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The smoothed complexity of Frank—Wolfe methods
via conditioning of random matrices and polytopes

Luis Rademacher and Chang Shu

Abstract. Frank—Wolfe methods are popular for optimization over a polytope. One of the rea-
sons is because they do not need projection onto the polytope but only linear optimization over
it. To understand its complexity, a fruitful approach in many works has been the use of condition
measures of polytopes. Lacoste-Julien and Jaggi introduced a condition number for polytopes
and showed linear convergence for several variations of the method. The actual running time can
still be exponential in the worst case (when the condition number is exponential). We study the
smoothed complexity of the condition number, namely the condition number of small random
perturbations of the input polytope and show that it is polynomial for any simplex and exponen-
tial for general polytopes. Our results also apply to other condition measures of polytopes that
have been proposed for the analysis of Frank—Wolfe methods: vertex-facet distance (Beck and
Shtern) and facial distance (Pefia and Rodriguez).

Our argument for polytopes is a refinement of an argument that we develop to study the
conditioning of random matrices. The basic argument shows that for ¢ > 1 a d-by-n random
Gaussian matrix with n > c¢d has a d-by-d submatrix with minimum singular value that is
exponentially small with high probability. This also has consequences on known results about
the robust uniqueness of tensor decompositions, the complexity of the simplex method and the
diameter of polytopes.

1. Introduction

Frank—Wolfe methods (FWMs) [23] are a family of algorithms that attempt to mini-
mize a differentiable function over a convex set. For concreteness we start by describ-
ing the basic Frank—Wolfe method to minimize a differentiable function f: C — R,
where C € R¢ is a compact convex set. It is an iterative method and proceeds as
follows:
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. 2
minycec | x|
Let xg € C.

fork =0,...,K do
Compute y € argmin ¢ (V f(xx))7 x.
Let xg11 = xx + a*(y — xx), where o*

is a suitable step size.
end for

0
Some of our results are about Wolfe’s method [46], which is a variation of Frank—

Wolfe methods specialized to the minimum norm point problem in a polytope (that
is, a bounded convex polyhedron).

1.1. Our contributions and related work

In this paper we are interested in the complexity of FWMs. The time complexity of
Wolfe’s method is know to be exponential in the worst case (by an upper bound in [46]
and a lower bound in [19]). There is a large body of work proving linear convergence
of several variations of FWMs [8,24,25,30,31,34-36]. We are particularly interested
in [8, 30, 31, 35, 36] which prove global linear convergence of certain variations of
FWMs: F-W with away steps, pairwise F-W and Wolfe’s method when the feasible
region is a polytope C = conv(A) for finite 4 € R¢. In these results the upper bound
on the running time (actual speed of linear convergence) depends on a condition num-
ber! of C. Informally speaking, the dependence is of the following kind: if x, is the
current point after ¢ iterations, then the function value satisfies

) = 7= (=)' (f(x0) = f7),

where f* is the optimal value, x¢ is the initial point and 0 < x < 1 is a measure
of conditioning. If « is small, then convergence is slow. In the previously mentioned
papers, k is of the form “something”/ diam(C'), where “something” can be:

* [31] minimum width, minwidth(A4) = mingc4 width(S) (width is standard, see
Section 2.8.1);

Informally, in this paper we use the term condition measure to denote any number that
partially describes the conditioning of an object. We reserve the term condition number for
condition measures were larger values denote worse conditioning. For example, 0ax /Omin 1S @
condition number for a matrix, while o,,;, is a condition measure. This is so that we can describe
numbers such as oy, where smaller values mean worse conditioning without contradicting the
usual meaning of condition number.
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* [31] pyramidal width, PWidth(A) (essentially the same as ®(C), see discussion

below);
* [8] vertex-facet distance, vf(C) = ming egcers(c) d (aff F, vertices(C) \ F); or
* [35] facial distance, ®(C) = ming efyees(c) d (F, conv(vertices(C) \ F)).

PSFGC

We do not provide a definition of pyramidal width at this point as it is complicated
and it was shown in [35] that PWidth(4) = ®(C) (Theorem 2.21 here). It is also
known that minwidth(A4) < PWidth(A4) (see [31, Section 3.1]). We start with the
observation that ®(C) < vf(C) (Theorem 2.22). (Note that the reverse inequality
was claimed in [35], but the cube [0, 1]¢ is a counterexample: ®([0, 1]9) = 1/+/d,
while vf([0, 1]¢) = 1.) This implies that all four quantities lie between minwidth(A)
and vf(C) (Theorem 2.22). It follows from [19] that all of them can be exponentially
small as a function of the bit-length of A. In fact, a stronger result follows from the
work of Alon and Vu [2] combined with the stated inequalities. Alon and Vu showed
that there is a 0/1-simplex S such that vf(S) is sub-exponentially small in the dimen-
sion (Corollary 3.3) The connection between polytope conditioning for FWMs and
the Alon and Vu result was observed in [31].

The main contributions of this paper are about the smoothed analysis of FWMs
and the condition measures of matrices and polytopes. Smoothed analysis [42] is an
approach to understand the behavior of algorithms that are efficient in practice but are
inefficient in the worst case. The main idea is to study small random perturbations of
any given instance of a problem. Suppose that the instance is described by a vector
x € R™. Then one aims to understand T'(x + g), where g € R” is a random vector
with distribution N(0, 0I,) and T is a measure of complexity (for example, T (x)
could be the running time of a particular algorithm on input x). We adopt a definition
that first appeared in [9, 10].

Definition 1.1 ([39], [40, Section 1.1]). We say T has (probabilistic) polynomial
smoothed complexity if there is a polynomial p such that
max  Pe(T(x +g) = p(n.1/0.1/8)) < 6.
xeR™ |lx||<1

Note that having probabilistic polynomial smoothed complexity does not imply
that the expected running time is polynomially bounded, but this definition is more
robust with respect to changes in the machine model (see [40,43] for a discussion).

Our first smoothed analysis result concerns FWMs minimizing a convex function
on a simplex (Section 3). We show that minwidth has good smoothed complexity
(Lemma 3.6). This implies the following result on polytope conditioning that can
be combined with results in [31] to show polynomial smoothed time complexity of
several FWMs for the minimization of a convex function in any simplex:
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Theorem 1.2. Let A = {Ay, ..., Ag+1} be a set of independent Gaussian random
vectors with means [, ||l <1, i € [d + 1], and covariance matrix 0*14. Then
for § > 0, with probability at least 1 — 8, the measure of conditioning k = Pg;f;?;")‘)

of A is at least some inverse polynomial in d, 1/o and 1/3.

Note that even the problem of finding the minimum norm point in a simplex is
not known to have a simple polynomial time algorithm. All polynomial time algo-
rithms we know for such a special case are general purpose convex programming
algorithms such as the ellipsoid method. Moreover, [19] shows that the linear pro-
gramming problem reduces in strongly polynomial time to the minimum norm point
in a simplex problem. This suggests that to find a simple polynomial time algorithm
for the minimum norm point in a simplex is hard and, in particular, to find a strongly
polynomial time algorithm would imply the existence of a strongly polynomial time
algorithm for linear programming, which would solve a major open problem.

Our second smoothed analysis result concerns condition measures of general poly-
topes (Section 7). We show that the standard global linear convergence results for
FWMs mentioned above based on polytope conditioning cannot guarantee polyno-
mial complexity for general polytopes in the average or smoothed sense. More specif-
ically, for V-polytopes conv(A4) with |A| and d large and comparable, d =~ §|A|,
8 € (0, 1), we show that vertex-facet distance does not have polynomial smoothed
complexity. Given that the complexity here increases as vf(A4) gets smaller, in the
context of Definition 1.1 one sets T = 1/ vf. It is enough to take x = 0 there and we
show:

Theorem 1.3. Let § € (0, 1). Suppose A = {Aq, ..., Ay+1} is a set of iid. standard
Gaussian random vectors in R? and d = |6n|. Let Pyi1 = conv(Ay, ..., Api1).
Then

_nd

P (diam(Py41) > Vd) > 1 —e™ 32,

and there exist constants 0 < ¢ < 1 and 0 < ¢’ < 1 (that depend only on §) such that,

lim P (Vf(Pyt1) <) > ¢’
n—oo

Vi(Pp+1)

Hence, the measure of conditioning k = Tam(Py i)

of A is exponentially small in d
with constant probability.

Theorem 1.3 combined with Theorem 2.22 implies that none of the four mea-
sures of polytope conditioning (minwidth, PWidth, ®, vf) have polynomial smoothed
complexity.

