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In delegation problems, a principal does not have the resources necessary to complete a particular task, so they
delegate the task to an untrusted agent whose interests may differ from their own. Given any family of such
problems and space of mechanisms for the principal to choose from, the delegation gap is the worst-case ratio
of the principal’s optimal utility when they delegate versus their optimal utility when solving the problem
on their own. In this work, we consider the delegation gap of the generalized Pandora’s box problem, a
search problem in which searching for solutions incurs known costs and solutions are restricted by some
downward-closed constraint. First, we show that there is a special case when all random variables have binary
support for which there exist constant-factor delegation gaps for matroid constraints. However, there is no
constant-factor delegation gap for even simple non-binary instances of the problem. Getting around this
impossibility, we consider two variants: the free-agent model, in which the agent doesn’t pay the cost of
probing elements, and discounted-cost approximations, in which we discount all costs and aim for a bicriteria
approximation of the discount factor and delegation gap. We show that there are constant-factor delegation
gaps in the free-agent model with discounted-cost approximations for certain downward closed constraints
and constant discount factors. However, constant delegation gaps can not be achieved under either variant
alone. Finally, we consider another variant called the shared-cost model, in which the principal can choose
how costs will be shared between them and the agent before delegating the search problem. We show that the
shared-cost model exhibits a constant-factor delegation gap for certain downward closed constraints.
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1 INTRODUCTION

We take the natural next step in the study of delegated stochastic search problems involving
multivariate decisions, constraints, and costs. The work of Bechtel and Dughmi [3] has provided a
fairly thorough understanding of principal-agent delegation in the presence of “hard” constraints
on the search procedure — scenarios of this form can be viewed as a principal delegating a stochastic
probing problem to an agent. In this paper, we build a similar understanding when search is
associated with cardinal costs instead. Scenarios of this form feature a principal who delegates, to
an agent, a combinatorial generalization of the famous Pandora’s box problem of Weitzman [12].
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As in the most relevant prior work on delegation, we imbue the principal with the power of
commitment, rendering this a mechanism design problem.!

The conceptual starting point in this area is the work of Kleinberg and Kleinberg [10], who
consider a principal delegating the selection of one option (we say element) out of finitely many to
an agent. As a running example, consider a firm (the principal) delegating the selection of one job
candidate out of many (the elements) to an outside recruitment agency (the agent). Each element
is associated with a stochastic reward for both principal and agent, with independence across
elements. The agent is tasked with “exploring” (we say probing) these rewards and proposing one
of them, which the principal may choose to accept or reject.

Problems of this form are most natural when exploration is not free, and Kleinberg and Kleinberg
[10] consider one model featuring a hard constraint on the number of options explored, and a
second model featuring cardinal costs associated with exploration for both principal and agent.
Bechtel and Dughmi [3] generalize the first model, in particular to settings in which exploration is
combinatorially constrained (this is referred to as the outer constraint), and multiple elements may
be selected subject to another combinatorial constraint (this is referred to as the inner constraint).
When multiple elements are selected, rewards are additive for both the principal and the agent.
In this paper, we similarly generalize the second model of [10]: there is no outer constraint on
exploration, but rather per-element probing costs for the principal and agent. Moreover, there again
is an inner constraint (which we will often refer to simply as the constraint) on the set of elements
selected. Rewards and probing costs are now both additive across elements. The problem being
delegated here is a generalized Pandora’s box problem, as in [11].

There are multiple natural ways of instantiating the utilities of both the principal and the agent,
depending on who we assume incurs the exploration (i.e., probing) costs. Some ways in which costs
may be shared include:

e The principal and agent each pay a fixed percentage of the total probing cost. In our running
example, the recruitment agency may have a policy in which they only pay a fixed fraction of
the cost of interviewing each candidate. Such scenarios fall under our first model which we
refer to as the standard model of utilities.? Kleinberg and Kleinberg [10] assumes cost-sharing
according to the standard model of utilities.

e The principal pays the full cost of exploration. In our running example, the recruitment
agency only commits to investing their time and expertise, whereas the principal bears the
entire cost of exploration. We refer this model as the free-agent model.

e The principal chooses as part of their strategy how individual costs are shared. In our running
example, the principal may be willing to pay a large fraction of the cost of interviewing
good (in expectation) candidates, but still allows the agent to interview bad (in expectation)
candidates so long as they bear most of the cost. We refer to this model as the shared-cost
model. This model provides the principal with much more power when delegating.

No matter our utility model and cost model, we seek mechanisms which approximate the principal’s
optimal non-delegated utility: the maximum expected utility the principal can obtain by solving the
search problem themselves. When such a mechanism matches the non-delegated utility up to a
factor a, we refer to it as an a-factor mechanism.

!n particular, a mechanism design problem without money.
2As long as neither principal nor the agent pays the entire cost in the standard model, we can re-scale their utilities and
without loss of generality, assume that they pay equal costs.



Our Models and Results

In our first model — which we refer to as the standard model of utilities — we follow in the footsteps
of [10] by incorporating the probing costs into both the principal and agent’s utilities.> Our results
for this model are a mixed bag: When each element’s reward distribution has binary support,
we obtain constant-approximate delegation mechanisms when the constraint is a matroid. The
proof proceeds via a reduction to the matroid prophet inequalities against an almighty adversary
from [7]. This result generalizes the result of [10] for their second model, which also features
binary distributions. On the other hand, we obtain strong impossibility results for non-binary
distributions, ruling out any sublinear (in the number of elements) approximation to the principal’s
optimal non-delegated utility, even for the rank one matroid. This shows that the result of [10] for
their second model, which also features a rank one matroid constraint, can not be generalized to
non-binary distributions. Even more emphatically, we rule out certain bicriteria approximations
for the standard model of utilities: even if probing costs are discounted by any absolute constant,
the principal’s delegated utility can not approximate — up to any constant — their undelegated
utility in the undiscounted setting.

Motivated by our impossibility results for the standard model of utilities, we explore other models
of distributing the probing costs. In the free-agent model, the agent incurs no exploration costs,
which are born entirely by the principal. For various constraints such as matroids, matchings, and
knapsacks, we obtain bicriteria approximate mechanisms of the following form for various pairs of
constants a, : the principal’s delegated utility in the setting where probing costs are discounted
by & matches, up to a factor of , their optimal undelegated utility in the undiscounted setting.
Our results proceed by reduction to the online contention resolution schemes against an almighty
adversary from [7]. We complement this with a negative result, ruling out the traditional uni-
criteria constant-approximate mechanisms. Specifically, absent any discount on probing costs, no
delegation mechanism approximates the principal’s optimal undelegated utility up to any constant.

Our final utility model allows the principal to declare, up front as part of their mechanism,
an arbitrary split of the probing cost for each element between the principal and the agent. We
refer to this as the shared-cost model. This turns out to be the most permissive of our models: for
constraints including matroids, matchings, and knapsacks, we obtain delegation mechanisms which
approximately match, up to a constant, the principal’s optimal undelegated utility.* Our results
here are again by reduction to online contention resolution schemes against an almighty adversary
from [7].

Lastly, we also begin a preliminary exploration of randomized mechanisms for delegating the
generalized Pandora’s box problem. We obtain negative results for a restricted class of randomized
mechanisms, and leave open the general question of whether randomization yields significantly
more power in this setting, including whether it overcomes some of our impossibility results for
deterministic mechanisms.

Additional Discussion of Related Work

For additional discussion of related work pertaining to delegation, stochastic probing problems,
prophet inequalities, and contention resolution, we refer the reader to [3]. Also relevant to this

3Whereas it is not uncommon for the agent in delegation to bear the costs of completing the task, this model also incorporates
the costs into the principal’s objective. This can capture a principal concerned with optimizing a social objective, as well as
scenarios in which probing costs are shared by the principal and agent.

4We note that, since the principal can offload much of the costs of exploration to the agent, there exist instances in which
the principal’s delegated utility strictly exceeds their undelegated utility. However, we also show that there are simple
instances in which the principal’s delegated utility is necessarily less than their undelegated utility, ruling out general
results with approximation factors exceeding 1.



paper is the work on generalizations of the Pandora’s box problem. In particular, Singla [11]
introduces a model generalizing the 1-uniform matroid “inner” constraint to arbitrary downward-
closed constraints and proposes constant-factor algorithms for matroids, matchings, and knapsack
constraints. Gamlath et. al. [9] and Fu et. al. [8] further improve approximation guarantees for the
generalized Pandora’s box problem with matching constraints.

2 PRELIMINARIES
2.1 Pandora’s Box

Weitzman’s Pandora’s box problem [12] is defined as follows: given probability distributions of
n independent random variables Xj, ..., X,, over Ry, and their respective probing costs cy, .. ., cn,
adaptively probe a subset Probed C [n] that maximizes the expected utility:
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Weitzman [12] proposes a simple but optimal strategy for maximizing expected utility. For each
element i € [n], this strategy chooses a cap value (sometimes called priority value or surplus value)
1; satisfying E[(X; — 7;)*] = ¢;. Then it probes elements in decreasing order of cap value, stopping
the first time that the largest observed X; value exceeds the largest unprobed cap value. Finally, it
selects the element i with maximum observed X;.

In this work, we focus on the more general version of the Pandora’s box problem defined in [11].
We are given a set of elements E and a downward-closed constraint 7 C 2F over the ground set
E. The goal is to adaptively probe a set of elements Probed and select a set of feasible elements
S C Probed for which S € 7 that maximizes the following objective:
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For the remainder of the paper, we will write X(S) = }};c5 X; and ¢(S) = ) ;c5 ¢; in any setting
with utilities {X;};eg and costs {c;};cg. We will also refer to (i,x) for any i € Eand x € Rypasa
possible outcome or realization of element i.

Singla [11] proposes constant-factor approximation algorithms for the general Pandora’s box
problem for many constraints. In particular, these algorithms are optimal for matroids and 2-
approximate for both matching and knapsack constraints.

2.2 Greedy Prophet Inequality

An instance of the generalized prophet inequality problem is given by a set system M with ground
set E and feasible sets  and independent random variables X; supported on Ry, for all i € E. We
take the perspective of the gambler, who knows M and the distributions of the random variables
{Xi}icg. The gambler starts with an empty set S of accepted elements and then observes each
element in E in an order chosen by an adversary®. When the element i € E arrives, the gambler
learns the realization of X; and has to decide online whether to accept element i or not based
on (i, x;) and the previously accepted elements S. However, they can only accept i if S U {i} is
feasible in M. The gambler seeks to maximize their utility E(X(S)) = E [X;cs Xi], and in particular
to compete with a prophet who plays the same game and knows the realizations of all random
variables in advance. If the gambler has a strategy guaranteeing an « fraction of the prophet’s

SFor the purposes of this paper, we play against the almighty adversary defined in [7], the strongest possible adversary, who
knows all the coin flips of the gambler’s strategy.



expected utility in expectation, we say that we have an a-factor prophet inequality. We now define
a particular class of strategies for the gambler:

Definition 2.1 (Greedy monotone strategy A;). A greedy monotone strategy A, for the gambler
is described by choice of thresholds t = {¢; : i € E} and a downward closed system J; C 7, and
can be expressed as A; = {{(i,x;) :i € S} : S € I; and x; > t; for all i € S}. A gambler following
A accepts element i with outcome (i, x;) if and only if x; > t; and set of elements accepted so far
along with the element i stays in 7;.

