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Abstract

Single-photon avalanche diodes (SPADs) are growing

in popularity for depth sensing tasks. However, SPADs

still struggle in the presence of high ambient light due to

the effects of pile-up. Conventional techniques leverage

fixed or asynchronous gating to minimize pile-up effects,

but these gating schemes are all non-adaptive, as they are

unable to incorporate factors such as scene priors and pre-

vious photon detections into their gating strategy. We pro-

pose an adaptive gating scheme built upon Thompson sam-

pling. Adaptive gating periodically updates the gate posi-

tion based on prior photon observations in order to mini-

mize depth errors. Our experiments show that our gating

strategy results in significantly reduced depth reconstruc-

tion error and acquisition time, even when operating out-

doors under strong sunlight conditions.

1. Introduction
Single-photon avalanche diodes (SPADs) are an emerg-

ing type of sensor [40] that possess single photon sensitiv-

ity. Combined with ultrafast pulsed lasers and picosecond-

accurate timing electronics, SPADs are becoming increas-

ingly popular in LiDAR systems for 3D sensing applica-

tions [15±17, 26]. SPAD-based LiDAR is used, e.g., on au-

tonomous vehicles [2, 39] and consumer devices [1].

Unfortunately, SPAD-based LiDAR faces a fundamental

challenge when operating under strong ambient light: back-

ground photons due to ambient light can block the detection

of signal photons due to the LiDAR laser, an effect know as

pile-up [6,12,15,16,31,33]. This effect becomes more pro-

nounced as scene depth increases, and results in potentially

very inaccurate depth estimation.

A popular technique for mitigating pile-up is to use gat-

ing mechanisms that can selectively activate and deactivate

the SPAD at specific time intervals relative to laser pulse

emissions. Gating can help prevent the detection of early-

arriving background photons, and thus favor the detection

of late-arriving signal photons. Prior work has proposed dif-

ferent schemes for selecting gating times. A common such

scheme is fixed gating, which uses for all laser pulses the

same gating time (Figure 2(a)). If this gating time is close to

the time-of-flight corresponding to scene depth, then fixed

gating greatly increases the detection probability of signal

photons, and thus depth estimation accuracy. Unfortunately,

it is not always possible to know or approximate the time-

of-flight of true depth ahead of time.

More recently, Gupta et al. [15] proposed a uniform

gating scheme, which uniformly distributes gate times for

successive laser pulses across the entire depth range (Fig-

ure 2(b)). This helps ªaverage-outº the effect of pile-up

across all possible depths. Unfortunately, uniform gating

does not take into account information about the true scene

depth available from either prior knowledge, or from photon
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Figure 1. Adaptive gating and adaptive exposure for depth

imaging under sunlight. Adaptive gating reduces depth RMSE

≈ 3× compared to conventional methods for the same acquisition

time. When used in conjunction with adaptive exposure, our meth-

ods improves frame rate 3× while still achieving lower RMSE.

detections during previous laser pulses.

We propose a new gating scheme for SPAD-based Li-

DAR that we term adaptive gating. Two main building

blocks underlie our gating scheme: First, a probabilistic

model for the detection times recorded by SPAD-based Li-

DAR. Second, the classical Thompson sampling algorithm

for sequential experimental design. By combining these two

components, our proposed adaptive gating scheme is able

to select gating sequences that, at any time during LiDAR

acquisition, optimally take advantage of depth information

available at that time, either from previous photon detec-

tions or from some depth prior. As a useful by-product of

our framework, we introduce a variant of our adaptive gat-

ing scheme that additionally adapts exposure time, as nec-

essary to achieve some target depth accuracy. We build a

SPAD-based LiDAR prototype, and perform experiments

both indoors, and outdoors under strong sunlight. Our ex-

periments show that, compared to previous gating schemes,

our adaptive gating scheme can reduce either depth estima-

tion error or acquisition time (or both) by more than 50%
(Figure 1), and can take advantage of prior depth informa-

tion from spatial regularization or RGB images. To ensure

reproducibility and facilitate follow-up research, we pro-

vide our code and data on the project website [36].
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2. Related work
Post-processing for pile-up compensation. There is ex-

tensive prior work on post-processing techniques for com-

pensating the effects of pile-up. Perhaps the best known is

Coates’ technique [12], and its generalizations [15, 16, 19,

33,37,38]. Coates’ technique uses a probabilistic model for

photon arrivals to estimate the true incident scene transient,

from which we can estimate depth. Alternatively, Heide et

al. [17] use the same probabilistic model to perform max-

imum likelihood estimation directly for depth. We discuss

how these approaches relate to our work in Section 3.

