism

R is an 𝛼-factor delegation strategy for 𝛼 ∈ [0, 1] if
E[DELR] ≥ 𝛼 · E[OPT] .

Moreover, we say R is an 𝛼-factor agent-agnostic strategy if E[DELR] ≥ 𝛼 · E[OPT] for all instances
with the same costs and marginal distributions of the principal’s values {𝑋𝑖 }𝑖∈𝐸 , regardless of the
distribution of the agent’s values {𝑌𝑖 }𝑖∈𝐸 .

We sometimes refer to 𝛼-factor strategies as 𝛼-delegation and 𝛼-factor agent-agnostic strategies

as 𝛼 agent-agnostic delegation. Note that if 𝛼-factor agent-agnostic strategies exist for the principal,

then the principal can obtain an 𝛼-factor of E[OPT] even when they do not have any information

about the distribution of {𝑌𝑖 }𝑖∈𝐸 .
Now, we define the delegation gap of the family of instances of delegated Pandora’s box.

Definition 3.2. The delegation gap of a family of instances of delegated Pandora’s box is the mini-

mum, over all instances in the family, of the maximum 𝛼 such that there exists an 𝛼-factor strategy

for that instance. This gap measures the minimum fraction of the principal’s non-delegated utility

they can achieve when delegating optimally. We similarly define the agent-agnostic delegation gap

for agent-agnostic delegation.

3.2 Model Variants
In this paper, we consider a few different variants of the model and approximation measure as

defined above. The first such variant, called the binary model, is just a special case of delegated
Pandora’s box in which the distribution 𝜇𝑖 of every element 𝑖 has support for exactly two outcomes:

⊥ = (𝑖, 0, 0) and 𝜔𝑖 = (𝑖, 𝑥𝑖 , 𝑦𝑖 ). A simpler version of this model in which the inner constraint is

a 1-uniform matroid was investigated in [10], and we extend their definition to general matroid

inner constraints. As motivation for this model, we consider search problems in which the principal

and agent know the full space of possible outcomes but don’t know which of those outcomes

are feasible. However, they both share a prior probability on the feasibility of each outcome, all

outcomes are mutually independent, and the agent can check the feasibility of any element by

paying a probing cost. This is also an extension of prior work as described in the introduction.

Second, we consider the free-agent model. This model changes only the utility of the agent such

that they do not pay the cost of any probed elements. In order to ensure that the agent does not

probe all elements and incur too a large cost for the principal, we assume that the agent breaks

ties in favor of the principal when deciding what element to probe next. Therefore, if the principal



doesn’t accept any outcomes from a particular element, then they know that the agent will not

probe that element. We motivate this model both by negative results in the standard model and by

settings in which the principal is constrained in advance to cover all costs that the agent may incur,

e.g. an employer that commits to reimbursing employees for all work-related costs.

Third, we consider discounted-cost approximations, a new measure of approximation for delegated

Pandora’s box problems. Given an instance 𝐼 of any model of delegated Pandora’s box and some

discount factor 𝛿 , consider a new instance 𝐽 identical to 𝐼 except that the cost of each element 𝑖 is

(1 − 𝛿)𝑐𝑖 , where 𝑐𝑖 is the original cost.

Definition 3.3. We say that a mechanism R is an (𝛼, 𝛿)-factor delegation strategy if the principal’s

delegated utility in the 𝛿-discounted instance 𝐽 is at least an 𝛼-factor of their non-delegated utility

in the original instance 𝐼 .

Observe that this is a bi-criteria approximation in which we aim to minimize 𝛿 and maximize 𝛼 .

This approximation measure can be used as a means of determining how far the principal’s costs

are from being able to achieve a constant delegation gap. We additionally motivate it by settings in

which the agent pays a smaller cost for searching than the principal would, e.g. a contractor which,

through prior experience or economies of scale, is able to save on costs and share these savings

with the contractee.

Finally, we consider the shared-cost model. This model considers a fixed cost to probe each element

that the principal can pay alone or share with the agent. In particular, it allows the principal to set

the agent’s cost 𝑐′𝑖 for element 𝑖 . These costs are announced to the agent along with the acceptable

set R. Then, if the agent probes element 𝑖 , they pay a cost of 𝑐′𝑖 and the principal pays the remaining

cost for that element, i.e. 𝑐𝑖 − 𝑐′𝑖 . To avoid direct transfers of value between the principal and agent,

the principal can only choose 0 ≤ 𝑐′𝑖 ≤ 𝑐𝑖 so that both costs are nonnegative. We briefly observe

that there are instances of this model for which the principal’s optimal delegated utility is strictly

greater than their optimal non-delegated utility. This is easy to see by considering any instance for

which 𝑋𝑖 = 𝑌𝑖 for all elements 𝑖: the principal can set 𝑐′𝑖 = 𝑐𝑖 and have the agent run their optimal

non-delegated strategy while they do not pay any of the costs. Therefore, the delegation gap 𝛼 of

such instances can be greater than 1. We introduce this model in the hopes that the principal’s

increased power can lead to better approximations. Furthermore, this model resembles settings in

which the principal can choose different reimbursement amounts for each of the agent’s actions,

but is unable to reimburse more than the true cost (no direct transfers).

4 STANDARD MODEL DELEGATION
In this section, we consider the delegation gap of the standard model of the delegated Pandora’s

box problem. We start by looking at the binary model special case, and show that this model has

constant-factor delegation gaps for matroid constraints. Then, in Section 4.3, we show that the

standard model (without binary assumption on 𝜇𝑖 ) does not admit constant delegation gaps in

general, even for the rank one matroid. Before getting to the main result for this model, we analyze

the (non-delegated) Pandora’s box problem with exogenous order as discussed in [10] for rank one

matroids, and extend their result to more general constraints.

4.1 Non-delegated Generalized Pandora’s Box with Exogenous Sequence
Consider a variant of the generalized Pandora’s box problem, which we will call generalized
Pandora’s box with exogenous order, in which the searcher is limited to consider elements in an

order that is specified in advance a part of the instance. For each element in this order, the searcher

can choose to skip the element without probing, or probe the element and either accept or reject

based on the realization. Once the searcher makes a decision about the current element, they cannot



undo this decision. This is an extension of a similarly-named model from [10]. We now define the

threshold strategy for Pandora’s box problem with exogenous ordering. Recall that the cap value 𝜏𝑖
for an element 𝑖 is defined by E[(𝑋𝑖 − 𝜏𝑖 )+] = 𝑐𝑖 , where 𝑋𝑖 is the random value of the element and

𝑐𝑖 is its cost.

Definition 4.1 (Threshold Strategy (A, {𝜏𝑖 }, {𝑋𝑖 })). Given a downward-closed family of solutions

A, the threshold strategy defined by A functions as follows: Consider the searcher who has already

accepted outcomes S = {(𝑖1, 𝑥1), . . . (𝑖𝑘 , 𝑥𝑘 )} and is deciding what to do about element 𝑖 . They

should probe element 𝑖 if and only if S ∪ (𝑖, 𝜏𝑖 ) ∈ A. Furthermore, they should accept element 𝑖 if

and only if S ∪ (𝑖, 𝑋𝑖 ) ∈ A.

With this type of strategy in mind, we can extend the approximation of this problem from rank

one matroids in [10] to more general downwards closed constraints. Lemma 4.2, which is a corollary

of [6, Theorem 5], provides a reduction from generalized Pandora’s box with exogenous ordering

for arbitrary downwards closed constraints to adversarial greedy prophet inequalities.

Lemma 4.2. Let 𝐽 be an instance of the generalized prophet inequality problem with random variable
𝑍min

𝑖 = min{𝑋𝑖 , 𝜏𝑖 } for all 𝑖 ∈ 𝐸 and constraint I. If there exists an 𝛼-factor greedy monotone strategy
for 𝐽 against the almighty adversary, then there exists an 𝛼-factor threshold strategy for the Pandora’s
box instance 𝐼 = (𝐸, {𝑋𝑖 },I, {𝑐𝑖 }) with exogenous ordering.

Proof. Corollary of Theorem 5 from [6].

□

4.2 Binary Model: Efficient Delegation for Matroids
Singla [11] proposes an optimal strategy for Pandora’s box with a matroid constraint that can be

simplified in the binary setting as follows: probe elements one by one starting from the element

with the maximum cap value. Given currently selected elements 𝑆 , probe the next element with the

maximum cap value 𝑖 such that 𝑆 ∪ 𝑖 ∈ I. After probing the element 𝑖 , select 𝑖 if and only if 𝑋𝑖 > 0.

Consider the binary delegated Pandora’s box instance for constraint I where the distributions

𝜇𝑖 of every element 𝑖 ∈ 𝐸 has support on exactly two outcomes: ⊥ = (𝑖, 0, 0) and 𝜔𝑖 = (𝑖, 𝑥𝑖 , 𝑦𝑖 ).
In the following Theorem, we show that the principal can design a 1/4-factor strategy R for the

standard delegation model for 𝜇𝑖 with binary support and a matroid constraint. The key idea is to

use the reduction from Pandora’s box with an exogenous order to prophet inequalities as described

in Lemma 4.2.

Theorem 4.3. There exists a 1/4-factor strategy for the binary model of delegated Pandora’s box
with a matroid constraint.

Proof. Take an instance of the binary model with elements 𝐸 such that for all 𝑖 ∈ 𝐸, we have

(𝑋𝑖 , 𝑌𝑖 ) = (𝑥𝑖 , 𝑦𝑖 ) with probability 𝑝𝑖 and (𝑋𝑖 , 𝑌𝑖 ) = (0, 0) otherwise. Consider a 1/4-approximate

greedy monotone strategy, as proposed in [7], for the prophet inequality instance with random

variables 𝑍min

𝑖 = min{𝑋𝑖 , 𝜏
𝑥
𝑖 } for all 𝑖 ∈ 𝐸 and matroid constraint I against the almighty adversary.

This strategy is defined by thresholds 𝑡 = {𝑡𝑖 }𝑖∈𝐸 and a matroid constraint I𝑡 ⊆ I. Given any

order of arrival of elements, the gambler selects element 𝑖 if and only if 𝑍min

𝑖 ≥ 𝑡𝑖 and the set of all

accepted elements (including element 𝑖) is contained in I𝑡 . Without loss of generality, we assume

that 𝑡𝑖 is such that 0 < 𝑡𝑖 ≤ 𝑥𝑖 for all 𝑖 ∈ 𝐸. This is because the gambler has no incentive to accept

elements of value 0 and 𝜏𝑥𝑖 > 0 due to the assumption E[𝑋𝑖 ] > 𝑐𝑖 .

Given thresholds {𝑡𝑖 }𝑖∈𝐸 , the principal restricts the agent to elements in the set 𝐸′ = {𝑖 ∈ 𝐸 : 𝜏𝑥𝑖 ≥
𝑡𝑖 }. Let I𝐸′

𝑡 be the matroid constraint obtained by restricting I𝑡 to the set of elements 𝐸′ ⊆ 𝐸. We



can describe the gambler’s greedy monotone strategy as A = {{(𝑖, 𝑧𝑖 ) : 𝑖 ∈ 𝑆 ∧ 𝑧𝑖 ≥ 𝑡𝑖 } : 𝑆 ∈ I𝐸′
𝑡 }.

Now, we define the principal’s single proposal mechanism as follows:

R = {{(𝑖, 𝑥𝑖 , 𝑦𝑖 ) : 𝑖 ∈ 𝑆} : 𝑆 ∈ I𝐸′
𝑡 and 𝑥𝑖 ≥ 𝑡𝑖 ∀𝑖 ∈ 𝑆}.

For all 𝑖 ∈ 𝐸′
, 𝜇𝑖 has binary support, so 𝑌𝑖 ≥ 𝜏

𝑦

𝑖
implies that 𝑋𝑖 ≥ 𝑡𝑖 , where 𝜏

𝑦

𝑖
is the agent’s cap

value for element 𝑖 satisfying E[(𝑌𝑖 − 𝜏
𝑦

𝑖
)+] = 𝑐𝑖 . Given this set of acceptable solutions R, the agent

faces an instance of Pandora’s box on the set of elements 𝐸′
with matroid constraint I𝐸′

𝑡 . Therefore,

the agent’s optimal strategy can be described as follows [11]: given the current set of accepted

elements 𝑆 ⊆ 𝐸′
with 𝑆 ∈ I𝐸′

𝑡 , probe an element 𝑖 ∈ 𝐸′ \ 𝑆 such that 𝑆 ∪ 𝑖 ∈ I𝐸′
𝑡 and 𝜏

𝑦

𝑖
is maximal.

Then they will accept element 𝑖 if and only if 𝑌𝑖 ≥ 𝜏
𝑦

𝑖
, which is equivalent to selecting element 𝑖 if

and only if𝑋𝑖 ≥ 𝑡𝑖 . Thus, the agent simply implements the threshold strategy (A, {𝜏𝑖 }, {𝑋𝑖 }) for the
principal’s Pandora’s box instance with exogenous order equal to their probing order. Therefore, by

Lemma 4.2, we conclude that the principal’s expected delegated utility E[DELR] ≥ 1/4 ·E[OPT]. □

4.3 Standard Model Impossibility
Now we will consider the standard model of delegated Pandora’s box and show that this problem

does not have constant-factor delegation gaps in general, even for rank one matroid constraints.

