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Traditionally, lattice QCD computations of generalized parton distributions (GPDs) have been carried
out in a symmetric frame, where the transferred momentum is symmetrically distributed between the
incoming and outgoing hadrons. However, such frames are inconvenient since they require a separate
calculation for each value of the momentum transfer, increasing significantly the computational cost. In this
work, by focusing on the quasidistribution approach, we lay the foundation for faster and more effective
lattice QCD calculations of GPDs exploiting asymmetric frames, with freedom in the transferred
momentum distribution. An important ingredient of our approach is the Lorentz covariant parametrization
of the matrix elements in terms of Lorentz-invariant amplitudes, which allows one to relate matrix elements
in different frames. We also use this amplitude approach to propose a new definition of quasi-GPDs that is
frame independent and, more importantly, may lead to smaller power corrections in the matching relations
to the light-cone GPDs. We demonstrate the efficacy of the formalism through numerical calculations
using one ensemble of Nf ¼ 2þ 1þ 1 twisted-mass fermions with a clover improvement. The value of the
light-quark masses lead to a pion mass of about 260 MeV. Concentrating on the proton, and limiting
ourselves to a vanishing longitudinal momentum transfer to the target, we extract the invariant amplitudes
from matrix element calculations in both the symmetric and asymmetric frame and obtain results for the
twist-2 light-cone GPDs for unpolarized quarks, that is, H and E.

DOI: 10.1103/PhysRevD.106.114512

I. INTRODUCTION

Parton distribution functions (PDFs), which are meas-
urable in processes like inclusive deep-inelastic lepton-
nucleon scattering, are key objects containing information
about the quark and gluon structure of strongly interacting
systems [1]. They provide 1D images of hadrons by
describing how the partons are distributed as a function
of the momentum fraction x they carry of the hadron’s
momentum. PDFs are defined through matrix elements
of bilocal quark or gluon operators, with the parton fields

having a lightlike separation and the operators evaluated for
the same initial and final hadron state. Generalized parton
distributions (GPDs) are generalizations of the concept of
PDFs in that the lightlike parton operators are computed
for different initial and final states [2–4]. GPDs therefore
depend on the longitudinal momentum transfer ξ and the
invariant momentum transfer t to the target, in addition to
their dependence on the parton momentum fraction x.
While this makes them complicated multivariable func-
tions, the information encoded in GPDs is much richer
than for PDFs. In particular, they provide 3D images of
hadrons [5–8], give access to the angular momenta of
partons [3], and have a relation to pressure and shear forces
inside hadrons [9–11]. The physics of GPDs has been
discussed in various review articles [12–19].
Experimental information on GPDs can be obtained

from hard exclusive scattering processes such as deep
virtual Compton scattering [2–4,20,21] and hard exclusive
meson production [22–24]. But extracting GPDs from such
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reactions in a model-independent manner is very compli-
cated, mainly because in the observable quantities, like the
Compton form factors, the momentum fraction x is
integrated over—see Ref. [25] for a recent discussion
and detailed analysis of this issue. It is therefore very
desirable to obtain information on GPDs from first prin-
ciples in lattice QCD. However, lattice QCD calculations of
light-cone correlation functions like PDFs and GPDs are
challenging due to the time dependence of those objects.
As a result, for a long time lattice QCD calculations were
limited to the lowest Mellin moments of the GPDs [26–30],
with simulations at the physical point available only in
recent years [31–44]. Despite the progress, their depend-
ence on x remained elusive.
The quasi-PDF approach, which was proposed in 2013

[45] and later developed into the large-momentum effective
theory [46,47], opens up the opportunity to directly
compute the x dependence of PDFs and related quantities.
Quasi-PDFs are obtained from spatial equal-time operators
that can be studied on Euclidean lattices. They reduce to
their corresponding light-cone PDFs when taking the limit
P3 ¼ j  Pj → ∞ of the hadron momentum, prior to renorm-
alization. But for lattice QCD studies renormalization is
carried out first and P3 is finite, resulting in two sources of
discrepancies between quasi-PDFs and light-cone PDFs: a
different ultraviolet (UV) behavior, as well as higher-twist
corrections that are suppressed by powers of 1=P3. The UV
disparities can be dealt with order by order through a
matching procedure in perturbative QCD [48–50]. We note
that other approaches for lattice QCD calculations of
the x dependence of light-cone correlation functions exist
[49,51–60], some of which are related to the quasi-PDF
method. Encouraging lattice QCD results using such
methods were reported for PDFs—see, e.g., [61–93]—
including higher twist [94–97], parton distribution
amplitudes [98–105] and even transverse-momentum-
dependent parton distributions [106–111]. Possible impact
on phenomenological studies was also studied; see, e.g.,
[112–114]. The very dynamic progress in this field has
been documented in a number of reviews [47,115–118].

Applications of these new developments in the case of
GPDs are still somewhat sparse in comparison. Nevertheless,
we have seen results for matching [119–123], model studies
[124–128] and, in particular, the first pioneering lattice QCD
calculations for the pion [129] and the nucleon [130–135].
These results are very encouraging, demonstrating explicitly
that GPDs can be obtained on the lattice. But it is rather
clear that the full mapping of GPDs with respect to their
variables, in particular the momentum transfer t and the
skewness ξ, is very challenging and computationally much
more demanding than for PDFs. Among the reasons for this
is that, so far, they have been computed in symmetric frames
of reference, where the momentum transfer is equally split
between the source and the sink. Consequently, every value
of the momentum transfer is obtained from a separate and

costly calculation. Here, for the first time, we consider
asymmetric frames for the computation of GPDs. As wewill
demonstrate below, this allows for more efficient calcula-
tions, since different momentum transfers can be obtained in
a single calculation.
The paper is organized as follows. In Sec. II, we discuss

the kinematics of the symmetric and asymmetric frames for
our study and how the two frames can be related through a
Lorentz transformation. For both a spin-0 and spin-1

2
target,

we introduce and discuss the main theoretical tool of
Lorentz-invariant amplitudes in terms of which matrix
elements that define GPDs can be parametrized. Based
on those amplitudes we also propose a new, frame-
independent definition of quasi-GPDs which, in compari-
son to previously used quasi-GPDs, may converge faster to
their respective light-cone GPDs. Section III specializes on
the Euclidean case and provides decompositions of lattice-
calculable matrix elements in terms of these amplitudes,
and our lattice setup. Numerical results are shown in
Sec. IV, where we make a detailed comparison of the
symmetric and the asymmetric frames at various stages,
in coordinate space and in momentum space. For the
proton and ξ ¼ 0we show, in particular, numerical results
for the invariant amplitudes and the twist-2 light-cone
GPDs H and E. Section V concludes and discusses future
prospects.

II. STRATEGY OF FRAME TRANSFORMATION

A. Symmetric and asymmetric frames

The initial and final momentum of the hadron are frame
dependent, and the most widely used frame of reference
to calculate GPDs is the symmetric frame. In such a
case, the momentum transfer is symmetrically distributed
between the incoming (pi) and the outgoing hadrons (pf)
[see, e.g., Eqs. (48) and (49)]. In this section, it is
convenient to define the momenta in terms of the average
momentum P ¼ 1

2
ðpi þ pfÞ and the momentum transfer

Δ ¼ pf − pi:

pi ¼ P −
Δ
2
; pf ¼ Pþ Δ

2
: ð1Þ

The above expressions are general for any frame but
will differ numerically in each frame. An alternative setup
to the symmetric one is an asymmetric frame, where the
momentum transfer is not shared between the incoming
and outgoing hadrons but is rather entirely applied to
the incoming hadron [see, e.g., Eqs. (50) and (51)]. This
frame is of interest for this work and will be used
throughout this paper. For completeness, we remind the
reader that the energies of the initial and final states,

Ei=f ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ ð  pi=fÞ2

q
(where m is the mass of the

hadron), are also different in the two frames.
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While computations in the symmetric frame have been
extensively used in model calculations [124,125], due to
the nice symmetry properties of the correlators, they are
notoriously difficult to calculate in lattice QCD mainly due
to the computational cost to extract a range of values for the
momentum transfer. More specifically, the information on
the momentum transfer is present in both the initial and
final states. As a consequence, every value of Δ requires a
separate calculation. Such a constraint places severe lim-
itations on GPD calculations in terms of the range of
values of the momentum transfer that can be accessed and,
consequently, skewness. So the question arises whether it is
meaningful to calculate GPDs in asymmetric frames, which
can be computationally less expensive. As we will see
below, one of the approaches to handle calculations in
asymmetric frames is to relate the setup of the symmetric
frame to the asymmetric one via an appropriate Lorentz
transformation. For instance, a Lorentz transformation
along the z direction is not optimal for this purpose
because it requires a spatial operator distance [say
z ¼ ð0; 0⊥; z3 ≠ 0Þ] to develop a nonzero temporal com-
ponent [that is z → ðz0 ≠ 0; 0⊥; z3Þ] which is problematic
for lattice QCD calculations. However, any Lorentz trans-
formation transverse to the z direction leaves the operator
distances unchanged. This means that if one begins with a
spatial operator distance in one frame, its counterpart in the
other frame of reference remains spatial. Such a trans-
formation is called “transverse boost.” We illustrate this
point below by focusing on the simplest case of a transverse
boost in the x direction and zero skewness. Note that
this method can be generalized for any general transverse
boost and for an arbitrary value of skewness. Let us
begin with relating the incoming state in the two frames,
ps
i ¼ ðEs

i ;−Δ1;s=2; 0; P3Þ and pa
i ¼ ðEa

i ;−Δ1;a; 0; P3Þ.
Lorentz transformation provides ps ¼ ΛLTpa:

0
BBB@

Es
i

p1;s
i

p2;s
i

p3;s
i

1
CCCA ¼

0
BBB@

γ −γβ 0 0

−γβ γ 0 0

0 0 1 0

0 0 0 1

1
CCCA ×

0
BBB@

Ea
i

−Δ1;a

0

P3

1
CCCA: ð2Þ

This gives

Es
i ¼ γðEa

i þ βΔ1;aÞ ð3Þ

and

p1;s
i ¼ −γðβEa

i þ Δ1;aÞ → Δ1;s ¼ 2γðβEa
i þ Δ1;aÞ: ð4Þ

Now, we relate the outgoing state in the two frames,
ps
f ¼ ðEs

f;Δ1;s=2; 0; P3Þ and pa
f ¼ ðEa

f; 0; 0; P
3Þ. (Note

that the energies of the incoming and outgoing states are
different in the asymmetric frame.) Following the steps
outlined above, we find

Es
i ¼ γEa

f ð5Þ

and,

p1;s
f ¼ −γβEa

f → Δ1;s ¼ −2γβEa
f: ð6Þ

Using Eqs. (3) and (5), we obtain

β ¼ −
�
Ea
i − Ea

f

Δ1;a

�
: ð7Þ

In turn, using Eqs. (4) and (6) yields

β ¼ −
Δ1;a

Ea
i þ Ea

f
: ð8Þ

The equality of Eqs. (7) and (8) then implies

Δ1;a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðEa

i Þ2 − ðEa
fÞ2

q
: ð9Þ

Hence, β can be written more compactly as

β ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ea
i − Ea

f

Ea
i þ Ea

f

s
< 0: ð10Þ

This implies Δ0;a < 0, and

γ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ea
i þ Ea

f

2Ea
f

s
: ð11Þ

Therefore, by using the expressions for ðβ; γÞ, we can
write down uniquely what the symmetric frame variables
ðEs

i ;Δ1;sÞ are supposed to be in terms of the asymmetric
frame variables ðEa

i ; E
a
f;Δ1;aÞ. The energy should be

Es
i ¼ γEa

f ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ea
fðEa

i þ Ea
fÞ

2

s
; ð12Þ

and the transverse-momentum transfer

Δ1;s ¼ −2γβEa
f

or Δ1;s ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ea
fðEa

i − Ea
fÞ

2

s
¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ea
f

2ðEa
i þ Ea

fÞ

s
Δ1;a: ð13Þ

The above method can be straightforwardly generalized
for  Δ⊥ ¼ ðΔ1;Δ2Þ as well as for an arbitrary value of
skewness.
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B. Spin-0 particles

In this section, we study spin-0 particles such as the pion,
where the method can also be generalized to spin-1=2 (next
subsection) and higher-spin particles. The (unpolarized)
pion GPD is defined from the matrix element

Fμðz;P;ΔÞ¼hpfjq̄
�
−
z
2

�
γμW

�
−
z
2
;
z
2

�
q

�
z
2

�
jpii; ð14Þ

whereW is a straight Wilson line that makes the correlator
gauge invariant. Light-cone GPD H can be defined in a
Lorentz-invariant manner (see below), whereas one can
think of different definitions for quasi-GPDs based on
the approach that one wants to take to perform their

calculations in different frames. In the first approach,
and as discussed in Sec. II A, one can perform a calculation
of a quasi-GPD in the symmetric frame but for this purpose
make use of the asymmetric frame. In this case, it is not
only crucial to understand how the kinematic variables
transform between frames (see Sec. II A), but it is equally
crucial to understand how the matrix elements underlying
quasi-GPDs themselves transform between frames.
Historically, (unpolarized) quasi-GPDs have been defined
through the operator γ0 [121,122,129–131] (see also the
next section). By using a transverse boost, we find that
the matrix element h…γ0…i in the symmetric frame can be
written as a linear combination of matrix elements of
different operators h…ðγ0 þ γ1Þ…i in the asymmetric
frame:

hpfjq̄
�
−
z
2

�
γ0W

�
−
z3

2
;
z3

2

�
q

�
z
2

�
jpiis

¼ γhpfjq̄
�
−
z
2

�
γ0W

�
−
z3

2
;
z3

2

�
q

�
z
2

�
jpiia − γβhpfjq̄

�
−
z
2

�
γ1W

�
−
z3

2
;
z3

2

�
q

�
z
2

�
jpiia: ð15Þ

This equation essentially shows how the 0th component
of a 4-vector changes under a Lorentz transformation. This
implies that a transverse boost that uniquely fixes ðβ; γÞ
[Eqs. (10) and (11)] allows for an exact calculation of
quasi-GPDs in the symmetric frame through matrix ele-
ments of the asymmetric frame. However, Eq. (15) also
makes it clear that a quasi-GPD defined through the
operator γ0 is intrinsically Lorentz noninvariant. In the
limit of a large momentum, though, we recover

lim
P3→∞

h…γ0…is

≈ h…γ0…ia þO
�

1

P3

�
h…γ1…ia → h…γ0…ia; ð16Þ

implying that the contribution from the matrix element
h…γ1…i is essentially a power correction at finite values of
momentum P3.
We now illustrate the Lorentz noninvariance of the

(above) historic definition of quasi-GPD through an

altogether different approach and then motivate a new
definition for quasi-GPDs that is frame independent and,
more importantly, may potentially reduce power correc-
tions. We call this the second approach or the amplitude
approach. As a first step, we build a Lorentz-covariant
decomposition of the matrix element in Eq. (14) in terms of
the available vectors ðPμ; zμ;ΔμÞ:

Fμðz; P;ΔÞ ¼ Pμ

m
A1ðz · P; z · Δ;Δ2; z2Þ

þ zμmA2ðz · P; z · Δ;Δ2; z2Þ

þ Δμ

m
A3ðz · P; z · Δ;Δ2; z2Þ; ð17Þ

where m is the mass of the target. Here, Ai’s are the
Lorentz-invariant (and, thus, frame-independent) ampli-
tudes whose arguments are functions of Lorentz scalars.1