Gating schemes. Gating refers to the process of desyn-

chronizing laser pulse emission and SPAD acquisition, and

is commonly used to mitigate the effects of pile-up. The

most common gating technique, known as fixed gating, uses

a fixed delay between laser pulse emission and the start

of SPAD acquisition, suppressing the detection of early-

arriving photons. If the gating delay approximately matches

the scene depth, fixed gating significantly reduces pile-up;

otherwise, fixed gating will either have no significant effect,

or may even suppress signal photons if the gating delay is

after the scene depth. Gupta et al. [15] introduced a gating

technique that uses uniformly-distributed delays spanning

the entire depth range of the SPAD. This uniform gating

technique helps mitigate pile-up, without requiring approx-

imate knowledge of scene depth. Lastly, Gupta et al. [15]

showed that it is possible to achieve uniformly-distributed

delays between pulse emission and the start of SPAD ac-

quisition by operating the SPAD without gating, at free-

running mode [3, 13, 20, 37, 38]. We discuss fixed gating,

uniform gating, and free-running mode in Section 4.

Spatially-adaptive LiDAR. SPAD-based LiDAR typically

uses beam steering to raster-scan individual pixel locations.

Recent work has introduced several techniques that, in-

stead of performing a full raster scan, adaptively select spa-

tial locations to be scanned, in order to accelerate acqui-

sition [8, 35, 49]. These techniques are complementary to

ours: Whereas they adaptively sample spatial scan loca-

tions, our technique adaptively samples temporal gates.

Other LiDAR technologies. There are several

commercially-available technologies for light detection

and ranging (LiDAR), besides SPAD-based LiDAR [39].

A common alternative in autonomous vehicles uses

avalanche photodiodes (APDs) [25]. Compared to

SPAD-based LiDAR, APD-based LiDAR does not suffer

from pile-up, but has reduced sensitivity. Other LiDAR

systems use continuous-wave time-of-flight (CWToF)

cameras [14, 22, 46]. CWToF-based LiDAR is common in

indoor 3D applications [4, 42, 45]. Unlike SPAD-based and

APD-based LiDAR, CWToF-based LiDAR is sensitive to

global illumination (multi-path interference).

Other SPAD applications. SPADs find use in biopho-

tonics applications [10], including fluorescence-lifetime
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Figure 2. Previous and proposed gating schemes SPAD-based

LiDAR. (a) Under strong ambient light, fixed gating leads to

significant pile-up. (b) Uniform gating introduces uniformly-

distributed gates and ªaverages outº the effect of pile-up. (c)

Adaptive gating introduces a gating scheme that converges to the

optimal gate, leading to a large number of detected signal photons.

imaging microscopy [5, 9, 23, 24, 44], super-resolution mi-

croscopy [28], time-resolved Raman spectroscopy [28], and

time-domain diffuse optical tomography [34,50]. Other ap-

plications include non-line-of-sight imaging [11,27,30,48],

and high-dynamic-range imaging [18, 19].

3. Background on SPAD-based LiDAR
We discuss necessary background on 3D imaging with

single-photon avalanche diodes (SPADs). We consider

single-pixel SPAD-based LiDAR systems with controllable

gating. Such a system comprises: a) an ultrafast pulsed laser

that can emit short-duration light pulses at a pulse-to-pulse

frequency (or repetition rate) fptp; b) a single-pixel SPAD

that can detect individual incident photons; c) gating elec-

tronics that can activate the SPAD at some controllable time

after pulse emissions; and d) time-correlation electronics

that time photon detections relative to pulse emissions. We

assume that both the gating and time-correlation electron-

ics have the same temporal resolution ∆. Typical orders of

magnitude are a few ps for pulse duration, hundreds of ps
for ∆, and tens of MHz for fptp. The laser and SPAD are

commonly coaxial, and rely on beam steering (e.g., through

a galvo or MEMS mirror) to produce 2D depth estimates.

Figure 1 shows a schematic of such a setup.

At each scan point, the LiDAR uses time-correlated sin-

gle photon counting (TCSPC) to estimate depth. This pro-

cess comprises P cycles, where at each cycle a sequence of

steps takes place: At the start of the p-th cycle, the laser

emits a pulse. Gating activates the SPAD at gate time gp
after the start of the cycle. The SPAD remains active until

it detects the first incident photon (originating from either

the laser pulse or ambient light) at detection time sp after

the start of the cycle. It then enters a dead time, during

which it cannot detect any photons. Once the dead time

ends, the SPAD remains inactive until the next pulse emis-

sion, at which point the next cycle begins. We note that

there can be multiple pulse emissions during a single cycle.
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After P cycles, the LiDAR system returns the sequence of

detection times s̄ ≡ {s1, . . . , sP }, measured using the se-

quence of gate times ḡ ≡ {g1, . . . , gP }. 1 We discretize the

time between pulse emissions into T ≡ ⌊1/∆fptp⌋ tempo-

ral bins, where the τ -th bin corresponds to the time interval

t ∈ [τ ·∆, (τ + 1) ·∆) since pulse emission. Then, the

range of gate times is gp ∈ {0, . . . ,T− 1}, and the range

of detection times is sp ∈ {gp, . . . , gp +T− 1}. 2 We

describe a probabilistic model for s̄ (Section 3.1), then see

how to estimate depth from it (Section 3.2).