A way of interpreting Theorem 1.3 is that the standard conditioning measures of
polytopes for FWMs are somewhat pessimistic and can appear ill-conditioned even
when the polytope is bad only locally. For example, vertex-facet distance can be small
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even if one vertex and one facet are bad while the rest of the polytope is good. In other
words, it may still be possible to show smoothed polynomial complexity of FWMs in
a different way.

Theorem 1.3 is a statement about the minimum distance between the affine hull
of d points that form a facet and a vertex not on that facet. In order to understand
this problem we study first a simplified version where we replace affine hull by span
and we remove the restriction that the d — 1 points form a facet. Namely, we study
the following question: given n standard Gaussian random points in R, how close
can one of the points be to the span of some d — 1 others when 7 is somewhat larger
than d, say, n = 2d? This question is easier to understand than the polytope version
and it relates to conditioning of random matrices and the restricted isometry property
in compressive sensing. The relation starts from the known observation (Lemma 2.6)
that the minimum point-hyperplane distance is, up to polynomial factors, the same as
the smallest singular value of a matrix. Given this, our question is essentially equiva-
lent to: given a d-by-n random matrix with iid. standard Gaussian entries, what is the
minimum of the smallest singular values over d-by-d submatrices? We answer this
question by showing that when n/d > ¢ > 1 the minimum smallest singular value
above (and, equivalently, minimum point-hyperplane distance) is exponentially small:

Theorem 1.4. Let A be a d-by-n random matrix with iid. standard Gaussian entries
with d > 2 and % > co > 1. Then, there exist constants ca,cq4 > 1, 0 < cg < 1 (that
depend only on cq) such that with probability at least 1 — 2C4cg ,

min  o04(As) < )
SCinl.IS|=d cqcd ™!

Theorem 1.5. Let A be a d-by-n random matrix with iid. standard Gaussian entries
withd > 2 and 1 < 7% < Co. Then, there exist constants Cy > 1,0 < C < 1 (that
depend only on Cy) such that with probability at least 1 — nCzd_l,

min  oz(As) > .
scimifoa "1 = i

While Theorems 1.4 and 1.5 are new as far as we know, there is a large body of
work, partly motivated by compressive sensing, that studies questions related to them.
In that area one is generally interested in showing that all d-by-k submatrices of A
are well-conditioned, say, o1 /0% is no more than a constant (the restricted isometry
property of Candes and Tao [15, 16]). This can only happen when k is much smaller
than d, a regime very different from our case, k = d. The standard analyses in com-
pressive sensing as well as recent results such as [14] do not seem to be able to clarify
the behavior in our regime. This is because Theorem 1.4 informally shows that some
submatrix is ill-conditioned, the reverse of what one wants in compressed sensing.
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The idea of the proof of Theorem 1.4 (Section 4) is the following: Consider the
case n = 2d for concreteness and aim to show that with constant probability one
point is exponentially close to the span of d — 1 others. Let § be the family of sets
of d — 1 columns of A. For S € §, let B be the set of points in R4 within distance &
of span S. Let V = | Jges Bs. It is enough to show that for ¢ = 1/c?, ¢ > 1, the
Gaussian volume § (V) is at least a constant. We do this by lower bounding it using
the first two terms of the inclusion-exclusion principle (Bonferroni inequality):

S0) =Y 6B 5 Y. §(Bs 0 Br).
s S.T:S#T

Note that Bg N Br can be large if S and T share many columns. To deal with this
difficulty, replace § above with a large subfamily 7~ C § of subsets of columns where
each pair of subsets has few columns in common by picking separated subsets greed-
ily (Gilbert—Varshamov bound). See [38], [28, Lemma 19.3] for another instance of
Bonferroni’s inequality with almost pairwise independence.

Our aim with Theorem 1.5 is to provide a matching lower bound for Theorem 1.4
for completeness. While it may be possible to deduce it from a union bound and esti-
mates for the smallest singular value of a single matrix (without taking submatrices)
in[21] and [41, Section 3], our proof is self-contained and follows from a union bound
and elementary estimates.

While Theorems 1.4 and 1.5 are results about random matrices, they have direct
implications in the analysis of algorithms: In Section 5 we discuss how Theorem 1.4
conditions the applicability of the robustness of tensor decomposition result by
Bhaskara, Charikar and Vijayaraghavan [7]. In Section 6 we discuss how Theorem 1.4
conditions the applicability of results about the complexity of the simplex method and
the diameter of polytopes in [12,13,18,22].

2. Preliminaries

2.1. Notation
Forv e R andi € [d], let v_; denote vector v with coordinate v; removed, that is
Ve = (U1,...,Vi—1,Vif1s...,04).

Ifv#0,letd:=v/||v],. Let B(x,e) :=={y e R? : |y — x|, < &}. Let ™! denote
the (d — 1)-dimensional unit sphere in R?. For v € §9~!, denote the spherical cap
centered at v with angle « as € (v) := {x € §4-1:y.x > cos a}. For A C RY, let
aff A be the affine hull of 4, and define

Ag = {x e R? : dist(x, A) < ¢}, A_g:={x eR%: B(x,¢e) C A}.
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Let N (i, 02) denote the normal distribution with mean u and standard deviation o.
We write X ~ N (1,02) if X is normally distributed with mean p and standard devi-
ation o. This notion also generalizes to the multivariate normal distribution with the
first argument as mean vector and the second as covariance matrix. Let § denote the
standard multivariate Gaussian probability measure. For random variables or distribu-

. . d .. .
tions X, Y, notation X = Y states that X and Y have the same distribution.

2.2. Comparison inequality for the Gaussian distribution

We need the following known comparison inequality for the Gaussian distribution. It
is a special case of Anderson’s lemma [3].

Lemma 2.1. Let € R. Let X; ~ N(0,02), Y; ~ N (u,02), i € [k], be independent.
Lett > 0. Then

k k
P(inz > t) < ]P’(ZY,-2 > t).
i=1 i=1

In the proof of Lemma 7.4, we will need the following comparison inequality,
which follows from Lemma 2.1.

Lemma 2.2. Let i € R. Let Xo, X;, Yy ~ N(0,02), Y; ~ N(u,0?),i € [n] and be
independent. Then for any t € (0, 1), we have

Y2 X2
P(—z Sy zt2) SP(—Z e th)-
Yo+ 2 i Y Xg + 2ic X

Proof. Let f denote the probability density function of XZ and Y. By the law of
total expectation,

Y02 2 *© Y 2
AT SR
(GRS 0 y+ i Y2

- [Te(Xrz = m)rore

i=1

< /;OOP(; Xi2 <(1/t?— l)x)f(x) dx (Lemma 2.1)

_ [T X 2

— P(—Xg > tz). n
Xg + er'l=1 Xi2 B
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2.3. Concentration and tail inequalities

Lemma 2.3 ([32]). Let (Xy,...,X,) beiid. standard Gaussian variables. Let a1, . . .,
oy be non-negative. Let Z = Z?Zl a; (X i2 — 1). Then, the following inequalities hold
for any positive t:

P(Z = 2],V + 2]allot) < exp(—1),
P(Z < —2|lal,+t) < exp(—t).

2.4. Gilbert—Varshamov bound

We need the following well-known bound on the number of binary vectors satisfying
a minimum distance condition.

Lemma 2.4. Let A(n,t, w) be the maximum number of binary n-vectors with exact-
ly w ones and pairwise Hamming distance greater than or equal to t. Then for any

co > 1, there exist constants ¢y > 0 and c > 1 (that depend only on cy) such that for
alld > 1andn/d > cy we have A(n,c1d,d) > czd.

2.5. Generalization of Archimedes’ formula

Lemma 2.5. Let d > 3. Let U be a uniformly random d-dimensional unit vector.
Then (U, . ..,Ug_5) is uniform in B4=2 and P(|(Uy, ..., Uz_p)| <1t) = t972.

Proof. The first part is well known, a proof can be found in [5, Corollary 4]. The
second part follows immediately from the first part. |

2.6. One-off-distance vs sigma min
Lemma 2.6 (see e.g. [6, Lemma 3.5] for a proof). If AeR™ " has columns ay,. .. ,an

and m > n, then denoting a_; = span (a; : j # i), we have

1
—— min dist(a;,a—;) < 0,(A) < m[ln] dist(a;,a—;).
1€|n

\/ﬁ i€[n]

2.7. Facts about Gaussian random polytopes
2.7.1. Gaussian e-neighborhood.

Corollary 2.7. Let Q be a convex set in R%. Then there exists an absolute constant
¢ > 0suchthat §(Q \ Q) < ced'/*.