Greedy monotone strategies for the gambler is proposed in [7] for matroid, matching, and
knapsack constraints that achieve 1/4, 1/2e, and 3/2 — V2 factor prophet inequality respectively.

2.3 c-Selectable Greedy OCRS Schemes

We will give a brief overview of online contention resolution schemes [7] in this section. Given
a downward-closed family 7 over the ground set of elements E with |E| = n, let Py C [0,1]" be
the convex hull of the indicator vectors of all feasible sets: Py = conv({1r : F € I}). We say
that a convex polytope P C [0,1]" is a relaxation of Py if it contains the same {0, 1}-points, i.e.
Pn{o,1}" =Py n{0,1}".

Consider the following online problem: given some J as above and some x € Py, let R(x)
be a random subset of active elements, where each element i € E is active with probability x;
independently of all others. The elements in E are revealed online in an order chosen by an adversary,
and when each element i is revealed, we learn whether or not i € R(x). After we learn the state
of element i, we must irrevocably decide whether or not to select i. An OCRS for P is an online
algorithm that selects a subset S € R(x) such that S € 7.

Definition 2.2 (Greedy c-selectable OCRS). Let P C [0, 1]" be a relaxation of Py. A greedy OCRS
7 for P is an OCRS that for any x € P defines a downward-closed family of sets 7, € 7. Then an
active element i is selected if, together with the already selected elements, the obtained set is in Z.
Moreover, we say the greedy OCRS is c-selectable if for all x € Pand i € E

Pr[IU{i} € I, forall]I C R(x) and I € Z,] > c.

3 DELEGATION MODEL

In this paper, we will use several slightly different models of delegation which can be viewed as
variants of a single standard model of delegated Pandora’s box. This model formally consists of:
two players called the principal and the agent; a ground set of elements E; for each element i € E,
an independent distribution y; over Ry¢ X R giving possible utility pairs for the principal and
agent, respectively; for each element i € E, a probing cost ¢; € Rx¢; and a downward-closed set
system M = (E, T) with feasible sets I over the ground set E (i.e. I C 2F and if S € 7 then T € T
forany T C S).

Given an element i, we let X; and Y; be random variables denoting the random value obtained
for the principal and agent from element i with joint distribution (Xj, Y;) ~ p;, where X; and
Y; may be arbitrarily correlated but are independent of random variables from other elements.
For any (x,y) € supp(p;), we call (i, x,y) an outcome or realization of element i. For any set of
outcomes S = {(iy, X1, Y1), - - -, (iks Xk, yx) } such that S = {iy, ..., it} € I for distinct iy, . . ., iy, We
call S a solution. In general, we denote the set of all possible outcomes as Q = {(i,x,y) : (x,y) €
supp(p;),i € E} and the set of all solutions with respect to the constraint 7 as Q C 2%.

Given such an instance as described above, the principal and agent play an asymmetric game
in which the principal alone has the power to choose the mechanism and accept a solution, and
the agent alone has the power to search for solutions. More specifically, in order to learn about



the true realization (Xj, Y;) of an element i, the agent can probe element i. We allow them to probe
elements adaptively, choosing what to probe next based on previously realized outcomes. Let us
say that the agent ultimately probes the set Probed C E, obtaining outcomes T. Depending on the
mechanism, they can choose to share information about T with the principal. The principal can
accept any valid solution S C T, yielding a net utility of X’ (; y)es X — Xieprobed ¢i for the principal
and 2 (;x.y)es Y — Dieprobed Ci for the agent. The principal can alternatively choose to reject all
solutions and maintain the status quo, yielding a net utility of — }};cpropeq ¢i for both players. Both
players have common knowledge of the setup of the problem, including all distributions {;}ick
but excluding the true realizations of elements, and they each act to maximize their own expected
utility.

As in the models from previous work, we assume that the agent cannot lie by misrepresenting
the utilities of a probed outcome or by claiming to have probed an unprobed element. We believe
that this is a natural assumption in many settings where outcomes can be easily verified by the
principal. Additionally, we assume that the principal has commitment power, i.e. the agent can
trust the principal to follow the rules of whatever mechanism they choose. The principal can force
the agent to also follow the rules of the mechanism insofar as they can detect violations of the rules.
Finally, we also assume that all instances of this problem satisfy E[X;] > ¢; and E[Y;] > ¢; for all
i € E. The first assumption is without loss of generality, since E[X;] < ¢; would imply that the
principal has no incentive to probe or accept element i, so the agent would not probe it either. The
second assumption allows us to avoid uninteresting impossibilities for the delegation gap defined
in Section 3.1, since E[Y;] < ¢; would imply that the agent has no incentive to probe or propose
element i but the principal may still be able to receive a lot of utility from element i.

For this paper, we’re interested in single-proposal mechanisms as defined in [10] and used in [3].
A single proposal mechanism consists of an acceptable set R C Q1 containing all solutions that the
principal is willing to accept. In such a mechanism, the principal starts by declaring their choice of
R. The agent responds by adaptively probing any set of elements Probed C E of their choosing,
receiving the set of outcomes T = {(i, X, Y;) : i € Probed}. Once they are done probing, they can
propose some valid solution S C T to the principal. Finally, the principal can either accept or reject
the solution S. If S is not a valid solution, S contains misrepresentations of the truth, or S ¢ R,
then the principal must reject S. We note that this mechanism is deterministic in the sense that
the principal chooses a deterministic R and their response to the agent’s choices is deterministic.
This is in contrast to the randomized mechanisms discussed briefly after Theorem 5.2 and lottery
mechanisms as defined in Appendix B. We also discuss more general mechanisms in Appendix A.

Given element i, we define the cap value or surplus value for the principal 7 as the solution
to E[(X; — 77)+] = ¢;. We further define truncated random variables Z;“i“ = min{X;j, 77} for the
principal for all i € E. We similarly define agent’s cap values 7/’ as the solution to E[(Y; - 7//).] = ¢;,
and the truncated random variable for the agent as W™" = min{Y;, Tl.y }. Note that the expected
utility (including the probing cost) of a particular element is negative for the elements with negative
cap values. We sometimes drop superscript from the principal’s cap values and denote 77 as 7; for
i € E whenever it is clear.

3.1 Delegation Gap

As in [3, 10], we are not interested in finding optimal delegation mechanisms so much as finding
delegation mechanisms that approximate the principal’s optimal non-delegated utility. The optimal
non-delegated utility refers to the principal’s optimal utility when delegating to an agent who shares
their interests (alternatively, their optimal utility when they act as both the principal and agent, i.e.
they have the power to probe elements and accept solutions). Note that the non-delegated problem



that the principal faces is exactly the generalized Pandora’s box problem with a downward-closed
constraint. Therefore, our main model is a delegated version of this problem, hence why we call it
the delegated Pandora’s box problem.

Let E[OPT] be the principal’s optimal non-delegated utility. Singla [11] shows that for any
downward closed constraint 1,

E[OPT] < E

min
Let E[DELg] be the expected utility of the delegating principal with single-proposal mechanism R,
i.e. the expected utility of the principal who delegates with acceptable set R to an agent who acts
in order to maximize their own expected utility given K.
Now, we define a-factor delegation strategies, which guarantee the principal at least an a-factor
of E[OPT] when they delegate.

Definition 3.1. Fix an instance of the delegated Pandora’s box problem. We say that a mechanism
R is an a-factor delegation strategy for a € [0, 1] if

E[DELg] > « - E[OPT].

Moreover, we say R is an a-factor agent-agnostic strategy if E[DELg] > « - E[OPT] for all instances
with the same costs and marginal distributions of the principal’s values {X;};cEg, regardless of the
distribution of the agent’s values {Y;};cg.

We sometimes refer to a-factor strategies as a-delegation and a-factor agent-agnostic strategies
as o agent-agnostic delegation. Note that if a-factor agent-agnostic strategies exist for the principal,
then the principal can obtain an a-factor of E[OPT] even when they do not have any information
about the distribution of {Y;};cE.

Now, we define the delegation gap of the family of instances of delegated Pandora’s box.

Definition 3.2. The delegation gap of a family of instances of delegated Pandora’s box is the mini-
mum, over all instances in the family, of the maximum « such that there exists an a-factor strategy
for that instance. This gap measures the minimum fraction of the principal’s non-delegated utility
they can achieve when delegating optimally. We similarly define the agent-agnostic delegation gap
for agent-agnostic delegation.

3.2 Model Variants

In this paper, we consider a few different variants of the model and approximation measure as
defined above. The first such variant, called the binary model, is just a special case of delegated
Pandora’s box in which the distribution y; of every element i has support for exactly two outcomes:
1 =(i,0,0) and w; = (i, x;,y;). A simpler version of this model in which the inner constraint is
a 1-uniform matroid was investigated in [10], and we extend their definition to general matroid
inner constraints. As motivation for this model, we consider search problems in which the principal
and agent know the full space of possible outcomes but don’t know which of those outcomes
are feasible. However, they both share a prior probability on the feasibility of each outcome, all
outcomes are mutually independent, and the agent can check the feasibility of any element by
paying a probing cost. This is also an extension of prior work as described in the introduction.
Second, we consider the free-agent model. This model changes only the utility of the agent such
that they do not pay the cost of any probed elements. In order to ensure that the agent does not
probe all elements and incur too a large cost for the principal, we assume that the agent breaks
ties in favor of the principal when deciding what element to probe next. Therefore, if the principal



doesn’t accept any outcomes from a particular element, then they know that the agent will not
probe that element. We motivate this model both by negative results in the standard model and by
settings in which the principal is constrained in advance to cover all costs that the agent may incur,
e.g. an employer that commits to reimbursing employees for all work-related costs.

Third, we consider discounted-cost approximations, a new measure of approximation for delegated
Pandora’s box problems. Given an instance I of any model of delegated Pandora’s box and some
discount factor 8, consider a new instance J identical to I except that the cost of each element i is
(1 = 6)c;, where ¢; is the original cost.

Definition 3.3. We say that a mechanism R is an («a, §)-factor delegation strategy if the principal’s
delegated utility in the §-discounted instance J is at least an a-factor of their non-delegated utility
in the original instance I.

Observe that this is a bi-criteria approximation in which we aim to minimize § and maximize a.
This approximation measure can be used as a means of determining how far the principal’s costs
are from being able to achieve a constant delegation gap. We additionally motivate it by settings in
which the agent pays a smaller cost for searching than the principal would, e.g. a contractor which,
through prior experience or economies of scale, is able to save on costs and share these savings
with the contractee.