3.1. Probabilistic model

Our model closely follows the asynchronous image for-

mation model of Gupta et al. [15]. 3 We first consider the

incident photon histogram Id [τ ] , τ ∈ {0, . . . ,T− 1}: for

each bin τ , Id [τ ] is the number of photons incident on the

SPAD during the time interval t ∈ [τ ·∆, (τ + 1) ·∆) since

the last pulse emission. The subscript d indicates that the

histogram depends on scene depth, as we explain shortly.

We model each Id [τ ] as a Poisson random variable,

Id [τ ] ∼ Poisson (λd [τ ]) , (1)

with rate equal to,

λd [τ ] = Φbkg + δτ,dΦsig. (2)

The function λd [τ ] , τ ∈ {0, . . . ,T− 1} is the scene tran-

sient [21, 32]. In Equation (2), the ambient flux Φbkg is the

average number of incident background photons (i.e., pho-

tons due to ambient light) at the SPAD during time ∆, which

we assume to be time-independent. The signal flux Φsig is

the average number of incident signal photons (i.e., photons

due to the laser). Φbkg and Φsig depend on scene reflectivity

and distance, and the flux of ambient light (for Φbkg) and

laser pulses (for Φsig). We refer to their ratio as the signal-

to-background ratio SBR ≡ Φsig/Φbkg.
4 δi,j is the Kronecker

delta, and d ≡
⌊

2z
c∆

⌋

, where z is the scene distance and c is

the speed of light. We use d as a proxy for depth.

We now consider the p-th cycle of the LiDAR opera-

tion. Given that, the SPAD can only detect the first inci-

dent photon after activation, a detection time of sp means

that: i) there were no incident photons during the time bins

{gp, sp − 1}; and ii) there was at least one incident photon

at time bin sp. The probability of this event occurring is: 5

1Prior works [15±17, 37, 38] typically study the detected photon his-

togram, and not the sequence of detection times. As we discuss in the

supplement, the two formulations are consistent.
2This assumes that the SPAD always detects a photon during a period of

1/fptp after it becomes active. In practice, the SPAD may detect no photon.

We ignore this for simplicity, and refer to Gupta et al. [15] for details.
3We refer to the supplement for a discussion of the assumptions made

by this model (e.g., infinitesimal pulse duration) and their implications.
4Prior works [15, 16] define SBR ≡ Φsig/TΦbkg. We omit T, to make

SBR indicative of the difficulty in resolving the signal bin from the back-

ground bins.
5We use the notational convention that Sp, Gp, D are random vari-

ables, and sp, gp, d are specific values for these random variables.

Pr {Sp = sp | Gp = gp, D = d} =

Pr {Id [sp mod T] ≥ 1}

sp−1
∏

s=gp

Pr {Id [s mod T] = 0} . (3)

To simplify notation, in the rest of the paper we use:

pgd (s) ≡ Pr {S = s | G = g,D = d} . (4)
Using Equation (1), we can rewrite this probability as:

p
gp
d (sp)=

(

1− e−λd[sp mod T]
)

sp−1
∏

s=gp

e−λd[s mod T]. (5)

Lastly, we define the detection sequence likelihood:

pḡd (s̄) ≡ Pr{S1 = s1, . . . , SP = sP |

G1 = g1, . . . , GP = gP , D = d}. (6)

Given that the detection times are conditionally independent

of each other given the gate times, we have

pḡd (s̄) =

P
∏

p=1

p
gp
d (sp) . (7)

Equations (2), (5), and (7) fully determine the probability of

a sequence of detection times s̄, measured using a sequence

of gate times ḡ, assuming scene depth d.

Pile-up. We consider the case where we fix gp = 0 for

all cycles p = 1, . . . , P ; that is, gating always activates the

SPAD at the start of a cycle. Then, Equation (5) becomes

p0d (τ) =
(

1− e−λd[τ ]
)

τ−1
∏

s=0

e−λd[s], τ ∈ 0, . . . ,T. (8)

Equations (8) and (2) show that, when the ambient flux Φbkg

is large (e.g., outdoors operation), the probability of detect-

ing a photon at a later time bin τ is small. This effect,

termed pile-up [12, 16], can result in inaccurate depth esti-

mates as scene depth increases. As we discuss in Section 4,

carefully selected gate sequences ḡ can mitigate pile-up.

3.2. Depth estimation

We now describe how to use the probabilistic model of

Section 3.1 to estimate the scene depth d from s̄ and ḡ.

