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Gravitational form factors

1. Introduction

The matrix elements of the energy momentum tensor (EMT) can be parameterized in terms of the gravitational form factors (GFFs) [1,
2]. These encode fundamental information about a system, such as the distributions of energy, momentum, angular momentum and
internal forces. The GFFs are therefore of particular interest for hadrons [3-10], where they have been studied in models, lattice QCD and
through experimental measurements; see, for instance, Refs. [11-20].

Form factors are also important for understanding elementary particles such as the electron. The best known example is the Pauli form
factor of the electron, since its value at vanishing momentum transfer (¢t = 0) gives the anomalous magnetic moment [21]. In the present
work, we concentrate on the GFFs of the electron as calculated at one loop in quantum electrodynamics (QED). Partial results can already
be found in the literature. The pioneering one-loop QED calculations of the GFFs have been reported long ago [22,23]. In contrast to those
works, we decompose the GFFs into contributions from the electron and photon parts of the EMT. Furthermore, we also calculate the form
factor appearing in the antisymmetric part of the EMT. The present study can be considered an extension of our previous work [24] on
the electron’s GFF D(t), which encodes information about the internal forces of a system [5,8]. Other related studies deal with the QED
spin structure [25-29] and mass structure [30] of the electron. We also point out that recently the GFFs of the photon were computed
at one loop in QED, for both the electron and the photon contributions to the EMT [31]. Generally, throughout the present work we will
refer to, and compare with, previous papers whenever applicable.

The total EMT is ultraviolet finite, but renormalization is required when decomposing the GFFs into contributions from the electron and
photon fields. We present results in the MS scheme only, being aware that also other renormalization schemes for the EMT are available;
see, for instance, Refs. [30,32]. In order to deal with infrared divergences we use dimensional regularization (DR) as well as photon-mass
regularization. In fact, we discuss how the results in one regularization scheme can be transcribed into the other scheme. At t =0 the form
factor D(t) diverges, as was already pointed out previously [24,33,34]. Similarly, we find that derivatives of (other) GFFs at t =0 diverge
as well. Those divergences are a consequence of the infinite range of the electromagnetic interaction. This situation has implications for
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different radii of the electron which, in principle, could be defined using the GFFs. For instance, what is normally identified as the mass
radius of a particle becomes infinite in the case of the electron.

The paper is organized as follows: In Sec. 2 we introduce our main definitions. Our one-loop analytical results for the GFFs can be
found in Sec. 3, while we use those results to discuss the energy/mass structure and angular momentum structure of the electron in
Sec. 4. In that section, we also address radii of the electron based on the GFFs with a special focus on the electron’s mass radius. In Sec. 5
we summarize the main findings.

2. Definitions
The EMT is a local operator related to spacetime translation symmetry. The application of Noether’s first theorem to global spacetime

translations results in the so-called canonical EMT as the associated conserved current, which is in general neither gauge invariant nor
symmetric. This is the case in QED, where the symmetry properties of the Lagrange density give the following (conserved) canonical EMT:
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This operator can be made gauge-invariant following the Belinfante-Rosenfeld procedure [35-37] of adding a divergence term according
to

THY = T&n, + 8, P, (2)
where the so-called superpotential reads
PPHY = FHPAY, (3)

Note that the superpotential can be interpreted as the spin operator for the photon field, which is well known to be not gauge-invariant.
As a result, we obtain

TR =T + T8V, with (4)
B Y
- iD
T =yt T = PR, (5)

where we neglected the contributions from the equation of motions (EOMs) and the gauge-fixing term, which vanish when evaluated in
matrix elements for physical states. We note that the EMT T)’f " in the gauge sector is now symmetric, while the electron contribution
T!*Y has still a (gauge-invariant) antisymmetric part, associated with the electron spin contribution. We stress that no gauge-invariant
definition of a photon spin contribution is possible; such a term would need to be the divergence of a superpotential 3, A°*” with three
Lorentz indices, which cannot be constructed using only the field strength tensor F,. In the nomenclature of Ref. [38], T*" is called the
gauge-invariant kinetic EMT.

