LOCAL LAWS AND RIGIDITY FOR COULOMB GASES AT ANY
TEMPERATURE

SCOTT ARMSTRONG AND SYLVIA SERFATY

ABSTRACT. We study Coulomb gases in any dimension d > 2 and in a broad temperature
regime. We prove local laws on the energy, separation and number of points down to the
microscopic scale. These yield the existence of limiting point processes after extraction
generalizing the Ginibre point process for arbitrary temperature and dimension. The
local laws come together with a quantitative expansion of the free energy with a new
explicit error rate in the case of a uniform background density. These estimates have
explicit temperature dependence, allowing to treat regimes of very large or very small
temperature, and exhibit a new minimal lengthscale for rigidity and screening depending
on the temperature. They apply as well to energy minimizers (formally zero temperature).
The method is based on a bootstrap on scales and reveals the additivity of the energy
modulo surface terms, via the introduction of subadditive and superadditive approximate
energies.
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1. INTRODUCTION

1.1. Statement of the problems. We are interested in the N-point canonical Gibbs
measure for a d-dimensional Coulomb gas (d > 2) at inverse temperature (3, in a confining
potential V', defined by

(1.1) dPys(Xn) = Zl

exp <—5N%—1%N(XN)> dXx,
N,B

where Xy = (z1,...,2x) € (RY)Y and the Hamiltonian Hx(Xy), which represents the
energy of the system in state Xy, is defined by

N
(1.2) Hn(Xy) = % S glwi— )+ NS Vi),
1<iAj<N i=1
where
—log|z| ifd=2,
(13) 8le) = { 4 ifd > 3.

Thus H (X ) is the sum of the pairwise repulsive Coulomb interaction between the particles
and the total potential energy of the particles due to the confining potential V', the intensity
of which is of order N. The normalizing constant Zy s in the definition (1.1), called the
partition function, is given by

(14) Zng = / exXp (—ﬁN%_lHN(XN)> dXN
(RN

We have chosen particular units of measuring the inverse temperature by writing SN il
instead of f. As seen in [LS1], this turns out to be a natural choice due to scaling
considerations as our [ corresponds to the effective inverse temperature governing the
microscopic scale behavior. This choice does not reduce the generality of our results since,
as we will see, our estimates are explicit in their dependence on § and N, which allows to
let 8 depend on N.

This Coulomb gas model, also called a “one-component plasma,” is a standard ensemble
of statistical mechanics which has attracted much attention in the physics literature: see
for instance [Ma, AJ, CDR, SM, Ki, MS] and references therein. Its study in the two-
dimensional case is more developed, thanks in particular to its connection with Random
Matrix Theory (see [Dy, Me, Fo]): when 8 = 2 and V(z) = |z|?, the Py in (1.1) is the
law of the (complex) eigenvalues of the Ginibre ensemble of N x N matrices with normal
Gaussian i.i.d. entries [Gin]. Several additional motivations come from quantum mechanics,
in particular via the plasma analogy for the fractional quantum Hall effect [Gir, STG, La).
For all of these aspects one may consult to [Fo]. The Coulomb case with d = 3, which can
be seen as a toy model for matter, has been studied in [JLM, LiLe, LN]. The theory of
higher-dimensional Coulomb systems is much less well-developed.
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In such Coulomb systems, if £ is not too small and if V' grows fast enough at infinity,
then the empirical measure
N
. 1
BN = N ; Oz,

converges, as N — 00, to a deterministic equilibrium measure py with compact support,
which can be identified as the unique minimizer among probability measures of the quantity

(15) & =5 [, elo—yduladuts) + [ Viaduta).

2 Rd

See for instance [Sel, Chap. 2| for the statement of such a result. As the length scale of
supp py is of order 1 (it is independent of N), we will call this the macroscopic scale, while
the typical interparticle distance is of order N _%, we will call this the microscopic scale, or
microscale. Intermediate length scales will be called mesoscales.

In this paper, we work with a deterministic correction to the equilibrium measure which
we call the thermal equilibrium measure, which is appropriate for all temperatures and
defined as the probability density pp minimizing

1
(1.6) Eo(p) == E(p) + 5/ pulog pu
]Rd
where we set
(1.7) 0:=BNi.