Finally, we consider the shared-cost model. This model considers a fixed cost to probe each element
that the principal can pay alone or share with the agent. In particular, it allows the principal to set
the agent’s cost c; for element i. These costs are announced to the agent along with the acceptable
set R. Then, if the agent probes element i, they pay a cost of ¢; and the principal pays the remaining
cost for that element, i.e. ¢; — c;. To avoid direct transfers of value between the principal and agent,
the principal can only choose 0 < ¢] < ¢; so that both costs are nonnegative. We briefly observe
that there are instances of this model for which the principal’s optimal delegated utility is strictly
greater than their optimal non-delegated utility. This is easy to see by considering any instance for
which X; = Y; for all elements i: the principal can set ¢; = ¢; and have the agent run their optimal
non-delegated strategy while they do not pay any of the costs. Therefore, the delegation gap « of
such instances can be greater than 1. We introduce this model in the hopes that the principal’s
increased power can lead to better approximations. Furthermore, this model resembles settings in
which the principal can choose different reimbursement amounts for each of the agent’s actions,
but is unable to reimburse more than the true cost (no direct transfers).

4 STANDARD MODEL DELEGATION

In this section, we consider the delegation gap of the standard model of the delegated Pandora’s
box problem. We start by looking at the binary model special case, and show that this model has
constant-factor delegation gaps for matroid constraints. Then, in Section 4.3, we show that the
standard model (without binary assumption on ;) does not admit constant delegation gaps in
general, even for the rank one matroid. Before getting to the main result for this model, we analyze
the (non-delegated) Pandora’s box problem with exogenous order as discussed in [10] for rank one
matroids, and extend their result to more general constraints.

4.1 Non-delegated Generalized Pandora’s Box with Exogenous Sequence

Consider a variant of the generalized Pandora’s box problem, which we will call generalized
Pandora’s box with exogenous order, in which the searcher is limited to consider elements in an
order that is specified in advance a part of the instance. For each element in this order, the searcher
can choose to skip the element without probing, or probe the element and either accept or reject
based on the realization. Once the searcher makes a decision about the current element, they cannot



undo this decision. This is an extension of a similarly-named model from [10]. We now define the
threshold strategy for Pandora’s box problem with exogenous ordering. Recall that the cap value 7
for an element i is defined by E[(X; — 7;)*] = ¢;, where X; is the random value of the element and
¢; is its cost.

Definition 4.1 (Threshold Strategy (A, {z;}, {Xi})). Given a downward-closed family of solutions
A, the threshold strategy defined by A functions as follows: Consider the searcher who has already
accepted outcomes S = {(iy, x1), . .. (ix, xx)} and is deciding what to do about element i. They
should probe element i if and only if S U (i, 7;) € A. Furthermore, they should accept element i if
and only if S U (i, X;) € A.

With this type of strategy in mind, we can extend the approximation of this problem from rank
one matroids in [10] to more general downwards closed constraints. Lemma 4.2, which is a corollary
of [6, Theorem 5], provides a reduction from generalized Pandora’s box with exogenous ordering
for arbitrary downwards closed constraints to adversarial greedy prophet inequalities.

LEMMA 4.2. Let ] be an instance of the generalized prophet inequality problem with random variable
Z™n = min{X;, t;} for all i € E and constraint 1. If there exists an a-factor greedy monotone strategy
for J against the almighty adversary, then there exists an a-factor threshold strategy for the Pandora’s
box instance I = (E, {X;}, I, {c;}) with exogenous ordering.

Proor. Corollary of Theorem 5 from [6].

4.2 Binary Model: Efficient Delegation for Matroids

Singla [11] proposes an optimal strategy for Pandora’s box with a matroid constraint that can be
simplified in the binary setting as follows: probe elements one by one starting from the element
with the maximum cap value. Given currently selected elements S, probe the next element with the
maximum cap value i such that S U i € 7. After probing the element i, select i if and only if X; > 0.

Consider the binary delegated Pandora’s box instance for constraint 7 where the distributions
i of every element i € E has support on exactly two outcomes: L = (i,0,0) and w; = (i, x;, y;).
In the following Theorem, we show that the principal can design a 1/4-factor strategy R for the
standard delegation model for y; with binary support and a matroid constraint. The key idea is to
use the reduction from Pandora’s box with an exogenous order to prophet inequalities as described
in Lemma 4.2.

THEOREM 4.3. There exists a 1/4-factor strategy for the binary model of delegated Pandora’s box
with a matroid constraint.

Proor. Take an instance of the binary model with elements E such that for all i € E, we have
(Xi, Vi) = (xi,y;) with probability p; and (X;, Y;) = (0, 0) otherwise. Consider a 1/4-approximate
greedy monotone strategy, as proposed in [7], for the prophet inequality instance with random
variables Z™" = min{X;, 7'} for all i € E and matroid constraint 7 against the almighty adversary.
This strategy is defined by thresholds t = {t;};cg and a matroid constraint 7, C 7. Given any
order of arrival of elements, the gambler selects element i if and only if Z™™ > ¢; and the set of all
accepted elements (including element i) is contained in ;. Without loss of generality, we assume
that t; is such that 0 < t; < x; for all i € E. This is because the gambler has no incentive to accept
elements of value 0 and 7 > 0 due to the assumption E[X;] > c;.

Given thresholds {¢;};cg, the principal restricts the agent to elements in the set E' = {i € E : 77 >
t;}. Let ZF be the matroid constraint obtained by restricting Z; to the set of elements E’ C E. We



can describe the gambler’s greedy monotone strategy as A = {{(i,z;) :i € SAz > t;} : Se IF'}.
Now, we define the principal’s single proposal mechanism as follows:

R={{(i,x;,y;):i€S}:Se L andx; > t; Vi € S}.

For all i € E’, i; has binary support, so Y; > 77 implies that X; > t;, where rl.y is the agent’s cap
value for element i satisfying E[(Y; — 7]).] = c;. Given this set of acceptable solutions R, the agent
faces an instance of Pandora’s box on the set of elements E” with matroid constraint ItE’. Therefore,
the agent’s optimal strategy can be described as follows [11]: given the current set of accepted
elements S C E’ with S € ItE/, probe an element i € E’ \ S such that SU i € ItE and Tiy is maximal.
Then they will accept element i if and only if ¥; > Tiy , which is equivalent to selecting element i if
and only if X; > t;. Thus, the agent simply implements the threshold strategy (A, {7;}, {X;}) for the
principal’s Pandora’s box instance with exogenous order equal to their probing order. Therefore, by
Lemma 4.2, we conclude that the principal’s expected delegated utility E[DELg] > 1/4-E[OPT]. O

4.3 Standard Model Impossibility

Now we will consider the standard model of delegated Pandora’s box and show that this problem
does not have constant-factor delegation gaps in general, even for rank one matroid constraints.
In Proposition 4.4, we present a family of instances of delegated Pandora’s box for which the
delegation gap is O(1/n) where n is the number of elements. The main challenge in this model is
when the agent pays to probe, the principal needs to construct their acceptable set R such that
the agent has an incentive to probe all desirable elements. For example, consider an element i for
which ¢; = 1/+/n, X; = n with probability 1/n and otherwise X; = 0, and Y; = n independently
with probability 1/n and otherwise Y; = 0. In this case, if the principal only accepts the outcome
X; = n, then the agent will not probe element i because their expected utility from probing is
n X Pr[X; = n] Pr[Y; = n] — 1/4/n < 0 for n > 1. In order to ensure that the agent probes such
elements, the principal might have to accept undesirable outcomes where X; = 0. Hence, if there
are multiple such elements then the principal ends up accepting unwanted outcomes with a high
probability that leads to O(1/n) delegation gap. The following Proposition shows the claim formally.

PROPOSITION 4.4. There exist instances of the standard model of delegated Pandora’s box on n
elements for which the delegation gap is O(2).

Proor. For any positive integer n > 1 andreal 0 < ¢ < ﬁ, let M be a positive integer such

that M > n/¢ and consider the following instance of delegated Pandora’s box. We have n identical
elements E = {1,...,n} where each element i has a probing cost ¢; = 1 — ¢ and random utilities
(X3, Y;) ~ pi. The principal’s utility X; is n with probability % and 0 otherwise. The agent’s utility
Y; is M with probability A—l,[ independently of X; and 0 otherwise. The constraint is a 1-uniform
matroid. We let the agent break ties in favor of the principal.

First, we will determine the principal’s optimal non-delegated expected utility. This is given by
the solution to Weitzman’s Pandora’s box problem. For each element i, we must determine the cap
value 7; such that E(X; — 7;)* = ¢;. It’s not hard to verify for this instance that 7 = en. Then the
optimal solution guarantees an expected utility of U = E max; min(Xj, 7;) where each min(Xj, ;)
takes value en with probability % and 0 otherwise. Therefore, max; min(X;, 7;) takes value en with
probability 1 — (1 — 1)" and the principal gets expected utility

E[OPT] = ¢n (1 - (1 - l)n) > €n (1 - l) .
n e

Now, we will bound the principal’s delegated expected utility. Consider an arbitrary acceptable
set R that the principal might commit to. Since the constraint is 1-uniform, R consists of a set of



singleton outcomes. Observe that every element i evaluates to one of four tagged outcomes (i, n, M),
(i,n,0), (i,0, M), and (i,0,0) with probabilities ﬁ, % (1- ﬁ) ﬁ (1- %) and (1-— %) (1- ﬁ)
respectively.

Given R, let E* C E be the subset of elements i for which (i,0, M) € R and (i,n, M) € R, and
let k = |E*|. Consider any element i ¢ E*. If outcome (i, 0, M) ¢ R, then the agent’s increase in
expected utility from probing i is at most M - A—l,[ (1- %) -(1-¢) =¢- % < 0, so they have no
incentive to ever probe i. Similarly, if outcome (i, n, M) ¢ R, then the agent’s increase in expected
utility from probing i is at most M - HLM —(1-¢g)=e—(1- %) < 0. Therefore, the agent will probe
no more than the k elements in E*. If k = 0, then the agent will not probe anything and both will
get 0 utility. For the remainder of the proof, we assume k > 0.

The agent now faces an instance of the Pandora’s box problem, so their optimal strategy is to
probe elements in order of weakly decreasing cap value (among non-negative cap values) and
accept the first outcome whose value is above its cap. For all elements i € E*, we can calculate
that the agent’s cap is éM > 0. Then their optimal strategy is to probe elements from E* in some
order 1,. ..,k until a value of M appears, which they will propose. If no value of M appears after
probing all of E*, then they will stop probing and choose some outcome to propose. Since all probed
outcomes have 0 utility to the agent, they will choose an outcome to propose that maximizes the
principal’s utility.

Consider the utility that the principal gets when the agent finds an outcome of value M. Among
the k = |E*| elements that the agent might probe, they find a value of M with probability 1 —
(1-4)f <k ckay

Since the principal’s utility for the proposed outcome is independent of the agent’s, it will have
value n for the principal with probability % Since k > 1, the principal pays a cost of 1 — ¢ for the
first probe. Therefore, the principal expects a utility of at most £(2 — (1 — ¢)) = ¢* in the event
when the agent finds an outcome with value M.