Coates’ depth estimator. Gupta et al. [15,16] adopt a two-

step procedure for estimating depth. First, they form the

maximum likelihood (ML) estimate of the scene transient

given the detection and gate sequences:
{

λ̂ [τ ]
}T−1

τ=0
≡ argmax

{λ[τ ]}T−1

τ=0

Pr
{

s̄ | ḡ, {λ [τ ]}
T−1
τ=0

}

. (9)

The likelihood function in Equation (9) is analogous to

that in Equations (5) and (7), with an important difference:

Whereas Equation (5) assumes that the scene transient has

the form of Equation (2), the ML problem of Equation (9)

makes no such assumption and estimates an arbitrarily-

shaped scene transient λ [τ ] , τ ∈ {0, . . .T− 1}. Gupta

et al. [15] derive a closed-form expression for the solution

of Equation (9), which generalizes the Coates’ estimate of

the scene transient [12] for arbitrary gate sequences ḡ.
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Second, they estimate depth as:

d̂Coates’ (s̄, ḡ) ≡ argmax
τ∈0,...,T−1

λ̂ [τ ] . (10)

This estimate assumes that the true underlying scene tran-

sient is well-approximated by the λd model of Equation (2).

We refer to d̂Coates’ (s̄, ḡ) as the Coates’ depth estimator.

MAP depth estimator. If we assume that the scene tran-

sient has the form λd of Equation (2), then Equations (5)

and (7) directly connect the detection times s̄ and depth d,

eschewing the scene transient. If we have available some

prior probability pprior (d) , d ∈ {0, . . . ,T− 1} on depth,

we can use Bayes’ rule to compute the depth posterior:

pḡs̄ (d) ≡
pḡd (s̄) pprior (d)

∑T−1
d′=0 p

ḡ
d′ (s̄) pprior (d′)

. (11)

We adopt maximum a-posteriori (MAP) estimation:

d̂MAP (s̄, ḡ) ≡ argmax
d∈{0,...,T−1}

pḡs̄ (d) . (12)

When using a uniform prior, the depth posterior pḡs̄ (d) and

the detection sequence likelihood pḡd (s̄) are equal, and the

MAP depth estimator d̂MAP (s̄, ḡ) is also the ML depth es-

timator. We note that Heide et al. [17] proposed a similar

MAP estimation approach, using a total variation prior that

jointly constrains depth at nearby scan points.

It is worth comparing the MAP d̂MAP (s̄, ḡ) and Coates’

d̂Coates’ (s̄, ḡ) depth estimators. First, the two estimators

have similar computational complexity. This is unsurpris-

ing, as the expressions for the depth posterior of Equa-

tion (11) and the Coates’ estimate of Equation (9) are sim-

ilar, both using the likelihood functions of Equations (5)

and (7). A downside of the MAP estimator is that it re-

quires knowing Φbkg and Φsig in Equation (2). In practice,

we found it sufficient to estimate the background flux Φbkg

using a small percentage (≈ 2%) of the total SPAD cycles,

and to marginalize the signal flux Φsig using a uniform prior.

Second, when using a uniform prior, the MAP estima-

tor can provide more accurate estimates than the Coates’

estimator, in situations where the scene transient model of

Equation (2) is accurate. To quantify this advantage, we

applied both estimators on measurements we simulated for

different values of background and signal flux, assuming a

uniform gating scheme [15]: As we see in Figure 3, the

MAP estimator outperforms the Coates’ estimator, espe-

cially when ambient flux is significantly higher than sig-

nal flux. By contrast, the Coates’ estimator can be more

accurate than the MAP estimator when the scene transient

deviates significantly from Equation (2). This can happen

due to multiple peaks (e.g., due to transparent or partial oc-

cluders) or indirect illumination (e.g., subsurface scattering,

interreflections). In the supplement, we show that, when

we combine the MAP estimator with our adaptive gating

scheme of Section 4, we obtain correct depth estimates even

in cases of such model mismatch.

True depth

R
M

S
E

140

20

True depth

(b) Example recovered transient 

using Coates’ estimate
(a) comparison of depth estimates 

(c) Example depth posterior 

using Bayesian estimator

Posterior formed using 

same photon 

observations as (b)

Figure 3. Relative performance of MAP estimator and Coates’

estimator for depth recovery. (a) Bayesian estimator consistently

outperforms Coates’ estimator across different ambient and signal

flux levels. (b) Example recovered transient using Coates’ estima-

tor illustrates case where bins with high variance estimates may be

mistaken for true depth. (c) Depth posterior formed using the same

photon observations as (b) shows a distinct peak at true depth.