Let us point out that here and in all the paper we use alternatively the notation p both
for the measure and for its density. By contrast with uy, pg is positive and regular in the
whole of R with exponentially decaying tails. In fact the quantity § = 3N q corresponds
to the inverse temperature that governs the macroscopic distribution of the particles. The
precise dependence of iy on 6 is studied in [ASe] where it is shown that when § — oo, then
g converges to uy, with quantitative estimates (see below).

The measure g is well-known to be the limiting density of the point distribution in the
regime in which @ is fixed independently of N and we send N — oo, that is, for § ~ N *3;
see for instance [Ki, MS, CLMP, BodG]|. In this paper we show that puy is also a more
precise description of the distribution of points, compared to the standard equilibrium
measure, even in the case # > 1. This allows us to obtain more precise quantitative results
valid for the full range of # and N and, in particular, in the regime of very small .

One of the important goals in the study of Coulomb systems is to show concentration
around the (thermal) equilibrium measure and estimates on the so-called linear statistics

N
(1.8) [ o b= Ny
RO
for (not necessarily smooth) test functions ¢ which may be supported in microscopic
sized balls. The study of random variables such as (1.8) allows us to quantify the weak
convergence of the empirical measure [ to the deterministic thermal equilibrium measure .
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In particular, we can obtain estimates on the number of points in microscopic balls (local
laws). If the fluctuations of (1.8) are much smaller than for a Poisson point cloud, one
speaks of rigidity or hyperuniformity (see [To).

In this paper, we prove explicit controls on these quantities, which then yield the existence
of limiting point processes along subsequences of properly rescaled configurations. While
we cannot rule out the possibility of several point processes arising as limits of different
subsequences, we are able for the first time to show their existence by controlling the
number of points in microscopic boxes. This also provides solutions to a number of widely
used hierarchies and sum rules on correlation functions, in this important case of Coulomb
interactions (see discussion below the statement of Corollary 1.1).

A second goal of this paper is to give an expansion in N for N > 1 of the free
energy —% log Zn 3, which we will complete in the Neumann jellium case here (note that
the mere existence of an order N term, in other words, a thermodynamic limit, has been
known since [LN]). This opens the way to obtaining in the companion paper [Se3] an
explicit error rate for the free energy expansion in the general case (in which py or pg
are not necessarily constant). This result is crucial to obtain, for the first time in [Se3],
a Central Limit Theorem for the fluctuations of the type (1.8) in dimensions d > 3 (such
a result was obtained in dimension 2 in [L.S2, BBNY2|, but the method requires a more
precise rate to be applicable in higher dimension). The third motivation is to formulate a
local Large Deviations Principle (LDP) with microscopic averages for the limiting point
processes, analogous to results of [LS1, Le2].

Such questions have recently attracted attention in two dimensions [BBNY1, BBNY2,
Le2, RV, AHM, LS2, CHM], and to a much lesser extent in higher dimension: concentration
bounds were given in [RS, CHM, GaZl], free energy expansions in [LS1], and rigidity was
described in [Ch] (in dimension 2) and [GS] (in general dimension) for a “hierarchical”
Coulomb gas model (that is, a version of the model with a simplified interaction which
essentially makes renormalization arguments easier), with estimates for the number variance
in a set and for smooth linear statistics. Of course, much more is known in the well studied
related problem of the one-dimensional log gas or S-ensemble, see [Jo, BEY1, BEY2, Shch,
BorG1, BorG2, SS3, BLS, BL, LLW]. However, as far as we know none of these works
consider the regime of large temperature.