Now, with probability (1 — ﬁ)k > 1 — ¢, the agent doesn’t find any outcomes of value M. Then
the principal pays a cost of k(1 — ¢) in order to probe all k elements in E*. Since the agent breaks
ties in favor of the principal, they will propose any acceptable outcomes of value n to the principal.
There exists such an outcome with probability at most 1— (1 — %)k Therefore, the principal expects

a utility of at most
k k
1—(1—1) )—k(l—f)Sn(l—(l—l) )—k(l—i)
n n 2n

in the event when the agent does not find an outcome with value M. At k = 1, this expression
evaluates to % = ¢. Atk = 2it evaluates to 0. With some calculus and some algebraic manipulations,
we can show that this expression is negative for all k > 2.

Putting everything together, the principal’s delegated expected utility is at most ¢ + £2, while
their non-delegated expected utility is at least en (1 — %) Therefore, the delegation gap on this
instance approaches m = O(2) as ¢ approaches 0. O

n

5 FREE-AGENT MODEL

The impossibility of constant factor delegation for the standard model, as discussed in Proposition
4.4, motivates us to design efficient delegation strategies for variants of this model as defined in
Section 3.2. We observe that the impossibility is aided by the fact that the agent’s expected utility
for each element is very close to the probing cost, so the principal cannot restrict the agent on any
element they want to be probed. An initial attempt to circumvent this failure might design a model
where the principal can take on a larger proportion of the probing cost so that they can more freely



restrict the agent’s behavior. However, the principal’s expected utility for each element is similarly
close to their probing cost, so they cannot take on a large enough share of the cost without their
own expected utility becoming negative.

As a new approach to achieving constant delegation gaps, we will now consider delegation in the
free-agent model. Recall that this model removes the agent’s probing costs but requires that they
always break ties in favor of the principal. This model can be applied in settings where it is standard
for the principal to incur the total probing cost. As a simple example, an organization (modeled
by the principal) might pay the full travel and lodging expenses associated with interviewing
candidates for an available position. The interviewer (agent) can then freely choose to interview
(probe) candidates and make recommendations of their own choosing.

We will start by showing that there are constant discounted-cost approximations for this model
for any constant discount factor § and certain downward-closed constraints.

5.1 Efficient Delegation for the Free-Agent Model with Discounts

In Proposition 5.1, we propose a (J, §’)-factor strategy for k-uniform matroid constraints for any
0 <§<1/2and§ > §. We show that it is possible to design §-factor agent-agnostic delegation
for the free-agent model with a constant discount factor 8’ > § on costs for k-uniform matroid
constraints. Recall that Z;“in = min{X;, 7;}, where 7; is the solution to E[(X; — 7;)] = ¢;.

ProrosITION 5.1. Let I be an instance of the free-agent model with a k-uniform matroid constraint.
Then there exists a (8, 8")-factor delegation strategy for any0 < § < 1/2 and §’ > 6.

Proor. For 0 < § < 1/2, it is sufficient to prove the theorem for § = ¢ as (J, §)-factor delegation
is also a (8, 8”) delegation for any 8" > §. Consider the delegation strategy in which the principal
sets a threshold T such that Pr[|{i : Zl?ni“ > T} > k] = S and restricts the agent to the set of
elements S = {i : 7; > T}. Among the elements in S, they will accept any combination of outcomes
of utility at least T (subject to the k-uniform matroid constraint):

R={{(i,x,y;) : i €Sk} : Sk € Sand |Sk| < k and all (x;,y;) € supp(y;) and all x; > T}

We will show that R achieves an §-factor of E[OPT] when the principal pays 1 — § factor of the
total probing cost. Now, let’s first bound E[OPT]:

E[OPT] = E | max Zmnl < kT+E
[oPT] Q:|Q|ski§)l

QiQl=k £

max Z(Z;“i“ -1,
€Q

<kT+ Z E[(Z™" - T),]
i=1
=kT+ ) BL(Z™ = 1))
ics
The last equality holds because for all i ¢ S, 7; < T implies that Z™" < T. Hence (Z™" - T), = 0
with probability 1. Now, we claim that for all i € S, we have (Zimin Ty =(X;i—T)y — (X; — 1i)s
with probability 1. Recall that 7; > T for all i € S. So when X; > 7; > T we have that i € S:
Xi-T)+—(Xi—13)y =75-T = (Zl?“in—T)Jr, and when X; < 7; we similarly get (X;—T)+—(Xi—1;)+ =
Xi—-T)s = (Zimin — T)4. Therefore, we can modify the upper bound on E[OPT] as follows:
E[OPT] < kT + Y {(X; = T)s = (Xi — )5} KT+ ) E[(Xi = T),] - c(S) 3
i€S i€eS
Now we will lower bound the principal’s delegated utility under strategy R. Since the agent does
not pay any probing costs, they will (in the worst case) probe all elements in S and propose a set of



elements E’ with X; > T for each i € E’ (if such elements exist) that maximizes their value Y ;. Y;.
Recall that we assume the agent will not probe any elements for which they have 0 expected utility.
Therefore the agent will not probe any elements outside of S.

Let A be the set of elements with Z;mn > T. By definition of the threshold T,

Pr[|A| > k] =Pr[3A C [n],|A| = k, Z™™ > T for all i € A]
=Pr[3ACS,|A| 2 k,Z™" > T forall i € A]
=Pr[JACS,|A| >k, X; > Tforallie Al =6
The above equality shows that there will be at least k elements in S with X; > T with probability
6. Therefore the principal will at least obtain value kT plus some extra value with probability .
We assume the worst-case behavior from the agent: they probe all elements in S, and if A is the
set of elements i for which X; > T, then the agent proposes a maximal set of elements in A with
the minimum x; values. Now consider the following three events: |A| > k, 1 < |A| < k,and A = 0.
Note that Pr[|A| > k] + Pr[|A| = k] = § and Pr[|A| < k] = 1 — 6. Moreover, whenever |A| < k, the
agent will select the entirety of A and propose to the principal because they have no incentive to

drop any element i with x; > T. We can lower-bound the principal’s delegated expected utility for
the worst-case agent with 1 — § discount factor as follows:

E[DEL]
> E[DEL | |A| > k] - Pr[JA| > k] + E[DEL | 1 < |A| < k] - Pr[1 < |A| < k] + E[DEL|A = 0] Pr[A = 0]
> kT(Pr[|A| > k]) + B[DEL|1 < |A| < k] - Pr[1 < |A| < k] = (1 = 8)c(S)(Pr[|A] > k] +Pr[A = 0])

> kT(Pr[|A] > k] + Pr[|A] = k]) = (1 = 6)c(S) g
+ZE[X,» —T|X; > T AA| < k] Pr[X; > T] - Pr[|A\ | < k- 1]
> 5k;iZE[(Xi —T),] -Pr[|A\i| < k—1] - (1-8)c(S)
> SkT + EE[(Xi ~T),] - Pr[|A] < k] — (1= 8)c(S)
> SkT + Zs— 5) ZE[(X,. ~T),] - (1-8)c(S)
ieS
=5 (kT + > E[(X; —T),] - c<s>) +(1-25) (Z B[(X; = T)] = ) E[(X; - ).] ©)
> 5E[0PT]i.ES . “ (7)

Inequality 4 holds because the principal will obtain at least utility of kT when |A| > k. Inequality
(5) holds because when 1 < |A| < k, the agent will propose the entire set A. The inequality (7)
holds because § < 1/2 and r; > T for all i € S implies that E[(X; — T)+] — E[(X; — 71)+] > 0. This
concludes the proof. O

We now extend the constant delegation gap for the free-agent model with constant discounts to
general downward-closed constraints. In Theorem 5.2, we show a reduction from the free-agent
model with constant discounts to selectable greedy OCRS. We show that if there exist a-selectable
greedy OCRS for the polytope Py = conv{lg : S € I} then the principal can construct a (&, 1 — a)-
factor delegation strategy for the free-agent model with constraint 7. Theorem 5.2 further implies



constant factor delegation for the free-agent model with constant discounts for general matroids,
matchings, and knapsack constraints.

THEOREM 5.2. Given an instance of the free-agent model with constraint I, if there exists an
a-selectable greedy OCRS for the polytope Py = conv{lg : S € I}, then there exists a (a, §)-factor
strategy for the given instance where the discount factord > 1 —a

Proor. Given an instance of the delegated Pandora’s box problem for the free-agent model with
elements E and constraint 1, let arandom optimal set I* defined as follows: I = arg maxg, 7 2;cs Zl?“i“.
We define p; = Pr[i € I"] and thresholds ¢; such that Pr[Z;nin > t;] = p;. Notice that I* € T with
probability 1, we have that p* is a convex combination of characteristic vectors of feasible sets 7,
and hence, p* € Py. The principal rejects all elements not in E’ = {i € E : p; > 0}, so the agent has
no incentive to probe them. Note that for all elements i € E’, 0 < t; < 7;. We can bound the optimal
utility as follows:

E[0PT] < E I;lea}(ZZ;nm = Z E[Z™" | i € I*] Pr[i € I']
ieS ieE’
< Y E[ZM0 |z > 4]p;
i€E’
= Y BI(ZM - )] + Z tip;
ieE’ ieE’
= Z E[(Xl - ti)+ Tl)+ Z tzPl
i€E’ i€E’
= > BI(Xi — )] + Z tip; — (E')
i€E’ i€E

Let 7, C I be the downward closed family generated by a-selectable greedy OCRS for p* € Pr.
Now, consider a delegation strategy in which the principal accepts a proposal of elements S if and
only if S € I, and the realizations of all i € S is greater than or equal t;, i.e.

R={{(i,x,y;) :i € Q} : Q € Iy and (x;,1;) € supp(y;) and x; > ¢; for all i € Q}

Since the agent does not incur any cost for probing, in the worst case they will probe all elements
in E’. Let R(t) be the set of elements with X; > t;. The agent will always propose some maximal
set I with I € R(t) and I € Z,-. More formally, let

pR(t) {S:(Sely)and (X; > t;forallieS)and (SUi" ¢ I, foralli’ € E'\ S with Xy > t)}
be the family of sets of elements that the agent might propose. In the worst-case, they will propose
some such set of elements that minimizes the principal’s utility. We can think of this worst-case
agent as follows: an almighty adversary who presents elements in the worst possible sequence for
all realizations, the agent then picks element i if and only if X; > ¢; and the selected set satisfies
the feasible constraints Z,- ¢. Note that this agent has no incentive to pick a set outside of 7, R®),
Since 1« is generated by an a-selectable greedy OCRS, given any currently selected set by the
agent S C R(t) and S € 7+, we have Pr[S U i € 1»] > a. Therefore for all elements i € E, we have

An almighty adversary knows the coin flips of the agent’s strategy, i.e. I« and R(t). Therefore, an almighty adversary

R(t)

can force the agent to select any S € I of their choice.