Third, the MAP estimator allows incorporating, through

the prior, available side information about depth (e.g., from

scans at nearby pixels, or from an RGB image [47]). Before

we conclude this section, we mention that the MAP estima-

tor is the Bayesian estimator with respect to the L0 loss [7]:

d̂MAP (s̄, ḡ) = argmin
d∈{0,...,T−1}

E d′∼p
ḡ
s̄(d

′) [L0 (d, d
′)] , (13)

where

L0 (x, y) ≡

{

0, if x = y.

1, otherwise.
(14)

We will use this fact in the next section, as we use the depth

posterior and MAP estimator to develop adaptive gating.

4. Adaptive Gating
We now turn our attention to the selection of the gate se-

quence ḡ. As we mentioned in Section 3, we aim to use

gating to mitigate pile-up. We briefly review two prior gat-

ing schemes, then introduce our adaptive gating.

Fixed gating. A fixed gating scheme uses the same gate for

all P TCSPC cycles, gp = gfixed, p ∈ {1, . . . , P}. So long

as this fixed gate is before the scene depth, gfixed < d, it will

prevent the detection of early-arriving photons due to am-

bient light, and thus increase the probability of detection of

signal photons. For fixed gating to be effective, gfixed should

be close, and ideally equal to the true depth d, as setting

sgfixed = d maximizes the detection probability pgfixed

d (d) in

Equation (5). Unfortunately, this requires knowing the true

depth d, or at least a reliable estimate thereof; such an esti-

mate is generally available only after several cycles.

Uniform gating. Gupta et al. [15] introduced a uniform

gating scheme, which distributes gates uniformly across the

entire depth range. If, for simplicity, we assume that the

numbers of cycles and temporal bins are equal, P = T, then

uniform gating sets gp = p, p ∈ {1, . . . , P}. This maxi-

mizes the detection probability of each bin for a few cycles,

and ªaverages outº pile-up effects. Compared to fixed gat-

ing, uniform gating does not require an estimate of the true

depth d. Conversely, uniform gating cannot take advantage

of increasing information about d as more cycles finish.
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Figure 4. Evolution of gate selection using adaptive gating. Adaptive gating samples gate location based on the depth posterior formed

using previous photon arrivals. Initial gates are approximately uniformly distributed, since depth posterior formed under lower number

of photon observations have high variance. As more photons are observed, the depth posterior begins to form a sharper peak around true

depth, causing gates selected through Thompson sampling to converge.

Gupta et al. [15] propose using the SPAD in free-running

mode without gatingÐthe SPAD becomes active immedi-

ately after dead time endsÐas an alternative to uniform

gating. As they explain, using free-running mode also en-

sures that all bins have high probability of detection for a

few cycles, similar to uniform gating; and provides addi-

tional advantages (e.g., maximizes SPAD active time, sim-

plifies hardware). Therefore, we often compare against

free-running mode instead of uniform gating.

Desired behavior for adaptive gating. Before formally de-

scribing our adaptive gating scheme, we describe at a high-

level the desired behavior for such a scheme. Intuitively,

an ideal gating scheme should behave as a hybrid between

fixed and uniform gating. During the early stages of Li-

DAR operation (first few cycles) we have little to no infor-

mation about scene depthÐall temporal bins have approx-

imately equal probability of being the true depth. Thus, a

hybrid scheme should mimic uniform gating to explore the

entire depth range. During the later stages of LiDAR op-

eration (last few cycles), we have rich information about

scene depth from the detection times recorded during pre-

ceding cyclesÐonly one or few temporal bins have high

probability of being the true depth. Thus, a hybrid scheme

should mimic (near-fixed) gating, to maximize the detec-

tion probability of the few remaining candidate temporal

bins. At intermediate stages of LiDAR operation, the hy-

brid scheme should progressively transition from uniform

towards fixed gating, with this progression adapting from

cycle to cycle to the information about scene depth avail-

able from previously-recorded detection times.

Thompson sampling. To turn the above high-level specifi-

cation into a formal algorithm, we use two building blocks.

First, we use the probabilistic model of Section 3 to quan-

tify the information we have about scene depth d at each

cycle. At the start of cycle p, the LiDAR has recorded de-

tection times s̄p−1 ≡ {sq, q = 1, . . . , p} using gate times

ḡp−1 ≡ {gq, q = 1, . . . , p}. Then, the depth posterior

p
ḡp−1

s̄p−1
(d) of Equation (11) represents all the information we

have available about scene depth, from both recorded detec-

tion times and any prior information (pprior (d)).

Second, we use Thompson sampling [43] to select the

gate times gp. Thompson sampling is a classical algorithm

for online experimental design: This is the problem setting

of deciding on the fly parameters of a sequence of experi-

ments, using at any given time available information from

all experiments up to that time, in a way that maximizes

some utility function [41]. Translating this into the context

of SPAD-based LiDAR, the sequence of experiments is the

P TCSPC cycles; at the p-th experiment, the parameter to

be decided is the gate time gp. and the available information

is the depth posterior p
ḡp−1

s̄p−1
(d); lastly the utility function is

the accuracy of the final depth estimate. Thompson sam-

pling selects each gate gp by first sampling a depth hypothe-

sis d̃ from the depth posterior p
ḡp−1

s̄p−1
(d), and then finding the

gate time that maximizes a reward function R
(

d̃, g
)

. Al-

gorithm 1 shows the resulting adaptive gating scheme (blue

lines correspond to modifications we describe in Section 5).