The program we carry out in this paper was already partly accomplished in dimension 2
in [Le2, BBNY1], with local free energy expansions and local laws valid down to mesoscales
(> N~% with a < %, via a bootsrap on the scales. The high-level approach of the proof is
the same in particular as the one of [Le2], however by revisiting it thoroughly we bring in
the following novelties:

e We treat arbitrary dimension d > 2.

e We unveil the importance of the thermal equilibrium measure, even for large 6 and
notice the existence of two effective temperatures, one that governs the macroscopic
distribution of the points (f) and one that governs their microscopic behavior (3).

e The local laws are for the first time valid down to the microscale, giving for the first
time access to the proof of existence of limiting point processes.
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e The local laws are obtained with quantitative bounds in probability (exponential
moments), and not just with high probability as in previous works.

e We obtain estimates with an explicit dependence in 3, as well as N, allowing to
consider very small or very large temperature regimes. These estimates reveal a
new [3-dependent minimal length scale pg down to which the local laws hold. We

prove that for d = 2,3, 4 this lengthscale is ~ N~4 max(1, ﬁ_%) which we believe to
be optimal.

e We give an explicit rate of convergence for the free energy expansion in the constant
background case.

e We introduce new sub- and superadditive energy quantities. It is by using estimates
on their additivity defect, which are obtained by a bootstrap or renormalization-type
argument, that we are able to quantify the convergence rate of the free energy and
prove our main results.

e We revisit the “screening procedure” used in previous papers, turning it into a
truly probabilistic procedure and tuning it in order to get explicit and optimal
quantitative estimates. We optimize the screening lengthscale during the bootstrap
procedure, showing it can be made as small as the minimal lengthscale pg.

1.2. Statement of main results. In all the paper we assume that

(1.9) / exp (—min(1,0)V) < oo,
Rd

and that

(1.10) V+g—+oo as|z| — oo,

which ensures the existence of py and py (see [ASe]).

The local laws are more easily stated at the level of the “blown-up configurations”: for
any (z1,...,xy) we let a} = Niz; and we also let i = pip be the push-forward of iy under
this rescaling, i.e. the measure with density 11} (x) = y9(N"¢z). The local laws are proven in
the “bulk” of py. After a suitable “splitting” that removes the constant leading order term
(see Section 2.1) we are led to computing local laws with respect to a generic background g,
hence our choice of notation here.

In dimension d > 3, we will not use any property of u besides the fact that it is bounded
above and below in a set 3. In dimension d = 2, we will use the same fact and only three
additional ones:

e 1 has sufficiently small tails, in the form of the assumption

(1.11) u(X6) < for some constant C' > 0.

~ log N

We comment after Theorem 2 on what is known in that respect, in particular the
assumption is true if 5 is not too small;
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e 4 satisfies
(1.12) // g(x — y)du(x)du(y) > —CN?log N,
R2xR2

which holds with C' = § as an immediate consequence of the fact that &(up) is finite
and the rescaling;
e 1, satisfies

(1.13) /Ulogzd,u(z) < 00,

which is also true here since since £(uy) < oo implies fRd Vdug < oo which in view
of (1.10) implies it.
Throughout the paper, C' denote a constant which only depend on d, upper and lower
bounds on p and the constants in (1.11)—(1.12) and may vary in each occurrence.

As we will see, the dependence of our estimates in [ for 5 small is a bit different in
dimension 2 than in higher dimensions. This is a manifestation of the fact that the Poisson
point process has (or at least is expected to have) infinite Coulomb energy in dimension 2
(see [Lel] for a discussion). Reflecting this, throughout the paper, we will use the notation

. ifd>3

and emphasize that x(5) = 1 unless d = 2 and 3 is small.

In all our formulas, we will have terms which appear only in dimension d, we denote
them with a 14. The precise meaning of the next-order energy F7#(®) localized in a cube
Og(z) of center x and radius R is alluded to below and defined precisely in Section 2.