Proof. The proof follows immediately from [17, Lemma A.2] and the fact ||/ | g5 =
Jd (Hilbert—Schmidt norm). Their proof is based on [4,33]. ]
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2.7.2. Distances of facets.

Lemma 2.8 ([45, Theorem 4.4.5]). Let X be an m x n random matrix whose entries
are iid. standard Gaussian random variables. Then for t > 0, we have

P (0max (X) > ¢(/m + /n + 1)) <277,
where c is some absolute positive constant.

Lemma 2.9. Let X, ..., X, be iid. standard Gaussian random vectors in R4, For
S C [n], |S| = d, define Vs as the shortest vector in aff(Xs). Then there exists a
constant ¢ > 0 such that
P( max ||[Vsl| <c@+ n/d))>1—2¢9.
(jemax _, 1Vsl = e@+ Vn/d)) =

Proof. Let X be the matrix whose column vectors are Xy, ..., X,. For any § C
[7],]S| = d, Xy is linearly independent with probability 1. Using that the norm of
the average of the columns of X is at least the norm of Vg,

1 Omax (XS) Omax (X)
||VS||§”E§Xi N B

1
| = Zlxst) < M

From Lemma 2.8 we know P (0 (X) > ¢(vVd + /n + 1)) < 2e~">. The claim
follows by letting t = ~/d and applying (1). ]

Note that Lemma 2.9 directly generalizes to Gaussian random vectors with mean
zero and covariance matrix 02I; by scaling by o.

2.7.3. Number of facets. We will need the fact that the number of facets of the con-
vex hull of 7 Gaussian random points in R is exponential in d with high probability
when n = c¢d, ¢ > 1. We could not find such a result in the literature and we do not
see how to deduce it from results on the asymptotic number of facets in stochastic
geometry [1, 11,26,27,37] (the difficulties are: either they only determine the expec-
tation or variance of the number of facets, or the bounds are as n goes to infinity for
fixed d). Nevertheless, it is easy to deduce what we want from the work of Donoho
and Tanner on compressive sensing and the neighborliness of random polytopes. We
build on top of basic polytope theory from [47].

Definition 2.10 (Neighborliness). A polytope P is k-neighborly if every subset of k
vertices forms a (k — 1)-face.

Let f;(P) denote the number of /-faces of polytope P.

Theorem 2.11 ([20, Corollary 1.1, Lemma 3.2]). There exists a function (threshold)
0(8):(0,1) = R, p(8) > 0 with the following property: Let § € (0,1). Letd = |én].
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Let p < p(8). Let X1, ..., X, be iid. samples from a Gaussian distribution in R¢ with
non-singular covariance. Let P = conv{Xy, ..., Xy }. Then

lim P(fl(P) =nand P is Lpdj-neighborly) = 1.
n—>oo

The above theorem demonstrates, given its assumptions, that when n is large
enough, P has (L o J) many |pd |-faces with high probability. Note also that P is
simplicial (every facet is a simplex) a.s. Thus, a.s. each facet of P provides at most
(L pdd J) many | pd |-faces, and the number of facets is at least

() led) /1y Led]
=z (@) =) e

for some ¢ > 1 (and d large enough). We conclude:

Corollary 2.12. Let § € (0, 1). Let P be the convex hull of n iid. standard Gaussian
random points in R?, d = |8n|. Then there exists a constant ¢ > 1 (that depends only
on 8) such that lim, oo P(f7(P) = ¢%) = 1.

Corollary 2.12 can probably also be proven directly from different but related
neighborliness results by Vershik and Sporyshev [44], [20, Theorem 2].

2.8. Condition measures of polytopes
2.8.1. Width and minwidth.

Definition 2.13 (Directional width and width). The directional width of a set A € R4
with respect to a direction r € R? is defined as dirW (4, r) := sups’vec,,o(”:—”, s —v).

The width of A, denoted width(A) is the infimum of the directional width over all
directions on its affine hull.

Definition 2.14 (Minwidth, [31, Section 3.1]). The minwidth of a finite set A € R?,
denoted minwidth(A), is the minimum width over all subsets of A.

2.8.2. Pyramidal width.

Definition 2.15 (Pyramidal directional width, [31]). We define the pyramidal direc-
tional width of a finite set A € R¢ with respect to a direction r € R4 and a base point
x € conv(A) to be
r
PDIirW(A, r, x) := min dirW(S U {s(4,r)}.r) = mi (s =),
irW(A4,r, x) ;‘E.ISI:( irW( {s(A,r)},r) bgrelgri sellili;)és il §—v

where Sy := {T C A: x is a proper convex combination of all the elements in 7'} and
s(A, r) := argmax,c 4 (r, v).
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Definition 2.16 (Feasible direction, [31]). A direction r is feasible for A from x if it
points inwards conv(A4), i.e. r € cone(A — x). A direction r is feasible for A if it is
feasible for A from some x € A.

Definition 2.17 (Pyramidal width, [31]). We define the pyramidal width of a finite
set A € R? to be the smallest pyramidal directional width of all its faces,

PWidth(A) := min PDirW(K N A, r, x).
K efaces(conv(A))

x€K
recone(K—x)\{0}

2.8.3. Vertex-facet distance. The vertex-facet distance polytope conditioning param-
eter for the analysis of FWMs was introduced in [8]. We adopt here the slightly
specialized definition in [35], which is defined as a property of a polytope indepen-
dent of the representation, while the original version in [8] can depend on the numbers
used to represent a polytope.

Definition 2.18 (Vertex-facet distance, [8, 35]). Let P C R? be a polytope with
dim(aff(P)) > 1. The vertex-facet distance of P is

vi(P) = Fefrgg(f’) dist(aff(F), vertices(P) \ F).

2.8.4. Relation between vertex-facet distance and pyramidal width. We show
vf(conv(A)) > PWidth(A). It seems that this result may have already been known
to [35, comment before Theorem 1, combined with Theorem 2], but it is claimed
there in the wrong direction. That direction is impossible as the example of a unit
cube shows: PWidth([0, 1]¢) = 1/+/d (see [31, Lemma 4]), but vf([0, 1]¢) = 1.

Proposition 2.19. Let A CR? be a finite set with at least two points. Then
vf(conv(A)) > PWidth(A).
Proof. Let P = conv(A). Let F be a facet of P and pick v € vertices(P) \ F so that
dist(v, aff(F)) = ¢ := vi(P).

Pick x € relint(conv(F U {v})) and let r be the unit outer normal vector to F (in
aff(P) if P is not full-dimensional). We set K = P as in Definition 2.17 so that
r € cone(K — x) = aff(P) and

PWidth(A) < PDirW(K N A,r,x) = PDirW(A4, r, x).
Now, set S = A N (F U {v}) as in Definition 2.15 so that, with these choices,
PDirW (A, r, x) < dirW(S,r) <.

The claim follows. n
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Figure 1. Proof of Proposition 2.19.

2.8.5. Facial distance.

Definition 2.20 ([35]). Let C € R be a polytope with dim(aff(C)) > 1. The facial
distance of C is

d(C) = Fe&ig(@ d(F, conv(vertices(C) \ F)).
9 F C

2.8.6. Relation between facial distance and pyramidal width. One of the moti-
vations of [35] to introduce parameter ® is that it is the same as PWidth (except in
degenerate cases) while the definition of ® is simpler to use in many cases. We quote
their result next.

Theorem 2.21 ([35, Theorem 2]). Let A C R4 be a finite set with at least two points.
Then
<I>(conV(A)) = PWidth(A).

2.8.7. Summary result.

Theorem 2.22. Let A C R? be a finite set with at least two points. Then
minwidth(A) < ®(conv(A)) = PWidth(A) < vf(conv(4)).

Proof. Immediate from [31, Section 3.1], Theorem 2.21 and Proposition 2.19. ]

3. Conditioning of simplices

In this section we show that the smoothed conditioning of any simplex is polyno-
mial. This implies that several FWMs have smoothed polynomial complexities on the
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minimum norm point in a simplex problem and the minimization of many convex
functions on a simplex. To put this result in context, we first argue (based on known
results) that even a simplex with vertices having 0/1-coordinates can have bad condi-
tioning. Another relevant context to keep in mind is the fact that linear programming
reduces in strongly polynomial time to the minimum norm point in a simplex [19].

3.1. Equality of width and minwidth of a simplex
We start with the observation that the minwidth of a simplex is the same as its width.

