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We calculate the gravitational form factors of the electron at one loop in quantum electrodynamics, 
decomposing these into contributions from the electron and photon parts of the energy momentum 
tensor. Ultraviolet divergences are removed through renormalization in the MS scheme. Infrared 
divergences are isolated and results are given in both dimensional regularization and photon-mass 
regularization. The form factors contain information about the electron’s energy and angular momentum 
structure in QED, as well as its mass radius. Whenever possible, we compare our results with the existing 
literature.
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1. Introduction

The matrix elements of the energy momentum tensor (EMT) can be parameterized in terms of the gravitational form factors (GFFs) [1,
2]. These encode fundamental information about a system, such as the distributions of energy, momentum, angular momentum and 
internal forces. The GFFs are therefore of particular interest for hadrons [3–10], where they have been studied in models, lattice QCD and 
through experimental measurements; see, for instance, Refs. [11–20].

Form factors are also important for understanding elementary particles such as the electron. The best known example is the Pauli form 
factor of the electron, since its value at vanishing momentum transfer (t = 0) gives the anomalous magnetic moment [21]. In the present 
work, we concentrate on the GFFs of the electron as calculated at one loop in quantum electrodynamics (QED). Partial results can already 
be found in the literature. The pioneering one-loop QED calculations of the GFFs have been reported long ago [22,23]. In contrast to those 
works, we decompose the GFFs into contributions from the electron and photon parts of the EMT. Furthermore, we also calculate the form 
factor appearing in the antisymmetric part of the EMT. The present study can be considered an extension of our previous work [24] on 
the electron’s GFF D(t), which encodes information about the internal forces of a system [5,8]. Other related studies deal with the QED 
spin structure [25–29] and mass structure [30] of the electron. We also point out that recently the GFFs of the photon were computed 
at one loop in QED, for both the electron and the photon contributions to the EMT [31]. Generally, throughout the present work we will 
refer to, and compare with, previous papers whenever applicable.

The total EMT is ultraviolet finite, but renormalization is required when decomposing the GFFs into contributions from the electron and 
photon fields. We present results in the MS scheme only, being aware that also other renormalization schemes for the EMT are available; 
see, for instance, Refs. [30,32]. In order to deal with infrared divergences we use dimensional regularization (DR) as well as photon-mass 
regularization. In fact, we discuss how the results in one regularization scheme can be transcribed into the other scheme. At t = 0 the form 
factor D(t) diverges, as was already pointed out previously [24,33,34]. Similarly, we find that derivatives of (other) GFFs at t = 0 diverge 
as well. Those divergences are a consequence of the infinite range of the electromagnetic interaction. This situation has implications for 
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different radii of the electron which, in principle, could be defined using the GFFs. For instance, what is normally identified as the mass 
radius of a particle becomes infinite in the case of the electron.

The paper is organized as follows: In Sec. 2 we introduce our main definitions. Our one-loop analytical results for the GFFs can be 
found in Sec. 3, while we use those results to discuss the energy/mass structure and angular momentum structure of the electron in 
Sec. 4. In that section, we also address radii of the electron based on the GFFs with a special focus on the electron’s mass radius. In Sec. 5
we summarize the main findings.

2. Definitions

The EMT is a local operator related to spacetime translation symmetry. The application of Noether’s first theorem to global spacetime 
translations results in the so-called canonical EMT as the associated conserved current, which is in general neither gauge invariant nor 
symmetric. This is the case in QED, where the symmetry properties of the Lagrange density give the following (conserved) canonical EMT:

Tμν
can. = ψ̄γ μ i

↔
∂ ν

2
ψ − Fμα F ν

α + gμν

4
F 2 − Fμρ∂ρ Aν . (1)

This operator can be made gauge-invariant following the Belinfante-Rosenfeld procedure [35–37] of adding a divergence term according 
to

Tμν = Tμν
can. + ∂ρ�ρμν, (2)

where the so-called superpotential reads

�ρμν = Fμρ Aν . (3)

Note that the superpotential can be interpreted as the spin operator for the photon field, which is well known to be not gauge-invariant. 
As a result, we obtain

Tμν = Tμν
e + Tμν

γ , with (4)

Tμν
e = ψ̄γ μ i

↔
D ν

2
ψ, Tμν

γ = −Fμα F ν
α + gμν

4
F 2, (5)

where we neglected the contributions from the equation of motions (EOMs) and the gauge-fixing term, which vanish when evaluated in 
matrix elements for physical states. We note that the EMT Tμν

γ in the gauge sector is now symmetric, while the electron contribution 
Tμν
e has still a (gauge-invariant) antisymmetric part, associated with the electron spin contribution. We stress that no gauge-invariant 

definition of a photon spin contribution is possible; such a term would need to be the divergence of a superpotential ∂ρ	ρμν with three 
Lorentz indices, which cannot be constructed using only the field strength tensor Fμν . In the nomenclature of Ref. [38], Tμν is called the 
gauge-invariant kinetic EMT.