In Proposition 4.4, we present a family of instances of delegated Pandora’s box for which the

delegation gap is 𝑂 (1/𝑛) where 𝑛 is the number of elements. The main challenge in this model is

when the agent pays to probe, the principal needs to construct their acceptable set R such that

the agent has an incentive to probe all desirable elements. For example, consider an element 𝑖 for

which 𝑐𝑖 = 1/
√
𝑛, 𝑋𝑖 = 𝑛 with probability 1/𝑛 and otherwise 𝑋𝑖 = 0, and 𝑌𝑖 = 𝑛 independently

with probability 1/𝑛 and otherwise 𝑌𝑖 = 0. In this case, if the principal only accepts the outcome

𝑋𝑖 = 𝑛, then the agent will not probe element 𝑖 because their expected utility from probing is

𝑛 × Pr[𝑋𝑖 = 𝑛] Pr[𝑌𝑖 = 𝑛] − 1/
√
𝑛 < 0 for 𝑛 > 1. In order to ensure that the agent probes such

elements, the principal might have to accept undesirable outcomes where 𝑋𝑖 = 0. Hence, if there

are multiple such elements then the principal ends up accepting unwanted outcomes with a high

probability that leads to𝑂 (1/𝑛) delegation gap. The following Proposition shows the claim formally.

Proposition 4.4. There exist instances of the standard model of delegated Pandora’s box on 𝑛

elements for which the delegation gap is 𝑂 ( 1
𝑛
).

Proof. For any positive integer 𝑛 > 1 and real 0 < 𝜀 ≤ 1

2𝑛
, let 𝑀 be a positive integer such

that𝑀 ≥ 𝑛/𝜀 and consider the following instance of delegated Pandora’s box. We have 𝑛 identical

elements 𝐸 = {1, . . . , 𝑛} where each element 𝑖 has a probing cost 𝑐𝑖 = 1 − 𝜀 and random utilities

(𝑋𝑖 , 𝑌𝑖 ) ∼ 𝜇𝑖 . The principal’s utility 𝑋𝑖 is 𝑛 with probability
1

𝑛
and 0 otherwise. The agent’s utility

𝑌𝑖 is 𝑀 with probability
1

𝑀
independently of 𝑋𝑖 and 0 otherwise. The constraint is a 1-uniform

matroid. We let the agent break ties in favor of the principal.

First, we will determine the principal’s optimal non-delegated expected utility. This is given by

the solution to Weitzman’s Pandora’s box problem. For each element 𝑖 , we must determine the cap

value 𝜏𝑖 such that E(𝑋𝑖 − 𝜏𝑖 )+ = 𝑐𝑖 . It’s not hard to verify for this instance that 𝜏𝑥𝑖 = 𝜀𝑛. Then the

optimal solution guarantees an expected utility of 𝑈 = Emax𝑖 min(𝑋𝑖 , 𝜏𝑖 ) where each min(𝑋𝑖 , 𝜏𝑖 )
takes value 𝜀𝑛 with probability

1

𝑛
and 0 otherwise. Therefore, max𝑖 min(𝑋𝑖 , 𝜏𝑖 ) takes value 𝜀𝑛 with

probability 1 −
(︁
1 − 1

𝑛

)︁𝑛
and the principal gets expected utility

E[OPT] = 𝜀𝑛

(︃
1 −

(︃
1 − 1

𝑛

)︃𝑛)︃
≥ 𝜀𝑛

(︃
1 − 1

𝑒

)︃
.

Now, we will bound the principal’s delegated expected utility. Consider an arbitrary acceptable

set R that the principal might commit to. Since the constraint is 1-uniform, R consists of a set of



singleton outcomes. Observe that every element 𝑖 evaluates to one of four tagged outcomes (𝑖, 𝑛, 𝑀),
(𝑖, 𝑛, 0), (𝑖, 0, 𝑀), and (𝑖, 0, 0) with probabilities

1

𝑛𝑀
,

1

𝑛

(︁
1 − 1

𝑀

)︁
,

1

𝑀

(︁
1 − 1

𝑛

)︁
, and

(︁
1 − 1

𝑛

)︁ (︁
1 − 1

𝑀

)︁
,

respectively.

Given R, let 𝐸∗ ⊆ 𝐸 be the subset of elements 𝑖 for which (𝑖, 0, 𝑀) ∈ R and (𝑖, 𝑛, 𝑀) ∈ R, and
let 𝑘 = |𝐸∗ |. Consider any element 𝑖 ∉ 𝐸∗. If outcome (𝑖, 0, 𝑀) ∉ R, then the agent’s increase in

expected utility from probing 𝑖 is at most 𝑀 · 1

𝑀

(︁
1 − 1

𝑛

)︁
− (1 − 𝜀) = 𝜀 − 1

𝑛
< 0, so they have no

incentive to ever probe 𝑖 . Similarly, if outcome (𝑖, 𝑛, 𝑀) ∉ R, then the agent’s increase in expected

utility from probing 𝑖 is at most𝑀 · 1

𝑛𝑀
− (1 − 𝜀) = 𝜀 −

(︁
1 − 1

𝑛

)︁
< 0. Therefore, the agent will probe

no more than the 𝑘 elements in 𝐸∗. If 𝑘 = 0, then the agent will not probe anything and both will

get 0 utility. For the remainder of the proof, we assume 𝑘 > 0.

The agent now faces an instance of the Pandora’s box problem, so their optimal strategy is to

probe elements in order of weakly decreasing cap value (among non-negative cap values) and

accept the first outcome whose value is above its cap. For all elements 𝑖 ∈ 𝐸∗, we can calculate

that the agent’s cap is 𝜀𝑀 > 0. Then their optimal strategy is to probe elements from 𝐸∗ in some

order 1, . . . , 𝑘 until a value of𝑀 appears, which they will propose. If no value of𝑀 appears after

probing all of 𝐸∗, then they will stop probing and choose some outcome to propose. Since all probed

outcomes have 0 utility to the agent, they will choose an outcome to propose that maximizes the

principal’s utility.

Consider the utility that the principal gets when the agent finds an outcome of value𝑀 . Among

the 𝑘 = |𝐸∗ | elements that the agent might probe, they find a value of 𝑀 with probability 1 −(︁
1 − 1

𝑀

)︁𝑘 ≤ 𝑘
𝑀

≤ 𝜀𝑘
𝑛

≤ 𝜀.

Since the principal’s utility for the proposed outcome is independent of the agent’s, it will have

value 𝑛 for the principal with probability
1

𝑛
. Since 𝑘 ≥ 1, the principal pays a cost of 1 − 𝜀 for the

first probe. Therefore, the principal expects a utility of at most 𝜀 ( 𝑛
𝑛
− (1 − 𝜀)) = 𝜀2 in the event

when the agent finds an outcome with value𝑀 .

Now, with probability

(︁
1 − 1

𝑀

)︁𝑘 ≥ 1 − 𝜀, the agent doesn’t find any outcomes of value𝑀 . Then

the principal pays a cost of 𝑘 (1 − 𝜀) in order to probe all 𝑘 elements in 𝐸∗. Since the agent breaks
ties in favor of the principal, they will propose any acceptable outcomes of value 𝑛 to the principal.

There exists such an outcome with probability at most 1−
(︁
1 − 1

𝑛

)︁𝑘
. Therefore, the principal expects

a utility of at most

𝑛

(︄
1 −

(︃
1 − 1

𝑛

)︃𝑘 )︄
− 𝑘 (1 − 𝜀) ≤ 𝑛

(︄
1 −

(︃
1 − 1

𝑛

)︃𝑘 )︄
− 𝑘

(︃
1 − 1

2𝑛

)︃
in the event when the agent does not find an outcome with value 𝑀 . At 𝑘 = 1, this expression

evaluates to
1

2𝑛
= 𝜀. At 𝑘 = 2 it evaluates to 0. With some calculus and some algebraic manipulations,

we can show that this expression is negative for all 𝑘 > 2.

Putting everything together, the principal’s delegated expected utility is at most 𝜀 + 𝜀2, while

their non-delegated expected utility is at least 𝜀𝑛
(︁
1 − 1

𝑒

)︁
. Therefore, the delegation gap on this

instance approaches
1

𝑛 (1−1/𝑒 ) = 𝑂 ( 1
𝑛
) as 𝜀 approaches 0. □

5 FREE-AGENT MODEL
The impossibility of constant factor delegation for the standard model, as discussed in Proposition

4.4, motivates us to design efficient delegation strategies for variants of this model as defined in

Section 3.2. We observe that the impossibility is aided by the fact that the agent’s expected utility

for each element is very close to the probing cost, so the principal cannot restrict the agent on any

element they want to be probed. An initial attempt to circumvent this failure might design a model

where the principal can take on a larger proportion of the probing cost so that they can more freely



restrict the agent’s behavior. However, the principal’s expected utility for each element is similarly

close to their probing cost, so they cannot take on a large enough share of the cost without their

own expected utility becoming negative.

As a new approach to achieving constant delegation gaps, we will now consider delegation in the

free-agent model. Recall that this model removes the agent’s probing costs but requires that they

always break ties in favor of the principal. This model can be applied in settings where it is standard

for the principal to incur the total probing cost. As a simple example, an organization (modeled

by the principal) might pay the full travel and lodging expenses associated with interviewing

candidates for an available position. The interviewer (agent) can then freely choose to interview

(probe) candidates and make recommendations of their own choosing.

We will start by showing that there are constant discounted-cost approximations for this model

for any constant discount factor 𝛿 and certain downward-closed constraints.

5.1 Efficient Delegation for the Free-Agent Model with Discounts
In Proposition 5.1, we propose a (𝛿, 𝛿 ′)-factor strategy for 𝑘-uniform matroid constraints for any

0 ≤ 𝛿 ≤ 1/2 and 𝛿 ′ ≥ 𝛿 . We show that it is possible to design 𝛿-factor agent-agnostic delegation

for the free-agent model with a constant discount factor 𝛿 ′ ≥ 𝛿 on costs for 𝑘-uniform matroid

constraints. Recall that 𝑍min

𝑖 = min{𝑋𝑖 , 𝜏𝑖 }, where 𝜏𝑖 is the solution to E[(𝑋𝑖 − 𝜏𝑖 )] = 𝑐𝑖 .

Proposition 5.1. Let 𝐼 be an instance of the free-agent model with a 𝑘-uniform matroid constraint.
Then there exists a (𝛿, 𝛿 ′)-factor delegation strategy for any 0 ≤ 𝛿 ≤ 1/2 and 𝛿 ′ ≥ 𝛿 .

Proof. For 0 ≤ 𝛿 < 1/2, it is sufficient to prove the theorem for 𝛿 = 𝛿 ′ as (𝛿, 𝛿)-factor delegation
is also a (𝛿, 𝛿 ′) delegation for any 𝛿 ′ ≥ 𝛿 . Consider the delegation strategy in which the principal

sets a threshold 𝑇 such that Pr[|{𝑖 : 𝑍min

𝑖 ≥ 𝑇 }| ≥ 𝑘] = 𝛿 and restricts the agent to the set of

elements 𝑆 = {𝑖 : 𝜏𝑖 ≥ 𝑇 }. Among the elements in 𝑆 , they will accept any combination of outcomes

of utility at least 𝑇 (subject to the 𝑘-uniform matroid constraint):

R = {{(𝑖, 𝑥𝑖 , 𝑦𝑖 ) : 𝑖 ∈ 𝑆𝑘 } : 𝑆𝑘 ⊆ 𝑆 and |𝑆𝑘 | ≤ 𝑘 and all (𝑥𝑖 , 𝑦𝑖 ) ∈ supp(𝜇𝑖 ) and all 𝑥𝑖 ≥ 𝑇 }
We will show that R achieves an 𝛿-factor of E[OPT] when the principal pays 1 − 𝛿 factor of the

total probing cost. Now, let’s first bound E[OPT]:

E[OPT] = E
[︄
max

𝑄 : |𝑄 | ≤𝑘

∑︂
𝑖∈𝑄

𝑍min

𝑖

]︄
≤ 𝑘𝑇 + E

[︄
max

𝑄 : |𝑄 | ≤𝑘

∑︂
𝑖∈𝑄

(𝑍min

𝑖 −𝑇 )+

]︄
≤ 𝑘𝑇 +

𝑛∑︂
𝑖=1

E[(𝑍min

𝑖 −𝑇 )+]

= 𝑘𝑇 +
∑︂
𝑖∈𝑆
E[(𝑍min

𝑖 −𝑇 )+]

The last equality holds because for all 𝑖 ∉ 𝑆 , 𝜏𝑖 < 𝑇 implies that 𝑍min

𝑖 < 𝑇 . Hence (𝑍min

𝑖 −𝑇 )+ = 0

with probability 1. Now, we claim that for all 𝑖 ∈ 𝑆 , we have (𝑍min

𝑖 −𝑇 )+ = (𝑋𝑖 −𝑇 )+ − (𝑋𝑖 − 𝜏𝑖 )+
with probability 1. Recall that 𝜏𝑖 ≥ 𝑇 for all 𝑖 ∈ 𝑆 . So when 𝑋𝑖 ≥ 𝜏𝑖 ≥ 𝑇 we have that 𝑖 ∈ 𝑆 :

(𝑋𝑖−𝑇 )+−(𝑋𝑖−𝜏𝑖 )+ = 𝜏𝑖−𝑇 = (𝑍min

𝑖 −𝑇 )+, and when𝑋𝑖 < 𝜏𝑖 we similarly get (𝑋𝑖−𝑇 )+−(𝑋𝑖−𝜏𝑖 )+ =

(𝑋𝑖 −𝑇 )+ = (𝑍min

𝑖 −𝑇 )+. Therefore, we can modify the upper bound on E[OPT] as follows:

E[OPT] ≤ 𝑘𝑇 +
∑︂
𝑖∈𝑆

{(𝑋𝑖 −𝑇 )+ − (𝑋𝑖 − 𝜏𝑖 )+} ≤ 𝑘𝑇 +
∑︂
𝑖∈𝑆
E[(𝑋𝑖 −𝑇 )+] − 𝑐 (𝑆) (3)

Now we will lower bound the principal’s delegated utility under strategy R. Since the agent does

not pay any probing costs, they will (in the worst case) probe all elements in 𝑆 and propose a set of



elements 𝐸′
with 𝑋𝑖 ≥ 𝑇 for each 𝑖 ∈ 𝐸′

(if such elements exist) that maximizes their value

∑︁
𝑖∈𝐸′ 𝑌𝑖 .