The light-cone GPD H in both symmetric and asymmetric
frames is defined from the correlator

Fþðz; P;ΔÞ≡ PþHðz; P;ΔÞ

¼ Pþ

m
A1ðz · P; z · Δ;Δ2; 0Þ þ Δþ

m
A3ðz · P; z · Δ;Δ2; 0Þ;

or Hðz; P;ΔÞ ¼ A1ðz · P; z · Δ;Δ2; 0Þ þ Δþ

Pþ A3ðz · P; z · Δ;Δ2; 0Þ; ð18Þ

1In the literature, the amplitudes have also been called generalized Ioffe time distributions [122].
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where zμ ¼ ð0; z−; 0⊥Þ. Note that Δþ=Pþ ¼ z · Δ=z · P, so the above GPD is the same in both frames as long as z · P, z · Δ
and Δ2 are held to be the same. The light-cone GPD H in the momentum space is defined

Hðx; ξ; tÞ ¼ Pþ
Z

dz−

4π
eixP

þz−Hðz; P;ΔÞ; ð19Þ

where the skewness parameter ξ ¼ −Δþ=ð2PþÞ. In the literature, the light-cone GPD has also been defined in the
symmetric frame as [3,20]

Hðx; ξ; tÞ ¼ 1

n · P

Z
dλ
4π

eixλhpfjq̄
�
−
λn
2

�
=nW

�
−
λn
2
;
λn
2

�
q

�
λn
2

�
jpii ð20Þ

for a lightlike vector nμ ∝ ð1; 0; 0;−1Þ. In the symmetric frame, the average momentum P has its dominant component
along the light-cone direction that is anticollinear to n. The above expression allows us to generalize H as

Hðz · P; z · Δ;Δ2; 0Þ ¼ 1

z · P
hpfjq̄

�
−
z
2

�
=zW

�
−
z
2
;
z
2

�
q

�
z
2

�
jpii

¼ A1ðz · P; z · Δ;Δ2; 0Þ þ z · Δ
z · P

A3ðz · P; z · Δ;Δ2; 0Þ; ð21Þ

which is independent of the orientation of zμ and equivalent to Eq. (18) in the coordinate system where zμ ¼ ð0; z−; 0⊥Þ.
Therefore, H is Lorentz invariant as long as the scalars z · P, z · Δ, Δ2 are fixed, and the H GPD in the momentum space is
the Fourier transform by integrating along a fixed direction in the ðz · P; z · ΔÞ plane with z · Δ ¼ −2ξðz · PÞ, i.e.,

Hðx; ξ; tÞ ¼
Z

dðz · PÞ
4π

eixz·PHðz · P;−2ξðz · PÞ; t; 0Þ: ð22Þ

(Note that x is the Fourier conjugate of z · P.)
Now, we turn to the quasi-GPD H which in the coordinate space is connected to the light-cone GPD H through the

matching formula [122]:

Hðz · P;−2ξðz · PÞ;Δ2; z2; μ2Þ ¼
Z

1

−1
duC̄ðu; z · P; ξ; z2; μ2ÞHðuðz · PÞ;−2uξðz · PÞ;Δ2; μ2Þ; ð23Þ

where C̄ is the short-distance matching coefficient that can
be calculated perturbatively [121–123] and μ is the renorm-
alization scale in the MS scheme. (We will revisit the
derivation of the matching equation toward the end of this
section.) At leading order in αs, the above formula indicates
that H collapses to H in the light-cone limit z2 → 0:

lim
z2→0

Hðz · P; z · Δ;Δ2; z2Þ ¼ Hðz · P; z · Δ;Δ2; 0Þ þOðαsÞ:

ð24Þ
Therefore, a natural candidate for a frame-independent
quasi-GPD is the generalization of Lorentz-invariant H to
include z2 ≠ 0, i.e.,

Hðz · P; z · Δ;Δ2; z2Þ≡ A1ðz · P; z · Δ;Δ2; z2Þ

þ z · Δ
z · P

A3ðz · P; z · Δ;Δ2; z2Þ:
ð25Þ

Note that this result in the forward limit agrees with the
quasi-PDF definition using the γ0 matrix element [57]. Since
both sides of Eq. (24) are Lorentz invariant [recall also
Eq. (21)], at finite z2 the difference between H and H is
frame-independent subleading power corrections in Ai’s.
Correspondingly, the quasi-GPD H is defined as

Hðx; ξ; P3; tÞ ¼
Z

dðz · PÞ
4π

eixz·PHðz · P;−2ξðz · PÞ; t; z2Þ;

ð26Þ

where the measure dðz · PÞ ¼ −P3dz3 with fixed P3.
A direct implication of Eq. (23) is that the skewness of

the GPD H, ξ ¼ −Δþ=ð2PþÞ, is equal to the quasiskew-
ness ξ̃ ¼ −Δ3=ð2P3Þ of the corresponding GPDH, as they
both are given by −z · Δ=ð2z · PÞ. To better understand this,
let us recall the derivation of the factorization formula for
the quasi-GPD. At short z2, the matrix element in Eq. (14)
has an operator product expansion (OPE) [121]:
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hpfjq̄
�
−
z
2

�
=nWQ

�
−
z
2
;
z
2

�
q

�
z
2

�
jpii

¼
X∞
n¼0

Cnðμ2z2ÞF nð−izÞ
X½n=2�
m¼0

Bn;mðμÞnμ0nμ1…nμnði∂μn−2mþ1Þ…ði∂μnÞhpfjOμ0μ1…μn−2m jpii; ð27Þ

where Cn are Wilson coefficients, F n is a special poly-
nomial series, Oμ0μ1…μn are the conformal operators, and
Bn;mðμÞ are perturbative coefficient functions that diago-
nalize the anomalous dimension matrix of the operators
that mix with Oμ0μ1…μn . The conformal operator is defined
as [136,137]

nμ0nμ1…nμnO
μ0μ1…μn

¼
X½n=2�
m¼0

C3=2
n;mðin · ∂Þn−2mq̄=nðin ·D

↔Þ2mq − traces; ð28Þ

where C3=2
n ðxÞ ¼ P½n�=2

m¼0 C
3=2
n;mx2m is a Gegenbauer polyno-

mial in x. The off-forward matrix element of Oμ0μ1…μn is
the Gegenbauer moment, which, according to Lorentz
covariance, can be parametrized as

hpfjnμ0nμ1…nμnO
μ0μ1…μn jpii

¼
X½n=2�
m¼0

C3=2
n;m½ð−n · ΔÞ2mð2n · PÞnþ1−2m − traces�ϕn;mðtÞ;

ð29Þ

where ϕn;mðtÞ are frame-independent form factors.
For μ0 ¼ μ1 ¼ � � � ¼ μn ¼ þ,

hpfjOþþ���þjpii ¼
X½n=2�
m¼0

C3=2
n;mð−ΔþÞ2mð2PþÞnþ1−2mϕn;mðtÞ

¼ ð2PþÞnþ1
X½n�=2
m¼0

C3=2
n;mξ2mϕn;mðtÞ: ð30Þ

And for μ0 ¼ μ1 ¼ � � � ¼ μn ¼ 3,

hpfjOzz…zjpii

¼ð−1Þnþ1
X½n=2�
m¼0

C3=2
n;m½ðΔ3Þ2mð−2P3Þnþ1−2m− traces�ϕn;mðtÞ

¼ð2P3Þnþ1
X½n�=2
m¼0

C3=2
n;mξ̃2mϕn;mðtÞ− traces: ð31Þ

On the other hand, from the operator definition we have

hpfjOþþ���þjpii ¼ ð2PþÞnþ1ξn
Z

1

−1
dyC3=2

n

�
y
ξ

�
Hðy; ξ; tÞ;

ð32Þ
and then according to the Lorentz covariance of Eqs. (30)
and (31) we have

hpfjOzz…zjpii

¼ ð2P3Þnþ1ξ̃n
Z

1

−1
dyC3=2

n

�
y

ξ̃

�
Hðy; ξ̃; tÞ − traces: ð33Þ

Therefore, following the footsteps of Ref. [121], we can
plug Eq. (33) into the OPE formula Eq. (27) and derive the
exact matching formula for the quasi-GPD:

Hðx; ξ̃; P3; t; μÞ ¼
Z

dy

jξ̃jC
�
x

ξ̃
;
y

ξ̃
;
μ

ξ̃P3

�
Hðy; ξ̃; t; μÞ

þ power corrections; ð34Þ
where C is the matching kernel.

C. Spin-1=2 particles

In this section, we turn our attention to spin-1=2
particles, such as the proton. As in the case of spin-0
particles, it is crucial to derive a Lorentz-covariant decom-
position of the vector matrix element for spin-1=2 particles.
It turns out that constraints from parity alone are sufficient
to write down the general structure of the vector matrix
element. One ends up in finding eight linearly independent
Dirac structures multiplied by eight Lorentz-invariant
(frame-independent) amplitudes:

Fμðz; P;ΔÞ ¼ ūðpf; λ0Þ
�
Pμ

m
A1 þmzμA2 þ

Δμ

m
A3 þ imσμzA4 þ

iσμΔ

m
A5 þ

PμiσzΔ

m
A6 þmzμiσzΔA7 þ

ΔμiσzΔ

m
A8

�
uðpi; λÞ;

ð35Þ
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where σμν ≡ i
2
ðγμγν − γνγμÞ, σμz ≡ σμρzρ, σμΔ ≡ σμρΔρ,

σzΔ ≡ σρτzρΔτ, and z≡ ðz0 ¼ 0; z⊥ ¼ 0⊥; z3 ≠ 0Þ with a
summation implied for repeated indices. Also, we use the
compact notation Ai ≡ Aiðz · P; z · Δ;Δ2; z2Þ. The steps
involved in the derivation of Eq. (35) are outlined in
Appendix A. This derivation parallels the steps presented
in Ref. [138]. (See also Ref. [139] where this matrix
element was parametrized in momentum space and for a
straight Wilson line.) Note that the amplitudes A1, A2, and

A3 are analogous to the spin-0 case. We also note that one
can choose to work with a basis of different parametrization
other than Eq. (35). However, the number of amplitudes
will remain the same and, hence, one would always require
eight independent lattice matrix elements to disentangle the
amplitudes. Therefore, there is no obvious gain in computa-
tional cost if a different parametrization is used.
For spin-1=2 particles, there are two (vector) light-cone

GPDs H and E defined through [7]

Fþðz; Ps=a;Δs=aÞ ¼ ūs=aðps=a
f ; λ0Þ

�
γþHðz; Ps=a;Δs=aÞ þ iσþμΔs=a

μ

2m
Eðz; Ps=a;Δs=aÞ

�
us=aðps=a

i ; λÞ: ð36Þ

After using μ ¼ þ in Eq. (35), we can perform a change of basis of the resulting expression to map the Ai’s onto the GPDs
in Eq. (36):

Hðz; Ps=a;Δs=aÞ ¼ A1 þ
Δþ;s=a

Pþ;s=a A3; ð37Þ

Eðz; Ps=a;Δs=aÞ ¼ −A1 −
Δþ;s=a

Pþ;s=a A3 þ 2A5 þ 2Pþ;s=az−A6 þ 2Δþ;s=az−A8; ð38Þ

where the arguments of the Ai’s have no dependence on z2. We can make the above expressions formally Lorentz invariant
as (see Sec. II B)

Hðz · Ps=a; z · Δs=a; ðΔs=aÞ2Þ ¼ A1 þ
Δs=a · z

Ps=a · z
A3; ð39Þ

Eðz · Ps=a; z · Δs=a; ðΔs=aÞ2Þ ¼ −A1 −
Δs=a · z

Ps=a · z
A3 þ 2A5 þ 2Ps=a · zA6 þ 2Δs=a · zA8: ð40Þ

We emphasize that one can arrive at Eqs. (39) and (40) by contracting both sides of Eq. (35) with zμ (where zμ is an arbitrary
lightlike vector) and by ensuring that z2 ¼ 0 [recall Eqs. (20) and (21)]. This implies that light-cone GPDs are frame
independent as long as the Lorentz scalars such as ðz · Ps=a; z · Δs=a; ðΔs=aÞ2Þ are taken to be the same in the two frames.
We now turn to quasi-GPDs. As emphasized in Sec. II B, the essence of the matching equation is the equivalence of the

quasi-GPDs and the light-cone GPDs at the leading order. Therefore, a natural way to define the quasi-GPDs H and E is
through a Lorentz-invariant generalization of the light-cone definitions in Eqs. (39) and (40) to z2 ≠ 0, i.e.,

Hðz · Ps=a; z · Δs=a; ðΔs=aÞ2; z2Þ ¼ A1 þ
Δs=a · z

Ps=a · z
A3; ð41Þ

Eðz · Ps=a; z · Δs=a; ðΔs=aÞ2; z2Þ ¼ −A1 −
Δs=a · z

Ps=a · z
A3 þ 2A5 þ 2Ps=a · zA6 þ 2Δs=a · zA8; ð42Þ

where now the arguments of the Ai’s have a nonzero dependence on z2. We expect that the definitions in Eqs. (41) and (42)
may have a faster convergence to the light-cone GPDs at the leading order, although such a statement needs a rigorous
justification from the theory side.2 Furthermore, these definitions of quasi-GPDs differ from their (respective) light-cone
GPDs by frame-independent power corrections beyond the leading order.