In this work we focus on the matrix elements of the EMT between single-electron states, while we refer to [22,31,39] for the results
between single-photon states. We use the parametrization [1,2,4]
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where p’ =P + %, p=P— %, i=e,y, and u(p,s) is the electron spinor with u(p, s)u(p, s) = 2m. We also used shorthand notations for
symmetrization (a/*b"} = a*b¥ + a'b*) and antisymmetrization (a/#b"! = a*b” — a”b") of indices, as well as a® = a*A,. In Eq. (6) the
functions A;, B;, Dj, C;, C;, known as the gravitational form factors (GFFs), are functions of the invariant t = A2 and the renormalization
scale . Due to conservation of the EMT, the sum of the electron and photon contributions to any GFF is renormalization-scale invariant,
and C(t) = > Ci(t, u) = 0. The conservation of the EMT also leads to the constraints

Ae(ov M)+Ay(0a//«) = l’ (7)
1 1
Xij 5 (410, 1) + Bi(0. 1)) = Z Jiw =3, (8)

which, respectively, express the conservation of momentum and of the total angular momentum J = J.(u) + Jy (u). (Note that %(A(t) +
B(t)) is also called the angular-momentum form factor; see, for instance, Ref. [5].) The relations (7) and (8) readily imply

Be(0, ) + By (0, ) =0, 9)

which is often referred to as the vanishing of the anomalous gravitomagnetic moment [2,4,25,40-43]. The form factors D; (and C;), which
may be related to pressure and shear distributions [5,8], can in principle take on any values for t = 0. The same applies for the form factor
C, which is associated with the antisymmetric part of the EMT and therefore has a vanishing photon contribution. Using the QED equation
of motion, one finds that C is equivalent to the axial form factor [7,38], that is,

C(t, ) = Ce(t, ) = Ga(t, ). (10)
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Fig. 1. Relevant diagrams for insertion of the EMT operator in the e — e amplitude at one-loop. The black dot represents the EMT insertion, the white crossed dot represents
the EMT insertion accompanied by the wave function renormalization for the electron.

The renormalization of the EMT is well understood in the literature; see, for instance, Ref. [30] for QED and Refs. [32,44,45] in the case
of QCD. All the counterterms relevant for our one-loop calculation in the MS scheme can be found in Ref. [30]. The antisymmetric part of
the EMT does not require any additional renormalization (beyond the renormalization of the parameters of the Lagrange density). Since
there is no other rank-2 tensor operator with the appropriate mass dimensions, there can be no mixing between the antisymmetric part
of the EMT with any other operator. In principle the antisymmetric part of the EMT could require a multiplicative renormalization, but
this is not the case in QED at one-loop order. Instead of renormalizing the full EMT right away, one may exploit the fact that the total EMT
can be decomposed into a trace and traceless part, both of which are separately scale-invariant. One can then further decompose those
two terms into electron and photon contributions and renormalize them. We have gone through this procedure as well, finding complete
agreement for the results of all the GFFs.

3. Results for the gravitational form factors

The aim of this section is to present the QED results of one-loop calculation for the GFFs. The relevant diagrams are shown in Fig. 1.
The total electron contribution does not depend on the subtraction scheme used for the Lagrangian counterterms. Therefore we chose to
work in the on-shell scheme, in which there is no contribution when the loop is confined to a single electron leg. Moreover, the individual
diagrams for the electron contribution are not gauge invariant. We will present only their sum, for which gauge invariance is restored.

In our one-loop calculation only the form factors A; and C; exhibit ultraviolet (UV) divergences, which are removed by operator renor-
malization. At finite momentum transfer, the form factors A, and C. also show a (standard) infrared (IR) divergence. The IR divergences
are expected to be canceled in physical cross sections by similar IR divergences from soft final-state radiation. In order to regulate them
we use both DR and photon-mass regularization. To present the results in DR we introduce L, = log(/i%/m?), where fi2 = p?4mwe7t,
with the DR scale @ and the Euler constant yg.