Recall that we assume the agent will not probe any elements for which they have 0 expected utility.

Therefore the agent will not probe any elements outside of 𝑆 .

Let 𝐴 be the set of elements with 𝑍min

𝑖 ≥ 𝑇 . By definition of the threshold T,

Pr[|𝐴| ≥ 𝑘] = Pr[∃𝐴 ⊆ [𝑛], |𝐴| ≥ 𝑘, 𝑍min

𝑖 ≥ 𝑇 for all 𝑖 ∈ 𝐴]
= Pr[∃𝐴 ⊆ 𝑆, |𝐴| ≥ 𝑘, 𝑍min

𝑖 ≥ 𝑇 for all 𝑖 ∈ 𝐴]
= Pr[∃𝐴 ⊆ 𝑆, |𝐴| ≥ 𝑘,𝑋𝑖 ≥ 𝑇 for all 𝑖 ∈ 𝐴] = 𝛿

The above equality shows that there will be at least 𝑘 elements in 𝑆 with 𝑋𝑖 ≥ 𝑇 with probability

𝛿 . Therefore the principal will at least obtain value 𝑘𝑇 plus some extra value with probability 𝛿 .

We assume the worst-case behavior from the agent: they probe all elements in 𝑆 , and if 𝐴 is the

set of elements 𝑖 for which 𝑋𝑖 ≥ 𝑇 , then the agent proposes a maximal set of elements in 𝐴 with

the minimum 𝑥𝑖 values. Now consider the following three events: |𝐴| > 𝑘 , 1 ≤ |𝐴| ≤ 𝑘 , and 𝐴 = ∅.
Note that Pr[|𝐴| > 𝑘] + Pr[|𝐴| = 𝑘] = 𝛿 and Pr[|𝐴| < 𝑘] = 1 − 𝛿 . Moreover, whenever |𝐴| ≤ 𝑘 , the

agent will select the entirety of 𝐴 and propose to the principal because they have no incentive to

drop any element 𝑖 with 𝑥𝑖 ≥ 𝑇 . We can lower-bound the principal’s delegated expected utility for

the worst-case agent with 1 − 𝛿 discount factor as follows:

E[DEL]
≥ E[DEL | |𝐴| > 𝑘] · Pr[|𝐴| > 𝑘] + E[DEL | 1 ≤ |𝐴| ≤ 𝑘] · Pr[1 ≤ |𝐴| ≤ 𝑘] + E[DEL|𝐴 = ∅] Pr[𝐴 = ∅]
≥ 𝑘𝑇 (Pr[|𝐴| > 𝑘]) + E[DEL|1 ≤ |𝐴| ≤ 𝑘] · Pr[1 ≤ |𝐴| ≤ 𝑘] − (1 − 𝛿)𝑐 (𝑆) (Pr[|𝐴| > 𝑘] + Pr[𝐴 = ∅])

(4)

≥ 𝑘𝑇 (Pr[|𝐴| > 𝑘] + Pr[|𝐴| = 𝑘]) − (1 − 𝛿)𝑐 (𝑆)

+
∑︂
𝑖∈𝑆
E[𝑋𝑖 −𝑇 |𝑋𝑖 ≥ 𝑇 ∧ |𝐴| ≤ 𝑘] Pr[𝑋𝑖 ≥ 𝑇 ] · Pr[|𝐴 \ 𝑖 | ≤ 𝑘 − 1]

(5)

≥ 𝛿𝑘𝑇 +
∑︂
𝑖∈𝑆
E[(𝑋𝑖 −𝑇 )+] · Pr[|𝐴 \ 𝑖 | ≤ 𝑘 − 1] − (1 − 𝛿)𝑐 (𝑆)

≥ 𝛿𝑘𝑇 +
∑︂
𝑖∈𝑆
E[(𝑋𝑖 −𝑇 )+] · Pr[|𝐴| ≤ 𝑘] − (1 − 𝛿)𝑐 (𝑆)

≥ 𝛿𝑘𝑇 + (1 − 𝛿)
∑︂
𝑖∈𝑆
E[(𝑋𝑖 −𝑇 )+] − (1 − 𝛿)𝑐 (𝑆)

= 𝛿

(︄
𝑘𝑇 +

∑︂
𝑖∈𝑆
E[(𝑋𝑖 −𝑇 )+] − 𝑐 (𝑆)

)︄
+ (1 − 2𝛿)

(︄∑︂
𝑖∈𝑆
E[(𝑋𝑖 −𝑇 )+] −

∑︂
𝑖∈𝑆
E[(𝑋𝑖 − 𝜏𝑖 )+]

)︄
(6)

≥ 𝛿E[OPT] . (7)

Inequality 4 holds because the principal will obtain at least utility of 𝑘𝑇 when |𝐴| ≥ 𝑘 . Inequality

(5) holds because when 1 ≤ |𝐴| ≤ 𝑘 , the agent will propose the entire set 𝐴. The inequality (7)

holds because 𝛿 ≤ 1/2 and 𝜏𝑖 ≥ 𝑇 for all 𝑖 ∈ 𝑆 implies that E[(𝑋𝑖 −𝑇 )+] − E[(𝑋𝑖 − 𝜏𝑖 )+] ≥ 0. This

concludes the proof. □

We now extend the constant delegation gap for the free-agent model with constant discounts to

general downward-closed constraints. In Theorem 5.2, we show a reduction from the free-agent

model with constant discounts to selectable greedy OCRS. We show that if there exist 𝛼-selectable

greedy OCRS for the polytope 𝑃I = conv{1𝑆 : 𝑆 ∈ I} then the principal can construct a (𝛼, 1 − 𝛼)-
factor delegation strategy for the free-agent model with constraint I. Theorem 5.2 further implies



constant factor delegation for the free-agent model with constant discounts for general matroids,

matchings, and knapsack constraints.

Theorem 5.2. Given an instance of the free-agent model with constraint I, if there exists an
𝛼-selectable greedy OCRS for the polytope 𝑃I = conv{1𝑆 : 𝑆 ∈ I}, then there exists a (𝛼, 𝛿)-factor
strategy for the given instance where the discount factor 𝛿 ≥ 1 − 𝛼 .

Proof. Given an instance of the delegated Pandora’s box problem for the free-agent model with

elements𝐸 and constraintI, let a randomoptimal set 𝐼 ∗ defined as follows: 𝐼 ∗ = argmax𝑆∈I
∑︁

𝑖∈𝑆 𝑍
min

𝑖 .

We define 𝑝∗𝑖 = Pr[𝑖 ∈ 𝐼 ∗] and thresholds 𝑡𝑖 such that Pr[𝑍min

𝑖 ≥ 𝑡𝑖 ] = 𝑝∗𝑖 . Notice that 𝐼
∗ ∈ I with

probability 1, we have that 𝑝∗ is a convex combination of characteristic vectors of feasible sets I,
and hence, 𝑝∗ ∈ 𝑃I . The principal rejects all elements not in 𝐸′ = {𝑖 ∈ 𝐸 : 𝑝∗𝑖 > 0}, so the agent has

no incentive to probe them. Note that for all elements 𝑖 ∈ 𝐸′
, 0 < 𝑡𝑖 < 𝜏𝑖 . We can bound the optimal

utility as follows:

E[OPT] ≤ E
[︄
max

𝑆∈I

∑︂
𝑖∈𝑆

𝑍min

𝑖

]︄
=

∑︂
𝑖∈𝐸′
E[𝑍min

𝑖 | 𝑖 ∈ 𝐼 ∗] Pr[𝑖 ∈ 𝐼 ∗]

≤
∑︂
𝑖∈𝐸′
E[𝑍min

𝑖 | 𝑍min

𝑖 ≥ 𝑡𝑖 ]𝑝∗𝑖

=
∑︂
𝑖∈𝐸′
E[(𝑍min

𝑖 − 𝑡𝑖 )+] +
∑︂
𝑖∈𝐸′

𝑡𝑖𝑝
∗
𝑖

=
∑︂
𝑖∈𝐸′
E[(𝑋𝑖 − 𝑡𝑖 )+ − (𝑋𝑖 − 𝜏𝑖 )+] +

∑︂
𝑖∈𝐸′

𝑡𝑖𝑝
∗
𝑖

=
∑︂
𝑖∈𝐸′
E[(𝑋𝑖 − 𝑡𝑖 )+] +

∑︂
𝑖∈𝐸

𝑡𝑖𝑝
∗
𝑖 − 𝑐 (𝐸′)

Let I𝑝∗ ⊆ I be the downward closed family generated by 𝛼-selectable greedy OCRS for 𝑝∗ ∈ 𝑃I .
Now, consider a delegation strategy in which the principal accepts a proposal of elements 𝑆 if and

only if 𝑆 ∈ I𝑝∗ and the realizations of all 𝑖 ∈ 𝑆 is greater than or equal 𝑡𝑖 , i.e.

R = {{(𝑖, 𝑥𝑖 , 𝑦𝑖 ) : 𝑖 ∈ 𝑄} : 𝑄 ∈ I𝑝∗ and (𝑥𝑖 , 𝑦𝑖 ) ∈ supp(𝜇𝑖 ) and 𝑥𝑖 ≥ 𝑡𝑖 for all 𝑖 ∈ 𝑄}

Since the agent does not incur any cost for probing, in the worst case they will probe all elements

in 𝐸′
. Let 𝑅(𝑡) be the set of elements with 𝑋𝑖 ≥ 𝑡𝑖 . The agent will always propose some maximal

set 𝐼 with 𝐼 ⊆ 𝑅(𝑡) and 𝐼 ∈ I𝑝∗ . More formally, let

I𝑅 (𝑡 )
𝑝∗ = {𝑆 : (𝑆 ∈ I𝑝∗ ) and (𝑋𝑖 ≥ 𝑡𝑖 for all 𝑖 ∈ 𝑆) and (𝑆 ∪ 𝑖′ ∉ I𝑝∗ for all 𝑖′ ∈ 𝐸′ \ 𝑆 with 𝑋𝑖′ ≥ 𝑡𝑖′ )}

be the family of sets of elements that the agent might propose. In the worst-case, they will propose

some such set of elements that minimizes the principal’s utility. We can think of this worst-case

agent as follows: an almighty adversary who presents elements in the worst possible sequence for

all realizations, the agent then picks element 𝑖 if and only if 𝑋𝑖 ≥ 𝑡𝑖 and the selected set satisfies

the feasible constraints I𝑝∗ 6
. Note that this agent has no incentive to pick a set outside of I𝑅 (𝑡 )

𝑝∗ .

Since I𝑝∗ is generated by an 𝛼-selectable greedy OCRS, given any currently selected set by the

agent 𝑆 ⊆ 𝑅(𝑡) and 𝑆 ∈ I𝑝∗ , we have Pr[𝑆 ∪ 𝑖 ∈ I𝑝∗ ] ≥ 𝛼 . Therefore for all elements 𝑖 ∈ 𝐸, we have

6
An almighty adversary knows the coin flips of the agent’s strategy, i.e. I𝑝∗ and 𝑅 (𝑡 ) . Therefore, an almighty adversary

can force the agent to select any 𝑆 ∈ I𝑅 (𝑡 )
𝑝∗ of their choice.



Pr[𝑖 ∈ 𝐼 ] ≥ 𝛼 · Pr[𝑋𝑖 ≥ 𝑡𝑖 ]. Then

E[DEL] = E
[︄∑︂
𝑖∈𝐼

𝑋𝑖

]︄
− (1 − 𝛿)𝑐 (𝐸′)

≥
∑︂
𝑖∈𝐸′
E[𝑋𝑖 | 𝑖 ∈ 𝐼 ] · Pr[𝑖 ∈ 𝐼 ] − (1 − 𝛿)𝑐 (𝐸′).