Theorem 1 (Local laws). Assume u defined above satisfies 0 < m < pu < A in a set ¥,
and in dimension d = 2 assume also (1.11), (1.12), and (1.13). There exists a constant
C > 0 depending only on d,m, A and in dimension 2 the constants of (1.11) and (1.12),
such that the following holds. There exists pg of the form

(1.15) ps = C'max (1, B72x(B)?, 5ﬁ‘11dz5)

such that if Op(z) is a cube of size R > pg centered at x, with

(1.16)  dist(Og(x), %) > crnuu<(X(ﬁ)pJﬁz,X(ﬁ)ﬁ—l—%p;d,pvéus—%,ﬂ—%ldzg),

we have
(1) (Control of energy)

(1.17)

og e, , (e (5077 ) )| < cpx R
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(2) (Control of fluctuations) Letting D denote fDR(z) (val 0o du) we have

(1.18) log Ep, (eXp (gRZ(ld)pdﬁlDZ))‘ < CBx(B)py
and
2
(1.19) log Ep,, , (exp <2R€ min(1, %))) < CBx(B)R

(3) (Control of linear statistics) If ¢ is a 1-Lipschitz function supported in Og(x), then

2
(1.20) log B, | exp o (/ Za/— ) < OB RV

(4) (Minimal distance control) For any point x; of the blown-up configuration satisfying
the relation (1.16), denoting

r; = min | min |z} — 2| !
1T P 1 -
iAo T4

log Epy , (exp (gg(n)»‘ < CBx(B)py

Comments on the assumptions. The equilibrium measure puy is caracterized by the fact
that there exists a constant ¢ such that g * uy + V' — ¢ is zero in the support of py and
nonnegative outside. In [ASe] it is proven that if (1.9) and (1.10) hold, and if in addition

we have

(1.21)

(1.22) AV > a >0 in a neighborhood of supp uy

and the potential g * py + V — ¢ is bounded below by a positive constant uniformly away
from the support of py, then for z € supp py we have uy () > m > 0. In particular, we
can take X to be the blown-up of supp py and the assumption yy > m > 0 holds in 3. We
note that if V' is more regular [ASe] also provides an explicit expansion of pg — uy of the
form

1 Alog AV
(1.23) i ~ Mv+—0AlogAV+ A( o8

Cd(92 AV

see [ASe| for precise results. It is also proven in [ASe| that under the previous stated
assumptions, we will have

(1.24) pp(X°) <

)—{—... in supp py,

CN

N

hence in dimension 2 the extra assumption (1.11) is verified as soon as
log® N

(R
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In view of (1.23) one may also substitute pu by pf, = uV(N’ﬁfn) in the local laws above
while making only a small error.

If 0 is fixed then the lower bound ), > m > 0 is true on any compact subset of RY. If
6 < 1 then py — 0 pointwise as the measure py spreads to infinity, and one needs to give
a stronger weight to the confining potential to confine the system, effectively making the
interaction weaker and the points more independent, thus this is a situation that needs to
be studied separately (see for instance [RSY] for a discussion of such a “thermal regime” in
a radial situation).

Comments on the results. We note that we can always reduce to m = 1 by scaling in space
and then obtain the explicit dependence on m of all the constants by a rescaling of the
quantities.

An application of Markov’s inequality easily allows to estimate the probability of devia-
tions from these laws. For instance, the probability that the number of points in a cube
deviates by more than o(RY) from N fDR fg is very small, and (1.18) provides a bound on

the variance of the number of points in g by CpsR?@~1. We note that (1.18) is stronger
than even the results of [BBNY1, Le2] in dimension 2. The relation (1.20) can be improved
using more involved techniques if ¢ is assumed to be more regular, this was shown in
dimension 2 in [BBNY1, LS2, BBNY2] and this is the object of [Se3| in higher dimension.

A closely related setup to our Coulomb gas is that of the jellium model (see for instance
[LLS, LewLi] and references therein) which is defined as follows. We are given N = R

points constrained to be in a cube of size R denoted by (g := (—%R, %R)d, neutralized by
a uniform background of unit density, which has a law given by the Gibbs measure

1 .
(1.25) AQu 5(Xx) = - exp (—BH}VI(XN)> dXy,
R,

where

Hjel(XN) = //Rd RAA g(fL’ - y) d(z 59[:@ - 1DR> ("L‘) d(z 6951 - 1DR) (y)7

the set A := {(z,7) : z € RY} denotes the diagonal in RY x R and 1g the indicator of a
set S. This perspective is related to the analysis in the present paper: we consider a variant
of (1.25) with g replaced by the Neumann Green function of the cube Og, the partition
function of which we denote by K((g) (see Theorem 2, below). As a byproduct of our
analysis (we just apply the arguments verbatim with ¢ = 1p,, and replacing Py g by Qn ),
we thereby obtain analogous quantitative local laws and free energy expansions for Qy s as
we do for Py 3.