Lemma 3.1. Let A be the vertex set of a simplex in R? and Ay C A which includes
more than one vertex. Then width(A) < width(Ay). In particular, minwidth(A4) =
width(A).

Proof. We prove by induction in d. The width of a polytope is the minimum distance
between parallel supporting hyperplanes in its affine hull. Width of a 2-simplex is the
minimum height of triangle, which is smaller than the length of any edge. For a k-
simplex A, suppose the width of one of its facet is given by the distance between two
parallel (k — 2)-dimensional planes, p¥~=2 and p%~2. One can extend p¥~2 and p%—2
to parallel hyperplanes in R¥ that enclose A. Suppose extensions p’f‘l and p"z‘_1 give
the minimum distance. Then,

: k—1 _k—1 :
dlst(p1 2 ) = min lla — b
aep|” ,bep;

IA

min la —b| = dist(p*=2, pk=2),
aEp{"fz,bEpg*z ( ! 2 )
which shows that the width of a k-simplex is less than the width of any of its facets.
The claim then follows by induction. ]

3.2. Bad worst case conditioning of a 0/1-simplex

Lacoste-Julien and Jaggi [31] observed that the minwidth of the unit cube in R is
exponentially small in d. This example was one of their motivations for introducing
PWidth, which is 1/ Vd for the cube. Their observation is based on the following
result by Alon and Vu:

Theorem 3.2 ([2, Theorem 3.2.2], [48, Corollary 27]). There are d + 1 vectors in
{0, 1}¢ that form the vertices of a d-dimensional simplex S so that

d-1 2d(2+0(1))

2
Zap Vi) = —a5—
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The authors of [19] observed that PWidth can be exponentially small in the size
(bitlength) of a set of points with integer coordinates. Using Theorem 3.2 and the
relationships between polytope condition measures, we can immediately strengthen
this result and show that this is not just a “large numbers” phenomenon, namely, all
condition measures are exponentially small even for a 0/1-simplex:

Corollary 3.3. There are d + 1 vectors in {0, 1} that form the vertices of a d-
dimensional simplex S so that

width(vertices(S)) = minwidth(vertices(S))
7d(2+0(1))

< PWidth(vertices(S)) = ®(S) < vf(S) < —an

Proof. Let S be the d-dimensional simplex given by Theorem 3.2. Lemma 3.1 gives
the leftmost equality. The rightmost inequality is one of the conclusions of Theo-
rem 3.2. The other relations follow from Theorem 2.22. |

3.3. Polynomial smoothed complexity of FWMs on a simplex

Now we start analyzing smoothed complexity of FWMs on the minimization of a
strongly convex function with Lipschitz gradient on a simplex.

Definition 3.4. A differentiable function f is said to have L-Lipschitz gradient if for
some L > 0 and for all x, y in its domain, we have |V f(x) =V f(»)| < L|lx — y|.

Definition 3.5. A differentiable function f is u-strongly convex if for some u > 0
and for all x, y in its domain, we have

FO) 2 F@ + V0T (0 =) + Sy =]

In [31, Theorem 1], Lacoste-Julien and Jaggi proved the global linear convergence
of FWMs on the minimization of a strongly convex function with Lipschitz gradient:
suppose u; is the current point after ¢ good iterations®, f(u,) satisfies

. 2\t
ron= 1= (1= 4 (Gt ) ) GG =19 @

where f* is the optimal value and u is the initial point. To show polynomial smooth-
ed complexity, we need to prove that the measure of conditioning ¥ = %t(hfg) is at
least inverse polynomial in d, 1/0, 1/8. We are going to get this by giving a polyno-

mial lower bound on PWidth(A) and a polynomial upper bound on diam(A).

2The number of good iterations depends on variants of FWMs being used. It is always
lower bounded by some linear function of the actual number of iterations. See details in [31,
Theorem 1].
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3.3.1. Inverse polynomial smoothed minwidth. We know from Theorem 2.22 that
minwidth < PWidth, and from Lemma 3.1 that minwidth = width for any simplex.
Thus, we instead find a lower bound on width, namely the diameter of a ball contained
in the simplex, which is also a lower bound on PWidth. In the next lemma, we prove
that a random simplex contains a ball of radius Q(d ~2) with probability close to 1.

Lemma 3.6. Let A = {A1, ..., Ag+1} be a set of independent Gaussian random
vectors with means ;, |i|| < 1,i € [d + 1], and covariance matrix 6*14. Then for
8 > 0, we have

P (minwidth(conv(A4)) > 2o 8(d + 1)) = 1 — .

Moreover,
P (PWidth(conv(A4)) > V2rwo8(d +1)7%) > 1 —3§.

Proof. Tt is easy to see that A forms a simplex with probability 1. From Lemma 3.1,
we know the minwidth of a simplex is its width. Let D; be the distance from A4; to
the affine hull of its opposite facet, aft{A4; : j # i}. Conditioning on aff{A4; : j # i},
by the rotational invariance of Gaussian distribution, D; is equal in distribution to the
absolute value of a Gaussian random variable with mean p € R (not necessarily zero)
and variance 0. Let X ~ N (0,02). By Lemma 2.1, we have

P(D; <1) <P(||X|| <1)

for all 7. The right-hand side is upper bounded by 2¢/+/27 o, which is the product of
the maximal Gaussian density and the length of the interval. Apply union bound to

il 26(d + 1)
JP(DI{D,- _z}) > l_ﬁ'

Let C; be the distance between the center of mass of conv(A4) and aff(A4; : j # i).
Note that C; = D;/(d + 1). Then

t 2t(d + 1)
P(n{c"zdﬂ})zl_ﬁ'

The above expression states that with some probability the ball centered at the center
of mass of radius 7/(d + 1) lies inside conv(A). Setting ¢ = S;T*/El and using the
fact that the width of the simplex is at least the diameter of the inscribed ball, we get

get

P (width(conv(A)) > v2w08(d + 1)) = 1 —38.

The claim follows immediately from Lemma 3.1 and Theorem 2.22. u
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3.3.2. Smoothed diameter.

Lemma 3.7. Let A = {A1, ..., Ag+1} be a set of independent Gaussian random
vectors with means i;, il < 1, i € [d + 1], and covariance matrix c*1,. Then for
8 > 0, we have

P(diam(A) < 2(0\/2d + 3ln(d ;r 1) + 1)) >1-3.

Proof. Let A; = ju; + X;, where X; ~ N (0,02%1;). Let t > 0. Triangle inequality
gives that

P(Aill >4+ 1) =P(|X; + will >+ 1) <P(|X; ] > 7).

Apply Lemma 2.3 with o = (02,...,02), we have

]P’(||Ai|| > ovd +25dt + 2t + 1) < IP’<||X,-|| > ov/d +2M+2z) <o,

which shows that every A; is contained in a ball of radius o vd + 2v/dt +2t + 1 <
0+/2d + 3t 4+ 1 with high probability. With union bound, we see the diameter of the
ball is an upper bound of the diameter of convex hull of A:

]P’(diam(conv(A)) < 2(0’\/2d + 3t + 1)) >1—(d+ 1)e™.
The claim then follows by setting ¢ = In((d + 1)/§). ]

Next we restate and prove our main theorem for this section:

Theorem 1.2. Let A = {A1, ..., Agy1} be a set of independent Gaussian random

vectors with means [;, ||l <1, i € [d + 1], and covariance matrix 0*14. Then

for § > 0, with probability at least 1 — &, the measure of conditioning k = Pzivifnﬂ(]%)

of A is at least some inverse polynomial in d, 1/0 and 1/3.