Since the agent selects an element 𝑖 only if 𝑋𝑖 ≥ 𝑡𝑖 , on the adversarial arrival of elements selected

by an almighty adversary, E[𝑋𝑖 | 𝑖 ∈ 𝐼 ] = E[𝑋𝑖 | 𝑋𝑖 ≥ 𝑡𝑖 ]. We can bound the principal’s expected

delegation with a constant discount 𝛿 ≥ 1 − 𝛼 as follows:

E[DEL] =
∑︂
𝑖∈𝐸′
E[𝑋𝑖 | 𝑖 ∈ 𝐼 ] · Pr[𝑖 ∈ 𝐼 ] − (1 − 𝛿)𝑐 (𝐸′)

≥ 𝛼 ·
∑︂
𝑖∈𝐸′
E[𝑋𝑖 | 𝑋𝑖 ≥ 𝑡𝑖 ] · Pr[𝑋𝑖 ≥ 𝑡𝑖 ] − 𝛼 · 𝑐 (𝐸′)

= 𝛼 ·
{︄∑︂
𝑖∈𝐸′
E[(𝑋𝑖 − 𝑡𝑖 )+] +

∑︂
𝑖∈𝐸

𝑡𝑖𝑝
∗
𝑖 − 𝑐 (𝐸′)

}︄
≥ 𝛼 · E[OPT]

Concluding the proof. □

We note that the argument above reduces deterministic delegation, in which the principal chooses

their strategy deterministically, to deterministic greedy OCRS. Perhaps surprisingly, it can also

reduce deterministic delegation to randomized greedy OCRS as defined in [7]. The reason is that any

randomized greedy OCRS is randomization over deterministic OCRS, so the reduction constructs a

distribution over delegation mechanisms achieving the desired approximation. However, our model

of delegation is a Stackelberg game in which the principal moves first, so their best randomized

strategy can be no better than their best deterministic strategy. Therefore, the principal can choose

the best deterministic strategy from among the distribution provided by the reduction for the same

approximation factor.

Theorem 5.2 combined with efficient 𝛼-selectable greedy OCRS schemes [7] implies the following

corollary.

Corollary 5.3. There exist (𝛼, 𝛿)-factor delegation strategies (agent-agnostic) for the free-agent
model with matroid, matching, and knapsack constraints and constant discount factor 𝛿 . Specifically,
these constants for matroids, matchings, and knapsacks are 𝛼 = 1/4, 𝛿 ≥ 3/4, 𝛼 = 1/2𝑒, 𝛿 ≥ 1 − 1/2𝑒
and 𝛼 = 3/2 −

√
2, 𝛿 ≥

√
2 − 1/2, respectively.

5.2 Free-Agent Model Impossibility without Discounts
One of the primary motivations for introducing this model comes from the impossibility in Section

4.3 and an attempt to circumvent one of the challenges with achieving a constant delegation gap.

Recall from that section, the instance for which 𝑋𝑖 = 𝑛 and 𝑌𝑖 = 𝑛 independently with probability

1/𝑛 each and 0 otherwise. Now that the agent does not pay to probe, the principal may choose

accept only outcome (𝑖, 𝑛, 𝑛) from element 𝑖 because the agent’s expected utility from probing

𝑖 is 𝑛 · Pr[𝑋𝑖 = 𝑛] Pr[𝑌𝑖 = 𝑛] = 1/𝑛 > 0. However, since the agent does not pay to probe, they

may probe all elements that can be accepted with nonzero probability so long as they could do

better by probing such elements. Therefore, the agent might incur too large a probing cost for the

principal compared to what the principal would pay on their own. In Proposition 5.4, we describe a

family of instances of the free-agent model for which the delegation gap is 𝑂 (1/𝑛1/4) without any



discounts. Proposition 5.4 shows that it is impossible to obtain a constant factor delegation gap

for the free-agent model without any discounts, even when the agent breaks all ties in favor of

the principal. Moreover, it holds even when the agent does not probe all possible elements whose

outcome is acceptable with nonzero probability. The proof of Proposition 5.4 is omitted due to

space constraints. See Appendix C.1 for the proof.

Proposition 5.4. There exists an instance of the free-agent model on 𝑛 elements with a 1-uniform
matroid constraint such that the delegation gap is 𝑂 (1/𝑛 1

4 ), even when the agent breaks all ties in
favor of the principal.

5.3 Discounted-Cost Impossibility
With constant-factor delegation gaps for the free-agent model with discounts and an impossibility

for the free-agent model, one might hope that the standard model with constant discounts might

admit constant delegation gaps. However, we again have an impossibility. In Proposition 5.5, we

show that there exists a family of instances of the standard model, parameterized by the number of

elements 𝑛, with a generous discount factor 𝛿 = 1−1/
√
𝑛 for which there does not exist any constant

factor delegation strategies. Thus, Proposition 5.5 shows that there can not exist an (𝛼, 𝛿)-strategy
for this problem with constants 𝛼 and 𝛿 < 1. Proof of Proposition 5.5 is omitted due to space

constraints. See Appendix C.2 for the proof.

Proposition 5.5. There exist instances of the discounted-cost model on 𝑛 elements with discount
factor 𝛿 = 1 − 1/

√
𝑛 (the agent and the principal both pay (1 − 𝛿)𝑐𝑖 for all elements, i.e. 𝑐𝑖/

√
𝑛) for

which the delegation gap is 𝑂
(︁
1/
√
𝑛
)︁
.

6 SHARED-COST MODEL
We now consider the shared-cost model, where the principal decides how to split each probing cost

with the agent. This final model gives the principal more control over probing costs in another

attempt to get constant-factor delegation gaps despite our previous impossibility results. Recall

that in this setting, the principal starts by choosing how to split each probing cost, so that the agent

pays 𝑐′𝑖 ∈ [0, 𝑐𝑖 ] and the principal pays the remaining cost 𝑐𝑖 − 𝑐′𝑖 ∈ [0, 𝑐𝑖 ]. This model is motivated

not only by our earlier impossibilities, but also by settings in which the principal has the power to

pay chosen percentages of different costs that the agent may incur. For example, an organization

(modeled by the principal) might reimburse chosen percentages of travel and lodging expenses

associated with interviewing candidates based on the total amount of cost and expected quality of

the candidate. The interviewer (agent) can then choose to interview (probe) candidates and make

recommendations of their own choosing, but they must pay the remaining cost on their own.

In Theorem 6.1, we show that there exist efficient constant-factor strategies for the principal

for a certain class of downward-closed constraints. This positive result uses a reduction from the

shared-cost model of delegation to greedy selectable OCRS.

Theorem 6.1. If there exists an 𝛼-selectable greedy OCRS for the polytope 𝑃I = conv{1𝑆 : 𝑆 ∈ I},
then there exists an 𝛼/2-factor delegation strategy for the shared-cost model with inner constraint I.
Proof. Let {𝑝𝑖 }𝑖∈𝐸 be the solution to the following optimization problem:

𝑝 = argmax

𝑞∈𝑃I

∑︂
𝑖∈𝐸

𝑔𝑖 (𝑞𝑖 ), where 𝑔𝑖 (𝑝𝑖 ) = 𝑝𝑖 · E[𝑍min

𝑖 | 𝑍min

𝑖 ≥ 𝐹 −1
𝑖 (1 − 𝑝𝑖 )],

where 𝐹𝑖 (𝑧) for 𝑖 ∈ 𝐸 is the the cumulative distribution function of 𝑍min

𝑖 , similar to [7]
7
. For 𝑖 ∈ 𝐸,

we set a threshold 𝑡𝑖 = min{𝛽 : 𝐹𝑖 (𝛽) ≥ 1−𝑝𝑖 }. For any 𝑝 ∈ 𝑃I , let I𝑝 ⊆ I be the downward-closed

7
We can also modify the optimization for discrete 𝑍min

𝑖
as in [7].



set system generated by an 𝛼-selectable greedy OCRS with marginal probabilities 𝑝 . The proof of

Theorem 1.12 from [7] shows that for any online/adversarial item arrival order, the simple strategy

that selects element 𝑖 if and only if 𝑋𝑖 ≥ 𝑡𝑖 and 𝑆 ∪ 𝑖 ∈ I𝑝 (where 𝑆 is the set of selected elements

before the arrival of 𝑖) obtains at least 𝛼 · E[max𝑇 ∈I
∑︁

𝑖∈𝑇 𝑍min

𝑖 ] ≥ 𝛼 · E[OPT] in expectation. The

above strategy is an 𝛼-factor greedy monotone strategy for the gambler against almighty adversary

which can be described as A𝑡 = {{(𝑖, 𝑥𝑖 ) : 𝑖 ∈ 𝑆} : 𝑆 ∈ I𝑝 and 𝑥𝑖 ≥ 𝑡𝑖 for all 𝑖 ∈ 𝑆}.
Given the independent distributions {𝜇𝑖 }𝑖∈𝐸 , the principal first computes 𝑑𝑖 = E[𝑌𝑖 | 𝑋𝑖 ≥

𝑡𝑖 ] · Pr[𝑋𝑖 ≥ 𝑡𝑖 ] for each element 𝑖 ∈ 𝐸. If 𝑑𝑖 ≤ 𝑐𝑖 for all elements 𝑖 ∈ 𝐸, then the principal selects

the agent’s costs as 𝑐′𝑖 = 𝑑𝑖 for all elements. After the cost division, the principal can define their

strategy as follows: they accept elements only from the set 𝐹 = {𝑖 ∈ 𝐸 : 𝜏𝑖 ≥ 𝑡𝑖 } where 𝜏𝑖 is the
principal’s cap value for 𝑋𝑖 . Note that there does not exist 𝑆 ∈ I𝑝 that contains an element 𝑗 ∈ 𝑆

not belonging to 𝐹 because the thresholds were defined for the truncated random variable 𝑍min

𝑖 .

The principal sets the acceptable outcomes as

R = {{(𝑖, 𝑥𝑖 , 𝑦𝑖 ) : 𝑖 ∈ 𝑆} : 𝑆 ∈ I𝑝 and 𝑆 ⊆ 𝐹 and all (𝑥𝑖 , 𝑦𝑖 ) ∈ supp(𝜇𝑖 ) and all 𝑥𝑖 ≥ 𝑡𝑖 }.
Given this delegation strategy, the agent has an expected utility ofE[𝑌𝑖 | 𝑋𝑖 ≥ 𝑡𝑖 ] ·Pr[𝑋𝑖 ≥ 𝑡𝑖 ]−𝑐′𝑖 = 0

for each element 𝑖 that they might want to probe. Given any set of probed and selected elements 𝑆 ,

the agent has expected utility 0 for probing any additional element 𝑖 such that 𝑆 ∪ 𝑖 ∈ I𝑝 . Hence,
the agent has no incentive to deviate from the principal’s 𝛼-factor threshold picking strategy (A𝑡 )
(from Definition 4.1) for any probing order, where A𝑡 is an 𝛼-factor greedy monotone strategy for

the prophet inequality with random variables {𝑍min

𝑖 } against the almighty adversary defined earlier

in the proof. Specifically, if they have already selected elements 𝑆 and are considering element 𝑖 ,

they should probe 𝑖 if and only if 𝜏𝑖 ≥ 𝑡𝑖 (otherwise 𝑍
min

𝑖 can not be more than 𝑡𝑖 ) and 𝑆 ∪ 𝑖 ∈ I𝑝 ,
and they should select 𝑖 if and only if 𝑋𝑖 ≥ 𝑡𝑖 . At any given time with selected elements 𝑆 , the

agent’s expected utility from probing 𝑖 with 𝜏𝑖 ≥ 𝑡𝑖 and 𝑆 ∪ 𝑖 ∈ I𝑝 is 0, so there is no incentive

to deviate. Since the principal pays at most 𝑐𝑖 for the agent to probe each element 𝑖 , Lemma 4.2

implies that the principal obtains at least 𝛼 · E[OPT] by delegating.

However, the agent’s expected utility becomes nonzero for feasible elements when there exists

some element 𝑖 ∈ 𝐸 with 𝑑𝑖 > 𝑐𝑖 because then the principal cannot set 𝑐′𝑖 any larger than 𝑐𝑖 . Hence,

the agent doesn’t have 0 expected utility for feasible elements and may not follow the principal’s

optimal search strategy. In such cases, the fact that the principal does not pay to probe helps us get

a similar approximation.

Consider the case 𝑑𝑖 > 𝑐𝑖 for all 𝑖 ∈ 𝐸. If the principal only accepts elements with 𝑋𝑖 ≥ 𝑡𝑖 then

they can safely ask the agent to pay the entire cost, i.e. 𝑐′𝑖 = 𝑐𝑖 . Again, consider the same acceptable

set discussed earlier in the proof:

R = {{(𝑖, 𝑥𝑖 , 𝑦𝑖 ) : 𝑖 ∈ 𝑆} : 𝑆 ∈ I𝑝 and 𝑆 ⊆ 𝐹 and all (𝑥𝑖 , 𝑦𝑖 ) ∈ supp(𝜇𝑖 ) and all 𝑥𝑖 ≥ 𝑡𝑖 }.
Let Probed and 𝑆 be the set of elements probed and selected, respectively, by the agent for some

fixed realization of all random variables. It is easy to observe that there must be no 𝑖 ∈ Probed \ 𝑆
with 𝑋𝑖 ≥ 𝑡𝑖 and 𝑆 ∪ 𝑖 ∈ I𝑝 , otherwise the agent can improve their utility by selecting such an

element. Moreover, there is no 𝑖 ∈ 𝐹 \ Probed with 𝑆 ∪ 𝑖 ∈ I𝑝 , otherwise, the agent can improve

their expected utility, given the realizations of elements in Probed, by probing element 𝑖 .