The minimal lengthscale and the temperature dependence. One of the main difficulties in
handling the possibly large temperature regime is to obtain the factor Sx(3) instead of 1
in the right-hand side of these estimates when [ is small. This is made possible by the use
of the thermal equilibrium measure instead of the usual equilibrium measure.
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The other main difficulty is to get the local laws down to the minimal scale pg of (1.15).
We believe that the lengthscale max(1, 572 x(53)2) is optimal in all dimension (or optimal
up to the logarithmic correction in dimension d = 2). The conjectured scenario is that
the Coulomb gas ressembles a Poisson process for lengthscales smaller than 6_%]\7 ~¢ and
becomes rigid (in the sense that the number of points in cubes become constrained by the
size of the cube) only at lengthscales larger than 5_%N ~¢ as evidenced by Theorem 1. If
d > 5 the additional condition in (1.15) makes the result most likely suboptimal, and is a
limitation of the method due to boundary effects.

We are able to see the minimal lengthscale 372 (viewed at the blown-up level) arise
in our proof because when implementing the bootstrap procedure, we control the (free)
energy errors by BZRdfl while controlling at the same time the volume errors by R4~/ v
(we believe these errors to be optimal), where { is the lengthscale that we need to screen
the configurations. Optimizing the total error

" d—1
(1.26) BURIT! + RT

leads to ¢ = B’%, and since we always need to keep (< R, the bootstrap terminates exactly
for R and ¢ of order 5’%. This way we can say that the configurations can effectively be
screened with screening lengthscale B’% and down to that scale.

Note that the maximal size of a set ¥ in which p = yy is bounded below by a positive
constant independent of N is (of order) N %, hence the results of the theorem are nonempty
if and only if pg < N @ which is equivalent in dimension 3 < d <5 to 6 > 1 (we expect
the same to be true if d > 5). In the case d = 2 the results are nonempty if and only if
B> %. Note that as soon as 6 > 6 > 0, the third item in (1.16) can be absorbed into
the first one, up to a constant depending on 6.

As mentioned above, the effective temperature at the macroscale is 6 which gives rise to
a natural lengthscale for variations of the macroscopic density ugy of 62 = B*%N ~d. This
strikingly coincides with the minimal lengthscale for microscopic ridigity pg.

It remains to understand more precisely what happens when @ is fixed or ¢ — 0. In the
latter regime it would be more appropriate to strengthen the confinement, thus weakening
the interaction.

The fact that (1.18) gives a bound on all the moments of the number of points in a
compact set centered at x satisfying (1.16) immediately yields the following statement.

Corollary 1.1 (Limiting point processes). Under the same assumptions as in Theorem 1,
for every > 0 fized independently of N and every point x € ¥ with

dist(z, 0) > Cmax (X(B)N#7,\(8)57' 785" N5, 5714

the law of the point configuration {x| —x, ... &y —x} converges as N — 0o, up to extraction
of a subsequence, to a limiting point process with simple points and finite correlation functions
of all order.
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This is the first time that the existence of a limit point process is shown besides the
particular determinantal case of f = 2 in d = 2, for which the limit process is known to be
the Ginibre point process, with an explicit correlation kernel. These processes can thus be
thought of as 5-Ginibre processes, at least in dimension d = 2. We expect that they should
satisfy a variational characterization as in Corollary 1.2.

In the 70’s there was a large statistical mechanics literature (see [GLM1, GLM2, Ma] and
references therein) on sum rules and various relations for correlation functions of interacting
particle systems, in particular Kirkwood-Salzbourg, BBGKY, KMS, DLR equations. These
can be shown to be equivalent relations in the case of regular interaction kernels but in
the case of singular interactions like the Coulomb one, the existence of solutions to these
hierarchies was not known. Corollary 1.1 takes a small step toward putting these ideas on
firmer ground by showing, up to a subsequence, the existence of limiting point processes.