2Our argument parallels Ref. [57], where similar arguments where made for the quasi-PDFs. See the next paragraph for a discussion
on the convergence of the various definitions.
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Historically, quasi-GPDs have been defined through the γ0 operator as

F0ðz; Ps=a;Δs=aÞ ¼ hps=a
f ; λ0jq̄

�
−
z
2

�
γ0q

�
z
2

�
jps=a

i ; λi

¼ ūs=aðps=a
f ; λ0Þ

�
γ0Hs=a

0 ðz; Ps=a;Δs=aÞ þ iσ0μΔs=a
μ

2m
Es=a
0 ðz; Ps=a;Δs=aÞ

�
us=aðps=a

i ; λÞ: ð43Þ

After using μ ¼ 0 in Eq. (35), we can perform a change of basis of the resulting expression to map the Ai’s onto the
quasi-GPDs in Eq. (43). The relations in the symmetric frame read

Hs
0ðz; Ps;ΔsÞ ¼ A1 þ

Δ0;s

P0;s A3 −
m2Δ0;sz3

2P0;sP3;s A4 þ
�ðΔ0;sÞ2z3

2P3;s −
Δ0;sΔ3;sz3P0;s

2ðP3;sÞ2 −
z3ðΔs⊥Þ2
2P3;s

�
A6

þ
�ðΔ0;sÞ3z3
2P0;sP3;s −

ðΔ0;sÞ2Δ3;sz3

2ðP3;sÞ2 −
Δ0;sz3ðΔs⊥Þ2
2P0;sP3;s

�
A8; ð44Þ

Es
0ðz; Ps;ΔsÞ ¼ −A1 −

Δ0;s

P0;s A3 þ
m2Δ0;sz3

2P0;sP3;s A4 þ 2A5 þ
�
−
ðΔ0;sÞ2z3
2P3;s þ P0;sΔ0;sΔ3;sz3

2ðP3;sÞ2 þ z3ðΔs⊥Þ2
2P3;s −

2z3ðP0;sÞ2
P3;s

�
A6

þ
�
−
ðΔ0;sÞ3z3
2P0;sP3;s þ

ðΔ0;sÞ2Δ3;sz3

2ðP3;sÞ2 þ Δ0;sz3ðΔs⊥Þ2
2P0;sP3;s −

2z3P0;sΔ0;s

P3;s

�
A8: ð45Þ

On the other hand, the relations in the asymmetric frame read

Ha
0ðz; Pa;ΔaÞ ¼ A1 þ

Δ0;a

P0;a A3 −
�
m2Δ0;az3

2P0;aP3;a −
1

ð1þ Δ3;a

2P3;aÞ
m2Δ0;aΔ3;az3

4P0;aðP3;aÞ2
�
A4

þ
�ðΔ0;aÞ2z3

2P3;a −
1

ð1þ Δ3;a

2P3;aÞ
ðΔ0;aÞ2Δ3;az3

4ðP3;aÞ2 −
1

ð1þ Δ3;a

2P3;aÞ
P0;aΔ0;aΔ3;az3

2ðP3;aÞ2 −
z3ðΔa⊥Þ2
2P3;a

�
A6

þ
�ðΔ0;aÞ3z3
2P0;aP3;a −

1

ð1þ Δ3;a

2P3;aÞ
ðΔ0;aÞ3Δ3;az3

4P0;aðP3;aÞ2 −
1

ð1þ Δ3;a

2P3;aÞ
ðΔ0;aÞ2Δ3;az3

2ðP3;aÞ2 −
z3ðΔa⊥Þ2Δ0;a

2P0;aP3;a

�
A8; ð46Þ

Ea
0ðz; Pa;ΔaÞ ¼ −A1 −

Δ0;a

P0;a A3 −
�
−
m2Δ0;az3

2P0;aP3;a −
1

ð1þ Δ3;a

2P3;aÞ

�
m2z3

P3;a −
m2Δ0;aΔ3;az3

4P0;aðP3;aÞ2
��

A4 þ 2A5

þ
�
−
ðΔ0;aÞ2z3
2P3;a −

1

ð1þ Δ3;a

2P3;aÞ

�
P0;aΔ0;az3

P3;a −
ðΔ0;aÞ2Δ3;az3

4ðP3;aÞ2
�
−

1

ð1þ Δ3;a

2P3;aÞ

�
2z3ðP0;aÞ2

P3;a −
P0;aΔ0;aΔ3;az3

2ðP3;aÞ2
�

þ z3ðΔa⊥Þ2
2P3;a

�
A6 þ

�
−
ðΔ0;aÞ3z3
2P0;aP3;a −

1

ð1þ Δ3;a

2P3;aÞ

�ðΔ0;aÞ2z3
P3;a −

ðΔ0;aÞ3Δ3;az3

4P̄0;aðP3;aÞ2
�

−
1

ð1þ Δ3;a

2P3;aÞ

�
2z3P0;aΔ0;a

P3;a −
ðΔ0;aÞ2Δ3;az3

2ðP3;aÞ2
�
þ z3ðΔa⊥Þ2Δ0;a

2P0;aP3;a

�
A8: ð47Þ

Several comments are in order: For finite values of the
momentum, the above expressions contain additional
amplitudes that are not present in the light-cone expres-
sions. Thus, contrary to their forward limit where argu-
ments are made in favor of γ0 because of reduced
amplitudes [57], here we find that additional amplitudes
are found in γ0 in the off-forward limit. (Note that the
different definitions of quasi-GPDs preserve the norm; see

also Ref. [125].) Second, the intrinsic Lorentz noninvar-
iance associated with the historical definitions of quasi-

GPDs (formally) implies that the basis vectors ðγ0; iσ0Δs=aÞ
do not form a complete basis for a spatially separated
bilocal operator for finite values of momentum. Therefore,
for defining quasi-GPDs in a Lorentz-invariant manner,
one needs to have a different basis other than just

ðγ0; iσ0Δs=aÞ. From this perspective, one can infer that
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our Lorentz-invariant definition of quasi-GPDs is essen-
tially a redefinition of quasi-GPDs in terms of a suitable
linear combination of operators (which turns out to be γ1=2)
that reduces the additional amplitudes present in the
historic definitions. This may potentially provide a faster
convergence to the light-cone GPD at the leading order,
an argument that requires further theoretical investigation.
In Sec. IV B, we will study numerically three definitions of
quasi-GPDs:

(i) definition in the symmetric frame via the γ0 operator
[Hs

0ðAi; zÞ; Es
0ðAi; zÞ], Eqs. (44) and (45),

(ii) definition in the asymmetric frame via the γ0

operator [Ha
0ðAi; zÞ; Ea

0ðAi; zÞ], Eqs. (46) and (47),
and

(iii) Lorentz-invariant definition [HðAi; zÞ; EðAi; zÞ],
Eqs. (41) and (42).

As previously stated, the three definitions are not equiv-
alent; they differ in terms of the amplitudes that contribute
and power corrections. Thus, it is interesting to numerically
compare the convergence of these definitions and also get
an idea about the relative size of power corrections.

III. LATTICE SETUP

A. Matrix element parametrization

One of the goals of this work is to calculate in lattice
QCD the Lorentz-invariant amplitudes defined in Eq. (35).
To this end, we perform a proof-of-concept analysis
based on two calculations of the vector matrix elements,
as outlined in Sec. II. Two separate calculations are
performed, one in the symmetric and one in an asymmetric
frame, which allows us to compare the estimates for Ai. For
self-consistency, in this section we present the setup in
Euclidean space, where we use lower indices in P and Δ to
avoid confusion in the equations presented. The notation
for the symmetric frame is

 ps
f ¼  Pþ

 Δ
2
¼

�
þΔ1

2
;þΔ2

2
; P3

�
; ð48Þ

 ps
i ¼  P −

 Δ
2
¼

�
−
Δ1

2
;−

Δ2

2
; P3

�
ð49Þ

and for the asymmetric frame, in which all the momentum
transfer is assigned to the initial state, is

 pa
f ¼  P ¼ ð0; 0; P3Þ; ð50Þ

 pa
i ¼  P −  Δ ¼ ð−Δ1;−Δ2; P3Þ: ð51Þ

In the above equations, a factor of 2π
L (L: spatial extent

of the lattice) is included in Δ1, Δ2, and P3. As can be
seen, the setup corresponds to zero skewness, that is
ðpiÞ3 ¼ ðpfÞ3 ¼ P3. Numerical calculations of the matrix

elements in the two frames at the same value of the
arguments of the Ai must be in line with the Lorentz
invariance of the Ai. Such a numerical confirmation is a
highly nontrivial check of the numerical calculations and
the underlying equations, which relate the matrix elements
and the amplitudes in the two frames. As mentioned
previously, the matrix elements are frame dependent and,
in general, decompose into different sets of Ai in the
two frames. This is demonstrated in Eqs. (56)–(71) and
(73)–(88) below.3 The analysis takes into consideration
four matrix elements of the vector operator, that is, γ0, γ1,
γ2, and γ3. The matrix element of γ3 is needed only for the
extraction of A2 and A7. We note that the operator γ3 has a
finite mixing under renormalization for lattice regulariza-
tions with chiral symmetry breaking [32,140–142].
However, for twisted-mass fermions, which we use in this
work, the mixing is between γ3 and γ5; the latter has a
vanishing physical matrix elements in the forward limit.
To disentangle A1–A8, we need eight independent matrix

elements, which can be obtained using the unpolarized (Γ0)
and three polarized (Γk) parity projectors defined as

Γ0 ¼
1

4
ð1þ γ0Þ; ð52Þ

Γk ¼
1

4
ð1þ γ0Þiγ5γk; k ¼ 1; 2; 3: ð53Þ

The Γ0 projector corresponds to an unpolarized proton,
while the three Γk to a polarized projector in the k direction.
The parity projectors are applied to the right-hand side of
Eq. (35), along with the spinor normalization. Finally, a
trace is taken to mimic the procedure of extracting the
lattice matrix elements, that is

Tr½ΓκΛðpÞFμΛðpÞ�; μ; κ ¼ 0; 1; 2; 3; ð54Þ

with the following normalization for the spinor sum:

ΛeuclðpÞ ¼
�
−i=pþm

2m

�
: ð55Þ

The trace is performed analytically, and the obtained
expressions correspond to the decomposition of the matrix
elements, with the ground state denoted by ΠμðΓκÞ. The
matrix elementsΠs=a

μ ðΓκÞ for each operator γμ and projector
Γκ combination are given in Eqs. (56)–(71) for the
symmetric frame (superscript s) and Eqs. (73)–(88) for
the asymmetric case (superscript a). For simplicity of the
presentation, we adopt the expressions at zero skewness.
The general equations for ξ ≠ 0 can be found in
Appendix C.

3All equations in this section are given in Euclidean space.
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Πs
0ðΓ0Þ ¼ K

�
EðEðEþmÞ − P2

3Þ
2m3

A1 þ
ðEþmÞð−E2 þm2 þ P2

3Þ
m3

A5 þ
EP3ð−E2 þm2 þ P2

3Þz
m3

A6

�
; ð56Þ

Πs
0ðΓ1Þ ¼ iK

�
EP3Δ2

4m3
A1 −

ðEþmÞP3Δ2

2m3
A5 −

EðP2
3 þmðEþmÞÞzΔ2

2m3
A6

�
; ð57Þ

Πs
0ðΓ2Þ ¼ iK

�
−
EP3Δ1

4m3
A1 þ

ðEþmÞP3Δ1

2m3
A5 þ

EðP2
3 þmðEþmÞÞzΔ1

2m3
A6

�
; ð58Þ

Πs
0ðΓ3Þ ¼ 0; ð59Þ

Πs
1ðΓ0Þ ¼ iK

�
−
ðEðEþmÞ − P2

3ÞΔ1

2m3
A3 þ

P3Δ1z
4m

A4 −
P3ð−E2 þm2 þ P2

3ÞzΔ1

m3
A8

�
; ð60Þ

Πs
1ðΓ1Þ ¼ K

�
P3Δ1Δ2

4m3
A3 þ

Δ1Δ2z
8m

A4 −
ðP2

3 þmðEþmÞÞΔ1Δ2z
2m3

A8

�
; ð61Þ

Πs
1ðΓ2Þ ¼ K

�
−
P3Δ2

1

4m3
A3 þ

ð4EðEþmÞ − Δ2
1Þz

8m
A4 þ

ðP2
3 þmðEþmÞÞΔ2

1z
2m3

A8

�
; ð62Þ

Πs
1ðΓ3Þ ¼ K

ðEþmÞΔ2

2m2
A5; ð63Þ

Πs
2ðΓ0Þ ¼ iK

�
−
ðEðEþmÞ − P2

3ÞΔ2

2m3
A3 þ

P3Δ2z
4m

A4 −
P3ð−E2 þm2 þ P2

3ÞΔ2z
m3

A8

�
; ð64Þ

Πs
2ðΓ1Þ ¼ K

�
P3Δ2

2

4m3
A3 −

ð4EðEþmÞ − Δ2
2Þz

8m
A4 −

ðP2
3 þmðEþmÞÞΔ2

2z
2m3

A8

�
; ð65Þ

Πs
2ðΓ2Þ ¼ K

�
−
P3Δ1Δ2

4m3
A3 −

Δ1Δ2z
8m

A4 þ
ðP2

3 þmðEþmÞÞΔ1Δ2z
2m3

A8

�
; ð66Þ

Πs
2ðΓ3Þ ¼ −K

ðEþmÞΔ1

2m2
A5; ð67Þ

Πs
3ðΓ0Þ ¼ iK

�ðP2
3 − EðEþmÞÞP3

2m3
A1 þ

ðEðEþmÞ − P2
3Þz

2m
A2 −

ð−E2 þm2 þ P2
3ÞP3

m3
A5

−
ð−E2 þm2 þ P2

3ÞP2
3z

m3
A6 þ

ð−E2 þm2 þ P2
3ÞP3z2

m
A7

�
; ð68Þ

Πs
3ðΓ1Þ ¼K

�
Δ2P2

3

4m3
A1−

Δ2P3z
4m

A2−
ðP2

3þmðEþmÞÞΔ2

2m3
A5 −

ðP2
3þmðEþmÞÞΔ2P3z

2m3
A6þ

ðP2
3þmðEþmÞÞΔ2z2

2m
A7

�
;

ð69Þ

Πs
3ðΓ2Þ ¼K

�
−
Δ1P2

3

4m3
A1þ

Δ1P3z
4m

A2þ
ðP2

3þmðEþmÞÞΔ1

2m3
A5þ

ðP2
3þmðEþmÞÞΔ1P3z

2m3
A6 −

ðP2
3þmðEþmÞÞΔ1z2

2m
A7

�
;

ð70Þ

Πs
3ðΓ3Þ ¼ 0: ð71Þ

K is a kinematic factor that depends on the normalization of the proton state:
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K ¼ 2m2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EfEiðEf þmÞðEi þmÞp : ð72Þ

In fact, K takes a simpler form in the symmetric frame, that
is 2m2=ðEðEþmÞÞ, due to Ei ¼ Ef ≡ E. The above
equations are elegant, which can be attributed to the zero
skewness and the simplification of K. A general feature of
the set of equations is that some of them express physically
equivalent matrix elements corresponding to momentum
transfer along the two different transverse directions. For
instance, Eqs. (57) and (58) describe the same physical
situation, but once with momentum transfer along the
2-direction and once along the 1-direction, respectively.
A similar situation occurs for the pairs of Eqs. (60) and
(64), Eqs. (61) and (66), Eqs. (62) and (65), Eqs. (63)

and (67), and Eqs. (69) and (70). Therefore, these equations
can be combined, leading to a set of eight independent
equations that can disentangle A1–A8. Another character-
istic of the symmetric frame is that there are three sets
of equations to disentangle certain Ai. In particular,
Eqs. (56)–(58) together with Eqs. (63) and (67) are needed
to disentangle A1 A5, and A6, while Eqs. (60)–(66)
disentangle A3, A4, and A8. Finally, Eqs. (68)–(70) can
be combined with A1, A5, and A6 to extract A2 and A7.