Therefore for any fixed realizations, we can consider the agent that executes 𝛼-factor greedy

monotone strategy A𝑡 for {𝑍min

𝑖 } for the following element arrival order: first the elements in 𝑆 ,

then the elements in Probed \ 𝑆 , and finally the elements in 𝐹 \ Probed. Strategy A𝑡 will select all

the elements in 𝑆 , but A𝑡 will not select any element in Probed \ 𝑆 because, as we already argued,

there is no 𝑖 ∈ Probed \ 𝑆 with 𝑋𝑖 ≥ 𝑡𝑖 . Moreover, A𝑡 will not select any element in 𝐹 \ Probed
because there is no 𝑖 ∈ 𝐹 \ Probed with 𝑆 ∪ 𝑖 ∈ I𝑝 . Therefore, the agent selects exactly the same



elements that the 𝛼-factor greedy monotone strategy A𝑡 for 𝑍
min

𝑖 would select for the described

element arrival order and any realizations. Since the principal does not pay any cost to probe

elements, extra elements probed in Probed set do not affect the principal’s utility. Therefore, the

principal obtains at least 𝛼 ·E[max𝑇 ∈I
∑︁

𝑖∈𝑇 𝑍min

𝑖 ] ≥ 𝛼 ·E[OPT] from delegation becauseA𝑡 obtains

at least 𝛼 · E[max𝑇 ∈I
∑︁

𝑖∈𝑇 𝑍min

𝑖 ] against the almighty adversary.

Now, finally we consider the case when there are some elements for which 𝑑𝑖 ≤ 𝑐𝑖 and others

for which 𝑑𝑖 > 𝑐𝑖 . We define 𝐸1 = {𝑖 ∈ 𝐸 : 𝑑𝑖 ≤ 𝑐𝑖 } and 𝐸2 = {𝑖 ∈ 𝐸 : 𝑑𝑖 > 𝑐𝑖 }. The principal can
restrict the agent to one of these two sets with with the greater expected E[OPT] when they follow

the corresponding strategy described above. It is easy to show that the principal only loses at most

a factor of 1/2 in this case compared to the others:

E[OPT] = E
⎡⎢⎢⎢⎢⎣ max

𝑆1⊆𝐸1,𝑆2⊆𝐸2

𝑆1∪𝑆2∈I

(︄∑︂
𝑖∈𝑆1

𝑋𝑖 +
∑︂
𝑗∈𝑆2

𝑋 𝑗

)︄⎤⎥⎥⎥⎥⎦ ≤ E
⎡⎢⎢⎢⎢⎣max

𝑆1⊆𝐸1

𝑆1∈I

∑︂
𝑖∈𝑆1

𝑋𝑖 + max

𝑆2⊆𝐸1

𝑆2∈I

∑︂
𝑗∈𝑆2

𝑋 𝑗

⎤⎥⎥⎥⎥⎦
≤ 2max

⎧⎪⎪⎨⎪⎪⎩E
⎡⎢⎢⎢⎢⎣max

𝑆1⊆𝐸1

𝑆1∈I

∑︂
𝑖∈𝑆1

𝑋𝑖

⎤⎥⎥⎥⎥⎦ ,E
⎡⎢⎢⎢⎢⎣max

𝑆2⊆𝐸2

𝑆2∈I

∑︂
𝑗∈𝑆2

𝑋 𝑗

⎤⎥⎥⎥⎥⎦
⎫⎪⎪⎬⎪⎪⎭

Combining the above arguments, we conclude that there exists an 𝛼/2-factor delegation strategy

for this instance. □

We note that, similarly to Theorem 5.2, this result can reduce deterministic delegation to ran-

domized greedy OCRS.

The following corollary shows that there exists a constant factor delegation gap for the shared-

cost model with matroids, matching constraints, and knapsack constraints.

Corollary 6.2. There exist 𝛼-factor delegation strategies for matroids, matching constraints, and
knapsack constraints for the shared-cost model. Moreover these constants are 𝛼 = 1/8, 𝛼 = 1/4𝑒 and
𝛼 = 3/4 − 1/

√
2 for the respective constraints.

As we discussed in Section 3.2, the delegation gap for instances of the shared-cost model can

be greater than 1, meaning that the principal benefits from delegating (in expectation) and may

choose to do so even if they have the ability to conduct the search on their own. However, we can

construct an instance of this model for which the delegation gap is strictly less than 1, showing

that this is not possible in general.

Proposition 6.3. There exists instances of Pandora’s box for the shared-cost model with delegation
gap 1/2 + 𝜀 for arbitrary small 𝜀 > 0.

Proof. We can construct an instancewith 1-unifrommatroid constraints similar to [3, Proposition-

4.2]. Note that the referenced impossibility has cost 0 and still holds in the context of the shared-cost

model, but we reproduce it here with positive (though negligible) costs.

For small 𝜀 << 1, let 𝑋1 = 1/𝜀 with probability 𝜀 and 0 otherwise, and 𝑌1 = 1 − 𝜀 with probability

𝜀 and 0 otherwise, independently of 𝑋1. Let 𝑋2 = 𝑌2 = 1 deterministically and set costs 𝑐1 = 𝑐2 = 𝜀2.

We can compute E[OPT] = 2 − 𝜀 − 2𝜀2 − 𝜀3 ≥ 2 − 4𝜀.

Consider any cost division 0 ≤ 𝑐′
1
≤ 𝑐1 and 0 ≤ 𝑐′

2
≤ 𝑐2. If the principal accepts element 2 then

the agent will always probe element 2 and propose. We can enumerate over all possible delegation

strategies and show that E[DEL] ≤ 1 in all cases. This shows that the delegation gap is 1/(2 − 4𝜀),

concluding the claim. □

We observe that the efficient delegation strategy for the shared-cost model constructed in

Theorem 6.1 relies on a computation of 𝑐′𝑖 that uses information about the joint distribution 𝜇𝑖 . In



the following proposition, we show that if the principal has no information about the distribution

of 𝑌𝑖 , then they can not obtain constant factor delegation for the shared-cost model. This holds

because, without any information about 𝑌𝑖 , the principal does not have enough information to

compute a cost division for which they can guarantee that the agent will probe the element 𝑖 . We

formalize our intuition in Proposition 6.4 that shows that the agent agnostic delegation gap for the

shared-cost model is at least 𝑂 (1/𝑛1/4). The proof of the Proposition 6.4 is omitted due to space

constraints. See Appendix C.3 for the proof.

Proposition 6.4. There exists a family of instances of the shared-cost model with delegation gap
𝑂 (1/𝑛1/4) when the principal has no information about {𝑌𝑖 }.

7 OPEN QUESTIONS
In this work, we explored just some of the many possible models and results related to the delegation

of the Pandora’s box problem. We leave the following open questions for future work.

• All of our positive results employ deterministic delegation mechanisms. Can the principal

do strictly better in any of these models by using a lottery mechanism instead? Note that in

Appendix B, we show impossibilities only for the class of binary lottery mechanisms.

• Can our results be extended to other families of downward-closed constraint systems or even

to broader classes of constraints such as prefix-closed constraints [5]?

• We observe that modeling delegation with a constraint system allows us to describe delegation

problems in which solutions may not be independently distributed and probing reveals only

part of certain solutions. Therefore, it may be interesting to investigate the delegation gap of

problems that relax the independence assumption in ways that cannot be represented by the

addition of a constraint system.

• In Theorem 5.2, we show that there exists a (𝛼, 𝛿)-factor strategy for the free-agent model

with discount 𝛿 ≥ 1−𝛼 for the constraints I if there exists 𝑐-selectable greedy OCRS scheme

for a relaxation of 𝑃I . However, we do not yet know of any impossibility or constant-factor

strategy when 𝛿 < 1 − 𝛼 .

• The shared-cost model is unique among the models in this paper for the possibility of

delegation gaps strictly greater than 1, as explained briefly in Section 3.2. This is interesting

because such a delegation gap could incentivize the principal to delegate a problem that they

have the ability to solve on their own, whereas our other models assume that the principal

must delegate. Can we characterize the family of instances of the shared-cost model for

which the delegation gap is strictly greater than 1?

• For the models with strong impossibility results, can we find nontrivial families of instances

with “friendly” agents which allow the principal to achieve a constant delegation gap?
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A MORE GENERAL MECHANISMS
Having now defined our model and the space of single-proposal mechanisms, it is natural to

ask about the power and generality of such mechanisms. It might be beneficial for the principal

to consider a larger class of mechanisms that have, for example, more signals to choose from

and multiple rounds of communication. However, as in previous work on delegation and similar

mechanism-design problems, we argue that that any multi-round signaling mechanism can be

equivalently implemented by a single-proposal mechanism. This allows us to consider only single-

proposal mechanisms without loss of generality. Since this type of argument is similar to the

revelation principle and is very common in the literature [1–3, 10], we will include only an informal

sketch here.

Consider any multi-round signaling mechanism𝑀 . We will construct a single-proposal mech-

anism 𝑆 that simulates 𝑀 . In 𝑆 , the principal commits to accepting any solution that they could

accept when both players follow𝑀 . Since the agent following𝑀 can predict this set of acceptable

solutions and the sequence of probes and signals leading to any such solution, they can act in a way

that optimizes their expected utility given the solutions that the principal would accept. Therefore,

the agent responding to 𝑆 can do no better than following the same such optimal sequence of

probes and then proposing whichever solution the principal would have accepted under 𝑀 . Since

they can do just as well under 𝑆 and have no reason to deviate from the optimal strategy of 𝑀 ,

these mechanisms are equivalent.

We note here that this argument applies to deterministic mechanisms. Lottery mechanisms as

defined in Section B could have strictly more power than their deterministic counterparts.

B LOTTERY MECHANISMS
In this section, we consider a class of delegation mechanisms which we call binary lottery mecha-

nisms. These are a class of randomized mechanisms that generalize the deterministic ones used

earlier.

Formally, a lottery mechanism consists of a menu R of distributions over solutions. After the

principal has announced R to the agent, they probe elements as usual. However, rather than

proposing a single solution to the problem, the agent proposes one of the distributions 𝐷 ∈ R
that the principal announced. Then, the principal samples a solution 𝑆 ∼ 𝐷 from the proposed

distribution. If 𝑆 is a valid solution (feasible in the inner constraint), then the principal accepts and

both players receive their respective utilities for 𝑆 minus the total probing cost. Otherwise, the

principal rejects the invalid solution and both players pay the total probing cost with no gain.



A binary lottery mechanism is a special case of lottery mechanism in which each distribution

𝐷 ∈ R has support for at most two solutions: one null (status quo) solution and one valid non-null

solution. Such a mechanism can be equivalently represented by a set R of acceptable solutions and

a probability 𝑝𝑆 for each solution 𝑆 ∈ R. Then, the principal accepts proposal 𝑆 ∈ R from the agent

with probability 𝑝𝑆 and rejects the proposal otherwise. This second representation is the one that

we will use for the rest of this section.

Observe that the argument from Section A applies only to deterministic multi-round signaling

mechanisms. Therefore, such lottery mechanisms may be strictly more powerful than their de-

terministic counterparts. However, a similar argument can show that we get no increased power

from randomized multi-round signaling mechanisms, so it’s sufficient to consider only randomized

single-proposal mechanisms (lottery mechanisms as defined above).

Since they have fine-tuned control over “how much” of each solution to accept, binary lottery

mechanisms may seem to give the principal increased delegation power. However, we will now

show that strong impossibilities exist for such mechanisms in the case of the standard model and

the free-agent model, generalizing earlier results about deterministic mechanisms.

Proposition B.1. There exist instances of the standard model of delegated Pandora’s box on 𝑛

elements for which the delegation gap is 𝑂 ( 1√
𝑛
) for the class of binary lottery mechanisms.

Proof. For any positive integer 𝑛 > 1 and real 0 < 𝜀 = 1√
𝑛
, and consider the following instance

of delegated Pandora’s box. We have 𝑛 identical elements 𝐸 = {1, . . . , 𝑛} where each element 𝑖

has a probing cost 𝑐𝑖 = 1 − 𝜀 and random utilities (𝑋𝑖 , 𝑌𝑖 ) ∼ 𝜇𝑖 . The principal’s utility 𝑋𝑖 is 𝑛 with

probability
1

𝑛
and 0 otherwise. The agent’s utility 𝑌𝑖 is 2 with probability

1

2
independently of 𝑋𝑖 and

0 otherwise. The inner constraint is a 1-uniform matroid. We let the agent break ties in favor of the

principal. Following the poof of Proposition 4.4, we have E[OPT] ≥ 𝜀𝑛 (1 − 1/𝑒) = (1 − 1/𝑒)
√
𝑛.