Our next main result gives a quantitative estimate of log K(Cg) in the particular variant
of the Neumann jellium mentioned after (1.25). Observe that the error term in (1.29),
below, is negligible as soon as @ > ps. Extending this to varying background measures is
one of the main objects of [Se3].

Theorem 2 (Free energy expansion, Neumann jellium case). There ezists a function
fa:(0,00) = R and a constant C > 0 depending only on d such that

(1.27) —C < fa(B) < Cx(B)
(1.28) fa is locally Lipschitz in (0,00) with |f4(8)] < Cxﬁ(ﬁ),
and such that if RY is an integer we have

logK(Or) ps  Bax(B) @, 1R
(1.29) T RE —fa(B) + O (X(@)E t——p—log %>

where pg is as in Theorem 1 and the O depends only on d.

The function fy which depends only on 8 (and d) already implicitly appears in [LS1]
(combine relations (1.16) and (1.18) in [LS1]) where it is given a variational interpretation :

(1.30) fa(B) = m;n <§W(P) + %ent[P|H1])

where the minimum is taken over stationary point processes P of intensity 1, W(P) is the
average with respect to P of the “Coulomb renormalized energy” (per unit volume) for
an infinite point configuration with uniform background 1 (see for instance [RS, Sel], it is
the W(-, 1) of [LS1]), and ent[P|II'] is the specific relative entropy (see [FV]) of the point
process P with respect to the Poisson point process of intensity 1. Dimension d = 2 is
particular since it is the only one where fy is not expected to be bounded as § — 0, in
fact we expect the bound we have in |log 3| to be optimal and to reflect the fact that the

Poisson point process should have infinite Coulomb energy W in dimension 2, in contrast
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with dimension d > 3 where its energy is always finite as shown in [Lel]. Note that the
formula (1.30) implies that fy is a convex function of %

The error term in 1/R in (1.29) corresponds exactly to a surface term. Such an error
agrees with the predictions on the next order term that are found in the physics literature
in dimension d = 2 [Sha, CFRW]|, which are made for a gas with quadratic confinement
hence constant equilibrium measure, and which find a next order term in v/N for N points
(VN corresponds to R in dimension 2).

Once these results are proven, we briefly explain how one can deduce a “local” large
deviations principle, generalizing the macroscopic scale LDP of [L.S1] and the two-dimension
mesoscale LDP of [Le2] to arbitrary dimension and down to the smallest (microscopic) scale.
More precisely, given xy in supp uy, for a configuration Xy, defining its blown up version
to be X’ = N4 Xy we define the “local empirical field” averaged in a cube of microscopic
scale size R around xg € supp py by

(1.31) R0 = f

To Xyl 14, AT
Or(N/dzg) Br(N/Czq)

where T, is the translation by = and |, (y1/4,,) denotes the restriction of the configuration

to Or(NY924). In other words we look at a spatial average of the (deterministic) point
process formed by the configuration. We denote by ‘vaf the push-forward of Py 5 by if\?’R.
Finally we introduce the rate function of [LS1] which is defined over the set of stationary
point processes of intensity m (equipped with the topology of weak convergence) by

m BNm m
(1.32) Fg(P) = EW (P) + ent[P|II™]
where W™ is the renormalized energy, precisely defined in this context in [LS1] (and
originating in [SS1, SS2, RS])*, II"™ is the (law of the) Poisson process of intensity m over
RY, and ent is the specific relative entropy. We also have

(1.33) min Fj' = BmQ_%fd(/Bml_%) — (%mlog m) 14— +mlogm

where fy is as in the previous theorem, this is the scaled version of (1.30), and as already

seen in [LS1], if d > 3 an effective temperature Bml=a depending on the density of points
appears here (as well as every time the density dependence is kept explicit).