The decomposition of Eq. (35) in the asymmetric frame
defined in Eqs. (50) and (51) leads to more complicated
kinematic coefficients mainly because Ei ≠ Ef. Also, the
kinematic factor K is canceled by the coefficients of Ai
due to its simple structure, leading to more elegant
expressions. The parametrization for each operator and
parity projector is

Πa
0ðΓ0Þ ¼ K

�
−
ðEf þ EiÞðEf − Ei − 2mÞðEf þmÞ

8m3
A1 −

ðEf − Ei − 2mÞðEf þmÞðEf − EiÞ
4m3

A3 þ
ðEi − EfÞP3z

4m
A4

þ ðEf þ EiÞðEf þmÞðEf − EiÞ
4m3

A5 þ
EfðEf þ EiÞP3ðEf − EiÞz

4m3
A6 þ

EfP3ðEf − EiÞ2z
2m3

A8

�
; ð73Þ

Πa
0ðΓ1Þ ¼ iK

�ðEf þ EiÞP3Δ2

8m3
A1 þ

ðEf − EiÞP3Δ2

4m3
A3 þ

ðEf þmÞΔ2z

4m
A4 −

ðEf þ Ei þ 2mÞP3Δ2

4m3
A5

−
EfðEf þ EiÞðEf þmÞΔ2z

4m3
A6 −

EfðEf − EiÞðEf þmÞΔ2z

2m3
A8

�
; ð74Þ

Πa
0ðΓ2Þ ¼ iK

�
−
ðEf þ EiÞP3Δ1

8m3
A1 −

ðEf − EiÞP3Δ1

4m3
A3 −

ðEf þmÞΔ1z

4m
A4 þ

ðEf þ Ei þ 2mÞP3Δ1

4m3
A5

þ EfðEf þ EiÞðEf þmÞΔ1z

4m3
A6 þ

EfðEf − EiÞðEf þmÞΔ1z

2m3
A8

�
; ð75Þ

Πa
0ðΓ3Þ ¼ 0; ð76Þ

Πa
1ðΓ0Þ ¼ iK

�
−
ðEf − Ei − 2mÞðEf þmÞΔ1

8m3
A1 þ

ðEf − Ei − 2mÞðEf þmÞΔ1

4m3
A3 þ

P3Δ1z
4m

A4

þ ðEf − EiÞðEf þmÞΔ1

4m3
A5 þ

EfðEf − EiÞP3Δ1z

4m3
A6 þ

EfðEi − EfÞP3Δ1z

2m3
A8

�
; ð77Þ

Πa
1ðΓ1Þ ¼ K

�
−
P3Δ1Δ2

8m3
A1 þ

P3Δ1Δ2

4m3
A3 þ

P3Δ1Δ2

4m3
A5 þ

EfðEf þmÞΔ1Δ2z

4m3
A6 −

EfðEf þmÞΔ1Δ2z

2m3
A8

�
; ð78Þ

Πa
1ðΓ2Þ ¼ K

�
P3Δ2

1

8m3
A1 −

P3Δ2
1

4m3
A3 þ

ðEf þ EiÞðEf þmÞz
4m

A4 þ
P3ð2ðEf − EiÞm − Δ2

1Þ
4m3

A5

−
EfðEf þmÞΔ2

1z

4m3
A6 þ

EfðEf þmÞΔ2
1z

2m3
A8

�
; ð79Þ

Πa
1ðΓ3Þ ¼ K

�
P3zΔ2

4m
A4 þ

ðEf þmÞΔ2

2m2
A5

�
; ð80Þ
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Πa
2ðΓ0Þ ¼ iK

�
−
ðEf − Ei − 2mÞðEf þmÞΔ2

8m3
A1 þ

ðEf − Ei − 2mÞðEf þmÞΔ2

4m3
A3 þ

P3Δ2z
4m

A4

þ ðEf − EiÞðEf þmÞΔ2

4m3
A5 þ

EfðEf − EiÞP3Δ2z

4m3
A6 þ

EfðEi − EfÞP3Δ2z

2m3
A8

�
; ð81Þ

Πa
2ðΓ1Þ ¼ K

�
−
P3Δ2

2

8m3
A1 þ

P3Δ2
2

4m3
A3 −

ðEf þ EiÞðEf þmÞz
4m

A4 −
P3ð2ðEf − EiÞm − Δ2

2Þ
4m3

A5

þ EfðEf þmÞΔ2
2z

4m3
A6 −

EfðEf þmÞΔ2
2z

2m3
A8

�
; ð82Þ

Πa
2ðΓ2Þ ¼ K

�
P3Δ1Δ2

8m3
A1 −

P3Δ1Δ2

4m3
A3 −

P3Δ1Δ2

4m3
A5 −

EfðEf þmÞΔ1Δ2z

4m3
A6 þ

EfðEf þmÞΔ1Δ2z

2m3
A8

�
; ð83Þ

Πa
2ðΓ3Þ ¼ K

�
−
P3Δ1z
4m

A4 −
ðEf þmÞΔ1

2m2
A5

�
; ð84Þ

Πa
3ðΓ0Þ ¼ iK

�ðEf − Ei − 2mÞðEf þmÞP3

4m3
A1 −

ðEf − Ei − 2mÞðEf þmÞz
4m

A2 þ
EfðEi − EfÞP3

2m3
A5

þ EfðEi − EfÞP2
3z

2m3
A6 þ

EfðEf − EiÞP3z2

2m
A7

�
; ð85Þ

Πa
3ðΓ1Þ ¼ K

�
Δ2P2

3

4m3
A1 −

Δ2P3z
4m

A2 −
EfðEf þmÞΔ2

2m3
A5 −

EfðEf þmÞΔ2P3z

2m3
A6 þ

EfðEf þmÞΔ2z2

2m
A7

�
; ð86Þ

Πa
3ðΓ2Þ ¼ K

�
−
Δ1P2

3

4m3
A1 þ

Δ1P3z
4m

A2 þ
EfðEf þmÞΔ1

2m3
A5 þ

EfðEf þmÞΔ1P3z

2m3
A6 −

EfðEf þmÞΔ1z2

2m
A7

�
; ð87Þ

Πa
3ðΓ3Þ ¼ 0: ð88Þ

The matrix elements above involve more Ai compared to the
symmetric frame, and, for instance, Eqs. (73)–(75) contain
A1, A3, A4, A5, A6, and A8. Consequently, ðA1; A5; A6Þ and
ðA3; A4; A8Þ are not decoupled in the asymmetric frame,
contrary to the symmetric one. In fact, in the symmetric
frame, the coefficients of A3, A4, and A8 in the γ0 matrix
elements vanish due to Ei ¼ Ef. Similarly, A4, A5, and A6

drop out the matrix elements of γ1 and γ2 except for the
projector Γ3. The above simplifications lead to the afore-
mentioned decoupling and to more compact expressions
in the symmetric frame. Similarly to the symmetric frame,
A2 and A7 appear only in the decomposition of Π3.
To summarize, Eqs. (56)–(71) and (73)–(88) consist the

basis of required matrix elements for the calculation of the

Lorentz-invariant amplitudes and are used to present
numerical results for the Ai for the setup of Table I.

B. Decomposition of Lorentz-invariant amplitudes

The Lorentz-invariant amplitudes can be disentangled
using the parametrizations given in the previous subsection,
which requires the inversions of Eqs. (56)–(71) and
(73)–(88), in the symmetric and asymmetric frame, respec-
tively. As mentioned previously, the matrix elements of the
operators γ0, γ1, γ2 are sufficient to disentangle A1, A3, A4,
A5, A6, and A8, in both frames. A1, A5, and A6 can then be
incorporated to the parametrization of the matrix elements
of γ3 to extract A2 and A7.

TABLE I. Statistics for the symmetric and asymmetric frame at zero skewness and ts ¼ 10a. NME, Nconfs, Nsrc and Ntotal are the
number of matrix elements, configurations, source positions per configuration and total statistics, respectively.

Frame P3 (GeV) Δ ½2πL � −t (GeV2) ξ NME Nconfs Nsrc Ntot

Symm �1.25 (�2; 0; 0), (0;�2; 0) 0.69 0 8 249 8 15936
Asymm �1.25 (�2; 0; 0), (0;�2; 0) 0.64 0 8 269 8 17216
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The analytic inversion of the equations can, potentially, lead to expressions with complicated kinematic coefficients. For
simplicity in the presentation, we show the expressions for  Δ ¼ ðΔ; 0; 0Þ. We use a subscript s and a in the matrix elements
to differentiate between the two frames; Ai are frame independent and do not carry such an index. The expressions for the
symmetric frame take the form

A1 ¼
ðmðEþmÞ þ P2

3Þ
EðEþmÞ Πs

0ðΓ0Þ − i
P3Δ

2EðEþmÞΠ
s
0ðΓ2Þ −

Δ
2E

Πs
2ðΓ3Þ; ð89Þ

A2 ¼
P3ðmðEþmÞ þ P2

3Þ
2m4z

Πs
0ðΓ0Þ − i

P2
3Δ

4m4z
Πs

0ðΓ2Þ −
P3ΔðEþmÞ

4m4z
Πs

2ðΓ3Þ

− i
ðmðEþmÞ þ P2

3Þ
m2zðEþmÞ Πs

3ðΓ0Þ −
P3Δ

2m2zðEþmÞΠ
s
3ðΓ2Þ; ð90Þ

A3 ¼ i
ðmðEþmÞ þ P2

3Þ
ΔðEþmÞ Πs

1ðΓ0Þ þ
P3

2ðEþmÞΠ
s
1ðΓ2Þ; ð91Þ

A4 ¼ −
1

mz
Πs

2ðΓ1Þ; ð92Þ

A5 ¼ −
E
Δ
Πs

2ðΓ3Þ; ð93Þ

A6 ¼
P3

2EzðEþmÞΠ
s
0ðΓ0Þ þ i

ðP2
3 − EðEþmÞÞ
EΔzðEþmÞ Πs

0ðΓ2Þ þ
P3

EΔz
Πs

2ðΓ3Þ; ð94Þ

A7 ¼ þ P2
3

4m4z2
Πs

0ðΓ0Þ þ i
P3ðP2

3 − EðEþmÞÞ
2m4Δz2

Πs
0ðΓ2Þ −

ðEþmÞðE − P3ÞðEþ P3Þ
2m4Δz2

Πs
2ðΓ3Þ

− i
P3

2m2z2ðEþmÞΠ
s
3ðΓ0Þ þ

ðP2
3 − EðEþmÞÞ

Δm2z2ðEþmÞ Πs
3ðΓ2Þ; ð95Þ

A8 ¼
iP3

2ΔzðEþmÞΠ
s
1ðΓ0Þ þ

ðEðEþmÞ − P2
3Þ

Δ2zðEþmÞ Πs
1ðΓ2Þ þ

m
Δ2z

Πs
2ðΓ1Þ: ð96Þ

Below, we give Ai in the asymmetric frame for  Δ ¼ ðΔ; 0; 0Þ, which, as anticipated, has more complicated expressions than
the symmetric frame:

A1 ¼
2m2

EfðEi þmÞ
Πa

0ðΓ0Þ
K

þ i
2ðEf − EiÞP3m2

EfðEf þmÞðEi þmÞΔ
Πa

0ðΓ2Þ
K

þ 2ðEi − EfÞP3m2

EfðEf þ EiÞðEf þmÞðEi þmÞ
Πa

1ðΓ2Þ
K

þ i
2ðEi − EfÞm2

EfðEi þmÞΔ
Πa

1ðΓ0Þ
K

þ 2ðEi − EfÞP3m2

EfðEf þ EiÞðEf þmÞðEi þmÞ
Πa

2ðΓ1Þ
K

þ 2ðEf − EiÞm2

EfðEi þmÞΔ
Πa

2ðΓ3Þ
K

; ð97Þ

A2 ¼
2P3

EfðEi þmÞz
Πa

0ðΓ0Þ
K

þ i
2ðEf − EiÞðEf −mÞ

EfðEi þmÞΔz
Πa

0ðΓ2Þ
K

þ 2ðEi − EfÞiP3

EfðEi þmÞΔz
Πa

1ðΓ0Þ
K

−
2ðEf − EiÞðEf −mÞ

EfðEf þ EiÞðEi þmÞz
Πa

1ðΓ2Þ
K

−
2ðEf − EiÞðEf −mÞ

EfðEf þ EiÞðEi þmÞz
Πa

2ðΓ1Þ
K

þ 2P3ðEf − EiÞ
EfðEi þmÞΔz

Πa
2ðΓ3Þ
K

− i
2

ðEi þmÞz
Πa

3ðΓ0Þ
K

þ 2ðEf − EiÞP3

ðEf þmÞðEi þmÞΔz
Πa

3ðΓ2Þ
K

; ð98Þ

A3 ¼
m2

EfðEi þmÞ
Πa

0ðΓ0Þ
K

þ i
ðEf − EiÞP3m2

EfðEf þmÞðEi þmÞΔ
Πa

0ðΓ2Þ
K

þ i
ðEf þ EiÞm2

EfðEi þmÞΔ
Πa

1ðΓ0Þ
K

þ P3m2

EfðEf þmÞðEi þmÞ
Πa

1ðΓ2Þ
K

;

ð99Þ
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A4 ¼
2ðEf − EiÞmP3

EfðEf þmÞðEi þmÞΔz
Πa

2ðΓ3Þ
K

−
2m

EfðEi þmÞz
Πa

2ðΓ1Þ
K

; ð100Þ

A5 ¼
m2P3

EfðEf þmÞðEi þmÞ
Πa

2ðΓ1Þ
K

−
ðEf þ EiÞm2

EfðEi þmÞΔ
Πa

2ðΓ3Þ
K

; ð101Þ

A6 ¼
P3m2

E2
fðEf þmÞðEi þmÞz

Πa
0ðΓ0Þ
K

þ i
ðEf − Ei − 2mÞm2

E2
fðEi þmÞΔz

Πa
0ðΓ2Þ
K

þ i
ðEi − EfÞP3m2

E2
fðEf þmÞðEi þmÞΔz

Πa
1ðΓ0Þ
K

þ ð−Ef þ Ei þ 2mÞm2

E2
fðEf þ EiÞðEi þmÞz

Πa
1ðΓ2Þ
K

þ 2ðm − EfÞm2

E2
fðEf þ EiÞðEi þmÞz

Πa
2ðΓ1Þ
K

þ 2P3m2

E2
fðEi þmÞΔz

Πa
2ðΓ3Þ
K

; ð102Þ

A7 ¼
ðEf −mÞ

E2
fðEi þmÞz2

Πa
0ðΓ0Þ
K

þ i
ðEf − Ei − 2mÞP3

E2
fðEi þmÞΔz2

Πa
0ðΓ2Þ
K

− i
ðEf − EiÞðEf −mÞ
E2
fðEi þmÞΔz2

Πa
1ðΓ0Þ
K

þ ð−Ef þ Ei þ 2mÞP3

E2
fðEf þ EiÞðEi þmÞz2

Πa
1ðΓ2Þ
K

þ ð2m2 þ EfðEi − EfÞÞP3

E2
fðEf þ EiÞðEf þmÞðEi þmÞz2

Πa
2ðΓ1Þ
K

þ ðEfðEf − EiÞ − 2m2Þ
E2
fðEi þmÞΔz2

Πa
2ðΓ3Þ
K

− i
P3

EfðEf þmÞðEi þmÞz2
Πa

3ðΓ0Þ
K

þ ðEf − Ei − 2mÞ
EfðEi þmÞΔz2

Πa
3ðΓ2Þ
K

; ð103Þ

A8 ¼
P3m2

2E2
fðEf þmÞðEi þmÞz

Πa
0ðΓ0Þ
K

þ i
ðEf − Ei − 2mÞm2

2E2
fðEi þmÞΔz

Πa
0ðΓ2Þ
K

þ i
ðEf þ EiÞP3m2

2E2
fðEf þmÞðEi þmÞΔz

Πa
1ðΓ0Þ
K

þ ðEf − Ei − 2mÞm2

2E2
fðEf − EiÞðEi þmÞz

Πa
1ðΓ2Þ
K

−
m3

E2
fðEf − EiÞðEi þmÞz

Πa
2ðΓ1Þ
K

þ P3m3

E2
fðEf þmÞðEi þmÞΔz

Πa
2ðΓ3Þ
K

: ð104Þ

C. H and E GPDs

One of the main motivations of this work is to extract the
twist-2 light-coneGPDs for unpolarized quarks, that isH and
E. We begin by constructing the quasi-GPDs in coordinate
space from the γ0, H0 and E0, using the Lorentz-invariant
amplitudes Ai. With the Ai being frame independent, one
can relate H0 and E0 to the matrix elements of either frame;
this is a powerful relation, as a calculation in the asymmetric
frame requires less computational resources (see Sec. III E).
With this in mind, and using the definition of Eq. (43) for
the quasi-GPDs in the symmetric frame, we adopt Eqs. (44)
and (45), which for zero skewness simplify to