Reward function. We motivate our choice of reward func-

tion as follows: At cycle p, Thompson sampling assumes

that the true depth equals the depth hypothesis d̃ sampled

from the depth posterior. Equivalently, Thompson sampling

assumes that the detection time we will measure after cycle

p concludes is distributed as sp ∼ p
gp

d̃
(s) (Equation (5)).

As we aim to infer depth, we should select a gate gp such

that, if we estimated depth from only the next detection sp,

the resulting estimate would be in expectation close to the

depth hypothesis d̃ we assume to be true. Formally,

R
(

d̃, g
)

≡ −E s∼p
g

d̃
(s)

[

L0

(

d̂MAP (s, g) , d̃
)]

. (15)
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Algorithm 1: Adaptive gating with adaptive exposure.

Input: max number of cycles P , depth prior pprior (d).
Output: depth estimate d̂MAP (s̄p, ḡp)
/* Initialization */

1 p← 0 ; // initialize cycle counter

2 p
ḡ0
s̄0

(d)← pprior (d) ; // initialize depth

posterior

/* Acquisition */

3 while p ≤ P do

4 p←p+ 1 ; // start next cycle

5 d̃∼p
ḡp−1

s̄p−1
(d) ; // sample depth

hypothesis

6 gp← d̃ ; // select gate (Proposition 1)

7 sp←TCSPC (gp) ; // record detection

time

8 p
ḡp
s̄p

(d)∝p
gp
d (sp) p

ḡp−1

s̄p−1
(d) ; // update depth

posterior

9 d̂MAP (s̄p, ḡp)←argmaxd p
ḡp
s̄p

(d) ; // update

depth estimate

10 L (s̄p, ḡp)←1−p
ḡp
s̄p

(

d̂MAP (s̄p, ḡp)
)

; // compute

termination function (Equation (17))

11 if L (s̄p, ḡp) < ϵ then

12 break; ; // terminate acquisition

13 end

14 end

/* Final depth estimation */

15 d̂MAP (s̄p, ḡp)← argmaxd p
ḡp
s̄p

(d);

In Equation (15), to estimate depth from the expected detec-

tion time s, we use the same MAP depth estimator of Equa-

tion (12) as for the final depth estimate d̂MAP (s̄, ḡ). The

MAP depth estimator is optimal with respect to the L0 loss

(Equation (13)), thus we use the same loss for the reward

function. Selecting the gate gp requires maximizing the re-

ward function R
(

d̃, g
)

, which we can do analytically.

Proposition 1. The solution to the optimization problem

g̃ ≡ argmax
g∈{0,...,T−1}

R
(

d̃, g
)

(16)

for the reward function of Equation (15) equals g̃ = d̃.
We provide the proof in the supplement. Intuitively,

minimizing the expected L0 loss between the estimate

d̂MAP (s, g) and the depth hypothesis d̃ is equivalent to max-

imizing the probability that s mod T = d̃; that is, we want

to maximize the probability that a photon detection occurs

at the same temporal bin as the depth hypothesis. We do this

by setting the gate equal to the depth hypothesis, gp = d̃. 6

Intuition behind Thompson sampling. Before concluding

this section, we provide some intuition about how Thomp-

son sampling works, and why it is suitable for adaptive

6In practice, we set the gate time gp a few bins before the depth hy-

pothesis d̃, to account for the finite laser pulse width and timing jitter.

gating. We can consider adaptive gating with Thomp-

son sampling as a procedure for balancing the exploration-

exploitation trade-off. Revisiting the discussion at the start

of this section, fixed gating maximizes exploitation, by only

gating at one temporal bin (or a small number thereof); con-

versely, uniform gating maximizes exploration, by gating

uniformly across the entire depth range. During the first few

cycles, adaptive gating maximizes exploration: as only few

measurements are available, the depth posterior is flat, and

depth hypotheses (and thus gate times) are sampled approx-

imately uniformly as with uniform gating. As the number

of cycles progresses, adaptive gating shifts from exploration

to exploitation: additional measurements make the depth

posterior concentrated around a few depth values, and gate

times are sampled mostly among those. After a sufficiently

large number of cycles, adaptive gating maximizes exploita-

tion: the depth posterior peaks at a single depth, and gate

times are almost always set to that depth, as in fixed gat-

ing. Figure 4 uses simulations to visualize this transition

from exploration to exploitation. This behavior matches the

one we set out to achieve at the start of this section. Lastly,

we mention that Thompson sampling has strong theoreti-

cal guarantees for asymptotic optimality [41]; this suggests

that our adaptive gating scheme balances the exploration-

exploitation trade-off in a way that, asymptotically (given

enough cycles), maximizes depth accuracy.