Proof. We proved in Lemma 3.6 and Lemma 3.7 that

IP’(PWidth(conv(A)) > V2rmo8(d + 1)—2) >1-8§

P(diam(A) < 2(0\/2d + 3ln(d ;r 1) + 1)) >1-3.

and
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Thus, with probability at least 1 — 2§, we have
PWidth(4) _ V2ro8(d +1)72
diam(4) ~ 2(0/2d +3In((d + 1)/8) + 1)
8y//2
(d + 1)2(y/2d +3In((d + 1)/8) + 1)
1/p(d.1/0,1/6),

where p is a polynomial function of d, 1/0,1/6. [

%

Going back to (2), let h; = f(us) — f*. We have

w (PWidth(4)\?*\’
o= (i () ) o

Based on our smoothed analysis on the measure of conditioning in Theorem 1.2, with
probability at least 1 — 26,

h 1 : th _4Zt2h
< —_ << 0 .
t = 4”)2 o=¢€ 0

2 . . . .
ALp”In(1/e) good iterations to get a solution whose value is

Hence, one needs at most
within distance e(fo — f ) of f™*. Let T denote the number of good iterations, we

have (using the notation from Definition 1.1)

4Lp(d.1/0,1/5)> 111(1/8)) <28
: < 26.

max Py (T(A +g)>
ACB(0,1)CRY
|A|=d+1

4. Conditioning of random matrices

In this section we prove that the smallest singular value of some square submatrix of
a d-by-n Gaussian random matrix is exponentially small with probability exponen-
tially close to 1 when n/d > ¢ > 1. From Lemma 2.6, we know that the smallest
singular value of a square matrix is comparable to the minimum distance between
one column vector and the span of the other column vectors (one-off-distance). If we
consider exponentially narrow bands around each span of d — 1 column vectors of a
rectangular matrix, the matrix will have exponentially small minimum singular value
if some other column vector falls in one of those bands. We lower bound the Gaussian
measure of the union of bands by a constant using the first two terms of the inclusion-
exclusion principle (Bonferroni inequality). See Section | for a high level overview
of the proof.
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We start by giving an upper bound of the intersection of two bands in Gaussian
measure, which appears in the second term of the inclusion-exclusion principle. The
following lemma shows that the Gaussian measure of the intersection depends on the
width of bands and the angle between two bands.

Lemma 4.1. Let u,v € R? be unit length vectors, let € > 0, and let cs,cT € R. Let

Bsz{xeRd:csfx-ufcs—l—g},

£T={xeRd:cT§x-v§cT+e}.

Then

82

27/1— (u-v)?

Proof. If u and v are parallel then the claim holds. If they are not parallel, then by
the structure of the Gaussian measure § this is a 2-dimensional problem in the plane
spanned by u, v. Identify this plane with R%. §(8s N Br) is at most the maximum
density 1/(27) multiplied by the area of the parallelogram

9(Bs N Br) <

P i={xeR?:¢cs<x-u<cs+ecr<x-u<cr+e.
One can see that P’ has the same area as
P:={xeR?:|x-ul<e/2,|x-v| <e/2}.

Defining A to be the matrix with rows u, v, we have P = {x : || Ax|| o, < &/2}. This

implies
area(P) = &?|det A7 | = &?/|det A| = €2/ det AAT = £2//1 — (u - v)2.
The claim follows. u

We now switch our focus to the random regime. The following lemma gives a
probabilistic upper bound of the intersection of two bands around the spans of two
(possibly not disjoint) subsets of random vectors in high-dimensional space. The
bound is good when not too many points are shared by the subsets (so that the behav-
ior is not very different from two independent bands).

Lemmad4.2. Letd > 1. LetO <k <d —1.Let Ay,..., Ak, S1,...,Sa—k—1, T1,. ..,
Tj_k—1 be d-dimensional iid. standard Gaussian random vectors. Let’

Bs = (span{4y,. ..,Ak,Sl,...,Sd_k_l})E/z,
Br = (span{Al, ooy Ag, Tl,...,Td_k_l})E/z.

3Recall that subscript & denotes the e-neighborhood of a set, see Section 2.
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Then for any t > 1,

&%t 1
P(9(8s N Br) = g) <

Proof. Ifd <2ork > d — 2, then the claim is immediate. Otherwise, 0 <k <d — 3
and we argue in the following way: By the structure of the Gaussian measure § this
is a (d — k)-dimensional problem in {4, ..., Az }*. More precisely, let U, V be two
(d — k)-dimensional iid. uniformly random unit-length vectors and define

By ={xeRIF:|x.U| <e/2),
By ={xeRI*:|x.-V|<e/2}.

Then §(Bs N Br) has the same distribution as (B N B7).* From Lemma 4.1, we

have
2

&
270/1— (U - V)%

Using the rotational symmetry of the distribution of U and V and then Lemma 2.5,

(85 N By) <

we get
P(V(1—(U-V)?) <1/t) = IP’(\/Ul2 +o+ U2, < l/t)
< ]P’(\/Ulz te U2, < 1/:)
= 1/pdk2,
The claim follows. "

The main technical content of our singular value bound is the following lower
bound on the Gaussian volume of the union of bands around any d — 1 columns of a
d-by-n Gaussian random matrix. We also include an upper bound on the volume.

Lemmad4.3. Lete > 0,d > 2. For{Ay,..., Ay} C RY, define

V:g(( U spanAs)g).

Scnl,|S|=d-1

(M) V = @e/V2m)(,))-

4To see this, note that the Gaussian measure of Bs N B7 is the same as the Gaussian
measure of its projection onto {A7, ..., Ax}" and the distribution of the projection of B
(resp. Br) is the same as the distribution of B’ (resp. B7.) after identifying {4y, ..., Ap )t
with RY—%,
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(2) Suppose Ay, ..., Ay are d-dimensional iid. standard Gaussian random vec-
tors with n/(d — 1) > co > 1. Then there exist constants c2,c4 > 1 (that
depend only on cg) such that when ¢ < 1/ (C4Cg ~1Y and with probability at
least 1 — cge™ we have V > (¢~ /N/21)e.

Proof of part 1. The upper bound follows from the union bound and the fact that the
1-dimensional Gaussian density is upper bounded by 1/+/27. ]

Proof of part 2. Let § = {S C [n],|S| = d — 1}. We will use Lemma 2.4 (Gilbert—
Varshamov bound). Recall that A(n, ¢, w) denotes the maximum number of binary
n-vectors with exactly w ones and pairwise Hamming distance greater than or equal
to ¢. Use Lemma 2.4 to get the bound

A(n,er(d —1),d —1) > 471,
We get a subfamily 7 C § such that forall S, 7 € T with S # T, we have
_ N\ - - _ A1
ISNT| < (1 2)(d ) and |T|=c

for some constants 0 < ¢; < 1, ¢ > 1 (that depend only on ¢g), and any d > 2. Let
N =T

Let Bs = (span Ag).. Use the first two terms of the inclusion-exclusion principle
(Bonferroni inequality) and Lemma 4.2 in a union bound applied to all pairs of sets
in 7 to get §(Bs N Br) <26%t/mforall S,T € T, S # T. We get abound on V
that holds with probability at least

(2) (2)

1

T id-1-(l—a/p@-D-2 —  je@-1j2-1
N2
> — ————
- tcl(d—l)/Z—l
2 \d-1
— ) _ —d
_1_t([61/2> =1-—-c3e

(choosing a constant 7 > 1 that depends on ¢ (cp) and ¢2(co) such that ¢3 /¢! 2=1/e
and then setting c3 = /e, which ultimately depends only on ¢g).The bound on V' is

V> g(( |J span As)e)

SeT

1
>) §Bs)—5 Y, H(BsnBr)
SeT S, TeT ,S#T
2Ne _ 2/ (N) 2621
> e I~ —
2w 2

T
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> e —
V21 N2
2Ne tNe
> 1—82/2—
T 27 ( / v 271’)
Ne
> — (for e < /2w /(4tN)).
V2r /(4N
In other words, V > cg_ls/«/Zn for ¢ < «/27/4tN. We finish our proof by taking
cq = 3ecs3/~/2m. n

We are ready now to restate and prove the main results of the section.

Theorem 1.4. Let A be a d-by-n random matrix with iid. standard Gaussian entries
withd > 2 and % > co > 1. Then, there exist constants co,c4 > 1, 0 < cg < 1 (that
depend only on cg) such that with probability at least 1 — 2640g,

min  o04(As) < )
SSlnl,|S|=d cacd ™!