Hs
0ðAs

i ; zÞ ¼ A1 þ
zðΔ2

1 þ Δ2
2Þ

2P3

A6; ð105Þ

Es
0ðAs

i ; zÞ ¼ −A1 −
m2z
P3

A4 þ 2A5 −
zð4E2 þ Δ2

1 þ Δ2
2Þ

2P3

A6:

ð106Þ

For simplicity we suppress the remaining arguments of the
quasi-GPDs and the arguments of the amplitudes. It is useful

to rewrite Eqs. (105) and (106) in terms of matrix elements in
the symmetric frame that, for  Δ ¼ ðΔ; 0; 0Þ, lead to

Hs
0ðAs

i ; zÞ ¼ Πs
0ðΓ0Þ − i

Δ
2P3

Πs
0ðΓ2Þ; ð107Þ

Es
0ðAs

i ;zÞ¼−
m

Eþm
Πs

0ðΓ0Þ− i
2mðmðEþmÞþP2

3Þ
P3ΔðEþmÞ Πs

0ðΓ2Þ:

ð108Þ

As expected, Eqs. (107) and (108) are the usual expressions
extracted from the matrix elements of operator γ0 previously
used for the unpolarized GPDs [130]. We also find that the z
dependence in the kinematic factors cancels out. While the
above observations validate the methodology of relating H0

and E0 to Ai, using Eqs. (107) and (108) is computationally
costly and not optimal for lattice QCD calculations to extract
Hs

0ðAs
i ; zÞ and Es

0ðAs
i ; zÞ. Instead, one may still employ the

historically used symmetric frame definition for the unpo-
larized quasi-GPDs [Eqs. (105) and (106)] but perform a
calculationof thematrix elements in the asymmetric frame for
the extraction of the amplitudes Ai. We define such a case by
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Hs
0ðAa

i ; zÞ and Es
0ðAa

i ; zÞ. Such a possibility is due to the
frame invariance of the amplitudes Ai. As outlined in Sec. II,
the kinematic coefficients between the two frames are related
via a Lorentz boost transformation.

An alternative approach is to define the quasi-GPDs
in the asymmetric frame using only the matrix elements
of γ0 [Eq. (43)]. In such a case, one can relateHa

0 and E
a
0 to

the Ai as

Ha
0ðAa

i ; zÞ ¼ A1 þ
Δ0

P0

A3 þ
m2zΔ0

2P0P3

A4 þ
zðΔ2

0 þ Δ2
1 þ Δ2

2Þ
2P3

A6 þ
zðΔ3

0 þ Δ0ðΔ2
1 þ Δ2

2ÞÞ
2P0P3

A8; ð109Þ

Ea
0ðAa

i ; zÞ ¼ −A1 −
Δ0

P0

A3 −
m2zðΔ0 þ 2P0Þ

2P0P3

A4 þ 2A5 −
zðΔ2

0 þ 2P0Δ0 þ 4P2
0 þ Δ2

1 þ Δ2
2Þ

2P3

A6

−
zΔ0ðΔ2

0 þ 2Δ0P0 þ 4P2
0 þ Δ2

1 þ Δ2
2Þ

2P0P3

A8: ð110Þ

Substituting Ai in the asymmetric frame for  Δ ¼ ðΔ; 0; 0Þ [Eqs. (97)–(104)], we find

Ha
0ðAa

i ; zÞ ¼ i
2m2ðEf − EiÞ
KP3ΔðEi þmÞΠ

a
0ðΓ2Þ þ

2m2ðEf þ Ei þ 2mÞ
KðEf þ EiÞðEf þmÞðEi þmÞΠ

a
0ðΓ0Þ; ð111Þ

Ea
0ðAa

i ; zÞ ¼ −
4m3

KðEf þ EiÞðEf þmÞðEi þmÞΠ
a
0ðΓ0Þ − i

4m3

KP3ΔðEi þmÞΠ
a
0ðΓ2Þ: ð112Þ

We note that (Hs
0, E

s
0) differ from (Ha

0 , E
a
0) due to their

Lorentz noninvariant definition. However, in the infinite
momentum limit both approach the correct light-cone limit.
While working at finite momentum boost, a different
functional form in the two frames is found. Here, we
compare H0 and E0 between the two frames for pedagogi-
cal reasons, as exact agreement between them is not
anticipated. Theoretically, there is no preference in using
Ha

0 and Ea
0 versus Hs

0 and Es
0. Historically, the latter is

employed, and one convenient approach is the extraction of
Hs

0ðAa
i ; zÞ and Es

0ðAa
i ; zÞ which uses matrix elements in

asymmetric frames.
Another aspect of this work follows a different approach

from the one outlined above. In particular, we propose a
Lorentz-invariant quasi-GPD H and E definition, as given
in Eqs. (41) and (42). Such definitions may have faster
convergence to light-cone GPDs. However, further theo-
retical and numerical investigation is required to reach
concrete conclusions. The expressions of Eqs. (41) and (42)
simplify for zero skewness, that is,

HðAs=a
i ; zÞ ¼ A1; ð113Þ

EðAs=a
i ; zÞ ¼ −A1 þ 2A5 þ 2zP3A6: ð114Þ

Being Lorentz invariant, the above definitions are equiv-
alent in both frames, that is, HðAs

i ; zÞ ¼ HðAa
i ; zÞ and

EðAs
i ; zÞ ¼ EðAa

i ; zÞ. For completeness, we provide the
expressions of H and E using matrix elements in each
frame. As above, we use as an example the case
 Δ ¼ ðΔ; 0; 0Þ, which may be written in terms of matrix
elements in the symmetric frame:

HðAs
i ; zÞ ¼

ðmðEþmÞ þ P2
3Þ

EðEþmÞ Πs
0ðΓ0Þ

− i
P3Δ

2EðEþmÞΠ
s
0ðΓ2Þ −

Δ
2E

Πs
2ðΓ3Þ; ð115Þ

EðAs
i ; zÞ ¼ −

m
E
Πs

0ðΓ0Þ − i
2mP3

EΔ
Πs

0ðΓ2Þ −
2m2

EΔ
Πs

2ðΓ3Þ;
ð116Þ

or, alternatively, in the asymmetric frame:

HðAa
i ; zÞ ¼

2m2

EfðEi þmÞ
Πa

0ðΓ0Þ
K

þ i
2ðEf − EiÞP3m2

EfðEf þmÞðEi þmÞΔ
Πa

0ðΓ2Þ
K

þ 2ðEi − EfÞP3m2

EfðEf þ EiÞðEf þmÞðEi þmÞ
Πa

1ðΓ2Þ
K

þ i
2ðEi − EfÞm2

EfðEi þmÞΔ
Πa

1ðΓ0Þ
K

þ 2ðEi − EfÞP3m2

EfðEf þ EiÞðEf þmÞðEi þmÞ
Πa

2ðΓ1Þ
K

þ 2ðEf − EiÞm2

EfðEi þmÞΔ
Πa

2ðΓ3Þ
K

; ð117Þ
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EðAa
i ; zÞ ¼ −

2m3

E2
fðEi þmÞ

Πa
0ðΓ0Þ
K

− i
2m3P3ðEf þ Ei þ 2mÞ
E2
fΔðEf þmÞðEi þmÞ

Πa
0ðΓ2Þ
K

þ 2m3P3ðEf þ Ei þ 2mÞ
E2
fðEf þ EiÞðEf þmÞðEi þmÞ

Πa
1ðΓ2Þ
K

þ i
2m3ðEf − EiÞ
E2
fΔðEi þmÞ

Πa
1ðΓ0Þ
K

þ 4m4P3

E2
fðEf þ EiÞðEf þmÞðEi þmÞ

Πa
2ðΓ1Þ
K

−
4m4

E2
fΔðEi þmÞ

Πa
2ðΓ3Þ
K

: ð118Þ

We note that the definition ofH and E can be interpreted as
the construction of a new operator that is a combination
of γ0, γ1 and γ2. We emphasize that it is important to
provide a comparison of the H and E GPDs in the two
frames at the same value of t. This requires Δa⊥ ≠ Δs⊥. Such
a relation is P3 dependent but for the values of P3 employed
in this work (see Sec. III E) is numerically similar
(ts ¼ −0.69 GeV2, ta ¼ −0.64 GeV2).

D. Renormalization and matching

A schematic structure of the historical definition of a
quasi-GPD (say H) is

H0 → c0h…γ0…i; ð119Þ
while, as we will show in Sec. III C, a schematic structure
of the Lorentz-invariant definition is

H → c0h…γ0…i þ c1h…γ1…i þ c2h…γ2…i: ð120Þ
Here, ðc0; c1; c2Þ are frame-dependent kinematic factors.
Specifically, the linear combination c1h…γ1…i þ
c2h…γ2…i is such that it eliminates the additional ampli-
tudes (with respect to the light-cone case) present in
c0h…γ0…i alone, thereby (potentially) projecting the
resulting quasi-GPD faster to the light-cone GPD at the
leading order, which is Lorentz invariant. The question that
we want to discuss here concerns the strategy to renorm-
alize the linear combination of ðγ0; γ1; γ2Þ in Eq. (120).
Since the UV divergence of the quark bilinear operator
is multiplicative and independent of the Dirac Γ matrix
[142–144], one can just use the renormalization factor for
γ0 to renormalize the quasi-GPD. Besides, since γ0 and γ1;2

are free fromOð1Þ operator mixings due to chiral symmetry
breaking on the lattice [140,141], this issue is also avoided
in the Lorentz-invariant definition. Note that for our
numerical results, we will use the matching coefficient

from Ref. [121]. It is known that the GPD matching
coefficient for the operator γ0 reduces to that for the
corresponding PDF when ξ ¼ 0, even if t ≠ 0 [121,122].
The PDF matching coefficient for γ0 is for the amplitude
A1, which is also the only contributing amplitude to the
Lorentz-invariant (LI) definition of the GPD when ξ ¼ 0.
Therefore, the matching coefficients for the γ0 and the LI
definitions of the GPDs are equal. We will elaborate this
point more, including the general case of ξ ≠ 0, in a
forthcoming publication, along with exploring hybrid
renormalization [145] for quasi-GPDs, as well as an
improved regularization independent (RI) or momentum
subtraction (MOM)-type [140,146] scheme to eliminate
unwanted finite lattice contributions [147].

E. Calculation parameters

We calculate the proton matrix elements of the nonlocal
vector operator containing spatially separated quark fields,
in the ẑ direction, connected by a Wilson line. The proton
states are momentum boosted with nonzero momentum
transfer between the initial and final state:

hμVðΓκ; z; pf; piÞ≡ hNðpfÞjψ̄ðzÞγjWð0; zÞψð0ÞjNðpiÞi;
μ; κ∶0; 1; 2; 3: ð121Þ

jNðPiÞi and jNðPfÞi are the initial (source) and final (sink)
state of the proton. The remaining variables are defined
previously. We use momentum smearing [148] to improve
the overlap with the proton ground state and suppress gauge
noise; Ref. [64] demonstrated that the method is essential
for nonlocal operators. More relevant to the present
analysis, it was found that the statistical noise is z
dependent and reduces by a factor of 4–5 in the real part
and 2–3 in the imaginary part of the unpolarized GPDs
[130]. The matrix element hμV is extracted from the ratio

RμðΓκ; pf; pi; ts; τÞ ¼
C3pt
μ ðΓκ; pf; pi; ts; τÞ
C2ptðΓ0; pf; tsÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2ptðΓ0; pi; ts − τÞC2ptðΓ0; pf; τÞC2ptðΓ0; pf; tsÞ
C2ptðΓ0; pf; ts − τÞC2ptðΓ0; pi; τÞC2ptðΓ0; pi; tsÞ

s
; ð122Þ

whereC2pt andC3pt are the two- and three-point correlators,
respectively. τ is the current insertion time and ts is the
source-sink time separation; the source is taken at zero time
slice. We extract the ground-state contribution to hμV from

Rμ by taking a plateau fit with respect to τ in a region of
convergence, indicated by ΠjðΓκÞ. For simplicity, the
dependence on z, pf, and pi is not shown explicitly in
the matrix elements ΠjðΓκÞ.
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The calculation is performed on a gauge ensemble of
Nf ¼ 2þ 1þ 1 twisted-mass fermions including clover
improvement and Iwasaki-improved gluons [149]. The
quark masses correspond to a pion with mass 260 MeV.
The ensemble has a volume of 323 × 64 and lattice
spacing a ¼ 0.093 fm. Several of the matrix elements
beyond the commonly used γ0 have small and noisy
signal. To keep the statistical noise under control, we use
a source-sink separation of ts ¼ 10a ¼ 0.93 fm. The
study of excited states via calculations of multiple time
separations is beyond the scope of this work. In future
precision calculations, we will include excited state
studies. In Table I, we give the statistics for the calcu-
lation in the symmetric and the asymmetric frame. The
Lorentz-invariant amplitudes have definite symmetry
with respect to P3 → −P3, z → −z and  Δ → −  Δ (see
Appendix B) and, therefore, we combine all data con-
tributing to the same value of momentum transfer
squared, t. We remind the reader that for the kinematic
setup in the two frames as given in Table I, ts and ta are
not the equal but are sufficiently close to each other for a
comparison between the two frames to be meaningful. We
emphasize that the asymmetric frame is computationally
more efficient, as one can obtain more than one value of  Δ
within the same computational cost.