Pr[i € I] = a - Pr[X; = t;]. Then

E[DEL] = E —(1-8)c(E)

>

iel

> Y E[X; [iel] - Pr[iel] - (1-8)c(E).
i€k’
Since the agent selects an element i only if X; > t;, on the adversarial arrival of elements selected
by an almighty adversary, E[X; | i € I] = E[X; | X; > t;]. We can bound the principal’s expected
delegation with a constant discount § > 1 — « as follows:

E[DEL] = Z E[X;|iel] Pr[iel] - (1-0)c(E)

ieE’
> - ZE[X, |Xl > ti] 'PI'[X,‘ > ti] —CL"C(E,)
ieE’
= {Z E[(X, - ti)+] + Z tlp: - C(E,)}
ieE’ icE
> o - E[OPT]
Concluding the proof. O

We note that the argument above reduces deterministic delegation, in which the principal chooses
their strategy deterministically, to deterministic greedy OCRS. Perhaps surprisingly, it can also
reduce deterministic delegation to randomized greedy OCRS as defined in [7]. The reason is that any
randomized greedy OCRS is randomization over deterministic OCRS, so the reduction constructs a
distribution over delegation mechanisms achieving the desired approximation. However, our model
of delegation is a Stackelberg game in which the principal moves first, so their best randomized
strategy can be no better than their best deterministic strategy. Therefore, the principal can choose
the best deterministic strategy from among the distribution provided by the reduction for the same
approximation factor.

Theorem 5.2 combined with efficient a-selectable greedy OCRS schemes [7] implies the following
corollary.

COROLLARY 5.3. There exist (@, )-factor delegation strategies (agent-agnostic) for the free-agent
model with matroid, matching, and knapsack constraints and constant discount factor §. Specifically,
these constants for matroids, matchings, and knapsacks are « = 1/4,6 > 3/4, a = 1/2¢,6 > 1 —1/2e
anda =3/2 - V2,8 > 2 - 1/2, respectively.

5.2 Free-Agent Model Impossibility without Discounts

One of the primary motivations for introducing this model comes from the impossibility in Section
4.3 and an attempt to circumvent one of the challenges with achieving a constant delegation gap.
Recall from that section, the instance for which X; = n and Y; = n independently with probability
1/n each and 0 otherwise. Now that the agent does not pay to probe, the principal may choose
accept only outcome (i, n,n) from element i because the agent’s expected utility from probing
iisn-Pr[X; = n]Pr[Y; = n] = 1/n > 0. However, since the agent does not pay to probe, they
may probe all elements that can be accepted with nonzero probability so long as they could do
better by probing such elements. Therefore, the agent might incur too large a probing cost for the
principal compared to what the principal would pay on their own. In Proposition 5.4, we describe a
family of instances of the free-agent model for which the delegation gap is O(1/n'/*) without any



discounts. Proposition 5.4 shows that it is impossible to obtain a constant factor delegation gap
for the free-agent model without any discounts, even when the agent breaks all ties in favor of
the principal. Moreover, it holds even when the agent does not probe all possible elements whose
outcome is acceptable with nonzero probability. The proof of Proposition 5.4 is omitted due to
space constraints. See Appendix C.1 for the proof.

PrRoOPOSITION 5.4. There exists an instance of the free-agent model on n elements with a 1-uniform
1
matroid constraint such that the delegation gap is O(1/n%), even when the agent breaks all ties in

favor of the principal.

5.3 Discounted-Cost Impossibility

With constant-factor delegation gaps for the free-agent model with discounts and an impossibility
for the free-agent model, one might hope that the standard model with constant discounts might
admit constant delegation gaps. However, we again have an impossibility. In Proposition 5.5, we
show that there exists a family of instances of the standard model, parameterized by the number of
elements n, with a generous discount factor § = 1—1/+/n for which there does not exist any constant
factor delegation strategies. Thus, Proposition 5.5 shows that there can not exist an («, §)-strategy
for this problem with constants @ and § < 1. Proof of Proposition 5.5 is omitted due to space
constraints. See Appendix C.2 for the proof.

ProposITION 5.5. There exist instances of the discounted-cost model on n elements with discount
factor § = 1 — 1/+/n (the agent and the principal both pay (1 — 8)c; for all elements, i.e. c;/\n) for
which the delegation gap is O (1/+/n).

6 SHARED-COST MODEL

We now consider the shared-cost model, where the principal decides how to split each probing cost
with the agent. This final model gives the principal more control over probing costs in another
attempt to get constant-factor delegation gaps despite our previous impossibility results. Recall
that in this setting, the principal starts by choosing how to split each probing cost, so that the agent
pays c; € [0, c;] and the principal pays the remaining cost ¢; — ¢; € [0, ¢;]. This model is motivated
not only by our earlier impossibilities, but also by settings in which the principal has the power to
pay chosen percentages of different costs that the agent may incur. For example, an organization
(modeled by the principal) might reimburse chosen percentages of travel and lodging expenses
associated with interviewing candidates based on the total amount of cost and expected quality of
the candidate. The interviewer (agent) can then choose to interview (probe) candidates and make
recommendations of their own choosing, but they must pay the remaining cost on their own.

In Theorem 6.1, we show that there exist efficient constant-factor strategies for the principal
for a certain class of downward-closed constraints. This positive result uses a reduction from the
shared-cost model of delegation to greedy selectable OCRS.

THEOREM 6.1. If there exists an a-selectable greedy OCRS for the polytope Pr = conv{ls : S € I},
then there exists an a/2-factor delegation strategy for the shared-cost model with inner constraint I .

ProoF. Let {p;}ick be the solution to the following optimization problem:
p =arg maxZgi(qi), where  g;(p;) = pi - E[Z™™ | ZM > F7 (1 - p))],
9€Pr  ieg

where F;(z) for i € E is the the cumulative distribution function of Z;nin, similar to [7] 7. For i € E,
we set a threshold t; = min{f : F;($) > 1-p;}. Forany p € Pr,let I, C I be the downward-closed

"We can also modify the optimization for discrete Zl?“m asin [7].



set system generated by an «a-selectable greedy OCRS with marginal probabilities p. The proof of
Theorem 1.12 from [7] shows that for any online/adversarial item arrival order, the simple strategy
that selects element i if and only if X; > t; and S U i € 1, (where S is the set of selected elements
before the arrival of i) obtains at least « - E[maxrcrs D jer Zl.mi“] > a - E[OPT] in expectation. The
above strategy is an a-factor greedy monotone strategy for the gambler against almighty adversary
which can be described as A; = {{(i,x;) :i € S} : S € I, and x; > t; for all i € S}.

Given the independent distributions {y;};cg, the principal first computes d; = E[Y; | X; >
t;] - Pr[X; > t;] for each element i € E. If d; < ¢; for all elements i € E, then the principal selects
the agent’s costs as ¢; = d; for all elements. After the cost division, the principal can define their
strategy as follows: they accept elements only from the set F = {i € E : 7; > t;} where 7; is the
principal’s cap value for X;. Note that there does not exist S € 7, that contains an element j € S
not belonging to F because the thresholds were defined for the truncated random variable Z™™.
The principal sets the acceptable outcomes as

R={{(i,xi,y;)):i€S}:S€L,and S C Fandall (x;,y;) € supp(y;) and all x; > t;}.

Given this delegation strategy, the agent has an expected utility of E[Y; | X; > £;]-Pr[X; > t;]-c} =0
for each element i that they might want to probe. Given any set of probed and selected elements S,
the agent has expected utility 0 for probing any additional element i such that S U i € 7,,. Hence,
the agent has no incentive to deviate from the principal’s a-factor threshold picking strategy (A;)
(from Definition 4.1) for any probing order, where A; is an a-factor greedy monotone strategy for
the prophet inequality with random variables {Z™"} against the almighty adversary defined earlier
in the proof. Specifically, if they have already selected elements S and are considering element i,
they should probe i if and only if 7; > ¢; (otherwise Z{nin can not be more than t;) and SU i € 1,
and they should select i if and only if X; > t;. At any given time with selected elements S, the
agent’s expected utility from probing i with 7; > t; and SU i € 1, is 0, so there is no incentive
to deviate. Since the principal pays at most ¢; for the agent to probe each element i, Lemma 4.2
implies that the principal obtains at least « - E[OPT] by delegating.

However, the agent’s expected utility becomes nonzero for feasible elements when there exists
some element i € E with d; > ¢; because then the principal cannot set ¢} any larger than c;. Hence,
the agent doesn’t have 0 expected utility for feasible elements and may not follow the principal’s
optimal search strategy. In such cases, the fact that the principal does not pay to probe helps us get
a similar approximation.

Consider the case d; > ¢; for all i € E. If the principal only accepts elements with X; > t; then
they can safely ask the agent to pay the entire cost, i.e. ¢; = c;. Again, consider the same acceptable
set discussed earlier in the proof:

R={{(i,x;,y;)):i€S}:Se€,and S C Fandall (x;,y;) € supp(y;) and all x; > t;}.

Let Probed and S be the set of elements probed and selected, respectively, by the agent for some
fixed realization of all random variables. It is easy to observe that there must be no i € Probed \ S
with X; > t; and SU i € 1, otherwise the agent can improve their utility by selecting such an
element. Moreover, there isno i € F \ Probed with SU i € 1,, otherwise, the agent can improve
their expected utility, given the realizations of elements in Probed, by probing element i.
Therefore for any fixed realizations, we can consider the agent that executes a-factor greedy
monotone strategy A; for {Z™"} for the following element arrival order: first the elements in S,
then the elements in Probed \ S, and finally the elements in F \ Probed. Strategy A, will select all
the elements in S, but A; will not select any element in Probed \ S because, as we already argued,
there is no i € Probed \ S with X; > t;. Moreover, A; will not select any element in F \ Probed
because there is no i € F \ Probed with S U i € 7,,. Therefore, the agent selects exactly the same



elements that the a-factor greedy monotone strategy A, for Z™" would select for the described
element arrival order and any realizations. Since the principal does not pay any cost to probe
elements, extra elements probed in Probed set do not affect the principal’s utility. Therefore, the
principal obtains at least & - BE[maxres X et Z;“in] > a-E[OPT] from delegation because A; obtains
at least a - E[maxre s Y;cr Z™"] against the almighty adversary.

Now, finally we consider the case when there are some elements for which d; < ¢; and others
for which d; > ¢;. We define E; = {i € E : d; < ¢;} and E; = {i € E : d; > ¢;}. The principal can
restrict the agent to one of these two sets with with the greater expected E[OPT] when they follow
the corresponding strategy described above. It is easy to show that the principal only loses at most
a factor of 1/2 in this case compared to the others:

in+ZXj) < B |max. X+£lca})3(lZX

i€eS; jESZ N i€eS; S,el ]ESZ

E[OPT] = E max
S1CE1,8,CE;
S1US, €T

<2maxiE maxZXl , maxZX
S1CE, S CE,
S el €51 S,el J€S2
Combining the above arguments, we conclude that there exists an «/2-factor delegation strategy

for this instance. ]

We note that, similarly to Theorem 5.2, this result can reduce deterministic delegation to ran-
domized greedy OCRS.