Proof. Pick c; € (1,¢p). Let m = |c1d |. Note that
m=>cid—1>cid—cy >c1(d—1),
so that we can apply Lemma 4.3 to columns Ay, ..., A, with e = 1/04c§1_1. Then

we get V > 1/+/2m ¢4 with probability greater than 1 — ¢4e~?. This implies that with
probability greater than

(1— C4e_d)(1 — (1 — ! )n_m) > (1 — c4e_d)(1 . (1 _ 1 )(00—61)11)

N2mey N2mey
-1 _d (1 1 )(C()—Cl)d
>1—cqe™ —(1—
¢ V2mey
>1-— 2(:4cg,
where
{1/ (1 1 )(60—61)}
ce = maxil/e, (1 — ;
¢ N2mey
at least one of A, 41, ..., An, say A, falls in V, that is, falls within distance ¢ =
1/04c§1_1 of span(Ag) for some S C [m], |S| =d — 1. Lemma 2.6 gives o4 (As, Ax)
< 1/cqcd™!
= 4Cy . ]

Theorem 1.5. Let A be a d-by-n random matrix with iid. standard Gaussian entries

withd >2and 1 < d'il < Cy. Then, there exist constants C; > 1,0 < C, < 1 (that

depend only on Cy) such that with probability at least 1 — nCzd -1

min o4(Ag) > .
scimin_,0ds) = o

1
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Proof. Apply Lemma 4.3 to columns Ay, ..., A, to get

2¢ n 2¢ en \4d-1 2¢
< < < eCo)d 1,
< ol 1) = =G = e

By picking ¢ = l/Cld_1 where Cy > eCy, there exists a constant eCy/C; < Cp < 1
such that V' < C#~1. This implies that, with probability at most C§~!, column A,
is within distance l/Cld_1 of span Ag for some S C [n — 1], |S| = d — 1. A similar

Vv

claim holds for columns Ay, ..., A,—; as well. Applying the union bound, we get
that no A; falls within distance I/Cld_1 of span Ag forany S C[n—1],|S|=d — 1
with probability at least 1 — nCzd_l. Lemma 2.6 gives o4(As, An) > l/Cl‘i_1 with
probability at least 1 — nCZd -1 ]

5. On the stability of tensor decomposition

Kruskal [29] showed a sufficient condition under which the component vectors a;, b;,
ci,i =1,...,nof an order-3 tensor T = Z?zl a; @ b; ® ¢; are uniquely determined
by the tensor (up to inherent ambiguities). The condition depends on a parameter now
known as the Kruskal rank of a matrix: For a d-by-n matrix A4, the Kruskal rank of A4,
denoted K-rank(A), is the maximum r € [n] such that any r columns of A4 are linearly
independent. The condition is

K-rank(A) + K-rank(B) + K-rank(C) > 2n + 2,

where A, B, C are the matrices with columns (a;), (b;), (c;), respectively. For con-
creteness, it is helpful to consider the symmetric case A = B = C € R?*". Kruskal’s
condition becomes

3K-rank(A) > 2n + 2.

Informally, for a generic matrix A we have K-rank(A) = d, and so Kruskal’s result
guarantees uniqueness for generic A whenn < 3d/2 — 1.

Bhaskara, Charikar and Vijayaraghavan [7, Theorem 5] extended Kruskal’s unique-
ness to a result that guarantees robust decomposition. That is, when the observed
tensor is a small perturbation of the original tensor, the components of the perturbed
tensor are uniquely determined and close to the components of the original tensor.
Their condition for robust unique decomposition is a refinement of Kruskal’s condi-
tion: Let T > 0. The robust Kruskal rank (with threshold t) of A, denoted K-rank;(A),
is the maximum k € [n] such that for any subset S C [n] of size k, we have oy (As) >
1/t (where o; denotes the kth largest singular value). The condition is

K-rank;(A) + K-rank,(B) + K-rank.(C) > 2n + 2

and the error in the recovered components depends polynomially on 7.
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In this context, Theorem 1.4 can be stated in the following equivalent way:

Theorem 5.1. Let A be a d-by-n random matrix with iid. standard Gaussian entries
withd > 2 andn/d > co > 1. Then, there exist constants c4,¢5 > 1,0 < c¢ < 1 (that
depend only on cqy) such that with probability at least 1 — 2C4Cg ,

Krank;(4) =d =t > (:4c§i_1.

This has the following implication for Bhaskara, Charikar and Vijayaraghavan’s
result: Even though Kruskal’s result guarantees uniqueness for generic A when n =
3d /2 — 1 (say, with probability 1 for a random Gaussian matrix, we have K-rank(A4) =
d), Bhaskara, Charikar and Vijayaraghavan’s robust uniqueness can give a polynomial
bound on the reconstruction error on no more than an exponentially small fraction of
matrices A when the fraction is measured by the Gaussian measure. This rarity of
sufficiently well-conditioned matrices A is somewhat surprising. Note that our result
presents a clear limitation only as stated above: It should still be possible to apply
their robust uniqueness results with K-rank(A4) = (1 — &)d for a small constant ¢ > 0
to guarantee robust uniqueness for n < (1 — ¢)3d/2.

6. On the complexity of the simplex method and the diameter of
polytopes

In [13], Brunsch and Réglin introduced the following property of a matrix:

Definition 6.1 (§-distance property, [12]). Let A = (ay,...,a,)' be an m-by-n
matrix with unit rows. We say that A satisfies the §-distance property if: for any
I C [m] and any j € [m] whenever a; ¢ span{a; :i € I}, we have

d(aj,span{ai 1l € I}) > 4.

This property has been used in several papers [12,13,18,22] to study polytopes of
the form {x € R" : Ax < b} to provide upper bounds of the form poly(m,n, 1/§) on
their diameter and the number of pivot steps of the simplex method. Our Theorem 1.4
combined with Lemma 2.6 and concentration of the length of a Gaussian random
vector implies that, for m/n > ¢’ > 1, matrices A with the §-distance property for
8> c",0<c < 1,are “rare”: they are exponentially unlikely when the rows are iid.
random unit vectors. As in Section 5, this rarity of well-conditioned matrices A is
somewhat surprising.
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Figure 2. A polytope (triangle) and the region (blue) where a new point would create a small
vertex-facet distance.

7. On the smoothed analysis of polytope conditioning

In this section we prove that the vertex-facet distance of the convex hull of a linear
number of d-dimensional iid. Gaussian points can be exponentially small with proba-
bility at least some constant. The argument is a more elaborate version of the argument
for the minimum singular value in Section 4 and works in the following way. Figure 2
shows a polytope, the convex hull of a partial sequence of random points, and e-inner
bands at all facets. If a new point falls into the blue region, then the new polytope,
which is the convex hull of the old polytope plus the new point, will have vertex-facet
distance no larger than &: the new point is a vertex and its distance to the affine hull
of the facet associated to the band where the point lies in is less than e.

To get a lower bound on the Gaussian measure of the blue region (Lemma 7.5), we
add the measures of the bands and then subtract the measures of pairwise intersections
of bands and e-inner neighborhood (grey region). Lemma 7.4 gives a bound on the
measure of a pairwise intersection. Its proof is divided into two cases: Lemma 7.1 for
the case where the two facets do not share vertices and Lemma 7.2 for the case where
they do share vertices. This argument is a refinement of the proof of Lemma 4.2.

Lemma 7.1. Let Sq,...,S4, T, ..., Ty be iid. standard Gaussian random vectors
inRe. Let

Bs = (aff{Sl,...,Sd})s/z,

Br = (aff{Tl,...,Td})a/z.
Then fort > 1,

et 1
P(9(8s N Br) = Z) <75
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Proof. By the rotational invariance of the Gaussian distribution, unit normal vectors
U,V to Bs, Br are independent and are uniformly distributed on $¢~!. Define

By ={xeR?:|x-U|l<g/2},
Br={xeR%:|x-V|<g/2).
By a standard argument (say, using logconcavity), we have
P(§(8Bs N Br) >1t) < P($(Bs N Br) >1).
Then by the argument in the proof of Lemma 4.2, for any ¢ > 1, we get that

1
td—2 :

IA

P(5(85n 8p) > 82’)
S =g
The claim follows. n

Lemma 7.2. Let Ay, ..., Ak, S1,.... 80—k, T1, ..., Tg_i be iid. standard Gaussian
random vectors in R?, and 1 <k < d. Let

O(BS = (aff{Al,...,Ak,Sl,...,Sd_k})8/2a
Br = (aff{Ay,..., Ak, T1,. --,Td—k})s/z-

Then for 0 <2a < B < /2,

2

P(ﬁ(i&g N Br) > ) < (sin B)4F1 4 2( sina )d_k_z. 3)

T 2mwsina sin( — «)
In particular, fort > 2m, we have
&2t 73/2\d—k—2
P(9snsr=>)=3("=)
(Bs N Br) T NeT,

Proof. If d — k <2, then the bound holds immediately. Otherwise, d — k > 2 and we
argue in the following way. By the structure of the Gaussian measure, this reduces to a

(d — k 4 1)-dimensional problem: Conditioning on 4; = a;,i = 1,...,k, we project
onto the orthogonal complement of the linear subspace parallel to aff{ay,...,a;}. We
will then prove the bound claimed in (3) conditioning on A, ..., A, which implies

the claimed bound by total probability.