IV. LATTICE RESULTS

A. Matrix elements and Lorentz-invariant amplitudes

In this section, we present selected matrix elements in the
two frames. We point out that the matrix elements in the
symmetric frame have definite symmetries with respect to
P3 → −P3, z → −z, and  Δ → −  Δ. However, such sym-
metries are, in general, not present in the asymmetric frame,
which prevents one from taking averages of the matrix
elements for �P3, �z, or �  Δ before extracting the Ai; the
amplitudes have definite symmetries that are outlined in
Appendix B. For consistency in the analysis, the averaging
over, e.g., �z is done at the level of Ai for both frames.
In Fig. 1, we show the real and imaginary parts of bare

Π0ðΓ0Þ in both frames for the eight combinations of �P3

and�  Δ given in Table I. Similarly, Figs. 2–4 show Π0ðΓjÞ,
ΠjðΓ3Þ and ΠjðΓκÞ (j, κ ¼ 1; 2, j ≠ κ), respectively, for the

P3 and  Δ combinations that lead to nonvanishing matrix
elements. There are several comments and observations for
the behavior of the matrix elements. First, Πs

μ and Πa
μ are

not equivalent and, thus, not directly comparable due to
their frame dependence. For instance, their frame depend-
ence can be seen in Eqs. (56)–(88) in Sec. III A, where the
matrix elements parametrize in different combinations of Ai
with frame-dependent kinematic coefficients. Also, the

FIG. 1. Bare matrix element Π0ðΓ0Þ in the symmetric frame (left) and in the asymmetric frame (right), for jP3j ¼ 1.25 GeV and
t ¼ −0.69 GeV2 (t ¼ −0.64 GeV2) for the symmetric (asymmetric) frame. The top (bottom) panel corresponds to the real (imaginary)
part. The notation in the legend is fP3;  Δg in units of 2π=L.
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numerical values of some of the kinematic factors, e.g., Ei,
depend on the frame. For example, Πs

0ðΓ0Þ contains
information on A1, A5, and A6, while Πa

0ðΓ0Þ contains
information on A1, A3, A4, A5, A6, and A8. Second, the
matrix elements in the symmetric frame have definite
symmetries, which are validated in the data shown in
Figs. 1–4. For instance, Eq. (56) has a symmetric real
part and an antisymmetric imaginary part with respect to
P3 → −P3 at fixed z, which can be traced back to the
symmetries of Ai [A⋆

1ð−z · PÞ ¼ A1ðz · PÞ, A⋆
5ð−z · PÞ ¼

A5ðz · PÞ, A⋆
6ð−z · PÞ ¼ −A6ðz · PÞ] combined with the

symmetry properties of the kinematic factors. For simplic-
ity, we do not show all arguments of Ai.
Third, the lack of definite symmetries in the asymmetric

frame appears to be a small effect in Πa
0ðΓ0Þ and Πa

2ðΓ3Þ
and comparable to the current statistical uncertainties.
However, the effect in Πa

1ðΓ2Þ is more significant, particu-

larly when  Δ → −  Δ. Finally, some of the matrix elements,
e.g.,Πa

1ðΓ2Þ, are theoretically nonzero but are suppressed in
magnitude. This has implications in the signal of some of
the Ai, as we will see below.
The next step in the analysis is to decompose the matrix

elements into the corresponding Lorentz-invariant ampli-
tudes. The fact that the Ai have definite symmetries makes
them interesting to isolate and study. This is done for each
kinematic setup of Table I (total of eight). The Ai from
different kinematic setups can be combined according to
their symmetries, by symmetrizing or antisymmetrizing

with respect to �P3z, based on the findings given in
Appendix B. The frame independence of Ai is a major
advantage of the proposed parametrization, which we
observe numerically using our lattice QCD calculation.
Such a test should not be understood as a check of the
theoretical formulation but rather a consistency check of the
lattice estimates for Ai. The extent of agreement in the two
frames provides an estimate of systematic effects arising
from nonvanishing lattice spacing.
In Figs. 5 and 6, we present the bare Ai after combining

all values of  P3 and  Δ. The amplitudes A2, A4, A6, A7 and
A8 are accompanied with an explicit factor of zn (n ¼ 1; 2)
in Eqs. (56)–(88) and, therefore, cannot be accessed at
z ¼ 0. One may extrapolate their z dependence to obtain
Aiðz ¼ 0Þ. In the presentation of Figs. 5 and 6, we keep the
same range in the y axis for all the amplitudes for a better
quantitative comparison.
We find that A5 has the largest magnitude both in the

real and the imaginary parts, followed by A1. The remaining
amplitudes are found to be very small or negligible,
which can be traced back to the small signal for some
of the matrix elements, such as Π1ðΓ2Þ. Overall, we find
very good agreement between the two frames for each Ai,
as expected theoretically. We remind the reader that there
is no exact match of the momentum transfer in the two
frames (ts ¼ −0.69 GeV2, ta ¼ −0.64 GeV2) and small
differences may be attributed to the ∼7% change in t,
as well as unquantified systematic uncertainties. Such a

FIG. 2. Bare matrix elements Π0ðΓ1Þ and Π0ðΓ2Þ in the symmetric frame (left) and in the asymmetric frame (right). The legend
indicates fκ; P3;  Δg in units of 2π=L, with κ corresponding to Π0ðΓκÞ. The remaining notation is the same as Fig. 1.
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FIG. 4. Bare matrix elements Π1ðΓ2Þ and Π2ðΓ1Þ in the symmetric frame (left) and in the asymmetric frame (right). The legend
indicates fj; κ; P3;  Δg in units of 2π=L, with j, κ corresponding to ΠjðΓκÞ. The remaining notation is the same as Fig. 1.

FIG. 3. Bare matrix elements Π2ðΓ3Þ and Π1ðΓ3Þ in the symmetric frame (left) and in the asymmetric frame (right). The legend
indicates fj; P3;  Δg in units of 2π=L, with j corresponding to ΠjðΓ3Þ. The remaining notation is the same as Fig. 1.

GENERALIZED PARTON DISTRIBUTIONS FROM LATTICE QCD … PHYS. REV. D 106, 114512 (2022)

114512-19



difference between ts and ta is, in general, not an obstacle
in the proposal of Sec. III C, where a Lorentz boost
transformation can relate the momentum transfer between
the two frames, without ambiguity in the extracted light-
cone GPDs.

B. Lorentz-invariant and noninvariant quasi-GPDs

In this paragraph, we use the methodology of Sec. III C
to calculate the GPDs based on the γ0 operator (Lorentz
noninvariant),Hs=a

0 , Es=a
0 , as well as an alternative Lorentz-

invariant operator that combines γ0, γ1, γ2, defining H, E.
Having the amplitudes Ai, one may use them for any
definition of quasi-GPDs, as they contain no information
on the frame and are interchangeable between the sym-
metric and the asymmetric frame, as long as one keeps
track of the values of P3 and t that the quasi-GPDs
correspond to. The results for P3 ¼ 1.25 GeV and
ts ¼ −0.69 GeV2, ta ¼ −0.64 GeV2 are shown in
Figs. 7–10. In particular, we compare the definitions of
H0 and E0, as given in Eqs. (107) and (108) for the

symmetric and Eqs. (111) and (112) for the asymmetric
frame. We emphasize that definingH0 and E0 through γ0 is
frame dependent and, thus, Hs

0 and Ha
0 have a different

functional form; similarly for Es
0 Ea

0. Indeed, we find
numerically that the real part for both H0 and E0 is not
in agreement in the two frames (see left plots of Figs. 8
and 10); agreement is found in the imaginary part.
Another interesting comparison is for the Lorentz-

invariant definitions, H and E, using matrix elements
obtained in the symmetric or the asymmetric frame (see
right plots of Figs. 8 and 10). As expected theoretically,
the agreement between the two frames is significantly
improved for bothH and E. It is natural to also compareH0

with H and E0 with E as extracted in each frame. Also in
this case, an agreement is not expected at finite P3, as the
Lorentz-invariant and noninvariant formalism is not the
same. However, some similarity is expected because both
definitions agree at P3 → ∞. Such a comparison is shown
in Figs. 7 and 9, and it is found that, for this kinematic
setup,H0 is fully compatible withH in both frames; in fact,
perfect agreement is found in the asymmetric case.

FIG. 5. Comparison of bare values of A1 and A5 in the symmetric (filled symbols) and asymmetric (open symbols) frame. The real
(imaginary) part of each quantity is shown in the left (right) column. The data correspond to jP3j ¼ 1.25 GeV and t ¼ −0.69 GeV2

(t ¼ −0.64 GeV2) for the symmetric (asymmetric) frame.

FIG. 6. Comparison of bare values of A2, A3, A4, A6, A7, and A8 in the symmetric (filled symbols) and asymmetric (open symbols)
frame. The notation is the same as Fig. 5.
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An excellent agreement is found between Re½E� and Re½E0�
in the asymmetric frame, while in the symmetric frame
there is a difference. Finally, differences are observed
between Im½E� and Im½E0� for both frames. As previously
mentioned, these quantities are not expected to be in

agreement for finite momentum P3. It is also interesting
to note that the statistical errors are considerably smaller
in E as compared to E0. The origin of this behavior is
illustrated in Fig. 11, which shows the respective matrix
elements separately for the eight equivalent kinematic

FIG. 7. Comparison of bare H0 and H at jP3j ¼ 1.25 GeV in the symmetric (left, t ¼ −0.69 GeV2) and asymmetric (right,
t ¼ −0.64 GeV2) frame.

FIG. 8. Left: comparison of bare H0 at jP3j ¼ 1.25 GeV using the symmetric (t ¼ −0.69 GeV2) and asymmetric (t ¼ −0.64 GeV2)
frame matrix elements. Right: comparison of bare H using the symmetric and asymmetric frame matrix elements.

FIG. 9. Similar to Fig. 7 for E0 and E in the symmetric (left) and asymmetric (right) frame.
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cases. At least for this choice of P3 and  Δ, the Lorentz-
invariant definition improves the statistical quality of the
signal, i.e., that these kinematic contaminations introduce
additional noise to the extracted quantity. This trend holds
for the symmetric frame, too. We also note that this effect
does not occur, or is strongly limited, in the case ofH GPD.
Tracing this behavior back even further, the definition
of E involves additional matrix elements that subtract the
noise present in Π0ðΓ1=2Þ (see Fig. 2, particularly the
imaginary part). In turn, H0 is numerically dominated
by the less noisy Π0ðΓ0Þ (Fig. 1). We remind the reader
that, in general, the difference between ta and ts may be

responsible for small differences between the quantities
calculated in the two frames. Also, further investigations
are needed to assess the advantages and disadvantages of
the various definitions for the quasi-GPDs.
An important component of the lattice calculation is the

renormalization, which in this work is done in coordinate
space using an RI prescription. Since this is a proof-of-
concept calculation, we do not focus on the various
prescriptions to improve the renormalization, such as the
hybrid scheme [145], and reduction of lattice artifacts in the
RI estimates [147], or combination of the two. However, we
do emphasize that this is an important direction for future

FIG. 10. Similar to Fig. 8 for E0 (left) and E (right).

FIG. 11. Bare E0 (left) and E (right) for jP3j ¼ 1.25 GeV. All cases correspond to the asymmetric frame (t ¼ −0.64 GeV2). The top
(bottom) panel corresponds to the real (imaginary) part. The notation in the legend is fP3;  Δg in units of 2π=L.
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systematic studies of GPDs. For compatibility with the
matching formalism of Refs. [121,150], we use the standard
RI prescription defined on a single renormalization scale,
ðaμ0Þ2 ≈ 1.95, which will also enter the matching equations.
We find negligible dependence when varying μ0. As dis-
cussed in Sec. III D, the appropriate renormalization for H
and E is the one of the γ0 operator, which is valid for both
Lorentz-invariant and noninvariant quasi-GPDs. Details on
the calculation of the renormalization functions used in this
work can be found in Ref. [75]. As an example, in Fig. 12 we
compare the bare and renormalized values of quasi-GPDs
using the symmetric frame and the two definitions, that is
Hs=a

0 andH, Es=a
0 and E. The plots demonstrate the challenges

related to the renormalization, that is, as z increases, the RI
prescriptions become less reliable. In practice, thevalue of the
renormalization functions increases exponentially due to the
linear divergence leading to renormalized functions that do
not decay to zero. Such behavior can be seen inHs;R

0 andHR.

C. Light-cone GPDs

To extract the light-cone GPDs from the lattice data,
one must transform the latter in momentum space to
reconstruct their x dependence. While this is necessary,
the Fourier transform from a finite set of quasi-GPD matrix
elements is accompanied by the so-called inverse problem,4

which mainly affects the small-x region. Nevertheless, the
moderate-to-large-x region is not sensitive to this inverse
problem, thus allowing us to make reliable predictions. In
this work, we use the Backus-Gilbert (BG) reconstruction
method [152], which uses a model-independent criterion to
choose the light-cone reconstructed GPDs from among the
infinite set of possible solutions to the inverse problem. The
criterion is that the variance of the solution with respect to
the statistical variation of the input data should be minimal.
We reconstruct the momentum-space distribution by
applying BG separately for each value of x. It should be
noted that, despite BG being model independent and better
than the naive Fourier transform, there are still limitations
due the small number of lattice datasets. In the work
presented here, we vary the number of data that enter the
reconstruction, that is zmax ¼ 7a; 9a; 11a; 13a.
The x dependence of quasi-GPDs for the various

definitions is shown in Fig. 13 using the BG reconstruction
method with zmax ¼ 9a. All definitions for the H quasi-
GPD are consistent, with a very mild difference between
the definitions of Eqs. (105) and (109) for x < 0.4. Such a
difference become negligible after the matching (see, e.g.,
Fig. 18). On the contrary, the E quasi-GPD has a noticeable
dependence on the definition. More precisely, the results
using Eqs. (106) and (110) are in agreement marginally;
the agreement improves in the x > 0 region after the
matching, as seen in Fig. 19. Differences are also observed
in Eqs. (106) and (110) when compared to the alternative
definition of Eq. (114). These differences persist after the

FIG. 12. Comparison of bare and renormalized quasi-GPDsH0,H (left) and E0, E (right) for the real (top) and the imaginary (bottom)
part in coordinate space. All cases correspond to the symmetric frame (t ¼ −0.69 GeV2). The renormalized quantities carry a
superscript R.

4See Ref. [151] for an extensive discussion in the context of
reconstructing partonic distributions.
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matching. Once again, agreement between the various
definitions is not expected by construction. The only
agreement imposed by theory is the frame independence
of Eq. (114). Indeed, we find that the numerical results are
frame independent despite the small difference in the value
of t between the two frames.
The final step of the calculation is the application of the

matching equations on the x-dependent quasi-GPDs, to
connect the lattice data to the light-cone GPDs, as outlined
in Sec. III D. We use the one-loop expression of Ref. [121]
to relate the quasi-GPDs in the RI scheme at a scale of
1.95 GeV to the light-cone GPDs in the MS scheme at
2 GeV. At zero skewness, the matching coefficient is
exactly the same as in the quasi-PDF case [121].
By varying zmax, we first investigate the effect of the

truncation of the dataset entering the reconstruction of
the x-dependence. For simplicity, we show the effect in the
light-cone GPDs. We find very small dependence between
zmax ¼ 7a; 9a; 11a; 13a for all quantities calculated in both
frames. In Fig. 14, we show the zmax dependence of Ha

0

and H extracted from the asymmetric frame calculation.
Similarly, in Fig. 15, we show Ea

0 and E. As can be seen, all
values of zmax lead to compatible results, with the statistical
uncertainties increasing with zmax. Hence, we proceed with
zmax ¼ 9a as the preferred value.
In Sec. IV B, we compare Ai, H0, E0, H, and E, as

extracted from different definitions and frames. It is
interesting to present such a comparison in the light-cone

GPDs, which is summarized in Figs. 16–19. In particular,
Fig. 16 demonstrates that the Lorentz-invariant and non-
invariant definitions for the H-GPD lead to the same light-
cone GPDs; this holds for both the symmetric and the
asymmetric frames. We remind the reader that the two
definitions are different and such an agreement is not
expected theoretically. The obtained distributions employ-
ing the γ0 operator and symmetric frame definitions of Hs

0

and Es
0 coincide with the results of Ref. [130]. Figure 17

compares Es=a
0 and E as extracted in each frame. Unlike the

case of the H-GPD, here we find that the two definitions
lead to GPDs that are of similar magnitude and shape but
are not in agreement for most of the x region. Interestingly,
the numerical difference between Es

0 and E is more
prominent in the symmetric frame. The overall picture in
comparing H0 with H, and E0 with E, is similar to the one
for quasi-GPD matrix elements in coordinate space, as
presented in Figs. 7 and 9. Besides comparing the results
from different definitions within the same frame, it is
illustrative to investigate if the two frames for a given
definition show any agreement. An agreement between
different frames is expected theoretically only for the
Lorentz-invariant definitions, H and E. Indeed, Figs. 18
and 19 confirm perfect agreement between H in the two
frames; the same holds for E. Furthermore, such an
agreement is also observed in the Lorentz noninvariant
definitions H and E. The latter is in contrast to
Figs. 8 and 10, where we observe Re½Hs

0� ≠ Re½Ha
0� and

FIG. 13. Renormalized quasi-GPDs H0, H and E0, E in momentum space using the definitions of Eqs. (105) and (106), Eqs. (109)
and (110), and Eqs. (113) and (114).
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Re½Es
0� ≠ Re½Ea

0� (all bare) at small and moderate z. The
agreement at the level of matched GPDs can be attributed to
the enhanced errors after renormalization and nontrivial
correlations between matrix elements at different z entering
the x-dependence reconstruction. Nevertheless, the distri-
butions employing the Lorentz-invariant definitions evince
better agreement of their central values between the two
frames.