The following corollary shows that there exists a constant factor delegation gap for the shared-
cost model with matroids, matching constraints, and knapsack constraints.

COROLLARY 6.2. There exist a-factor delegation strategies for matroids, matching constraints, and
knapsack constraints for the shared-cost model. Moreover these constants are « = 1/8, « = 1/4e and
a = 3/4 — 1/V2 for the respective constraints.

As we discussed in Section 3.2, the delegation gap for instances of the shared-cost model can
be greater than 1, meaning that the principal benefits from delegating (in expectation) and may
choose to do so even if they have the ability to conduct the search on their own. However, we can
construct an instance of this model for which the delegation gap is strictly less than 1, showing
that this is not possible in general.

ProrosITION 6.3. There exists instances of Pandora’s box for the shared-cost model with delegation
gap 1/2 + ¢ for arbitrary small e > 0.

ProoF. We can construct an instance with 1-unifrom matroid constraints similar to [3, Proposition
4.2]. Note that the referenced impossibility has cost 0 and still holds in the context of the shared-cost
model, but we reproduce it here with positive (though negligible) costs.

For small ¢ << 1, let X; = 1/¢ with probability ¢ and 0 otherwise, and Y; = 1 — ¢ with probability
¢ and 0 otherwise, independently of X;. Let X; = Y, = 1 deterministically and set costs ¢; = ¢z = 2.
We can compute E[OPT] =2 — & — 262 — &% > 2 — 4e.

Consider any cost division 0 < ¢} < ¢; and 0 < ¢} < ¢y. If the principal accepts element 2 then
the agent will always probe element 2 and propose. We can enumerate over all possible delegation
strategies and show that E[DEL] < 1 in all cases. This shows that the delegation gap is 1/(2 — 4¢),
concluding the claim. O

We observe that the efficient delegation strategy for the shared-cost model constructed in
Theorem 6.1 relies on a computation of ¢; that uses information about the joint distribution ;. In



the following proposition, we show that if the principal has no information about the distribution
of Y}, then they can not obtain constant factor delegation for the shared-cost model. This holds
because, without any information about Y;, the principal does not have enough information to
compute a cost division for which they can guarantee that the agent will probe the element i. We
formalize our intuition in Proposition 6.4 that shows that the agent agnostic delegation gap for the
shared-cost model is at least O(1/n'/*). The proof of the Proposition 6.4 is omitted due to space
constraints. See Appendix C.3 for the proof.

PROPOSITION 6.4. There exists a family of instances of the shared-cost model with delegation gap
O(1/n'/*) when the principal has no information about {Y;}.

7 OPEN QUESTIONS

In this work, we explored just some of the many possible models and results related to the delegation
of the Pandora’s box problem. We leave the following open questions for future work.

e All of our positive results employ deterministic delegation mechanisms. Can the principal
do strictly better in any of these models by using a lottery mechanism instead? Note that in
Appendix B, we show impossibilities only for the class of binary lottery mechanisms.

e Can our results be extended to other families of downward-closed constraint systems or even
to broader classes of constraints such as prefix-closed constraints [5]?

e We observe that modeling delegation with a constraint system allows us to describe delegation
problems in which solutions may not be independently distributed and probing reveals only
part of certain solutions. Therefore, it may be interesting to investigate the delegation gap of
problems that relax the independence assumption in ways that cannot be represented by the
addition of a constraint system.

e In Theorem 5.2, we show that there exists a (a, §)-factor strategy for the free-agent model
with discount § > 1 — « for the constraints 7 if there exists c-selectable greedy OCRS scheme
for a relaxation of Pr. However, we do not yet know of any impossibility or constant-factor
strategy when § < 1 —a.

e The shared-cost model is unique among the models in this paper for the possibility of
delegation gaps strictly greater than 1, as explained briefly in Section 3.2. This is interesting
because such a delegation gap could incentivize the principal to delegate a problem that they
have the ability to solve on their own, whereas our other models assume that the principal
must delegate. Can we characterize the family of instances of the shared-cost model for
which the delegation gap is strictly greater than 1?

e For the models with strong impossibility results, can we find nontrivial families of instances
with “friendly” agents which allow the principal to achieve a constant delegation gap?
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A  MORE GENERAL MECHANISMS

Having now defined our model and the space of single-proposal mechanisms, it is natural to
ask about the power and generality of such mechanisms. It might be beneficial for the principal
to consider a larger class of mechanisms that have, for example, more signals to choose from
and multiple rounds of communication. However, as in previous work on delegation and similar
mechanism-design problems, we argue that that any multi-round signaling mechanism can be
equivalently implemented by a single-proposal mechanism. This allows us to consider only single-
proposal mechanisms without loss of generality. Since this type of argument is similar to the
revelation principle and is very common in the literature [1-3, 10], we will include only an informal
sketch here.

Consider any multi-round signaling mechanism M. We will construct a single-proposal mech-
anism S that simulates M. In S, the principal commits to accepting any solution that they could
accept when both players follow M. Since the agent following M can predict this set of acceptable
solutions and the sequence of probes and signals leading to any such solution, they can act in a way
that optimizes their expected utility given the solutions that the principal would accept. Therefore,
the agent responding to S can do no better than following the same such optimal sequence of
probes and then proposing whichever solution the principal would have accepted under M. Since
they can do just as well under S and have no reason to deviate from the optimal strategy of M,
these mechanisms are equivalent.

We note here that this argument applies to deterministic mechanisms. Lottery mechanisms as
defined in Section B could have strictly more power than their deterministic counterparts.

B LOTTERY MECHANISMS

In this section, we consider a class of delegation mechanisms which we call binary lottery mecha-
nisms. These are a class of randomized mechanisms that generalize the deterministic ones used
earlier.

Formally, a lottery mechanism consists of a menu R of distributions over solutions. After the
principal has announced R to the agent, they probe elements as usual. However, rather than
proposing a single solution to the problem, the agent proposes one of the distributions D € R
that the principal announced. Then, the principal samples a solution S ~ D from the proposed
distribution. If S is a valid solution (feasible in the inner constraint), then the principal accepts and
both players receive their respective utilities for S minus the total probing cost. Otherwise, the
principal rejects the invalid solution and both players pay the total probing cost with no gain.



A binary lottery mechanism is a special case of lottery mechanism in which each distribution
D € R has support for at most two solutions: one null (status quo) solution and one valid non-null
solution. Such a mechanism can be equivalently represented by a set R of acceptable solutions and
a probability ps for each solution S € R. Then, the principal accepts proposal S € R from the agent
with probability ps and rejects the proposal otherwise. This second representation is the one that
we will use for the rest of this section.

Observe that the argument from Section A applies only to deterministic multi-round signaling
mechanisms. Therefore, such lottery mechanisms may be strictly more powerful than their de-
terministic counterparts. However, a similar argument can show that we get no increased power
from randomized multi-round signaling mechanisms, so it’s sufficient to consider only randomized
single-proposal mechanisms (lottery mechanisms as defined above).

Since they have fine-tuned control over “how much” of each solution to accept, binary lottery
mechanisms may seem to give the principal increased delegation power. However, we will now
show that strong impossibilities exist for such mechanisms in the case of the standard model and
the free-agent model, generalizing earlier results about deterministic mechanisms.

ProrosITION B.1. There exist instances of the standard model of delegated Pandora’s box on n
elements for which the delegation gap is O(\/Lﬁ) for the class of binary lottery mechanisms.

Proor. For any positive integer n > 1 and real 0 < ¢ = \/LE’ and consider the following instance

of delegated Pandora’s box. We have n identical elements E = {1,...,n} where each element i
has a probing cost ¢; = 1 — ¢ and random utilities (Xj, ;) ~ p;. The principal’s utility X; is n with
probability % and 0 otherwise. The agent’s utility Y; is 2 with probability % independently of X; and
0 otherwise. The inner constraint is a 1-uniform matroid. We let the agent break ties in favor of the
principal. Following the poof of Proposition 4.4, we have E[OPT] > en (1 —1/e) = (1 — 1/e)vn.

Now, we will bound the principal’s delegated expected utility. Consider an arbitrary acceptable
set R that the principal might commit to. Observe that every element i evaluates to one of four
tagged outcomes (i, n, M), (i, n,0), (i, 0, M), and (i, 0, 0) with probabilities HLM, % (1 - %), A—I/I (1 - %),
and (1 - ) (1 - 3;), respectively. We let p}, denote the probability chosen by the principal of
accepting outcome (i, x, y).

Given R, let E* C E be the subset of elements i for which (n — 1)pf, + p., > n(1 - ¢). If any

element i ¢ E* then the agent’s increase in expected utility from probing i is at most 2 - I;an +2-

pT‘l’z (1-1/n) = (1 —¢) < 0, so they have no incentive to ever probe i. Let |E*| = k, so the agent will
probe no more than the k elements in E*. If k = 0, then the agent will not probe anything and both
will get 0 utility. For the remainder of the proof, we assume k > 0. Note that the principal has no
incentive to set P(i)o > 0 and pfw < 1foranyi € E*. We can use a similar argument as Proposition 5.4
to show this formally.

The agent now faces an instance of the Pandora’s box problem, so their optimal strategy is to
probe elements in order of weakly decreasing cap value (among non-negative cap values) and
accept the first outcome whose value is above its cap. Thus, the agent probes elements in the
decreasing order of cap values Tiy = (2p;—1+¢)/p; where p; = % + PT‘I’Z (1—-1/n) until the expected
gain from an element exceeds the remaining cap values. It is easy to verify that 2 > riy > 0 for all
i € E* by the definition of E*.

First, we assume for all elements i € E* that riy > 0. Since the cap value is strictly positive for all
i € E*, the agent will never propose an element with Y; = 0 if they find j € E* with Y; = 2. Consider
the utility that the principal gets when the agent finds an outcome of value 2. Among the k = |E*|
elements that the agent might probe, they find a value of 2 with probability 1 — (1/2)¥. Since the



principal’s utility for the proposed outcome is independent of the agent’s, it will have value n for
the principal with probability % Since k > 1, the principal pays a cost of 1 — ¢ for the first probe.
Therefore, the principal expects a utility of at most (1 — (1/2)")(;);2 h-(-g)<(1- (1/2)K)e
from the event when the agent finds some element i € E* with Y; = 2.

Now, with probability (%)k the agent doesn’t find any outcomes of value 2. Then the principal
pays a cost of k(1 — ¢) in order to probe all k elements in E*. Since the agent breaks ties in favor of
the principal, they will propose any acceptable outcomes of value n to the principal. There exists

such an outcome with probability at most 1 — (1 — %)k Therefore, the principal expects a utility of

at most
(3] = (=3)
nft-{1-- —k(l—¢)<nf1-|1-=|]-k(1-¢)=ke
n n

from this event. Hence, E[DEL] < (1 — (1/2)F)e + ke(1/2)F < O(1)e for k > 1. Therefore the
delegation gap is O(1/n) when rl.y > 0 fori e E*.