Now, we will bound the principal’s delegated expected utility. Consider an arbitrary acceptable

set R that the principal might commit to. Observe that every element 𝑖 evaluates to one of four

tagged outcomes (𝑖, 𝑛, 𝑀), (𝑖, 𝑛, 0), (𝑖, 0, 𝑀), and (𝑖, 0, 0) with probabilities 1

𝑛𝑀
,
1

𝑛

(︁
1 − 1

𝑀

)︁
,
1

𝑀

(︁
1 − 1

𝑛

)︁
,

and

(︁
1 − 1

𝑛

)︁ (︁
1 − 1

𝑀

)︁
, respectively. We let 𝑝𝑖𝑥𝑦 denote the probability chosen by the principal of

accepting outcome (𝑖, 𝑥,𝑦).
Given R, let 𝐸∗ ⊆ 𝐸 be the subset of elements 𝑖 for which (𝑛 − 1)𝑝𝑖

02
+ 𝑝𝑖𝑛2 ≥ 𝑛(1 − 𝜀). If any

element 𝑖 ∉ 𝐸∗ then the agent’s increase in expected utility from probing 𝑖 is at most 2 · 𝑝𝑖
𝑛2

2𝑛
+ 2 ·

𝑝𝑖
02

2
(1 − 1/𝑛) − (1 − 𝜀) < 0, so they have no incentive to ever probe 𝑖 . Let |𝐸∗ | = 𝑘 , so the agent will

probe no more than the 𝑘 elements in 𝐸∗. If 𝑘 = 0, then the agent will not probe anything and both

will get 0 utility. For the remainder of the proof, we assume 𝑘 > 0. Note that the principal has no

incentive to set 𝑝𝑖
00

> 0 and 𝑝𝑖𝑛0 < 1 for any 𝑖 ∈ 𝐸∗. We can use a similar argument as Proposition 5.4

to show this formally.

The agent now faces an instance of the Pandora’s box problem, so their optimal strategy is to

probe elements in order of weakly decreasing cap value (among non-negative cap values) and

accept the first outcome whose value is above its cap. Thus, the agent probes elements in the

decreasing order of cap values 𝜏
𝑦

𝑖
= (2𝑝𝑖 − 1+ 𝜀)/𝑝𝑖 where 𝑝𝑖 =

𝑝𝑖
𝑛2

2𝑛
+ 𝑝𝑖

02

2
(1− 1/𝑛) until the expected

gain from an element exceeds the remaining cap values. It is easy to verify that 2 > 𝜏
𝑦

𝑖
≥ 0 for all

𝑖 ∈ 𝐸∗ by the definition of 𝐸∗.
First, we assume for all elements 𝑖 ∈ 𝐸∗ that 𝜏

𝑦

𝑖
> 0. Since the cap value is strictly positive for all

𝑖 ∈ 𝐸∗, the agent will never propose an element with 𝑌𝑖 = 0 if they find 𝑗 ∈ 𝐸∗ with 𝑌𝑗 = 2. Consider

the utility that the principal gets when the agent finds an outcome of value 2. Among the 𝑘 = |𝐸∗ |
elements that the agent might probe, they find a value of 2 with probability 1 − (1/2)𝑘 . Since the



principal’s utility for the proposed outcome is independent of the agent’s, it will have value 𝑛 for

the principal with probability
1

𝑛
. Since 𝑘 ≥ 1, the principal pays a cost of 1 − 𝜀 for the first probe.

Therefore, the principal expects a utility of at most (1 − (1/2)𝑘 ) (𝑝𝑖𝑛2 ·
𝑛
𝑛
− (1 − 𝜀)) ≤ (1 − (1/2)𝑘 )𝜀

from the event when the agent finds some element 𝑖 ∈ 𝐸∗ with 𝑌𝑖 = 2.

Now, with probability

(︁
1

2

)︁𝑘
, the agent doesn’t find any outcomes of value 2. Then the principal

pays a cost of 𝑘 (1 − 𝜀) in order to probe all 𝑘 elements in 𝐸∗. Since the agent breaks ties in favor of

the principal, they will propose any acceptable outcomes of value 𝑛 to the principal. There exists

such an outcome with probability at most 1 −
(︁
1 − 1

𝑛

)︁𝑘
. Therefore, the principal expects a utility of

at most

𝑛

(︄
1 −

(︃
1 − 1

𝑛

)︃𝑘 )︄
− 𝑘 (1 − 𝜀) ≤ 𝑛

(︃
1 −

(︃
1 − 𝑘

𝑛

)︃)︃
− 𝑘 (1 − 𝜀) = 𝑘𝜀

from this event. Hence, E[DEL] ≤ (1 − (1/2)𝑘 )𝜀 + 𝑘𝜀 (1/2)𝑘 ≤ 𝑂 (1)𝜀 for 𝑘 ≥ 1. Therefore the

delegation gap is O(1/𝑛) when 𝜏𝑦
𝑖
> 0 for 𝑖 ∈ 𝐸∗.

Now, suppose for all elements in 𝑖 ∈ 𝐸∗ that 𝜏
𝑦

𝑖
= 0. This implies that (𝑛 − 1)𝑝𝑖

02
+ 𝑝𝑖𝑛2 = 𝑛(1 − 𝜀).

In this case, the agent obtains 0 utility in expectation by probing any element. Thus, the agent

will try to break ties in the principal’s favor. Let’s say the agent probes a set of elements 𝑆 with

observed outcomes S where they break ties in favor of the principal at every step. If there exists

an element 𝑖 such that (𝑖, ·, 2) ∈ S, then the agent will never propose an outcome ( 𝑗, ·, 0) from S
because they can obtain better utility by proposing an element 𝑖 with outcome (𝑖, ·, 2).
Let 𝑆𝑡 = {𝑖1, . . . , 𝑖𝑡 } be the set of elements probed by the agent until now with outcome S𝑡 .

Suppose the agent has observed an element 𝑖ℓ ∈ 𝑆𝑡 with 𝑌𝑖ℓ = 2. In that case, if the agent further

probes an element 𝑖 among the unprobed elements, then they will propose 𝑖 if and only if 𝑌𝑖 = 2. If

the agent probes 𝑖 , then the addition in the principal’s expected utility is 𝑛 · 𝑝
𝑖
11

𝑛
· Pr[𝑌𝑖 = 2] − 𝑐𝑖 < 0.

Therefore, the agent will not probe any further elements. Thus, we can conclude that the agent

will stop probing elements as soon as they observe an element 𝑖 such that 𝑌𝑖 = 2. Similarly, we can

show that the agent will stop probing elements if they observe an element 𝑗 with outcome ( 𝑗, 𝑛, 0)
before any element 𝑖 with realization 𝑌𝑖 = 2.

We can bound the probability of the agent observing outcome (·, 𝑛, 0) before (·, ·, 2) by 1

𝑛
(1/2 +

(1/2)2 + . . . ) ≤ 2

𝑛
. Let us denote the event when the agent finds an element with outcome (·, 𝑛, 0)

before (·, ·, 2) by E1. In the event E1, the principal obtains value 𝑛 and pays to probe at least one

element. E[DEL|E1] ≤ (𝑛 − 1 + 𝜀). In the event E𝑐
, the agent observes an element with outcome

(·, ·, 2) before (·, 𝑛, 0). In this event, the agent will propose the first observed element 𝑖 with 𝑌𝑖 = 2.

Since the principal’s utility for the proposed outcome is independent of the agent’s, it will have

value 𝑛 for the principal with probability
1

𝑛
. Since 𝑘 ≥ 1, the principal pays a cost of 1 − 𝜀 for the

first probe. Therefore, E[DEL|E𝑐 ] ≤ ( 𝑛
𝑛
− 1 + 𝜀) = 𝜀. We can now bound the expected delegated

utility as follows:

E[DEL] = E[DEL|E] Pr[E] + E[DEL|E𝑐 ] Pr[E𝑐 ]

≤
(︃
2

𝑛

)︃
(𝑛 − 1 − 𝜀) + 𝜀 ≤ 𝑂 (1).

Therefore the delegation gap is O(1/
√
𝑛) when 𝜏𝑦

𝑖
= 0 for 𝑖 ∈ 𝐸∗.

Now, consider the case when 𝜏∗𝑖 ≥ 0 for all 𝑖 ∈ 𝐸∗. In this case, the agent first probes elements

with positive cap values, and if they are unable to find an element with 𝑌𝑖 > 𝜏
𝑦

𝑖
, then they probe

elements in 𝐸∗ with cap value 0. Therefore we can bound the expected delegation as E[DEL] ≤
𝑂 (1)𝜀 +𝑂 (1) = 𝑂 (1). This shows that the delegation gap is 𝑂 (1/

√
𝑛). □



In the following proposition, we show that there exists an instance of the free-agent model in

which the delegation gap for binary lotterymechanisms is𝑂 (1/𝑛1/4). The instance in Proposition B.2
is exactly the same instance described in Proposition 5.4. We show that the optimal binary lottery

mechanism for the instance described in Proposition 5.4 coincides with the optimal deterministic

mechanism. Hence, the impossibility result for deterministic delegation holds for the class of binary

lottery mechanisms as well.

Proposition B.2. There exists an instance of the free-agent model on 𝑛 elements with a 1-uniform
matroid inner constraint such that the delegation gap is 𝑂 (1/𝑛 1

4 ) for binary lottery mechanisms, even
when the agent breaks all ties in favor of the principal.

Proof. Consider an instance of the free-agent model with a 1-uniform matroid inner constraint,

and for each element 𝑖 , let 𝑋𝑖 and 𝑌𝑖 be independently distributed as follows:

𝑋𝑖 =

{︄
1√
𝑛

with prob. 1/
√
𝑛

0, otherwise

𝑌𝑖 =

{︄
𝛿𝑖 , with prob.

1

2

e
𝑛, with prob.

1

2

where 𝛿𝑖 > 0 are sufficiently small. We set the cost for probing any element 𝑖 to 𝑐𝑖 = 1 − 𝜀, where

𝜀 = 2

𝑛1/4 . Following Proposition 5.4 E[OPT] ≥ Θ(𝑛1/4). For simplicity, let 𝑝 = 1/𝑛1/4.
Now we will bound the principal’s optimal delegated expected utility. Consider the delegation

strategy defined by some optimal set of acceptable outcomes R. We let 𝑝𝑖𝑥𝑦 denote the optimal

probability chosen by the principal of accepting outcome (𝑖, 𝑥,𝑦). For ease of notation, we let

𝑝𝑖
11

= 𝑝𝑖
𝑝2𝑒𝑛

, 𝑝𝑖
10

= 𝑝𝑖
𝑝2𝛿𝑖

, 𝑝𝑖
01

= 𝑝𝑖
0𝑒𝑛 , and 𝑝

𝑖
00

= 𝑝𝑖
0𝛿𝑖

.

For all 𝑖 ∈ 𝐸, we claim that (𝑝𝑖
11
+ 𝑝𝑖

10
)/2 > 1 − 𝜀 or 𝑝𝑖

11
= 𝑝𝑖

10
= 𝑝𝑖

01
= 𝑝𝑖

00
= 0. Otherwise, if both

conditions are broken, the principal obtains

√
𝑛 · (𝑝𝑖

11
+𝑝𝑖

10
) · 1√

𝑛
−𝑐 ≤ 0 utility in expectationwhenever

the agent probes element 𝑖 , contradicting the optimality of the principal’s strategy. As a result, both

𝑝10 and 𝑝11 have to be at least 1−2𝜀. We now define the set of elements 𝐸∗ = {𝑖 : 𝑝𝑖
11

> 0 and 𝑝𝑖
10

> 0}.
Given R, the agent’s optimal strategy can be described as follows: probe elements one by one

in the decreasing order of 𝜏
𝑦

𝑖
=

𝑝𝑖
11

2

√
𝑛
+ 𝑝𝑖

01

2
(1 − 1/

√
𝑛) and propose the first element with 𝑌𝑖 = 𝑒𝑛 if

𝑝𝑖
𝑋𝑖𝑒

𝑛 ≥ max𝑗 {𝑝 𝑗

11
, 𝑝

𝑗

01
} for unprobed 𝑗 ∈ 𝐸∗. The agent will not stop before observing an element

𝑖 ∈ 𝐸∗ with 𝑌𝑖 = 𝑒𝑛 because they can always obtain at least
𝑝11𝑒

𝑛

2

√
𝑛

≥ (1 − 2𝜀) 𝑒𝑛

2

√
𝑛
> 𝛿𝑖 in expectation

by probing any element. Since the principal wants to maximize the chance of accepting any element

𝑖 with 𝑋𝑖 = 1/
√
𝑛, they will set 𝑝𝑖

11
= 1 and 𝑝𝑖

01
= 0.

If the agent is unable to find such an element, then they will propose some element 𝑖 for which

𝑌𝑖 = 𝛿𝑖 with the maximum 𝑝𝑖
𝑋𝑖𝛿𝑖

· 𝛿𝑖 . Given the agent’s optimal strategy, the principal wants to

maximize the chance of accepting an element 𝑖 with 𝑋𝑖 = 1/
√
𝑛 whenever agent proposes such an

element. Therefore, 𝑝𝑖
10

= 1 and 𝑝𝑖
01

= 0 for all 𝑖 ∈ 𝐸∗. We have now shown that the optimal binary

lottery mechanism in this instance is exactly the optimal deterministic mechanism discussed in

Proposition 5.4. Hence, following the proof of Proposition 5.4, we conclude that the delegation gap

with binary lottery mechanisms for the free-agent model is 𝑂 (1/𝑛1/4). □



C MISSING PROOFS FROM THE PAPER
C.1 Proof of Proposition 5.4

Proof. Consider an instance of the free-agent model with a 1-uniform matroid constraint, and

for each element 𝑖 , let 𝑋𝑖 and 𝑌𝑖 be independently distributed as follow:

𝑋𝑖 =

{︄
1

𝑝2,
with prob. 𝑝2

0, with prob. 1 − 𝑝2
𝑌𝑖 =

{︄
𝛿𝑖 , with prob.

1

2

e
𝑛2

, with prob.
1

2

where 𝑝 = 1

𝑛1/4 and 𝛿𝑖 > 0 are sufficiently small. We set the cost for probing any element 𝑖 to

𝑐𝑖 = 1 − 𝑝

2
and also observe that (1 − (1 − 𝑝2)𝑛) → 1 as 𝑛 → ∞.