5. Adaptive Exposure
The accuracy of a depth estimate from SPAD measure-

ments depends on three main factors: the exposure time

(i.e., number of laser pulses, which also affects the number

of cycles P ), ambient flux Φbkg, and signal-to-background

ratio SBR. For a fixed exposure time, increasing ambient

flux or lowering SBR will result in higher depth estimation

uncertainty. Even under conditions of identical ambient flux

and SBR, the required exposure time to reach some uncer-

tainty threshold can vary significantly, because of the ran-

dom nature of photon arrivals and detections.

In a generic scene, different pixels can have very differ-

ent ambient flux or SBR (e.g., due to cast shadows, varying

reflectance, and varying depth). Therefore, using a fixed

exposure time will result in either a lot of wasted exposure

time on pixels for which shorter exposure times are suffi-

cient, or high estimation uncertainty in pixels that require

a longer exposure time. Ideally, we want to adaptively ex-

tend or shorten the per-pixel exposure time, depending on

how many TCSPC cycles are needed to reach some desired

depth estimation uncertainty threshold.

Adaptive gating with adaptive exposure. The adaptive

gating scheme of Section 4 lends itself to a modification that

also adapts the number of cycles P , and thus exposure time.

In Algorithm 1, we can terminate the while loop early at a

cycle p ≤ P , if the depth posterior p
ḡp
s̄p (d) becomes con-

centrated enough that we expect depth estimation to have
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Figure 5. Effect of SBR. The ªStairsº scene has regions with sig-

nificant variations in SBR. Far stairs have lower SBR than nearby

stairs due to inverse square falloff. Our adaptive gating scheme

achieves lower RMSE than the free-running mode at all the SBRs.

low error. Formally, we define a termination function as the

expected error with respect to the depth posterior:

L (s̄p, ḡp) ≡ E
d∼p

ḡp
s̄p

(d)

[

L0

(

d̂MAP (s̄p, ḡp) , d
)]

(17)

= 1− p
ḡp
s̄p

(

d̂MAP (s̄p, ḡp)
)

. (18)

In Equation (17), we use the same MAP depth estimator as

for the final depth estimate d̂MAP (s̄, ḡ), and the L0 loss for

which the MAP estimator is optimal (Equation (13)). These

choices are analogous to our choices for the definition of

the reward function R
(

d̃, g
)

in Equation (15). At the end

of each cycle p, we check whether the termination function

L (s̄p, ḡp) is smaller than some threshold, and terminate ac-

quisition if it is true. In Algorithm 1, we show in blue how

we modify our original adaptive gating algorithm to include

this adaptive exposure procedure.

6. Experimental Results
We show comparisons using real data from an experi-

mental prototype in the paper, and additional comparisons

on real and simulated data in the supplement. Throughout

the paper, we use root mean square error (RMSE) as the

performance metric, as is common in prior work. In the

supplement, we additionally report loss error metrics; this

makes performance improvements more pronounced, as our

technique optimizes loss error (Section 4). Our code and

data are available on the project website [36].

Prototype. Our SPAD-based LiDAR prototype comprises

a fast-gated SPAD (Micro-photon Devices), a 532 nm pi-

cosecond pulsed laser (NKT Photonics NP100-201-010), a

TCSPC module (PicoHarp 300), and a programmable pi-

cosecond delayer (Micro-photon Devices). We operated the

SPAD in triggered mode (adaptive gating) or free-running

mode, with the programmable dead time set to 81 ns. We

set the laser pulse frequency to 10MHz, with measurements

discretized to 500 bins (100 ps resolution). The raster scan

resolution is 128× 128, and acquisition time per scan point

is 100µs, for a total acquisition time of 1.6 s. We note

that, if gate selection happens during dead timeÐeasily

achievable with optimized compute hardwareÐour proce-

dure does not introduce additional acquisition latency.

Outdoor scenes. Outdoor experiments (Figures 1 and 5)

were under direct sunlight (no shadows or clouds) around

noon (11 am to 2 pm in the United States), with an esti-

mated background strength of 0.016 photons per pulse per

bin. Figure 1 shows a set of 3D reconstructions for the

ªLeafº scene, captured at noon with a clear sky and un-

der direct sunlight. Figures 1(a)-(b) show depth reconstruc-

tions using free-running mode and adaptive gating under

fixed exposure times: our method reduces RMSE by around

3×. Figure 1(c) shows the depth reconstruction using adap-

tive gating combined with adaptive exposure. This combi-

nation reduces both RMSE and exposure time (by around

3×) compared to free-running mode. Figure 5 shows depth

reconstructions for the ªStairsº scene, captured under the

same sunlight conditions. This scene has significant SBR

variations, and we observe that adaptive gating outperforms

free-running mode in all SBR regimes.