V. SUMMARY AND FUTURE PROSPECTS

Lattice QCD calculations of x-dependent GPDs have so
far been defined in the symmetric kinematic frame, which
is, however, computationally very expensive to implement.
The main complication is that each value of the momentum
transfer can only be accessed one at a time, as it appears in
both the initial and final states. Furthermore, the symmetric

FIG. 15. Dependence of E0ðAa
i ; xÞ (left) and EðAa

i ; xÞ (right) on zmax. The light-cone GPDs have been obtained using matrix elements
in the asymmetric frame (t ¼ −0.64 GeV2) and are presented in the MS scheme at 2 GeV.

FIG. 14. Dependence ofH0ðAa
i ; xÞ (left) andHðAa

i ; xÞ (right) on zmax. The light-cone GPDs have been obtained using matrix elements
in the asymmetric frame (t ¼ −0.64 GeV2) and are presented in the MS scheme at 2 GeV.

FIG. 16. Comparison of light-coneH0 andH GPDs in the symmetric (left, t ¼ −0.69 GeV2) and asymmetric (right, t ¼ −0.64 GeV2)
frame. Results are presented in the MS scheme at 2 GeV.
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frame requires two separate inversions for two separate
momentum smearing at the source and sink. Hence, the
current status of GPD calculations is still at the exploratory
stage, with a very limited number of values of the
momentum transfer and, consequently, skewness. In this
work, we propose a way to resolve this issue via a new

parametrization of off-forward matrix elements relevant
to GPDs in terms of Lorentz-invariant amplitudes.
Specifically, the frame dependence of the matrix elements
is absorbed in the kinematic factors of the parametrization,
leaving the amplitudes frame independent. Here, we
present a lattice QCD calculation of off-forward matrix

FIG. 17. Comparison of light-cone E0 and E GPDs in the symmetric (left, t ¼ −0.69 GeV2) and asymmetric (right, t ¼ −0.64 GeV2)
frame. Results are presented in the MS scheme at 2 GeV.

FIG. 18. Left: comparison of light-cone H0-GPD in the symmetric (t ¼ −0.69 GeV2) and asymmetric (t ¼ −0.64 GeV2) frame.
Right: comparison of light-cone H-GPD in the symmetric and asymmetric frame. Results are presented in the MS scheme at 2 GeV.

FIG. 19. Left: comparison of light-cone E0-GPD in the symmetric (t ¼ −0.69 GeV2) and asymmetric (t ¼ −0.64 GeV2) frame.
Right: comparison of light-cone E-GPD in the symmetric and asymmetric frame. Results are presented in the MS scheme at 2 GeV.
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elements of the nonlocal vector operators coupled to
momentum-boosted proton states. We observe numerically
the frame independence of the amplitudes Ai, by comparing
their estimates as extracted from the symmetric and the
asymmetric frame chosen above. Overall, we find very
good agreement between the two frames.
A novel aspect of this work is that the applicability of the

new parametrization in any frame has major implications in
the reduction of the computational cost. Take for instance
the fixed-sink sequential inversion approach, and the
asymmetric setup used in this work where the momentum
transfer is assigned to the initial state, that is  pf ¼  P,

 pi ¼  P −  Δ. The computational advantages are twofold:
(a) one can quadruple the number of measurements by
adding all permutations of  Δ contributing to the same t;
(b) several vectors  Δ may be obtained for a given  pf with
an overhead of only the contraction cost. The asymmetric
frame needs only one inversion corresponding to a single
momentum smearing at the source or sink. So there is a
factor of 2 gain in inversion even for a single momentum
transfer. Note that for both cases the momentum smearing
is optimized for a selected  Δ. However, we identify a broad
range of values for the momentum smearing parameter in
which the signal improvement is close to optimal.
The Lorentz-invariant amplitudes can be related to the

quasi-GPDs of H and E in coordinate space. The latter are
not uniquely defined and here we focus on three options:
(a) definition in the symmetric frame via the γ0 operator
(Hs

0; E
s
0); (b) definition in the asymmetric frame via the γ0

operator (Ha
0; E

a
0); (c) novel Lorentz-invariant definition

(H, E). We emphasize once again that the three definitions
are not equivalent; they differ by power corrections. The
first definition is of particular interest, as it has been used in
previous lattice QCD calculations in the symmetric frame.
It is still possible to extract the quasi-GPDs in the
symmetric frame in a computationally less-costly way by
using the Lorentz-invariant amplitudes Ai obtained from
the asymmetric frame. In such a case, the quasi-GPDs are
defined at the value of t corresponding to the asymmetric
kinematic setup. The kinematic coefficients of Eqs. (105)
and (106) are obtained via a Lorentz transformation for a
transverse boost. Another novel aspect in this work is the
Lorentz-invariant definition of quasi-GPDs presented in
Eqs. (113) and (114). Such a definition should be in
agreement between the two frames. We explored this
direction in our lattice calculation and our findings
confirm such frame independence (see, e.g., right panels
of Figs. 8 and 10).
The proposed parametrization and the introduction of the

Lorentz-invariant amplitudes in not limited to the quantities
presented in this work. It is a powerful theoretical tool and
has a broad range of interesting applicability that extends
beyond leading twist. We believe that it has the potential to

shape future calculations of GPDs from lattice QCD with a
computational cost that is within reach.
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APPENDIX A: DERIVATION OF THE LORENTZ-INVARIANT PARAMETRIZATION IN TERMS
OF THE Ai AMPLITUDES

In this appendix, we outline the steps used to obtain the Lorentz-invariant amplitudes Ai’s that parametrize the position-
space matrix element in the vector case. The starting point for a complete parametrization of the vector operator involves
considering all possible Dirac bilinears consistent with the parity constraint (see also next section where we discuss the
implications of the parity constraint):

Fμðz; P;ΔÞ ¼ ūðpf; λ0Þ
�
Pμ

m
A1 þmzμA2 þ

Δμ

m
A3 þ

iσμP

m
A4 þmiσμzA5 þ

iσμΔ

m
A6 þ

PμiσzΔ

m
A7 þmzμiσzΔA8 þ

ΔμiσzΔ

m
A9

þ PμiσzP

m
A10 þmzμiσzPA11 þ

ΔμiσzP

m
A12 þ

PμiσPΔ

m3
A13 þ

zμiσPΔ

m
A14 þ

ΔμiσPΔ

m3
A15

�
uðpi; λÞ; ðA1Þ

where Ai ≡ Aiðz · P; z · Δ; t ¼ Δ2; z2Þ. However, a further
reduction in the number of structures is possible as shown
in the following.
(1) Using the Gordon identity,

0 ¼ ūðpf; λ0Þ
�
Δμ

2m
þ iσμP

m

�
uðpi; λÞ ðA2Þ

∴ iσμP → Δμ: ðA3Þ

Hence, one can drop the term ∝ A4.
(2) After a multiplication by Δμ in Eq. (A2), we find

iσPΔ

2m
→

Δ2

2m

∴
PμiσPΔ

2m
→

PμΔ2

2m
: ðA4Þ

Hence, A13 → A1. Similarly,

∴
zμiσPΔ

2m
→

zμΔ2

2m
A14 → A2; ðA5Þ

∴
ΔμiσPΔ

2m
→

ΔμΔ2

2m
A15 → A3: ðA6Þ

(3) After a multiplication by zμ in Eq. (A2), we find

iσzP

2m
→ −

z · Δ
2m

∴
PμiσzP

2m
→ −

Pμðz · ΔÞ
2m

: ðA7Þ

Hence, A10 → A1. Similarly,

∴
zμiσzP

2m
→ −

zμðz · ΔÞ
2m

A11 → A2; ðA8Þ

∴
ΔμiσzP

2m
→ −

Δμðz · ΔÞ
2m

A12 → A3: ðA9Þ

Therefore, in the end one is only left with eight independent
structures.

APPENDIX B: SYMMETRIES OF THE AMPLITUDES Ai AND CHECKING THE LOCAL CASE

1. Symmetry of the Ai’s under Hermiticity

The Hermitian conjugate of the correlator is

ðFμÞ† ¼
�
hpf; λ0jq̄

�
−
z
2

�
γμq

�
z
2

�
jpi; λi

�†
¼

�
hpf; λ0jq†

�
−
z
2

�
γ0γμq

�
z
2

�
jpi; λi

�†

¼ hpi; λjq†
�
z
2

�
ðγμÞ†γ0q

�
−
z
2

�
jpf; λ0i ¼ hpi; λjq̄

�
z
2

�
γμq

�
z
2

�
jpf; λ0i: ðB1Þ

For the Dirac matrices and the amplitudes Ai’s, this means

½ūðpfÞPμA1uðpiÞ�† ¼ ūðpiÞ½PμA�
1�uðpfÞ; ðB2Þ

and similarly for the structures associated with A2=3, and
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½ūðpfÞiσμzA4uðpiÞ�† ¼ −ūðpiÞ½iσμzA�
4�uðpfÞ; ðB3Þ

and similarly for the structures associated with A5=6=7=8.
So, we get

ðFμÞ† ¼ ūðpi; λÞ
�
Pμ

m
A�
1 þmzμA�

2 þ
Δμ

m
A�
3 −miσμzA�

4

−
iσμΔ

m
A�
5 −

PμiσzΔ

m
A�
6 −mzμiσzΔA�

7

−
ΔμiσzΔ

m
A�
8

�
uðpf; λ0Þ: ðB4Þ

This can be compared to Fμ after performing the trans-
formation pi ↔ pf, which means Δ → −Δ and z → −z.
Then, the above equation is

ðFμÞ† ¼ ūðpf; λ0Þ
�
Pμ

m
A�
1 −mzμA�

2 −
Δμ

m
A�
3 þmiσμzA�

4

þ iσμΔ

m
A�
5 −

PμiσzΔ

m
A�
6 þmzμiσzΔA�

7

þ ΔμiσzΔ

m
A�
8

�
uðpi; λÞ: ðB5Þ

The implies the following constraints on the Ai’s (restoring
now the arguments of the Ai’s):

A�
1ð−z · P; z · Δ;Δ2; z2Þ ¼ A1ðz · P; z · Δ;Δ2; z2Þ;

−A�
2ð−z · P; z · Δ;Δ2; z2Þ ¼ A2ðz · P; z · Δ;Δ2; z2Þ;

−A�
3ð−z · P; z · Δ;Δ2; z2Þ ¼ A3ðz · P; z · Δ;Δ2; z2Þ;

A�
4ð−z · P; z · Δ;Δ2; z2Þ ¼ A4ðz · P; z · Δ;Δ2; z2Þ;

A�
5ð−z · P; z · Δ;Δ2; z2Þ ¼ A5ðz · P; z · Δ;Δ2; z2Þ;

−A�
6ð−z · P; z · Δ;Δ2; z2Þ ¼ A6ðz · P; z · Δ;Δ2; z2Þ;

A�
7ð−z · P; z · Δ;Δ2; z2Þ ¼ A7ðz · P; z · Δ;Δ2; z2Þ;

A�
8ð−z · P; z · Δ;Δ2; z2Þ ¼ A8ðz · P; z · Δ;Δ2; z2Þ: ðB6Þ

2. Symmetry of the Ai’s under parity

We begin with

Fijðpi; pf; zÞ ¼ hpfjq̄j
�
−
z
2

�
qi

�
z
2

�
jpii; ðB7Þ

where we have suppressed the helicity indices. Then, by
using U−1

P UP ¼ 1 we get

Fijðpi; pf; zÞ

¼ hpfjq̄j
�
−
z
2

�
qi

�
z
2

�
jpii

¼ hpfjU−1
P UPq̄j

�
−
z
2

�
U−1

P UPqi

�
z
2

�
U−1

P UPjpii

¼ hpfjUPqj

�
−
z
2

�
U−1

P UPqi

�
z
2

�
U−1

P jp̄ii; ðB8Þ

where we have made use of UPjpii ¼ jp̄ii and
hpfjU−1

P ¼ hpfj, where p ¼ ðp0;−  pÞ. Next, we use the
parity transformation of the spinor UPqðzÞU−1

P ¼ γ0qðz̄Þ or
UPq̄ðzÞU−1

P ¼ q̄ðz̄Þγ0 to arrive at

Fijðpi; pf; zÞ ¼ hpfjUPqj

�
−
z
2

�
U−1

P UPqi

�
z
2

�
U−1

P jp̄ii

¼ hpfjql
�
−
z
2

�
γ0ljγ

0
ii0qi0

�
z
2

�
jp̄ii

¼ γ0ii0

�
hpfjql

�
−
z
2

�
qi0
�
z
2

�
jp̄ii

�
γ0lj: ðB9Þ

We therefore infer

Fijðpi; pf; zÞ ¼ γ0ii0Fi0lðp̄i; pf; zÞγ0lj: ðB10Þ

Parity constraint also implies (see Ref. [138])

Γμ
VðP;Δ;…Þ ¼ γ0Γμ̄

VðP̄; Δ̄;…Þγ0;
Γμν
T ðP;Δ;…Þ ¼ γ0Γμ̄ ν̄

T ðP̄; Δ̄;…Þγ0; ðB11Þ

where Pμ̄ ¼ Pμ, etc. We can check the above for the
structures appearing in our decomposition. For example,

γ0P̄μ̄γ0A1ðz̄ · P̄; z̄ · Δ̄; Δ̄2; z̄2Þ ¼ PμA1ðz̄ · P̄; z̄ · Δ̄; Δ̄2; z̄2Þ;
ðB12Þ

and similarly for the structures associated with A2=3, and

γ0iσμ̄ z̄γ0A4ðz̄ · P̄; z̄ · Δ̄; Δ̄2; z̄2Þ
¼ γ0iσμ̄ ν̄z̄ν̄γ0A4ðz̄ · P̄; z̄ · Δ̄; Δ̄2; z̄2Þ
¼ iσμzA4ðz̄ · P̄; z̄ · Δ̄; Δ̄2; z̄2Þ; ðB13Þ

and similarly for the structures associated with A5=6=7=8.
(Note we used γ0σμνγ

0 ¼ σμν.) So all the structures are
consistent with parity. Hence, Eq. (B10) implies

Aiðz · P; z · Δ;Δ2; z2Þ→P Aiðz̄ · P̄; z̄ · Δ̄; Δ̄2; z̄2Þ: ðB14Þ
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3. Symmetry of the Ai’s under time reversal