In this work we focus on the matrix elements of the EMT between single-electron states, while we refer to [22,31,39] for the results 
between single-photon states. We use the parametrization [1,2,4]

〈p′, s′|Tμν
i |p, s〉 = ū(p′, s′)

(
Ai

PμPν

m
+ (Ai + Bi)

i P {μσν}�

4m
+ Ci

γ [μPν]

2
+ Di

�μ�ν − gμν�2

4m
+ C̄imgμν

)
u(p, s), (6)

where p′ = P + �
2 , p = P − �

2 , i = e, γ , and u(p, s) is the electron spinor with ū(p, s)u(p, s) = 2m. We also used shorthand notations for 
symmetrization (a{μbν} = aμbν + aνbμ) and antisymmetrization (a[μbν] = aμbν − aνbμ) of indices, as well as a� = aμ�μ . In Eq. (6) the 
functions Ai, Bi, Di, Ci, C̄i , known as the gravitational form factors (GFFs), are functions of the invariant t = �2 and the renormalization 
scale μ. Due to conservation of the EMT, the sum of the electron and photon contributions to any GFF is renormalization-scale invariant, 
and C̄(t) = ∑

i C̄ i(t, μ) = 0. The conservation of the EMT also leads to the constraints

Ae(0,μ) + Aγ (0,μ) = 1, (7)∑
i

1

2

(
Ai(0,μ) + Bi(0,μ)

) =
∑
i

J i(μ) = 1

2
, (8)

which, respectively, express the conservation of momentum and of the total angular momentum J = Je(μ) + Jγ (μ). (Note that 12
(
A(t) +

B(t)
)
is also called the angular-momentum form factor; see, for instance, Ref. [5].) The relations (7) and (8) readily imply

Be(0,μ) + Bγ (0,μ) = 0, (9)

which is often referred to as the vanishing of the anomalous gravitomagnetic moment [2,4,25,40–43]. The form factors Di (and C̄i ), which 
may be related to pressure and shear distributions [5,8], can in principle take on any values for t = 0. The same applies for the form factor 
C , which is associated with the antisymmetric part of the EMT and therefore has a vanishing photon contribution. Using the QED equation 
of motion, one finds that C is equivalent to the axial form factor [7,38], that is,

C(t,μ) = Ce(t,μ) = GA(t,μ). (10)
2
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Fig. 1. Relevant diagrams for insertion of the EMT operator in the e → e amplitude at one-loop. The black dot represents the EMT insertion, the white crossed dot represents 
the EMT insertion accompanied by the wave function renormalization for the electron.

The renormalization of the EMT is well understood in the literature; see, for instance, Ref. [30] for QED and Refs. [32,44,45] in the case 
of QCD. All the counterterms relevant for our one-loop calculation in the MS scheme can be found in Ref. [30]. The antisymmetric part of 
the EMT does not require any additional renormalization (beyond the renormalization of the parameters of the Lagrange density). Since 
there is no other rank-2 tensor operator with the appropriate mass dimensions, there can be no mixing between the antisymmetric part 
of the EMT with any other operator. In principle the antisymmetric part of the EMT could require a multiplicative renormalization, but 
this is not the case in QED at one-loop order. Instead of renormalizing the full EMT right away, one may exploit the fact that the total EMT 
can be decomposed into a trace and traceless part, both of which are separately scale-invariant. One can then further decompose those 
two terms into electron and photon contributions and renormalize them. We have gone through this procedure as well, finding complete 
agreement for the results of all the GFFs.