The results for the GFFs are obtained by inserting the EMT operator into a Green’s function via the LSZ reduction theorem. After
isolating the various independent structures, we obtain
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In the above results we used DR to regulate the IR divergences present in A, and C.. The corresponding results with a nonzero photon-
mass regulator (m, ) are obtained by the replacement

—1 +L,— 1 g —2 23
(0) .
€ m2 ( )

When summing the electron and photon contributions of the GFFs A, B and D, we recover the results that were already presented in
Refs. [22,23]. More precisely, for the full t-dependence of those form factors we found agreement in a careful numerical comparison, while
we found exact analytic agreement for the small and large t limits (to be discussed below) and for the IR divergent part present in the
GFF A. The results for D; and C; were already discussed in Ref. [24], though the exact analytic forms for D; presented here are new.
Interestingly, the GFFs C; are constant. To the best of our knowledge, the GFF C has not been computed before.

The log(u?/m?) term in the A; and C; is a leftover of operator renormalization and cancels when summing the respective electron
and photon contributions. We also point out that the IR divergence cancels in the linear combination (A, + Be — C¢)/2, which can be
considered the form factor associated with the so-called kinetic orbital angular momentum (OAM) Lé‘i“ appearing in the spin sum rule
by Ji [4]. The form factor D(t) diverges at t = 0, with the divergence arising from the photon contribution Dy, (t). This divergence was
discussed previously [24,33,34] and is a consequence of the infinite range of the electromagnetic interaction.

It is interesting to isolate the behavior of the GFFs both in the limit of vanishing momentum transfer and of large momentum transfer.
We find in the small-t limit

o AV 1 2
Ae(®) =1~ (17+1210g >+ o [27+12 (E +LM>]n+O(n ). (24)
Be(t) = 2 — 2% 4 007 (25)
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Note that our results for the A; and B; are compatible with the constraints in Eq. (7) and Eq. (9), respectively. Furthermore, we agree with
the result for the gravitomagnetic moment B, (0, ) = —B, (0, u) = /37 reported previously [25]. In the large-t limit, the GFFs behave
as

__ Y2
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Notice that the n-dependence of the IR pole in A, and C, is always suppressed compared to the leading behavior of the form factors. For
the D; such expansions were already given in Ref. [24]. We repeat that, after summing over the electron and photon contributions, we
find agreement with the expansions of the GFFs A, B, and D presented in Refs. [22,23]. We note that these are strictly perturbative results
and agree with the perturbative QCD results for a quark target (modulo a color factor). In Refs. [46-48], gravitational form factors have
been calculated in perturbative QCD for hadrons at large momentum transfer. However, for a bound state, the large-t behavior is generally
different from pointlike particles.

4. Quantities of special interest

The GFFs contain a wealth of information about a system. Here we will briefly discuss the resulting energy/mass structure and angular
momentum structure of the electron in QED, as well as different electron radii. We note that mechanical properties of the electron, which
follow from the GFFs D; and C; [5,8], were already discussed previously [24].

The expectation value of T% for a physical state furnishes an energy density at fixed instant-form time. Integrating this over all
space gives the total energy, which for a zero-momentum plane wave state is equal to the mass. Accordingly, EMT matrix elements at
P =(m;0,0,0) and A =0 provide a mass decomposition [3], which is fully determined by A;(0, i) and C;(0, ). The aforementioned
constraints on those GFFs then imply that two numbers only fix the EMT of a spin—% particle in the forward limit [4,49]. Different
mass sum rules have been proposed in the literature; see, for instance, Refs. [3,30,32,44,45,49-52]. Here we refrain from listing the
corresponding one-loop QED results for the electron. We just mention that the one-loop MS-results for a 3-term mass sum rule were
already provided in [30], while expressions for any other mass sum rule can be readily obtained from our results for the A;(0, ) and
Gi(0, w).