With a slight abuse of notation, we denote the projection of aff{ay,...,ax} as a;
and the projections of S;, T; as S;, T;,i = 1,...,d — k. Using the fact that the Gauss-
ian distribution is rotationally invariant, we may assume without loss of generality that
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a, = pe; for some ;> 0. A normal vector to aff{a;, S1, ..., Sq_} is’
€1 e €d—k+1
pr
U = det . , 4)
T
Pd—k

where P; := S; —ay,i € [d — k]. Define the matrix P = (Pl ---Pd_k). Let V be a
normal vector to aff{ay, Ty, ..., Ty—}, defined similarly.
H;
Set (P{) = P;, where

Hi ~ N(—p,1) and P/ ~ N(0,1;_¢).

Denote HT = (Hy -+ Hy_y) as the first row of matrix P and P/ = (P --- Pa/l—k) as
the rest. H and P’ are independent.

Note that |U||* = det(PT P) (follows from (4) and the Cauchy-Binet formula).
Also, Uy = U - e; = det(P’). We now compute the distribution of the first coordi-
nate of unit normal vector U (using the matrix determinant lemma to compute the
determinant of a rank-1 update):

~y  det(P'TP)
'™ det(PT P)
det(P'T P)
~ de(PTP + HHT)
det(P'T P’)
T U+ HTP-1P-TH)det(P'T P
1
= 1 + HTP/—IP/—TH‘

Claim 7.3. We have

¢« Do 1P
Y2

where Yo ~ N (0,1), Y; ~ N (u,1),i €[d —k]and Yy, Y1,...,Ys_j are independent.

H P/ 1P/ TH

’

Proof of claim. Random variables P’ and H are independent. Moreover, P’ is a
Gaussian matrix and therefore the distribution of P'~! is invariant under any orthogo-
nal transformation applied to rows or columns. Thus, it is enough to consider the case

3In the formula for U, the determinant should be interpreted as a formal cofactor expansion
along the first row; the entries in the first row are the canonical vectors and the expansion gives
the coefficients of these vectors (as subdeterminants).
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H = | H e1. Note that || H]|> £ %% y2, and

1

1
el P~ p~Te; = |first row of P/_1||2 4
1 Yz
0

The claim follows. [

Recall that U, V are unit normal vectors to [85, Br, respectively. We aim to
show that ]P’(V € €, (U) U €, (— U)) ie. IP’(|U V| > cosa), is upper bounded by
an expression of the form c(a)d with (o) — 0 as @ — 0 (where €, (U ) denotes the
spherical cap centered at U with angle «). To see this, we divide the analysis into two
cases, depending on whether the cap is close to e;. The case analysis depends on a
parameter 8 that will need to satisfy the constraint 8 > 2a.

Case 1. €, (0U) Cg(e1) U €g(—ey) (equivalently, |U1| > cos(B — a)).
In this case, the o-cap around U is contained in a larger cap centered at ey:
P({V € €a(U) UCa(=0)} N {Ca(U) S Cp(er) U Cp(—e1)})
<P(V € €gler) UCs(—er))

=P(V2 >cos®B) (using B < 1/2). (5)
From Claim 7.3, we get
o Y2
V12 = 2 0n 2
Yo +2ia Y

To upper bound (5), we get from Lemma 2.2 that making a; = 0 (equivalently, u = 0)
only makes the right-hand side larger and we then bound the case a; = 0 explicitly.

More precisely, let W be a normal vector to span{771, ..., T;_x} defined similarly to
U and V:
€1 €2 €d—f+1
r
W = det .
Td

Note that W is a uniformly random unit vector. Following the same computation as

for V, one can derive
2
2 d X5

W —7
LXG YL X7
where Xo, X; ~ N(0,1),i € [d —k]. Then by Lemma 2.2,

P(I?lz > cos? B) < ]P’(Wl2 > cos? B).
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Hence,

P({V € €u(U) UCa(=0)} N {Ca(D) S Cper) U Cp(—er)})
< P(W2 > cos? B)
d—k+1

= IP’( Z I//I\/iz < sinzﬂ)
i=2
d—k
< IP’(Z I//I\/iz < sin? ,3)

i=2
< (sin ,B)d_k_1 (by Lemma 2.5).

Case 2. €,(U) € €p(e1) UCg(—ey).
If e, ((7 ) is not contained in €g(e;) U €g(—ey), then U makes an angle at least
B — a with e; and —ey, that is

01| < cos(B —a). 6)
Our goal here is to bound
P({V € €(0) UC(=0)} N {€a(U) Z Cpler) U Eg(—e1)})
=P({V € C(U)} N {Cu(U) & Cp(er) UCp(—e1)})
+P({V € Cu(=0)} N {Cu(U) & Cp(er) U Cp(—e1)})
=2-P({V € €(U)} N {€u(U)  Cper) UEs(—er))}). (7
Observe that the distribution of U and the distribution of ¥ are invariant under

rotations orthogonal to e;. Thus, if we let U_1, V_1 be the projections of o.v orthog-
onal to e; and U_y, V_; be their normalizations, respectively, then

U_1,V_1 ~ Unif(§¢7%).

This observation motivates us to use the corresponding probability of projections
to bound (7). We will show that under condition (6) of case 2, V € €,(U) implies
that V_, € E’f(a)(ﬁ_\l), where f(a) is a bound (to be understood) on the angle that
depends only on «. As events,

{V € €(0)} € {11 € Proj,1 €u(0)}

CH{V_, € €1y (U_1)). @®)

Bounding f(«) is a 3-dimensional problem since U_1, V_ arein span{e, U, 17}.
From now on, the analysis lives in the above 3-dimensional space to get an upper
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Proj et

Figure 3. Case 2 of proof of Lemma 7.4.

bound on f(a).Lete, = (U — U -e1)/||U — U - e1]| (so that {e1, &>} is an orthonor-
mal basis of span{e;, l?}). Let {e1, €, €3} be an orthonormal basis of span{ey, 17 17},
and let U = (01, 172, 0) be the coordinate tuple of U relative to {e1, €3, e3}. Consider
x € €, (l? ) such that x - U = cos y. Note that its coordinates (x1, X2, X3) in our chosen
basis satisfy the following system of equations:

2 2 2
Xy +x3+x3=1,

xlﬁl + xzﬁz = COs Y.
The projections of all such x (for fixed y) onto span{e,, €3} form the ellipse:
(x2 — ﬁzcosy) + x3U1 = U2 sin? .

If 171 = 0, then l72 = 1, and the projection is the line segment inside unit circle
atxy =cosy. T The angle between x_; and U_l is upper bounded by y. As y ranges
from O to «, U_1 and V form an angle at most & when U1 =0.

If U, # 0, the pI‘OJCCthIl is an ellipse inside the unit circle. As shown in Flgure 3,
angle between x_; and U_; can be upper bounded by angle formed by U_; and

tangent line
Jeos2y — U2

X = ————X3.
sin y
Note that from (6), we know

1712 < cos?(B —a) < cos®a < cos? y

(here we use B > 2« explicitly), so the tangent line always exists.
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Hence, the angle between x_; and 17_\1 is at most

( sin y )
arctan| ————— |.
Veos2y —U?

Furthermore, since arctan(sm y/1/cos?y — U 2) is increasing in y, we can conclude
that for any Ve Cy (U ), its normalized projection orthogonal to e, V1 1, is contained
in the spherical cap centered at U_1 with polar angle at most

sina
arctan(—A)
Veos2a — U
when U # 0.

Therefore, with (6), we can take

fla) = max{arctan( me ),a}.
Vcos?a — cos?(B — a)
Combine with (7) and (8), to get

P({V € € (0) UCu(~U)} N {E(U) Z Ep(er) UEg(—e1)))
<2-P({V=1 € €ray(U_1)} N {€a(U) € Cp(er) UCg(—er)})
<2-P(|U_1 - V| = cos(f(@)))

=2 B(Y1 - (5 7202 < sin f(@)

< 2(sin f(oz))d_k_2 (by Lemma 2.5)

d—k—2
sina ,
= 2(max{ ,sma})
Vecos2a — cos?(B — a) + sin? &
5 sin o . d—k=2
= 2| max{ ———,sin«
sin(f — a)

5 sin o d—k=2
(Sin(ﬂ - a)) ‘

]P’(|U -V = cosoz) < (sinﬂ)d_k_1 —|—2(

Therefore,

€))

sina d—k=2
sin(f — )

Note that we proved bound (9) conditioning on A;’s, hence it is also a valid bound for
random A;’s (unconditionally). By Lemma 4.1, (9) implies

2 . d—k—2
(g(ﬂs N8r)> — ) < (sin B)4 1 4 2(ﬂ) . (10)

T 2wsina sin(f — «)
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Use inequalities (2/7)x <sinx < x for0 < x < /2 to get
g2 To d—k=2
P(g(BsnNBr)>— | <pi* 142 ——— )
(semsnan = ) o oo

Set B = /a and restrict 0 < o < 1/4 so that \/a < 1/2. The above probabilistic
bound simplifies to

82 d—k / T d=k=2
P(§(BsNBr)> — | <l D2 o ——
( (Bs T)_4a)_01 + 2 (Ja—a)

d—k—2
_ gld—knya o TV
2(1 — Vo)
<@ * D2 4 2 /a)4 K2 (use 1 — Vo > 1/2)

< 3(na)d 72,

I

The claim follows by setting @ = 3.