Now, suppose for all elements in i € E* that 7,/ = 0. This implies that (n — 1)pi, + pl, = n(1 —¢).
In this case, the agent obtains 0 utility in expectation by probing any element. Thus, the agent
will try to break ties in the principal’s favor. Let’s say the agent probes a set of elements S with
observed outcomes S where they break ties in favor of the principal at every step. If there exists
an element i such that (i, -, 2) € S, then the agent will never propose an outcome (j, -, 0) from S
because they can obtain better utility by proposing an element i with outcome (i, -, 2).

Let S; = {i1,..., it} be the set of elements probed by the agent until now with outcome S;.
Suppose the agent has observed an element i, € S, with Y;, = 2. In that case, if the agent further
probes an element i among the unprobed elements, then they will propose i if and only if Y; = 2. If
the agent probes i, then the addition in the principal’s expected utility is n - PTh ‘Pr[Y;=2]-¢ <.
Therefore, the agent will not probe any further elements. Thus, we can conclude that the agent
will stop probing elements as soon as they observe an element i such that Y; = 2. Similarly, we can
show that the agent will stop probing elements if they observe an element j with outcome (j, n, 0)
before any element i with realization Y; = 2.

We can bound the probability of the agent observing outcome (-, n, 0) before (-, -, 2) by %(1/2 +
(1/2)%+...) < % Let us denote the event when the agent finds an element with outcome (-, n,0)
before (-, -,2) by &;. In the event &, the principal obtains value n and pays to probe at least one
element. E[DEL|&1] < (n — 1+ ¢). In the event EF, the agent observes an element with outcome
(+, -, 2) before (-, n,0). In this event, the agent will propose the first observed element i with Y; = 2.
Since the principal’s utility for the proposed outcome is independent of the agent’s, it will have
value n for the principal with probability % Since k > 1, the principal pays a cost of 1 — ¢ for the
first probe. Therefore, E[DEL|E] < (% — 1+ ¢) = &. We can now bound the expected delegated
utility as follows:

E[DEL] = E[DEL|E] Pr[&E] + E[DEL|EC] Pr[E€]
< (%) (n—-1-¢)+¢e<0().

Therefore the delegation gap is O(1/+/n) when Tl-y =0forie E"

Now, consider the case when 7} > 0 for all i € E*. In this case, the agent first probes elements
with positive cap values, and if they are unable to find an element with Y; > z'l.y, then they probe
elements in E* with cap value 0. Therefore we can bound the expected delegation as E[DEL] <
O(1)e + O(1) = O(1). This shows that the delegation gap is O(1/+/n). O



In the following proposition, we show that there exists an instance of the free-agent model in
which the delegation gap for binary lottery mechanisms is O(1/n'/*). The instance in Proposition B.2
is exactly the same instance described in Proposition 5.4. We show that the optimal binary lottery
mechanism for the instance described in Proposition 5.4 coincides with the optimal deterministic
mechanism. Hence, the impossibility result for deterministic delegation holds for the class of binary
lottery mechanisms as well.

PROPOSITION B.2. There exists an instance of the free-agent model on n elements with a 1-uniform
matroid inner constraint such that the delegation gap is O(l/ni) for binary lottery mechanisms, even
when the agent breaks all ties in favor of the principal.

Proor. Consider an instance of the free-agent model with a 1-uniform matroid inner constraint,
and for each element i, let X; and Y; be independently distributed as follows:

Xi= n

e", with prob.

Nl= D=

\Lfn with prob. 1/4/n v i, with prob.
0, otherwise l

where §; > 0 are sufficiently small. We set the cost for probing any element i to ¢; = 1 — ¢, where
&= # Following Proposition 5.4 E[OPT] > ©(n'/*). For simplicity, let p = 1/n'/*.

Now we will bound the principal’s optimal delegated expected utility. Consider the delegation
strategy defined by some optimal set of acceptable outcomes R. We let pfcy denote the optimal
probability chosen by the principal of accepting outcome (i, x,y). For ease of notation, we let
Pi1 = Ppagns Pio = P, Por = Poen> a0d Pog = P -

For all i € E, we claim that (p!, +p!)/2 > 1 —eor Ph =pl, =pb, = pb, = 0. Otherwise, if both
conditions are broken, the principal obtains vn-(p},+p,)- % —c < 0 utility in expectation whenever
the agent probes element i, contradicting the optimality of the principal’s strategy. As a result, both
P10 and p1; have to be at least 1—2¢. We now define the set of elements E* = {i : p!, > 0 and p!; > 0}.

Given R, the agent’s optimal strategy can be described as follows: probe elements one by one

in the decreasing order of Tiy = ZPTHE + 1%(1 — 1/+/n) and propose the first element with Y; = e” if

pé(i en = MAX; {p{l, pél} for unprobed j € E*. The agent will not stop before observing an element
i € E* with Y; = e" because they can always obtain at least sz‘/e; >(1- 25)% > §; in expectation
by probing any element. Since the principal wants to maximize the chance of accepting any element
i with X; = 1/+/n, they will set p!, = 1 and p}, = 0.

If the agent is unable to find such an element, then they will propose some element i for which
Y; = §; with the maximum p;'(i 5 ;. Given the agent’s optimal strategy, the principal wants to
maximize the chance of accepting an element i with X; = 1/+/n whenever agent proposes such an
element. Therefore, pi| = 1 and p}, = 0 for all i € E*. We have now shown that the optimal binary
lottery mechanism in this instance is exactly the optimal deterministic mechanism discussed in
Proposition 5.4. Hence, following the proof of Proposition 5.4, we conclude that the delegation gap
with binary lottery mechanisms for the free-agent model is O(1/n'/4). O



C MISSING PROOFS FROM THE PAPER
C.1 Proof of Proposition 5.4

Proor. Consider an instance of the free-agent model with a 1-uniform matroid constraint, and
for each element i, let X; and Y; be independently distributed as follow:

X; = p%’, with prob. p? Y, = d;,  with prob.
0, with prob. 1 - p?

n?

e”, with prob.

D= D=

where p = # and §; > 0 are sufficiently small. We set the cost for probing any element i to
ci=1-— % and also observe that (1 — (1 — p?)") — lasn — oo.

Once again, the principal’s optimal non-delegated expected utility is given by the solution to
Weitzman’s Pandora’s box problem. For each element i, we must determine the cap value 7; such

that B(X; — 7;)* = ¢;. It’s not hard to verify for this instance that 7; = ﬁ = %/4
solution guarantees an expected utility of E[E[OPT]] = E max; min(Xj, 7;) where each min(X;, ;)
takes value 7; with probability pz and 0 otherwise. Therefore, max; min(X;, 7;) takes value 7; with

. Then the optimal

probability 1 — (1 —p?)" =1 - (1 - ﬁ) = O(1) and the principal gets expected utility

E[OPT] = O(1)7; = ©(n'/%).

Now we will bound the principal’s optimal delegated expected utility. Consider the delegation
strategy defined by some set of acceptable outcomes R. Given R, the agent’s optimal strategy
(assuming they break ties in favor of the principal) can be described as follows: probe elements one
by one for which (i, 1/p?, e"z) € R and propose the first observed element with (x;, y;) = (1/p% e"z).
If they are unable to find such an element, then they probe elements with only (i, 0, e"’) € R and
propose the first element with y; = e Finally, they will probe all other elements in some order
and propose any element with maximum §; among probed feasible elements.

For each element i, the principal has no incentive to accept only 0 utility outcomes, so an optimal
strategy cannot have both (i, 1/p?, e") ¢ R and (i, 1/p% 6;) ¢ R, since then they may incentivize
the agent to probe element i (incurring a cost on the principal) without getting any utility back.
Moreover, the principal has no incentive to accept any 0 utility outcomes from an element i even if
they accept at least one of (i,1/p?, e”z) or (i,1/p? &;). To see why, consider any delegation strategy
R for which there exists an element i with (i,0,-) € R. There is a nonzero probability that the
agent observes only element i with Y; = " and X; = 0. In this event, dropping (i,0, -) from R does
not change the principal’s expected utility. Since the agent breaks ties in favor of the principal,
in all other cases they will propose an element i with positive X;. Hence, the principal’s expected
utility does not decrease if (i, 0, ) ¢ R.

Finally, if R is an optimal delegation strategy, then for any element i € E, we have that
(i,1/p% 6;) € R implies that (i, 1/p?, e"z) € Rand (i, 1/p?, e"z) € R implies that (i, 1/p% 6;) € R.
Suppose, for the sake of contradiction, that there exists an element i with only (i, 1/ pz, e"z) e R.
Then the agent will probe element i last after probing other elements i’ with (i, 1/p?, e”) e R
and (7', 1/p2, d;) € R. Now, consider the event in which the agent probes element i and it is the
only element with X; > 0 among all the probed elements. The probability of such an event is
nonzero. However, the agent will not be able to propose an element i if Y; = §;, which happens
with probability 1/2, and in this case the principal ends up paying the cost for probing i without
obtaining any value. By adding (i, 1/p? &;) to R, the principal can increase their expected utility
conditioned on i being the only element with X; > 0. In all other cases, adding (i, 1/p?, ;) to R
does not affect their utility. This contradicts the optimality of R.



For the other case, suppose there exists an element i with only (i, 1/ p d;) € R. Again, the agent
first probes the elements with both (i’, 1/p?,6;) € R and (i’,1/p?, " ) € R. Consider the event
in which they do not observe any element with i" with X;; > 0 among the elements probed so
far. Now, let assume that the agent probes i right after that (this is the best possible scenario for
the principal as all other available elements i’ are such that (i, 1/p?,-) ¢ R). Now if X; > 0 and
Y; = ¢, then the agent will not be able to propose element i and the principal pays the cost for
probing i without obtaining any value. Hence, adding (i, 1/p?, en’) strictly improves the principal’s
expected utility in this event, and in all other events, it does not affect their utility.