Once again, the principal’s optimal non-delegated expected utility is given by the solution to

Weitzman’s Pandora’s box problem. For each element 𝑖 , we must determine the cap value 𝜏𝑖 such

that E(𝑋𝑖 − 𝜏𝑖 )+ = 𝑐𝑖 . It’s not hard to verify for this instance that 𝜏𝑖 =
1

2𝑝
= 𝑛1/4

2
. Then the optimal

solution guarantees an expected utility of E[E[OPT]] = Emax𝑖 min(𝑋𝑖 , 𝜏𝑖 ) where each min(𝑋𝑖 , 𝜏𝑖 )
takes value 𝜏𝑖 with probability 𝑝2 and 0 otherwise. Therefore, max𝑖 min(𝑋𝑖 , 𝜏𝑖 ) takes value 𝜏𝑖 with
probability 1 −

(︁
1 − 𝑝2

)︁𝑛
= 1 −

(︂
1 − 1

𝑛1/2

)︂𝑛
= 𝑂 (1) and the principal gets expected utility

E[OPT] = 𝑂 (1)𝜏𝑖 = Θ(𝑛1/4) .

Now we will bound the principal’s optimal delegated expected utility. Consider the delegation

strategy defined by some set of acceptable outcomes R. Given R, the agent’s optimal strategy

(assuming they break ties in favor of the principal) can be described as follows: probe elements one

by one for which (𝑖, 1/𝑝2, 𝑒𝑛2 ) ∈ R and propose the first observed element with (𝑥𝑖 , 𝑦𝑖 ) = (1/𝑝2, 𝑒𝑛2 ).
If they are unable to find such an element, then they probe elements with only (𝑖, 0, 𝑒𝑛2 ) ∈ R and

propose the first element with 𝑦𝑖 = 𝑒𝑛
2

. Finally, they will probe all other elements in some order

and propose any element with maximum 𝛿𝑖 among probed feasible elements.

For each element 𝑖 , the principal has no incentive to accept only 0 utility outcomes, so an optimal

strategy cannot have both (𝑖, 1/𝑝2, 𝑒𝑛2 ) ∉ R and (𝑖, 1/𝑝2, 𝛿𝑖 ) ∉ R, since then they may incentivize

the agent to probe element 𝑖 (incurring a cost on the principal) without getting any utility back.

Moreover, the principal has no incentive to accept any 0 utility outcomes from an element 𝑖 even if

they accept at least one of (𝑖, 1/𝑝2, 𝑒𝑛2 ) or (𝑖, 1/𝑝2, 𝛿𝑖 ). To see why, consider any delegation strategy

R for which there exists an element 𝑖 with (𝑖, 0, ·) ∈ R. There is a nonzero probability that the

agent observes only element 𝑖 with 𝑌𝑖 = 𝑒𝑛
2

and 𝑋𝑖 = 0. In this event, dropping (𝑖, 0, ·) from R does

not change the principal’s expected utility. Since the agent breaks ties in favor of the principal,

in all other cases they will propose an element 𝑖 with positive 𝑋𝑖 . Hence, the principal’s expected

utility does not decrease if (𝑖, 0, ·) ∉ R.
Finally, if R is an optimal delegation strategy, then for any element 𝑖 ∈ 𝐸, we have that

(𝑖, 1/𝑝2, 𝛿𝑖 ) ∈ R implies that (𝑖, 1/𝑝2, 𝑒𝑛2 ) ∈ R and (𝑖, 1/𝑝2, 𝑒𝑛2 ) ∈ R implies that (𝑖, 1/𝑝2, 𝛿𝑖 ) ∈ R.
Suppose, for the sake of contradiction, that there exists an element 𝑖 with only (𝑖, 1/𝑝2, 𝑒𝑛2 ) ∈ R.
Then the agent will probe element 𝑖 last after probing other elements 𝑖′ with (𝑖′, 1/𝑝2, 𝑒𝑛2 ) ∈ R
and (𝑖′, 1/𝑝2, 𝛿𝑖 ) ∈ R. Now, consider the event in which the agent probes element 𝑖 and it is the

only element with 𝑋𝑖 > 0 among all the probed elements. The probability of such an event is

nonzero. However, the agent will not be able to propose an element 𝑖 if 𝑌𝑖 = 𝛿𝑖 , which happens

with probability 1/2, and in this case the principal ends up paying the cost for probing 𝑖 without

obtaining any value. By adding (𝑖, 1/𝑝2, 𝛿𝑖 ) to R, the principal can increase their expected utility

conditioned on 𝑖 being the only element with 𝑋𝑖 > 0. In all other cases, adding (𝑖, 1/𝑝2, 𝛿𝑖 ) to R
does not affect their utility. This contradicts the optimality of R.



For the other case, suppose there exists an element 𝑖 with only (𝑖, 1/𝑝2, 𝛿𝑖 ) ∈ R. Again, the agent

first probes the elements with both (𝑖′, 1/𝑝2, 𝛿𝑖 ) ∈ R and (𝑖′, 1/𝑝2, 𝑒𝑛2 ) ∈ R. Consider the event
in which they do not observe any element with 𝑖′ with 𝑋𝑖′ > 0 among the elements probed so

far. Now, let assume that the agent probes 𝑖 right after that (this is the best possible scenario for

the principal as all other available elements 𝑖′ are such that (𝑖′, 1/𝑝2, ·) ∉ R). Now if 𝑋𝑖 > 0 and

𝑌𝑖 = 𝑒𝑛
2

, then the agent will not be able to propose element 𝑖 and the principal pays the cost for

probing 𝑖 without obtaining any value. Hence, adding (𝑖, 1/𝑝2, 𝑒𝑛2 ) strictly improves the principal’s

expected utility in this event, and in all other events, it does not affect their utility.

Now, without loss of generality, we can consider any optimal delegation strategy for the principal

defined by a set of feasible elements 𝐴 = {1, . . . , 𝑘} for which the principal will accept exactly

(𝑖, 1/𝑝2, 𝑒𝑛2 ) and (𝑖, 1/𝑝2, 𝛿𝑖 ). Since the agent does not incur any cost, they can probe all 𝑘 elements

and propose their favorite acceptable element. However, we assumed that the agent breaks ties

in favor of the principal, so they will probe elements one by one and will stop probing as soon as

they find an element 𝑗 ∈ 𝐴 with ( 𝑗, 1/𝑝2, 𝑒𝑛2 ). If the agent can not find any such element, then they

will propose (𝑒, 1/𝑝2, 𝛿𝑒 ) with the maximum 𝛿𝑒 among probed elements. Now we can bound the

principal’s optimal delegated expected utility as:

E[DEL] ≤ Pr[𝑋1 = 1/𝑝2] · Pr[𝑌1 = 𝑒𝑛
2 ]

(︃
1

𝑝2
− 𝑐

)︃
+ Pr[𝑋2 = 1/𝑝2] · Pr[𝑌2 = 𝑒𝑛

2 ] (Pr[𝑌1 = 𝛿1] + Pr[𝑌1 = 𝑒𝑛
2 ] · 𝑃𝑟 [𝑋1 = 0])

(︃
1

𝑝2
− 2𝑐

)︃
+ . . .

+ Pr[𝑋𝑘 = 1/𝑝2] · Pr[𝑌𝑘 = 𝑒𝑛
2 ]

𝑘−1∏︂
𝑖=1

(Pr[𝑌𝑖 = 𝛿𝑖 ] + Pr[𝑌𝑖 = 𝑒𝑛
2 ] · 𝑃𝑟 [𝑋𝑖 = 0])

(︃
1

𝑝2
− 𝑘𝑐

)︃
+

[︄
1

𝑝2

(︄
1 −

𝑘∏︂
𝑖=1

(Pr[𝑋𝑖 = 0] + Pr[𝑋𝑖 = 1/𝑝2] + Pr[𝑌𝑖 = 𝛿𝑖 ]
)︄
− 𝑐𝑘

]︄
(8)

≤ 𝑝2

2

(︃
1

𝑝2
− 𝑐

)︃
+ 𝑝2

2

(︃
1 − 𝑝2

2

)︃ (︃
1

𝑝2
− 2𝑐

)︃
+ . . .

+ 𝑝2

2

(︃
1 − 𝑝2

2

)︃𝑘−1 (︃
1

𝑝2
− 𝑘𝑐

)︃
+

[︃
(1 − (1 − 𝑝2)𝑘 ) 1

𝑝2
− 𝑐𝑘

]︃
To reduce the clutter, let 𝑟 =

(︁
1 − 𝑝2/2

)︁
. From Appendix B of [4], we have that (1 − (1 − 𝑝2)𝑘 ) ·

1/𝑝2 − 𝑐𝑘 ≤ 1/2. Using this, we can simplify the above bound as:

E[DEL] ≤ 1

2

{︂
1 + 𝑟 + 𝑟 2 + · · · + 𝑟𝑘−1

}︂
− 𝑐𝑝2

2

(︂
1 + 2𝑟 + · · · + 𝑘𝑟𝑘−1

)︂
+ 1

2

=
1

2

(︃
1 − 𝑟𝑘

1 − 𝑟

)︃
− 𝑝2𝑐

2

{︃(︃
1 − 𝑟𝑘

(1 − 𝑟 )2

)︃
− 𝑘𝑟𝑘

1 − 𝑟

}︃
+ 1

2

=
1

𝑝2
(1 − 𝑟𝑘 ) − 2𝑐

𝑝2
(1 − 𝑟𝑘 ) + 𝑐𝑘𝑟𝑘 + 1

2

=

(︃
1

𝑝
− 1

𝑝2

)︃
(1 − 𝑟𝑘 ) + 𝑘𝑟𝑘 + 1

2

≤ 1

2

+𝑂 (𝑛𝑒−
√
𝑛)



The above bound on the expected delegation holds for any budget 𝑘 and outer constraint to the

agent. This shows that the delegation gap is at least 𝑂 (𝑛1/4).
Note that the impossibility still holds if the principal samples R from any distribution 𝐷 over

the sets of feasible solutions. We can similarly show that the optimal distribution 𝐷∗
over the

feasibile sets has positive support on the solutions R ∈ ΩI which can be expressed as R =

{(𝑖, 1/𝑝2, 𝑒𝑛2 ), (𝑖, 1/𝑝2, 𝛿𝑖 ) : 𝑖 ∈ 𝐴} for some 𝐴 ⊆ 𝐸. We earlier showed that for any such R,
E[DEL] = 𝑂 (1/𝑛1/4) · E[OPT]. Thus, E[DELR] = 𝑂 (1/𝑛1/4) · E[OPT]. □

C.2 Proof of Proposition 5.5

Proof. For any positive integer 𝑛 > 1 and real 𝜀 = 1/𝑛 1

4 , let 𝑀 be a positive integer such that

𝑀 =
√
𝑛 and consider the following instance of delegated Pandora’s box. We have 𝑛 identical

elements 𝐸 = {1, . . . , 𝑛} where each element 𝑖 has a probing cost 𝑐𝑖 = 1 − 𝜀 and random utilities

(𝑋𝑖 , 𝑌𝑖 ) ∼ 𝜇𝑖 . The principal’s utility 𝑋𝑖 is 𝑛 with probability
1

𝑛
and 0 otherwise. The agent’s utility

𝑌𝑖 is 𝑀 with probability
1

𝑀
independently of 𝑋𝑖 and 0 otherwise. The constraint is a 1-uniform

matroid and there is no outer constraint. We let the agent break ties in favor of the principal.

First, we will determine the principal’s optimal non-delegated expected utility. This is given by

the solution tothe generalized Pandora’s box problem. For each element 𝑖 , we must determine the

cap value 𝜏𝑖 such that E(𝑋𝑖 − 𝜏𝑖 )+ = 𝑐𝑖 . It’s not hard to verify for this instance that 𝜏𝑖 = 𝜀𝑛. Then the

optimal solution guarantees an expected utility of 𝑈 = Emax𝑖 min(𝑋𝑖 , 𝜏𝑖 ) where each min(𝑋𝑖 , 𝜏𝑖 )
takes value 𝜀𝑛 with probability

1

𝑛
and 0 otherwise. Therefore, max𝑖 min(𝑋𝑖 , 𝜏𝑖 ) takes value 𝜀𝑛 with

probability 1 −
(︁
1 − 1

𝑛

)︁𝑛
and the principal gets expected utility

E[OPT] = 𝜀𝑛

(︃
1 −

(︃
1 − 1

𝑛

)︃𝑛)︃
≥ 𝜀𝑛

(︃
1 − 1

𝑒

)︃
= Θ(𝑛3/4).

Now, we will bound the principal’s delegated expected utility when both the agent and the principal

get a discount factor of 𝛿 > 1 − 1/𝑛1/2. Consider an arbitrary acceptable set R that the principal

might commit to. Since the constraint is 1-uniform, 𝑅 consists of a set of singleton outcomes.

Observe that every element 𝑖 evaluates to one of four tagged outcomes (𝑖, 𝑛, 𝑀), (𝑖, 𝑛, 0), (𝑖, 0, 𝑀),
and (𝑖, 0, 0) with probabilities

1

𝑛𝑀
,
1

𝑛

(︁
1 − 1

𝑀

)︁
,

1

𝑀

(︁
1 − 1

𝑛

)︁
, and

(︁
1 − 1

𝑛

)︁ (︁
1 − 1

𝑀

)︁
, respectively.