We now turn our attention to the angular momentum structure of the electron; see also Refs. [25-29]. For the electron and photon
contributions to the total angular momentum (spin) of the (physical) electron we find

1 «a (11 2 a (11 u?
=—— —| — lO — |, =\ = 10 o R 38
Je) =5 — o (12+ gm2> Ty =5 <]2+ g (38)
which agrees with the expressions obtained in Ref. [29] (after applying MS-subtraction to the results of that paper). The form factor Ce
provides the electron spin contribution to the total angular momentum of the (physical) electron according to

1 1 o
Se=5Ce@ =15 (1+5-). 39
e=5CO =5 (1+ 5 (39)
which again agrees with the result reported in [29]. Note that the one-loop expression of C. is scale-invariant. Hence one obtains the
electron contribution to the kinetic OAM [4] as

- a (5 2
Lle(m(ﬂ)z_,e(,u)_sez_g <§+10g%>- (40)
As shown in Ref. [29], this result coincides with the canonical OAM of the Jaffe-Manohar (JM) sum rule [53] at order O(«). The difference
between the JM and kinetic OAM is known as potential angular momentum [54]. From the calculations of the EMT, the potential angular
momentum can be derived from diagrams (C) and (D) in Fig. 1. These diagrams give a contribution to the form factor J. that is canceled
by an identical contribution to S., making the final contribution to the OAM in Eq. (40) equal to zero. We therefore confirm the result of
Ref. [29] that the potential angular momentum of the electron is vanishing at one-loop order.

The results for the GFFs, a priori, also allow one to compute radii of a particle. Of particular interest is the mass radius, which is related
to the form factor of T and can be calculated according to

) _[¢dA0 300
<r>m—[6 - 2m2]t=0, (41)

(see, for instance, Refs. [55,56]). The mass radius of the electron is ill-defined; the small-t behavior of both A’(t) and D(t) is singular
at t = 0—as can be verified from Eqs. (28) and (30)—and the singularities do not cancel. (The aforementioned divergence in D(0) also
prevents one from defining a meaningful mechanical radius of the electron [24].) Furthermore, there is no linear combination of A’(t)
and D(t) that is finite at t = 0, since both functions exhibit both 1/4/—t and log(|t|) behavior at small ¢ that cannot be simultaneously
canceled, making it impossible to define an alternative mass radius which is finite. Additionally, the result for A, (see Eq. (24)) implies
that also a “standard” IR divergence is present in the mass radius. All of these same complications arise when trying to define a radius
through the form factors associated with the trace of the EMT or the kinetic OAM. The radius of the (spin) form factor C is not plagued
by the singularity at t = 0, but still suffers from an IR divergence. In passing we repeat that the peculiar singular behavior at t = 0 results
from the infinite range of the electromagnetic interaction. In principle, such (infinite) contributions could also be present for charged
hadrons in quantities like the mass radius. (A related discussion in the case of D(0) can be found in Refs. [24,34].)

5. Summary

We have presented a complete calculation of the separate electron and photon contributions to the GFFs of the electron at one-loop
accuracy in QED, thus going beyond the pioneering papers [22,23] in which the full GFFs were presented. To the best of our knowledge,
we calculated the form factor associated with the antisymmetric part of the EMT for the first time. At one loop, some of the GFFs exhibit
UV divergences which we addressed using operator renormalization in the MS scheme. We regulated IR divergences by employing both
dimensional regularization and photon-mass regularization. Among other things, the GFFs contain information on the electron’s mass
structure, angular momentum structure, and mass radius. We confirmed the interesting result that, at one loop in QED, the electron
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kinetic OAM and the canonical OAM are identical [29]. Furthermore, we find that a meaningful mass radius for the electron cannot be
defined. One obstacle is a (standard) IR divergence, but more importantly, the infinite range of the electromagnetic interaction gives rise
to irremovable singularities at t = 0. We close by repeating that the one-loop results for the GFFs of the electron are fundamental QED
results.
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