3. Results for the gravitational form factors

The aim of this section is to present the QED results of one-loop calculation for the GFFs. The relevant diagrams are shown in Fig. 1. 
The total electron contribution does not depend on the subtraction scheme used for the Lagrangian counterterms. Therefore we chose to 
work in the on-shell scheme, in which there is no contribution when the loop is confined to a single electron leg. Moreover, the individual 
diagrams for the electron contribution are not gauge invariant. We will present only their sum, for which gauge invariance is restored.

In our one-loop calculation only the form factors Ai and C̄i exhibit ultraviolet (UV) divergences, which are removed by operator renor-
malization. At finite momentum transfer, the form factors Ae and Ce also show a (standard) infrared (IR) divergence. The IR divergences 
are expected to be canceled in physical cross sections by similar IR divergences from soft final-state radiation. In order to regulate them 
we use both DR and photon-mass regularization. To present the results in DR we introduce Lμ = log(μ̄2/m2), where μ̄2 = μ24πe−γE , 
with the DR scale μ and the Euler constant γE .

The results for the GFFs are obtained by inserting the EMT operator into a Green’s function via the LSZ reduction theorem. After 
isolating the various independent structures, we obtain

Ae = 1− 2α

3π
log

μ2

m2
+ α

4π

(
1

ε
+ Lμ

)[(
ν + 1

ν

)
log

(
1+ ν

1− ν

)
− 2

]
+ α

8πν

(
1+ ν2

){
2Li2

(
1+ ν

2

)
− 2Li2

(
1− ν

2

)

+ log

(
4ν

1− ν

)
log(ν(1 − ν)) − log

(
4ν

1+ ν

)
log(ν(1 + ν)) + 1

3

16ν2 + 18

1+ ν2
log

(
1+ ν

1− ν

)
− 176ν

9(1+ ν2)

}
, (11)

Be = α

6πν

(
1− ν2

)
log

(
1 + ν

1 − ν

)
, (12)

Ce = 1+ α

4π

(
1

ε
+ Lμ

)[(
ν + 1

ν

)
log

(
1+ ν

1− ν

)
− 2

]
+ α

8πν

(
1+ ν2

){
2Li2

(
1+ ν

2

)
− 2Li2

(
1 − ν

2

)

+ log

(
4ν

1− ν

)
log(ν(1 − ν)) − log

(
4ν

1+ ν

)
log(ν(1 + ν)) + 2

1+ 2ν2

1+ ν2
log

(
1+ ν

1− ν

)}
, (13)

De = 5α

12π

(
1− ν2

)
ν3

(
2ν − log

(
1+ ν

1− ν

))
, (14)

C̄e = α

6π
log

μ2

m2
− α

18π
, (15)

Aγ = 2α

3π
log

μ2

m2
+ α

12π

{
34

3
− 10ν2(1 − ν2) −

(
15ν4 − 22ν2 + 15

)
ν2 log (4η) − 3ν(1 − ν2)

(
5ν4 − 4ν2 + 3

)
F(ν)

}
, (16)

Bγ = α

12π
(1− ν2)

{
10ν2 + 3ν

(
5ν4 − 6ν2 + 1

)
F(ν) −

(
15ν2 − 13

)
ν2 log (4η) − 4

}
, (17)

Cγ = 0, (18)

Dγ = α

12πν
(1− ν2)3

{
2ν(

1− ν2
)2 + ν

(
5− 3ν2

)
log (4η)(

1− ν2
)2 + 3F(ν)

}
, (19)
3
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C̄γ = − α

6π
log

μ2

m2
+ α

18π
, (20)

where we defined

η = −t

4m2
, ν =

√
η

1+ η
(21)

and

F(ν) = π2

3
+ 1

4
log2

(
1− ν

1+ ν

)
+ Li2

(
1− ν

1+ ν

)
, with Li2 (z) = −

z∫
0

dt
log(1− t)

t
. (22)

In the above results we used DR to regulate the IR divergences present in Ae and Ce . The corresponding results with a nonzero photon-
mass regulator (mγ ) are obtained by the replacement

1

ε
+ Lμ → log

m2
γ

m2
. (23)

When summing the electron and photon contributions of the GFFs A, B and D , we recover the results that were already presented in 
Refs. [22,23]. More precisely, for the full t-dependence of those form factors we found agreement in a careful numerical comparison, while 
we found exact analytic agreement for the small and large t limits (to be discussed below) and for the IR divergent part present in the 
GFF A. The results for Di and C̄i were already discussed in Ref. [24], though the exact analytic forms for Di presented here are new. 
Interestingly, the GFFs C̄i are constant. To the best of our knowledge, the GFF C has not been computed before.