Now, without loss of generality, we can consider any optimal delegation strategy for the principal
defined by a set of feasible elements A = {1,..., k} for which the principal will accept exactly
(i,1/p%, ") and (i, 1/p?,8;). Since the agent does not incur any cost, they can probe all k elements
and propose their favorite acceptable element. However, we assumed that the agent breaks ties
in favor of the principal, so they will probe elements one by one and will stop probing as soon as
they find an element j € A with (j,1/p?, e"z). If the agent can not find any such element, then they
will propose (e, 1/p?, 8,) with the maximum §, among probed elements. Now we can bound the
principal’s optimal delegated expected utility as:

E[DEL] < Pr[X; = 1/p*] - Pr[Y; = "] (;% ) c)

+Pr[X, = 1/p?] - Pr[Y; = €" ](Pr[Y1 o1] +Pr[Y; ”2] -Pr[X; =0)) (1% - 2c) +...

k-1
+Pr[X = 1/p%] - Pr[ Yy = ™ ] I—[(Pr[Yi =§;] + Pr[Y; = "] - Pr[X; = 0]) (}% - kc)

i=1

k
—H(Pr[X = 0] + Pr[X; = 1/p?] + Pr[Y; = 5])—ck

2 2
Sp— iz—c) p—(l—p—)(iz—2c)+
2 \p 2 2/ \p
pr (. p\ (1 2y 1
—l1-= — -k 1-(1- — —ck
+2( 2) (p2 C)+( ( p))pz c]

To reduce the clutter, let r = (1 — p?/2). From Appendix B of [4], we have that (1 — (1 - P2y -
1/p? — ck < 1/2. Using this, we can simplify the above bound as:
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The above bound on the expected delegation holds for any budget k and outer constraint to the
agent. This shows that the delegation gap is at least O(n'/*).

Note that the impossibility still holds if the principal samples R from any distribution D over
the sets of feasible solutions. We can similarly show that the optimal distribution D* over the
feasibile sets has positive support on the solutions R € Qj which can be expressed as R =
{(4, 1/p2,e”2), (i,1/p%8;) : i € A} for some A C E. We earlier showed that for any such R,
E[DEL] = O(1/n'/*) - E[OPT]. Thus, E[DELg] = O(1/n'/*) - E[OPT]. O

C.2 Proof of Proposition 5.5

Proor. For any positive integer n > 1 and real ¢ = 1/n%, let M be a positive integer such that
M = +/n and consider the following instance of delegated Pandora’s box. We have n identical
elements E = {1,...,n} where each element i has a probing cost ¢; = 1 — ¢ and random utilities
(Xi, Yi) ~ p;. The principal’s utility Xj is n with probability % and 0 otherwise. The agent’s utility
Y; is M with probability 5; independently of X; and 0 otherwise. The constraint is a 1-uniform
matroid and there is no outer constraint. We let the agent break ties in favor of the principal.

First, we will determine the principal’s optimal non-delegated expected utility. This is given by
the solution tothe generalized Pandora’s box problem. For each element i, we must determine the
cap value 7; such that E(X; — 7;)* = ¢;. It’s not hard to verify for this instance that 7; = en. Then the
optimal solution guarantees an expected utility of U = E max; min(Xj, 7;) where each min(X;, ;)
takes value en with probability % and 0 otherwise. Therefore, max; min(X;, 7;) takes value en with
probability 1 — (1 - %)n and the principal gets expected utility

E[OPT] = en (1 - (1 - 1)n) >en (1 - 1) =0(n**%).
n e

Now, we will bound the principal’s delegated expected utility when both the agent and the principal
get a discount factor of § > 1 — 1/n'/2. Consider an arbitrary acceptable set R that the principal
might commit to. Since the constraint is 1-uniform, R consists of a set of singleton outcomes.
Observe that every element i evaluates to one of four tagged outcomes (i, n, M), (i, n,0), (i,0, M),
and (i, 0, 0) with probabilities ﬁ % (1- 1\1—4) A—l,[ (1- %) and (1 - %) (1- A—I,I) respectively.

Given R, let E* C E be the subset of elements i for which (i, 0, M) € R, and let k = |E*|. Consider
any element i ¢ E*. If outcome (i,0, M) ¢ R, then the agent’s increase in expected utility from
probing i is at most M - HLM —-(1-9)(1=-9) = % - ‘/Lﬁ(l — ¢) < 0 for large enough n, so they have
no incentive to ever probe i. Therefore, for the rest of the proof, we assume that k > 0.

The agent now faces an instance of Pandora’s box problem, so their optimal strategy is to probe
elements in order of weakly decreasing cap value (among non-negative cap values) and accept
the first acceptable outcome whose value is above its cap. Note that the agent will only probe the

elements that belong to E* We divide the elements in E* into the following disjoint sets:

Ei ={i: {(i,n, M), (i,0, M), (i,n,0)} € R},

E; ={i:{(i,n,M), (i,0,M)} C R},

E; ={i:{(i,0,M), (i,n,0)} C R}.
The optimal strategy for the agent is to first probe the elements in E] and then E and stop once
they find an outcome with utility M. If there is no such outcome, then they probe elements in E; and
stops once they find an outcome (i, 0, M). However, the principal has no incentive to construct R
such that EJ # 0 or E} # (). For the sake of contradiction, let E; # 0, in that case, consider an event

when the agent does not observe i € E* with feasible outcome with Y; = M, however, observes
i’ € E; with (i’,n,0). Conditioned on this event, the principal can strictly benefit by adding (i’, 0, n)



to R. In all other cases, the principal’s utility is unchanged by adding (i, n, 0). Therefore E; = 0.
Similarly, we can show that the principal strictly benefits by adding (i, n, M) to R for all i € EJ.
Hence, for the rest of the proof, we assume that E* = Ej.

Consider the utility that the principal gets when the agent finds an outcome of utility M. Among
the k = |E*| elements that the agent might probe, they find a utility of M with probability 1 —

(1- ﬁ)k Since the principal’s utility for the proposed outcome is independent of the agent’s, it

will have utility n for the principal with probability % Since k > 1, the principal pays a cost of 1 — ¢
for the first probe. Therefore, the principal expects a utility of at most

k
{1—(1—]\%) }-(%—(1—@(1—5)):0(1)

from this part of the agent’s strategy.

Now, with probability (1 — ﬁ)k, the agent doesn’t find any outcomes of value M. Then the
principal pays a cost of k(1 — ¢) in order to probe all k elements in E*. Since the agent breaks ties in
favor of the principal, they will propose any acceptable outcomes of value n to the principal. There
exists such an outcome with probability at most 1 — (1 — %)k Therefore, the principal expects a
utility of at most

1\ 1\* 1\~
(I"M) -{n(l—(l—;) )—k(l—s)(l—é)}s(l—ﬁ) Ak —k(1-)(1-06)}

1 k
< k(e+96) (I—M)

For the sake of exposition, let f(k) = k (1 - %)k For k = o(+/n), asymptotically, f(k) = o(4/n)
and for k = w(y/n), f(k) = w(\/ﬁ)e_(Tﬂ = o(y/n). For k = ©(+/n), f(k) = ©(+/n). Therefore,
maxy f(k) = O(+/n) asymptotically.

The above arguments imply that the principal’s optimal expected delegation is bounded by
O((8 +€)vn) + O(1) = O(n'/*). Hence the delegation gap for the above instance is O(1/n'/?).

Note that the impossibility still holds if the principal samples R from any distribution D over the
sets of feasible solutions. We can similarly show that the optimal distribution D* over the feasible
sets has positive support on the solutions R € Q7 for which E* = EJ. Therefore, for any sample of
feasible set R from D*, E[DELg] = O(1/+/n)E[OPT]. Thus, E[DELg] = O(1/+/n) - E[OPT]. |

C.3 Proof of Proposition 6.4

Proor. Consider an instance on elements E with |E| = n and a 1-uniform matroid constraint
over E. For each element i, let the probing cost be ¢; = ¢ = 1 — 2/n'/* and let the principal’s
utility be X; = vn with probability 1/+/n and X; = 0 otherwise. Following Proposition 5.4, we
have that E[OPT] = ©(n'/*). Now, consider any delegation mechanism for the principal for the
shared-cost model. Let c; = ¢; be the cost division for each element i in this mechanism, and let
R be the set of acceptable solutions. Since the principal has no knowledge of the distributions of
the agent’s utilities, R can only consider the principal’s utilities {X;}. Let E; = {i € E : ¢; > 0} and
E; ={i € E : ¢; = 0} be a disjoint partition of E.

Now we will define the agent’s utilities. For each element i € Eq, let Y; ~ Unif[0, ¢;/2] when
conditioned on X; = y/n, and Y; = n? deterministically when conditioned on X; = 0. For all i € E,
let Y; ~ Unif[e”, 3e"] independent of X;. First, we need to ensure that the described delegation
instance has incentive for the agent to participate when they pay the entire cost, i.e. E[Y;] > ¢;.



For each element i € E;, we have E[Y;] = E[Y; | X; = v/n] Pr[X; = vn] +E[Y; | X; = 0] Pr[X; =
0] > (1-1/4/n)n? > ¢; and for i € Ey, E[Y;] = 2e" > c;. Note that the principal has no information
about {Y;}.
Now, consider any single proposal delegation R = {{(i,x;)} : i € E,x; € {+/n, 0}}. We divide all
elements E into following disjoint sets given R:
Fi={i€E:(iVn) eRA(L,0)¢R}  F={i€E:(iVn) eRA(,0)¢R}
Fp={i€E:(iVn) ¢RA(,0)eR}  Fs={i€E:(iVn)¢RA(0) R}
Fs={i€E;:(i,vn) e RA(i,0) € R} Fs={i € Ey: (i,Vn) e R A (i,0) € R}
The agent will never probe elements in F; because for i € Ej, E[Y; | X; = n] — ¢; < 0. The agent’s
optimal strategy is to probe elements in V = F; U F5 U Fy (with |V| = k) and pick any feasible
element with high Y;. If they can not find any feasible elements in V then they probe elements in F;
then F, until they observe X; = 0. If they fail to observe an element with X; = 0 then they propose
element i € F; with maximum Y;. Given the agent’s optimal strategy, we can bound the principal’s
optimal expected delegated utility as follows:
E[DELz] < E[DELg | agent finds a feasible i € V] - Pr[agent finds a feasible i € V]
+ E[DELg | agent does not find a feasible i € V] - Pr[agent does not find a feasible i € V]

k
s\/ﬁ(1—(1—1/\/ﬁ) ) — ke

+E[DELR|3i€F2UF3IXi:0]'PI‘[EiGFgUF3IXi:0]

+E[DEL'R |£1€F2 UF;:X; =0] Pr[ﬂl €eFUF ZX,':O] (9)
< [Vn(1 - (1 - 1/w/ﬁ)k) —ke] +E[DELg | Bi € F, UF;: X; = 0] - Pr[Bi € K, UF; : X; = 0]

(10)

=0(1) + (1/Vn) 2Bl = 0(1) (11)

Inequality (9) holds because Pr[agent finds a feasible i € V] is bounded by 1. We can further bound
E[DELg | agent finds a feasible i € V] by assuming that the agent proposes element i € V with
X; = +/n as long as it exists. Inequality (10) holds because whenever the agent finds i € F, U F;
with X; = 0, the principal’s expected utility is negative, i.e. E[DELg | Ji € , UF; : X; = 0] < 0.
Inequality (11) holds because vn(1 - (1 — 1/\/ﬁ)k) — ke = 0(1) for all k < n (Proposition 5.4) and
we ignore the cost paid by the principal in E[DELg | Aii € F, U F5 : X; = 0]. Hence, E[DELg] = O(1).
Concluding the proof. O
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