Time-reversal operator is antiunitary meaning:

hxjU†
TUT jyi ¼ hxjyi�: ðB15Þ

We begin with

Fijðpi; pf; zÞ ¼ hpfjq̄j
�
−
z
2

�
qi

�
z
2

�
jpii; ðB16Þ

where we have suppressed the helicity indices. Then, by
using Eq. (B15) we get

F�
ijðpi; pf; zÞ

¼ hpfjq̄j
�
−
z
2

�
qi

�
z
2

�
jpii�

¼ hpfjq̄j
�
−
z
2

�
U†

TUTqi

�
z
2

�
jpii

¼ hpfjU†
TUTq̄j

�
−
z
2

�
U†

TUTqi

�
z
2

�
U†

TUT jpii; ðB17Þ

where, in going from the second to the third line we have
made use of the antiunitary nature of time-reversal operator
twice [Eq. (B15)]. Next, we use UT jpii ¼ jp̄ii and
hpfjU†

T ¼ hpfj, where p ¼ ðp0;−  pÞ:

F�
ijðpi;pf;zÞ¼hpfjU†

TUTq̄j

�
−
z
2

�
U†

TUTqi

�
z
2

�
U†

TUT jpii

¼hpfjUTqj

�
−
z
2

�
U†

TUTqi

�
z
2

�
U†

T jp̄ii:

ðB18Þ

Next, we use the time-reversal transformation of the spinor
UTqðzÞU†

T ¼ ðiγ1γ3Þqð−z̄Þ or UTq̄ðzÞU†
T ¼ ðiγ1γ3Þq̄ð−z̄Þ

to arrive at

F�
ijðpi; pf; zÞ

¼ hpfjUTqj

�
−
z
2

�
U†

TUTqi

�
z
2

�
U†

T jp̄ii

¼ hpfjql
�
z̄
2

�
ðiγ1γ3Þljðiγ1γ3Þii0qi0

�
−
z̄
2

�
jp̄ii

¼ ðiγ1γ3Þii0
�
hpfjql

�
z̄
2

�
qi0
�
−
z̄
2

�
jp̄ii

�
ðiγ1γ3Þlj

∴F�
ijðpi; pf; zÞ ¼ ðiγ1γ3Þii0Fi0lðp̄i; pf;−zÞðiγ1γ3Þlj:

ðB19Þ

We therefore infer

∴F�
ijðpi;pf;zÞ¼ðiγ1γ3Þii0Fi0lðp̄i;pf;−zÞðiγ1γ3Þlj: ðB20Þ

It is straightforward to check that all the Dirac structures
appearing in our decomposition are consistent with the
time-reversal constraint. For example,

ðiγ1γ3Þ1ðiγ1γ3Þ → 1;

ðiγ1γ3Þðiσμ̄ ν̄Þ�ðiγ1γ3Þ → iσμν: ðB21Þ
Now, keeping in mind that z → −z̄ under time reversal, we
can quickly infer from Eq. (B20)

A�
1ð−z̄ · P̄;−z̄ · Δ̄; Δ̄2; z̄2Þ ¼ A1ðz · P; z · Δ;Δ2; z2Þ;

−A�
2ð−z̄ · P̄;−z̄ · Δ̄; Δ̄2; z̄2Þ ¼ A2ðz · P; z · Δ;Δ2; z2Þ;

A�
3ð−z̄ · P̄;−z̄ · Δ̄; Δ̄2; z̄2Þ ¼ A3ðz · P; z · Δ;Δ2; z2Þ;

−A�
4ð−z̄ · P̄;−z̄ · Δ̄; Δ̄2; z̄2Þ ¼ A4ðz · P; z · Δ;Δ2; z2Þ;

A�
5ð−z̄ · P̄;−z̄ · Δ̄; Δ̄2; z̄2Þ ¼ A5ðz · P; z · Δ;Δ2; z2Þ;

−A�
6ð−z̄ · P̄;−z̄ · Δ̄; Δ̄2; z̄2Þ ¼ A6ðz · P; z · Δ;Δ2; z2Þ;

A�
7ð−z̄ · P̄;−z̄ · Δ̄; Δ̄2; z̄2Þ ¼ A7ðz · P; z · Δ;Δ2; z2Þ;

−A�
8ð−z̄ · P̄;−z̄ · Δ̄; Δ̄2; z̄2Þ ¼ A8ðz · P; z · Δ;Δ2; z2Þ:

ðB22Þ
The above expressions remain valid if parity is applied
along with time reversal.

a. Symmetry of the Ai’s under Hermiticity
and time reversal

The symmetry property of the Ai’s under Δ → −Δ can
be understood through their (simultaneous) behavior under
Hermiticity and time-reversal transformations:

A1ðz̄ · P̄;−z̄ ·Δ̄;Δ̄2; z̄2Þ¼A1ðz ·P;z ·Δ;Δ2;z2Þ;
A2ðz̄ · P̄;−z̄ ·Δ̄;Δ̄2; z̄2Þ¼A2ðz ·P;z ·Δ;Δ2;z2Þ;

−A3ðz̄ · P̄;−z̄ ·Δ̄;Δ̄2; z̄2Þ¼A3ðz ·P;z ·Δ;Δ2;z2Þ;
−A4ðz̄ · P̄;−z̄ ·Δ̄;Δ̄2; z̄2Þ¼A4ðz ·P;z ·Δ;Δ2;z2Þ;
A5ðz̄ · P̄;−z̄ ·Δ̄;Δ̄2; z̄2Þ¼A5ðz ·P;z ·Δ;Δ2;z2Þ;
A6ðz̄ · P̄;−z̄ ·Δ̄;Δ̄2; z̄2Þ¼A6ðz ·P;z ·Δ;Δ2;z2Þ;
A7ðz̄ · P̄;−z̄ ·Δ̄;Δ̄2; z̄2Þ¼A7ðz ·P;z ·Δ;Δ2;z2Þ;

−A8ðz̄ · P̄;−z̄ ·Δ̄;Δ̄2; z̄2Þ¼A8ðz ·P;z ·Δ;Δ2;z2Þ: ðB23Þ

b. Consistency in the local case z= 0

It is interesting to check if our decomposition is con-
sistent with the local vector current. We recall that the
local vector operator that defines the Dirac (F1) and the
Pauli (F2) form factors is

hpf; λ0jq̄ð0Þγμqð0Þjpi; λi

¼ ūðpf; λ0Þ
�
γμFq

1ðtÞ þ
iσμαΔα

2m
Fq
2ðtÞ

�
uðpi; λÞ: ðB24Þ
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So there are two independent form factors. The form factors
are real functions. On the other hand, our decomposition in
the local limit reduces to

Fμjz¼0 ¼ ūðpf; λ0Þ
�
Pμ

m
A1ðΔ2Þ þ Δμ

m
A3ðΔ2Þ

þ iσμΔ

m
A5ðΔ2Þ

�
uðpi; λÞ: ðB25Þ

Now, note that for us the Ai’s are “complex amplitudes,” but
for consistency with the local vector operator we must
be able to show that the Ai’s surviving are real (that is,
either the real or its imaginary part survives). Recall that
Hermiticity leads to

A�
1 ¼ A1; −A�

3 ¼ A3; A�
5 ¼ A5: ðB26Þ

Then these constraints on these Ai’s at z ¼ 0 lead to

ImðA1Þ ¼ 0; ReðA3Þ ¼ 0; ImðA5Þ ¼ 0: ðB27Þ
This does not help fully because we are still left with three
Ai’s. We must be able to show that we are left with only two

Ai’s. For this, we turn to time-reversal transformation to
check if it poses any additional constraint on the Ai’s.
Recall that time reversal leads to

A�
1 ¼ A1; A�

3 ¼ A3; A�
5 ¼ A5: ðB28Þ

Then these constraints on these Ai’s at z ¼ 0 lead to

ImðA1Þ ¼ 0; ImðA3Þ ¼ 0; ImðA5Þ ¼ 0: ðB29Þ

Combining Eqs. (B27) and (B29) we conclude

ReðA3Þ ¼ 0; ImðA3Þ ¼ 0

∴A3 ¼ 0: ðB30Þ

Therefore Eqs. (B27) and (B29) tell us that the only
contribution at z ¼ 0 comes from

ReðA1Þ ≠ 0; ReðA5Þ ≠ 0: ðB31Þ

Hence our decomposition is consistent with the local vector
current.

APPENDIX C: EUCLIDEAN-SPACE EXPRESSIONS FOR THE TRACES FOR ANY SKEWNESS

Here we provide the general expressions for the traces for any frame and for any skewness.

1. F0 with unpolarized projector

Π0ðΓ0Þ ¼
−iK
4m3

P0ð−pi ·pf þm2 − imðEi þEfÞÞA1 −
iK
4m3

Δ0ð−pi ·pf þm2 − imðEi þEfÞÞA3

−
iK
4m3

ðm2ðm− iEfÞpi · z−m2ðm− iEiÞpf · zÞA4 −
iK
4m3

ððm− iEfÞpi ·Δ− ðm− iEiÞpf ·ΔþΔ0mðEf −EiÞÞA5

−
K
4m3

P0ðiðpf ·ΔÞðpi · zÞ− iðpi ·ΔÞðpf · zÞ þΔ0mððpf · zÞ−pi · zÞÞA6

−
K
4m3

Δ0ðiðpf ·ΔÞðpi · zÞ− iðpi ·ΔÞðpf · zÞ þΔ0mððpf · zÞ−pi · zÞÞA8; ðC1Þ

where the kinematic factor K is defined as

K ¼ 2M2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EfEiðEf þMÞðEi þMÞp : ðC2Þ

2. F0 with polarized projector

Π0ðΓjÞ ¼
iK
4m3

P0ϵjpfpi0
A1 þ

iK
4m3

Δ0ϵjpfpi0
A3 þ

iK
4m3

ðm2ðm − 2iEfÞϵjpiz0 þm3ϵjpfz0 þm2iϵjpfpizÞA4

þ iK
4m3

ððm − 2iEfÞϵjpiΔ0 þmϵjpfΔ0 þ iϵjpfpiΔ − iΔ0ϵjpfpi0
ÞA5

−
K
4m3

iP0ðm2ϵjzΔ0 þ ð−Ef − imÞϵjpizΔ − imϵjpfzΔ − pj;fϵpizΔ þ ðpi · zÞϵjpfΔ0 − ðpi · ΔÞϵjpfz0ÞA6

−
K
4m3

iΔ0ðm2ϵjzΔ0 þ ð−Ef − imÞϵjpizΔ − imϵjpfzΔ − pj;fϵpizΔ þ ðpi · zÞϵjpfΔ0 − ðpi · ΔÞϵjpfz0ÞA8; ðC3Þ

where ϵabcd is a four-dimensional Levi-Civita tensor.
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3. Fi with unpolarized projector

ΠiðΓ0Þ ¼
K
4m3

Pið−pi · pf þm2 − imðEi þ EfÞÞA1 þ
K
4m3

Δið−pi · pf þm2 − imðEi þ EfÞÞA3

þ K
4m3

ðm2ipi;iðpf · zÞ −m2ipi;fðpi · zÞÞA4 þ
K
4m3

ðipi;iðpf · Δþ iΔ0mÞ þ pi;fð−ipi · Δþ Δ0mÞÞA5

−
iK
4m3

Piðiðpf · ΔÞðpi · zÞ − iðpi · ΔÞðpf · zÞ þ Δ0mððpi · zÞ − ðpf · zÞÞÞA6

−
K
4m3

Δiðiðpf · ΔÞðpi · zÞ − iðpi · ΔÞðpf · zÞ þ Δ0mððpi · zÞ − ðpf · zÞÞÞA8: ðC4Þ

4. Fi with polarized projector

ΠiðΓjÞ ¼ −
K
4m3

Piϵjpfpi0
A1 −

K
4m3

Δiϵjpfpi0
A3

−
iK
4m3

ðm4ϵijz0 þm2ðEf þ imÞϵijpiz þ im3ϵijpfz −m2pi;iϵjpfz0 −m2pj;fϵipiz0 þm2ðpi · zÞϵijpf0
ÞA4

−
iK
4m3

ðm2ϵijΔ0 þ ðEf þ imÞϵijpiΔ þ imϵijpfΔ − pi;iϵjpfΔ0 − pj;fϵipiΔ0 þ ðpi · ΔÞϵijpf0
ÞA5

þ K
4m3

Piðm2ϵjzΔ0 þ ð−Ef − imÞϵjpizΔ − imϵjpfzΔ − pj;fϵpizΔ þ ðpi · zÞϵjpfΔ0 − ðpi · ΔÞϵjpfz0ÞA6

þ K
4m3

iΔiðm2ϵjzΔ0 þ ð−Ef − imÞϵjpizΔ − imϵjpfzΔ − pj;fϵpizΔ þ ðpi · zÞϵjpfΔ0 − ðpi · ΔÞϵjpfz0ÞA8: ðC5Þ

5. F3 with unpolarized projector

Π3ðΓ0Þ ¼
K
4m3

P3ð−pi · pf þm2 − imðEi þ EfÞÞA1 þ
K
4m3

z3ð−m2pi · pf þm4 − im3ðEi þ EfÞÞA2

þ K
4m3

Δ3ð−pi · pf þm2 − imðEi þ EfÞÞA3 þ
K
4m3

ðip3;iðpf · Δþ iΔ0mÞ þ p3;fð−ipi · Δþ Δ0mÞÞA5

−
iK
4m3

P3ðiðpf · ΔÞðpi · zÞ − iðpi · ΔÞðpf · zÞ þ Δ0mððpi · zÞ − ðpf · zÞÞÞA6

−
iK
4m3

z3ðm2iðpf · ΔÞðpi · zÞ −m2iðpi · ΔÞðpf · zÞ þ Δ0m3ððpi · zÞ − ðpf · zÞÞÞA7

−
iK
4m3

Δ3ðiðpf · ΔÞðpi · zÞ − iðpi · ΔÞðpf · zÞ þ Δ0mððpi · zÞ − ðpf · zÞÞÞA8: ðC6Þ

6. F3 with polarized projector

Π3ðΓjÞ ¼ −
K
4m3

P3ϵjpfpi0
A1 −

K
4m3

m2z3ϵjpfpi0
A2 −

K
4m3

Δ3ϵjpfpi0
A3

−
iK
4m3

ðm2ϵ3jΔ0 þ ðEf þ imÞϵ3jpiΔ þmϵ3jpfΔ − p3;iϵjpfΔ0 − pj;fϵ3piΔ0 þ ðpi · ΔÞϵ3jpf0
ÞA5

−
K
4m3

iP3ðm2ϵjzΔ0 þ ð−Ef − imÞϵjpizΔ − imϵjpfzΔ − pj;fϵpizΔ þ ðpi · zÞϵjpfΔ0 − ðpi · ΔÞϵjpfz0ÞA6

−
K
4m3

iz3ðm4ϵjzΔ0 þm2ð−Ef − imÞϵjpizΔ − im3ϵjpfzΔ −m2pj;fϵpizΔ þm2ðpi · zÞϵjpfΔ0 −m2ðpi · ΔÞϵjpfz0ÞA7

−
K
4m3

iΔ3ðm2ϵjzΔ0 þ ð−Ef − imÞϵjpizΔ − imϵjpfzΔ − pj;fϵpizΔ þ ðpi · zÞϵjpfΔ0 − ðpi · ΔÞϵjpfz0ÞA8: ðC7Þ
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