The log(μ2/m2) term in the Ai and C̄i is a leftover of operator renormalization and cancels when summing the respective electron 
and photon contributions. We also point out that the IR divergence cancels in the linear combination (Ae + Be − Ce)/2, which can be 
considered the form factor associated with the so-called kinetic orbital angular momentum (OAM) Lkine appearing in the spin sum rule 
by Ji [4]. The form factor D(t) diverges at t = 0, with the divergence arising from the photon contribution Dγ (t). This divergence was 
discussed previously [24,33,34] and is a consequence of the infinite range of the electromagnetic interaction.

It is interesting to isolate the behavior of the GFFs both in the limit of vanishing momentum transfer and of large momentum transfer. 
We find in the small-t limit

Ae(t) = 1− α

18π

(
17+ 12 log

μ2

m2

)
+ α

18π

[
27+ 12

(
1

ε
+ Lμ

)]
η +O(η2), (24)

Be(t) = α

3π
− 2α

9π
η +O(η2), (25)

Ce(t) = 1+ α

2π
+ α

6π

[
5+ 4

(
1

ε
+ Lμ

)]
η +O(η2), (26)

De(t) = − 5α

18π
+ α

9π
η +O(η2), (27)

Aγ (t) = α

18π

(
17+ 12 log

μ2

m2

)
− 3απ

8

√
η + 2α

3π
(1 − 3 log(4η))η +O(η3/2), (28)

Bγ (t) = − α

3π
+ απ

8

√
η + 2α

3π
(1 + 2 log(4η))η +O(η3/2), (29)

Dγ (t) = απ

8
√

η
− α

3π
(1− 2 log(4η)) − 5απ

16

√
η + 2α

9π
(5 − 6 log(4η))η +O(η3/2). (30)

Note that our results for the Ai and Bi are compatible with the constraints in Eq. (7) and Eq. (9), respectively. Furthermore, we agree with 
the result for the gravitomagnetic moment Be(0, μ) = −Bγ (0, μ) = α/3π reported previously [25]. In the large-t limit, the GFFs behave 
as

Ae(t) = − α

4π
log2(η) +O(logη), (31)

Be(t) = α

π

log(4η)

6η
+O

(
logη

η2

)
, (32)

Ce(t) = − α

4π
log2(η) +O(logη), (33)

De(t) = α

π

10− 5 log(4η)

12η
+O

(
logη

η2

)
, (34)

Aγ (t) = − 2α

3π
log(4η) +O(η0), (35)

Bγ (t) = α

π

3− log(4η)

6η
+O

(
logη

η2

)
, (36)

Dγ (t) = α

π

1+ log(4η)

6η
+O

(
logη

η2

)
. (37)
4
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Notice that the η-dependence of the IR pole in Ae and Ce is always suppressed compared to the leading behavior of the form factors. For 
the Di such expansions were already given in Ref. [24]. We repeat that, after summing over the electron and photon contributions, we 
find agreement with the expansions of the GFFs A, B , and D presented in Refs. [22,23]. We note that these are strictly perturbative results 
and agree with the perturbative QCD results for a quark target (modulo a color factor). In Refs. [46–48], gravitational form factors have 
been calculated in perturbative QCD for hadrons at large momentum transfer. However, for a bound state, the large-t behavior is generally 
different from pointlike particles.

4. Quantities of special interest

The GFFs contain a wealth of information about a system. Here we will briefly discuss the resulting energy/mass structure and angular 
momentum structure of the electron in QED, as well as different electron radii. We note that mechanical properties of the electron, which 
follow from the GFFs Di and C̄i [5,8], were already discussed previously [24].

The expectation value of T 00 for a physical state furnishes an energy density at fixed instant-form time. Integrating this over all 
space gives the total energy, which for a zero-momentum plane wave state is equal to the mass. Accordingly, EMT matrix elements at 
P = (m; 0, 0, 0) and � = 0 provide a mass decomposition [3], which is fully determined by Ai(0, μ) and C̄i(0, μ). The aforementioned 
constraints on those GFFs then imply that two numbers only fix the EMT of a spin- 12 particle in the forward limit [4,49]. Different 
mass sum rules have been proposed in the literature; see, for instance, Refs. [3,30,32,44,45,49–52]. Here we refrain from listing the 
corresponding one-loop QED results for the electron. We just mention that the one-loop MS-results for a 3-term mass sum rule were 
already provided in [30], while expressions for any other mass sum rule can be readily obtained from our results for the Ai(0, μ) and 
C̄i(0, μ).