Combining Lemmas 7.1 and 7.2, we get

Lemma 74. Let Ay, ..., Ar, S1,...,8a—r, T1, ..., Tg_i be iid. standard Gaussian
random vectors in R and 0 < k < d. Let

Q(BS = (aff{Al,... ,Ak,Sl, .. "Sd_k})e/z’
Br = (aff{Ar..... Ak, 1. .. Tak}), -

Then fort > 2w, we have

(285N 8 )>82[ -3 732\ d—k=2
SUE =07 ) =\ Vot ‘

Suppose P, = conv(Ay, ..., Ay,) is a full-dimensional simplicial polytope in R¢
and ¥, is its set of facets. For S € %,,, we abuse notation so that S also denotes the
index set of vertices of S. Let Ug be a unit inner normal vector of aff(Ag) to P,. Fix
s € §S. Define

(aff Ag)e— := {x eR?:0<d(x,aff Ag) < &, Us - (x — Ag) > 0}.
Note that the definition is independent of the choice of s € S.

Lemma 7.5. Let § € (0, 1). Suppose Ay, ..., A, are d-dimensional iid. standard
Gaussian random vectors with d = |én|. Let P, = conv(Ay, ..., An), which is full-
dimensional simplicial a.s. For ¢ > 0, define a.s.

V, = g( | (aff Ag)e—\ Pn).

SeF,



L. Rademacher and C. Shu 304

(1) Vo < (¢/521)(})-
(2) There exist cp,c7,cg > 1 (that depend only on §) such that when ¢ = &(d) <
1/(cscd), we have limy 0o P(Vy, > (c§ /c7)e) = 1.

Proof of part 1. The upper bound follows from the union bound of at most (Z) facets
and the fact that the 1-dimensional Gaussian density is upper bounded by 1/+/27. =

Proof of part 2. From Corollary 2.12, there exists a constant c# > 1 (that depends
only on §) such that P(|%,| > c%) — lasn — oo. Since P, is simplicial a.s., we
may present 5, as a set of binary n-vectors with exactly d ones. Let Ag, (t) be the
maximum number of vectors in ¥, with pairwise Hamming distance greater than
or equal to ¢. Similarly to the proof of Lemma 2.4, one can pick vectors greedily
(Gilbert—Varshamov bound) so that when | %, | > csi, and ¢ € (0,1), and using n/d <
2/8 when d > 2, we have

d d

Cy Cq
Az, (ed) = T ayd = Gejed)ed

Since lim,_, ¢+ (2¢/c8)¢ = 1 and (2¢/c8)€ is increasing for 0 < ¢ <2/§, we can pick
c1 € (0, 1) such that (2e/c16)¢! < cg.Letca = cx/(2e/c18)€! > 1. Then we have,

lim P(Ag,(c1d) > cf) = 1. (11)
n—>o0

Here we get a subset of facets 7~ C ¥, such that any two different facets in  share no
more than (1 — 5-)d vertices, and | 7| = cg for some constants 0 < ¢y < 1, ¢ > 1 (that
depend only on §). Let N = |T|. Let Bs = (aff As).—, S € ¥,. Using an argument
similar to the proof of Lemma 4.3, we get

v=5( U airasi-\ r)

SeFn

—5( U i) ) = 5(2n \ (-
SeFn

> :;(U (affAS)E—) —G(Pu \ (Pn)—¢)
SeT

=Y 685~ 5 Y H(BsnBr) —5(Py\ (Pa)e).

SeT S, TeT,SAT

We are going to bound each of the three terms in the last expression.



On the smoothed complexity of Frank—Wolfe methods 305

First term: ) ¢ s §(Bs). From Lemma 2.9, there exists a constant c3 > 0 (that
depends only on §) such that

P(  max ddist(affAS,O)§C3)21—26“’1.

Scnl|S|=

Moreover, we increase c3 so that ¢z > 1, which ensures that ¢z > ¢. Recall that Bg =
(aff Ag).—. We get

Ne 2
P €(Bs) > e—ZCs) >1-2e77, (12)
(; (Bs) = =

Second term: % ZS’Tef’S;éT §(Bs N Br). Use Lemma 7.4 in a union bound
applied to all pairs of d-subsets in [1] whose intersections are no larger than (1—5-)d .
We upper bound the number of such pairs by (Zl)2 < cg' for some ¢9 > 1. Fort > 2m,

we have that 5
1 N\ et
— g(Bs N Br) < —
3 2, (85N Br)< ( 2 ) 2
S, TeT , ST

holds with probability at least

372N d—(1—F)d—2 3/2\ c1/2\ d
1—3Cd T > — 1_2 I T[_
*\Va =\ "\ Var '

Choose 1 = ¢4 := 73 (eco)*/“1 to get

1 N\ €2 6
P(E 3 9(£Sm£T)5( )ﬂ)zl—%e—d. (13)

2 ) 2w
S, TeT,S#T

Third term: § (P, \ (Pr)—¢). From Lemma 2.7, we know § (P, \ (P)_,) <csed '/*
for some absolute constant ¢5. Combining (11), (12) and (13) we conclude, with prob-
ability 1 —o(1) as d — oo, that

V= Y 8B -5 Y §(Bs B~ 5(Pa\ (Pr))

SeT S.TeT.S£T
2
. Ne o263 _ N 864—6‘58611/4
N2 2 2
_ Ne ( 22 Nec «/chsdl/“)
e %5 — - :
T V2 24/ 2n N

Note that v/277csd /4/ N decays exponentially in d. Therefore, when e <1/e23 ¢4 N,

. Ne
lim PV, > ——— | =
n—o00 2 /27T62C3

The proof is finished by setting ¢7 = 2+/ 2723 and cg = 626%64. ]



L. Rademacher and C. Shu 306

We are ready now to restate and prove the main result of the section.

Theorem 1.3. Let § € (0, 1). Suppose A = {Ay, ..., Ay+1} is a set of iid. standard
Gaussian random vectors in R and d = |6n]. Let Py+1 = conv(Aq, ..., Apt1).
Then

INW

n

P (diam(Py41) > Vd) > 1—e™ 32,

|

and there exist constants 0 < ¢ < 1 and 0 < ¢’ < 1 (that depend only on §) such that,
lim P(vf(Pyt1) < ¢?) > ¢
n—>oo

vi(Pp 1)

Fam(Ppin) of A is exponentially small in d

Hence, the measure of conditioning k =
with constant probability.

Proof. For diam(Py,+1), by Lemma 2.3 we have
P (diam(Py+41)* < 2d — 4+/d1)
=P(|4; — A;|1> <2d —4Vdt, Vi # j € [n + 1))
L(n+1)/2]
: IP7( () 14z2im1 — A2i|)* < 2d —4th)

i=1
< (€_t)n/2.

We get the claimed bound by setting t = d/16.
Apply Lemma 7.5 to P, = conv(A4y,..., A,) withe = 1/(68C2d), we have

1
lim P(Vn > —) =1

Since vf(P,+1) < & when A, 11 € V,, then

1
lim P(vi(Pyt1) < 1/(cscd)) = —.
n—o00 c7C8
The claim follows by picking ¢ = 1/¢, and ¢/ = 1/c¢7cs. ]

8. Discussion and open problems

In Section 4 we showed that, for ¢ > 1, a d-by-n random Gaussian matrix with n >
cd has a d-by-d submatrix with minimum singular value that is exponentially small
with high probability. Does this need to be a probabilistic statement or is there a
comparable version that holds for a/l matrices? Say, is it true that for any ¢ > 1 and any
d-by-n matrix with n > ¢d and unit columns one can find a d-by-d submatrix whose
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smallest singular value is at most e ~(?)? For concreteness one can take n = 2d and

restate the question geometrically using Lemma 2.6: Is it true that for any set of 2d

unit vectors in R¥ there is at least one vector that is at distance at most e =2 to the

span of some d — 1 other vectors from the set?
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