Indoor scenes. Figure 6 shows reconstructions of the

ªHorseº scene, an indoor scene of a horse bust placed in

a light booth. Under fixed exposure time, our method

achieves 35% lower RMSE compared to free-running

mode. We note that RMSE improvement is less pronounced

than in outdoor scenes. As the indoor scene has signifi-

cantly higher SBR, this suggests that adaptive gating offers

a bigger advantage over free-running mode at low SBRs.

We next examine the effectiveness of employing external

priors. In Figure 6(c)-(d), we use a ªflatnessº prior: at each

pixel we use a Gaussian prior centered at the depth mea-

sured at the previous scanned pixel. Leveraging this simple

prior leads to a 70% decrease in exposure time, and a 60%

decrease in RMSE compared to adaptive gating without the

use of a depth prior. We note, however, that this prior is

not effective at pixels corresponding to large depth discon-

tinuities. We can see this in Figure 6(e), which visualizes

relative exposure time reduction at different pixels.

In Figure 7, we use a monocular depth estimation algo-

rithm [47] to obtain depth estimates and uncertainty values

from an RGB image of the ªOfficeº scene. We incorporate

the monocular prior in our adaptive gating method, and no-

tice a 50% reduction in RMSE for fixed exposure times, and

45% lower total acquisition time using adaptive exposure.

7. Limitations and Conclusion
Active time. As Gupta et al. [15] explain, using free-

running mode provides similar advantages as uniform gat-

ing, and at the same time maximizes the time during which

the SPAD is activeÐand thus maximizes photon detections.

Adaptive gating, likewise, also results in reduced active

time compared to free-running mode. However, experimen-

tally we found that, despite the reduced photon detections,

our adaptive gating scheme still results in improved depth

accuracy for all practical dead time values (see Section 6

and additional experiments evaluating the effect of active

and dead time in the supplement).

Hardware considerations. Our adaptive gating scheme re-
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Figure 6. 3D scanning under indoor illumination. A horse bust under ambient light of ϕbkg ≈ 0.01. The scene does not result in a

substantial pile-up like the outdoor scenes. Adaptive gating still shows better depth reconstruction than the free-running mode.
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Figure 7. Adaptive gating can incorporate external depth priors. We compute a depth prior using neural-network based monocular

depth estimation technique [47]. Incorporating the prior improves both the fixed exposure and adaptive exposure schemes.

quires using a SPAD with a controllable gate that can be re-

programmed from pulse to pulse. We implemented this us-

ing the same gated SPAD hardware as Gupta et al. [15] did

for their uniform gating scheme. The main additional hard-

ware requirements are electronics that can produce the gate

control signals at fptp frequency and ∆ resolution. Both gat-

ing schemes require considerably more expensive hardware

compared to free-running mode operation, which only re-

quires an ungated SPAD. Whether the improved depth accu-

racy performance justifies the increased hardware cost and

complexity is an application-dependent consideration.

Our adaptive exposure scheme additionally requires

beam steering hardware that can on the fly change the scan

time for any given pixel. Unfortunately, currently this is

only possible at the cost of significantly slower overall scan-

ning: Current beam steering solutions for LiDAR must

operate in resonant mode to enable kHz scanning rates,

which in turn means that the per-pixel scan times are pre-

determined by the resonant scan pattern [35]. Thus, using

adaptive exposure requires operating beam steering at non-

resonant mode. This introduces scanning delays that likely

outweigh the gains from reduced per-pixel scan times, re-

sulting in an overall slower scanning rate.

Lastly, recent years have seen the emergence of two-

dimensional SPAD arrays [29]. Current prototypes support

a shared programmable gate among all pixels. Adaptive

gating would require independent per-pixel programmable

gates, which can be implemented at increased fabrication

cost, and likely decreased sensitive area. As SPAD arrays

time-multiplex acquisition across pixels, adaptive exposure

does not offer an obvious advantage in this context.

Conclusion. We introduced an adaptive gating scheme

for SPAD-based LiDAR that mitigates the effects of pile-

up under strong ambient light conditions. Our scheme

uses a Thompson sampling procedure to select a gating se-

quence that takes advantage of information available from

previously-measured laser pulses, to maximize depth esti-

mation accuracy. Our scheme can also adaptively adjust

exposure time per-pixel, as necessary to achieve a desired

expected depth error. We showed that our scheme can re-

duce both depth error and exposure time by more than 100%
compared to previous SPAD-based LiDAR techniques, in-

cluding when operating outdoors under strong sunlight.
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