Given 𝑅, let 𝐸∗ ⊆ 𝐸 be the subset of elements 𝑖 for which (𝑖, 0, 𝑀) ∈ 𝑅, and let 𝑘 = |𝐸∗ |. Consider
any element 𝑖 ∉ 𝐸∗. If outcome (𝑖, 0, 𝑀) ∉ 𝑅, then the agent’s increase in expected utility from

probing 𝑖 is at most𝑀 · 1

𝑛𝑀
− (1 − 𝜀) (1 − 𝛿) = 1

𝑛
− 1√

𝑛
(1 − 𝜀) < 0 for large enough 𝑛, so they have

no incentive to ever probe 𝑖 . Therefore, for the rest of the proof, we assume that 𝑘 > 0.

The agent now faces an instance of Pandora’s box problem, so their optimal strategy is to probe

elements in order of weakly decreasing cap value (among non-negative cap values) and accept

the first acceptable outcome whose value is above its cap. Note that the agent will only probe the

elements that belong to 𝐸∗ We divide the elements in 𝐸∗ into the following disjoint sets:

𝐸∗
1
= {𝑖 : {(𝑖, 𝑛, 𝑀), (𝑖, 0, 𝑀), (𝑖, 𝑛, 0)} ⊆ R},

𝐸∗
2
= {𝑖 : {(𝑖, 𝑛, 𝑀), (𝑖, 0, 𝑀)} ⊆ R},

𝐸∗
3
= {𝑖 : {(𝑖, 0, 𝑀), (𝑖, 𝑛, 0)} ⊆ R}.

The optimal strategy for the agent is to first probe the elements in 𝐸∗
1
and then 𝐸∗

2
and stop once

they find an outcome with utility𝑀 . If there is no such outcome, then they probe elements in 𝐸∗
3
and

stops once they find an outcome (𝑖, 0, 𝑀). However, the principal has no incentive to construct R
such that 𝐸∗

2
≠ ∅ or 𝐸∗

3
≠ ∅. For the sake of contradiction, let 𝐸∗

2
≠ ∅, in that case, consider an event

when the agent does not observe 𝑖 ∈ 𝐸∗ with feasible outcome with 𝑌𝑖 = 𝑀 , however, observes

𝑖′ ∈ 𝐸∗
2
with (𝑖′, 𝑛, 0). Conditioned on this event, the principal can strictly benefit by adding (𝑖′, 0, 𝑛)



to R. In all other cases, the principal’s utility is unchanged by adding (𝑖′, 𝑛, 0). Therefore 𝐸∗
2
= ∅.

Similarly, we can show that the principal strictly benefits by adding (𝑖, 𝑛, 𝑀) to R for all 𝑖 ∈ 𝐸∗
3
.

Hence, for the rest of the proof, we assume that 𝐸∗ = 𝐸∗
1
.

Consider the utility that the principal gets when the agent finds an outcome of utility𝑀 . Among

the 𝑘 = |𝐸∗ | elements that the agent might probe, they find a utility of 𝑀 with probability 1 −(︁
1 − 1

𝑀

)︁𝑘
. Since the principal’s utility for the proposed outcome is independent of the agent’s, it

will have utility 𝑛 for the principal with probability
1

𝑛
. Since 𝑘 ≥ 1, the principal pays a cost of 1− 𝜀

for the first probe. Therefore, the principal expects a utility of at most{︄
1 −

(︃
1 − 1

𝑀

)︃𝑘}︄
·
(︂𝑛
𝑛
− (1 − 𝜀) (1 − 𝛿)

)︂
= 𝑂 (1)

from this part of the agent’s strategy.

Now, with probability

(︁
1 − 1

𝑀

)︁𝑘
, the agent doesn’t find any outcomes of value 𝑀 . Then the

principal pays a cost of 𝑘 (1− 𝜀) in order to probe all 𝑘 elements in 𝐸∗. Since the agent breaks ties in
favor of the principal, they will propose any acceptable outcomes of value 𝑛 to the principal. There

exists such an outcome with probability at most 1 −
(︁
1 − 1

𝑛

)︁𝑘
. Therefore, the principal expects a

utility of at most(︃
1 − 1

𝑀

)︃𝑘
·
{︄
𝑛

(︄
1 −

(︃
1 − 1

𝑛

)︃𝑘 )︄
− 𝑘 (1 − 𝜀) (1 − 𝛿)

}︄
≤

(︃
1 − 1

𝑀

)︃𝑘
· {𝑘 − 𝑘 (1 − 𝜀) (1 − 𝛿)}

≤ 𝑘 (𝜀 + 𝛿)
(︃
1 − 1

𝑀

)︃𝑘
For the sake of exposition, let 𝑓 (𝑘) = 𝑘

(︂
1 − 1√

𝑛

)︂𝑘
. For 𝑘 = 𝑜 (

√
𝑛), asymptotically, 𝑓 (𝑘) = 𝑜 (

√
𝑛)

and for 𝑘 = 𝜔 (
√
𝑛), 𝑓 (𝑘) = 𝜔 (

√
𝑛)e−

𝜔 (
√
𝑛)√
𝑛 = 𝑜 (

√
𝑛). For 𝑘 = Θ(

√
𝑛), 𝑓 (𝑘) = Θ(

√
𝑛). Therefore,

max𝑘 𝑓 (𝑘) = 𝑂 (
√
𝑛) asymptotically.

The above arguments imply that the principal’s optimal expected delegation is bounded by

𝑂 ((𝛿 + 𝜀)
√
𝑛) +𝑂 (1) = 𝑂 (𝑛1/4). Hence the delegation gap for the above instance is 𝑂 (1/𝑛1/2).

Note that the impossibility still holds if the principal samples R from any distribution 𝐷 over the

sets of feasible solutions. We can similarly show that the optimal distribution 𝐷∗
over the feasible

sets has positive support on the solutions R ∈ ΩI for which 𝐸∗ = 𝐸∗
1
. Therefore, for any sample of

feasible set R from 𝐷∗
, E[DELR] = 𝑂 (1/

√
𝑛)E[OPT]. Thus, E[DELR] = 𝑂 (1/

√
𝑛) · E[OPT]. □

C.3 Proof of Proposition 6.4
Proof. Consider an instance on elements 𝐸 with |𝐸 | = 𝑛 and a 1-uniform matroid constraint

over 𝐸. For each element 𝑖 , let the probing cost be 𝑐𝑖 = 𝑐 = 1 − 2/𝑛1/4 and let the principal’s

utility be 𝑋𝑖 =
√
𝑛 with probability 1/

√
𝑛 and 𝑋𝑖 = 0 otherwise. Following Proposition 5.4, we

have that E[OPT] = Θ(𝑛1/4). Now, consider any delegation mechanism for the principal for the

shared-cost model. Let 𝑐′𝑖 = 𝑐𝑖 be the cost division for each element 𝑖 in this mechanism, and let

R be the set of acceptable solutions. Since the principal has no knowledge of the distributions of

the agent’s utilities, R can only consider the principal’s utilities {𝑋𝑖 }. Let 𝐸1 = {𝑖 ∈ 𝐸 : 𝑐𝑖 > 0} and
𝐸2 = {𝑖 ∈ 𝐸 : 𝑐𝑖 = 0} be a disjoint partition of 𝐸.

Now we will define the agent’s utilities. For each element 𝑖 ∈ 𝐸1, let 𝑌𝑖 ∼ Unif[0, 𝑐𝑖/2] when
conditioned on 𝑋𝑖 =

√
𝑛, and 𝑌𝑖 = 𝑛2 deterministically when conditioned on 𝑋𝑖 = 0. For all 𝑖 ∈ 𝐸2,

let 𝑌𝑖 ∼ Unif[𝑒𝑛, 3𝑒𝑛] independent of 𝑋𝑖 . First, we need to ensure that the described delegation

instance has incentive for the agent to participate when they pay the entire cost, i.e. E[𝑌𝑖 ] > 𝑐𝑖 .



For each element 𝑖 ∈ 𝐸1, we have E[𝑌𝑖 ] = E[𝑌𝑖 | 𝑋𝑖 =
√
𝑛] Pr[𝑋𝑖 =

√
𝑛] + E[𝑌𝑖 | 𝑋𝑖 = 0] Pr[𝑋𝑖 =

0] > (1 − 1/
√
𝑛)𝑛2 > 𝑐𝑖 and for 𝑖 ∈ 𝐸2, E[𝑌𝑖 ] = 2𝑒𝑛 > 𝑐𝑖 . Note that the principal has no information

about {𝑌𝑖 }.
Now, consider any single proposal delegation R = {{(𝑖, 𝑥𝑖 )} : 𝑖 ∈ 𝐸, 𝑥𝑖 ∈ {

√
𝑛, 0}}. We divide all

elements 𝐸 into following disjoint sets given R:
𝐹1 = {𝑖 ∈ 𝐸1 : (𝑖,

√
𝑛) ∈ R ∧ (𝑖, 0) ∉ R} 𝐹4 = {𝑖 ∈ 𝐸2 : (𝑖,

√
𝑛) ∈ R ∧ (𝑖, 0) ∉ R}

𝐹2 = {𝑖 ∈ 𝐸1 : (𝑖,
√
𝑛) ∉ R ∧ (𝑖, 0) ∈ R} 𝐹5 = {𝑖 ∈ 𝐸2 : (𝑖,

√
𝑛) ∉ R ∧ (𝑖, 0) ∈ R}

𝐹3 = {𝑖 ∈ 𝐸1 : (𝑖,
√
𝑛) ∈ R ∧ (𝑖, 0) ∈ R} 𝐹6 = {𝑖 ∈ 𝐸2 : (𝑖,

√
𝑛) ∈ R ∧ (𝑖, 0) ∈ R}

The agent will never probe elements in 𝐹1 because for 𝑖 ∈ 𝐸1, E[𝑌𝑖 | 𝑋𝑖 = 𝑛] − 𝑐𝑖 < 0. The agent’s

optimal strategy is to probe elements in 𝑉 = 𝐹4 ∪ 𝐹5 ∪ 𝐹6 (with |𝑉 | = 𝑘) and pick any feasible

element with high 𝑌𝑖 . If they can not find any feasible elements in𝑉 then they probe elements in 𝐹3
then 𝐹2 until they observe 𝑋𝑖 = 0. If they fail to observe an element with 𝑋𝑖 = 0 then they propose

element 𝑖 ∈ 𝐹3 with maximum 𝑌𝑖 . Given the agent’s optimal strategy, we can bound the principal’s

optimal expected delegated utility as follows:

E[DELR] ≤ E[DELR | agent finds a feasible 𝑖 ∈ 𝑉 ] · Pr[agent finds a feasible 𝑖 ∈ 𝑉 ]
+ E[DELR | agent does not find a feasible 𝑖 ∈ 𝑉 ] · Pr[agent does not find a feasible 𝑖 ∈ 𝑉 ]

≤
√
𝑛(1 −

(︂
1 − 1/

√
𝑛

)︂𝑘
) − 𝑘𝑐

+ E[DELR | ∃𝑖 ∈ 𝐹2 ∪ 𝐹3 : 𝑋𝑖 = 0] · Pr[∃𝑖 ∈ 𝐹2 ∪ 𝐹3 : 𝑋𝑖 = 0]
+ E[DELR | ∄𝑖 ∈ 𝐹2 ∪ 𝐹3 : 𝑋𝑖 = 0] · Pr[∄𝑖 ∈ 𝐹2 ∪ 𝐹3 : 𝑋𝑖 = 0] (9)

≤ [
√
𝑛(1 −

(︂
1 − 1/

√
𝑛

)︂𝑘
) − 𝑘𝑐] + E[DELR | ∄𝑖 ∈ 𝐹2 ∪ 𝐹3 : 𝑋𝑖 = 0] · Pr[∄𝑖 ∈ 𝐹2 ∪ 𝐹3 : 𝑋𝑖 = 0]

(10)

= 𝑂 (1) + (1/
√
𝑛) |𝐹2∪𝐹3 |

√
𝑛 = 𝑂 (1) (11)

Inequality (9) holds because Pr[agent finds a feasible 𝑖 ∈ 𝑉 ] is bounded by 1. We can further bound

E[DELR | agent finds a feasible 𝑖 ∈ 𝑉 ] by assuming that the agent proposes element 𝑖 ∈ 𝑉 with

𝑋𝑖 =
√
𝑛 as long as it exists. Inequality (10) holds because whenever the agent finds 𝑖 ∈ 𝐹2 ∪ 𝐹3

with 𝑋𝑖 = 0, the principal’s expected utility is negative, i.e. E[DELR | ∃𝑖 ∈ 𝐹2 ∪ 𝐹3 : 𝑋𝑖 = 0] ≤ 0.

Inequality (11) holds because

√
𝑛(1 −

(︁
1 − 1/

√
𝑛
)︁𝑘 ) − 𝑘𝑐 = 𝑂 (1) for all 𝑘 ≤ 𝑛 (Proposition 5.4) and

we ignore the cost paid by the principal in E[DELR | ∄𝑖 ∈ 𝐹2 ∪ 𝐹3 : 𝑋𝑖 = 0]. Hence, E[DELR] = 𝑂 (1).
Concluding the proof. □
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