We now turn our attention to the angular momentum structure of the electron; see also Refs. [25–29]. For the electron and photon 
contributions to the total angular momentum (spin) of the (physical) electron we find

Je(μ) = 1

2
− α

3π

(
11

12
+ log

μ2

m2

)
, Jγ (μ) = α

3π

(
11

12
+ log

μ2

m2

)
, (38)

which agrees with the expressions obtained in Ref. [29] (after applying MS-subtraction to the results of that paper). The form factor Ce

provides the electron spin contribution to the total angular momentum of the (physical) electron according to

Se = 1

2
Ce(0) = 1

2

(
1+ α

2π

)
, (39)

which again agrees with the result reported in [29]. Note that the one-loop expression of Ce is scale-invariant. Hence one obtains the 
electron contribution to the kinetic OAM [4] as

Lkine (μ) = Je(μ) − Se = − α

3π

(
5

3
+ log

μ2

m2

)
. (40)

As shown in Ref. [29], this result coincides with the canonical OAM of the Jaffe-Manohar (JM) sum rule [53] at order O(α). The difference 
between the JM and kinetic OAM is known as potential angular momentum [54]. From the calculations of the EMT, the potential angular 
momentum can be derived from diagrams (C) and (D) in Fig. 1. These diagrams give a contribution to the form factor Je that is canceled
by an identical contribution to Se , making the final contribution to the OAM in Eq. (40) equal to zero. We therefore confirm the result of 
Ref. [29] that the potential angular momentum of the electron is vanishing at one-loop order.

The results for the GFFs, a priori, also allow one to compute radii of a particle. Of particular interest is the mass radius, which is related 
to the form factor of T 00 and can be calculated according to

〈r2〉m =
[
6
dA(t)

dt
− 3

2

D(t)

m2

]
t=0

, (41)

(see, for instance, Refs. [55,56]). The mass radius of the electron is ill-defined; the small-t behavior of both A′(t) and D(t) is singular 
at t = 0—as can be verified from Eqs. (28) and (30)—and the singularities do not cancel. (The aforementioned divergence in D(0) also 
prevents one from defining a meaningful mechanical radius of the electron [24].) Furthermore, there is no linear combination of A′(t)
and D(t) that is finite at t = 0, since both functions exhibit both 1/

√−t and log(|t|) behavior at small t that cannot be simultaneously 
canceled, making it impossible to define an alternative mass radius which is finite. Additionally, the result for Ae (see Eq. (24)) implies 
that also a “standard” IR divergence is present in the mass radius. All of these same complications arise when trying to define a radius 
through the form factors associated with the trace of the EMT or the kinetic OAM. The radius of the (spin) form factor C is not plagued 
by the singularity at t = 0, but still suffers from an IR divergence. In passing we repeat that the peculiar singular behavior at t = 0 results 
from the infinite range of the electromagnetic interaction. In principle, such (infinite) contributions could also be present for charged 
hadrons in quantities like the mass radius. (A related discussion in the case of D(0) can be found in Refs. [24,34].)

5. Summary

We have presented a complete calculation of the separate electron and photon contributions to the GFFs of the electron at one-loop 
accuracy in QED, thus going beyond the pioneering papers [22,23] in which the full GFFs were presented. To the best of our knowledge, 
we calculated the form factor associated with the antisymmetric part of the EMT for the first time. At one loop, some of the GFFs exhibit 
UV divergences which we addressed using operator renormalization in the MS scheme. We regulated IR divergences by employing both 
dimensional regularization and photon-mass regularization. Among other things, the GFFs contain information on the electron’s mass 
structure, angular momentum structure, and mass radius. We confirmed the interesting result that, at one loop in QED, the electron 
5
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kinetic OAM and the canonical OAM are identical [29]. Furthermore, we find that a meaningful mass radius for the electron cannot be 
defined. One obstacle is a (standard) IR divergence, but more importantly, the infinite range of the electromagnetic interaction gives rise 
to irremovable singularities at t = 0. We close by repeating that the one-loop results for the GFFs of the electron are fundamental QED 
results.
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