We recall that in minimizing (1.32) there is a competition (depending on /) between the
energy term W™ which prefers ordered configurations (energy-minimizing configurations are
expected to be crystalline in low enough dimensions) and the relative entropy term which
favors disorder and configurations that are more Poissonnian. The choice of temperature
scaling that we made in (1.1) is precisely the one for which these two competing effects are
of comparable strength for fixed f.

lit corresponds to the notation W(-,m) in [LS1].
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Theorem 3 (Local large deviations principle). Assume that, on its support, the equilibrium

measure iy is bounded below and belongs to C** for some k > 0. Assume that Ni>R>
ps as N — oo and xy € supp py satisfies, for some C > 0 depending only on d and py,

dist(xq, O supp py)

1 1 1 L L ) ¢
—d &2 “1aprd NsapT3, g2 ~a
> C'N~4 max (X(B)Nd+ X(B)B™ " dps S N3 s, 3 1":2> v

Then we have the following:
e [f B is independent of N, the sequence {‘,B%)BR}N satisfies a LDP at speed R with
rate function }"g"(ro) — min .7:5‘/(930).
e If3—0 as N — oo, then {‘BCJE\})’?}N satisfies a LDP at speed R® with rate function
ent[P|11™].
e [f B — 00 as N — o0, then {‘Bf\?f}N satisfies a LDP at speed BRY with rate

function %(Wuv(zo) — min Wuv(xo))'

By Theorem 3, we recover for microscopic averages what was proven in [LS1] for limits
of macroscopic averages and in [Le2] for mesoscopic averages in dimension 2, and extend it
to general 3. We note that the regime with R ~ N4 was treated in [LS1] for fixed 8 and
can be extended without difficulty to the present setting of general 3. It is for simplicity
that we present results only for mesoscopic and microscopic averages (i.e., by taking that

assumption that Na > R > pg).

Corollary 1.2. Under the assumptions of Theorem 3, we have the following:
e [f B is independent of N, the point processes defined as subsequential limits of the

push forward of Py z by the map 0" of (1.31) must, after rescaling by ,uv(xo)%
and for almost every xq, achieve the minimum in (1.30) among stationary point
processes of intensity 1.

o [f B — 0, they must be equal to the Poisson point process of intensity 1.

o If 3 — 00, they must minimize W' among stationary point processes of intensity 1.

Note that the point processes considered here are not exactly the same as those of
Corollary 1.1 since they are obtained by first averaging over cubes. Their stationarity is a
simple consequence of that averaging (see [LS1] for a proof). Unfortunately we do not know
whether a minimizer for (1.30) is unique (uniqueness has however been very recently proven
for the 1-dimensional log gas analogue in [EHL]), it may very well not be, in particular if a
phase transition happens at inverse temperature 3. If it were, then this would provide the
existence of a unique possible limit point process along the whole sequence N — oc.

Our results apply as well to minimizers of Hy (formally the case f = o), they then
improve on the results obtained in two dimensions in [AOC] and [RNS], and their general-

ization to higher dimension in [PRN]. It shows (as for the related problem in [ACQO]) that
the rate of convergence of the next-order energy is in %, and gives equidistribution of points

and energy down to the microscales, see Theorem 4 in Section 8 for a precise statement.
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1.3. Method of proof. As in [BBNY1, Le2| and as first introduced in this context in
[RNS], the method relies on a renormalization procedure, namely a bootstrap on the length
scales which couples the free energy expansion and the local law information: local laws at
large (macroscopic scales) are used as a first input, and allow to get a first expansion of the
free energy, which in turn yields local laws at a smaller scale, and then a better rate in the
free energy expansion, etc, until one reaches the minimal scale pg.

The starting point of our approach is, as in the previous papers [SS2, RS, PS, LS1],
the “electric” reformulation of the energy Hy, i.e. its rewriting in terms of the (suitably
renormalized) Dirichlet energy of the Coulomb (or electric) potential generated by the points
and the background g, which really leverages on the Coulomb nature of the interaction
and the fact that the Coulomb kernel is, up to a multiplicative factor, the fundamental
solution to a local differential operator, the Laplacian. More precisely, we will see that after
removing some fixed leading order term from Hy, we reduce to

1

1.34 APy s(Xn) = —— exp(—BF(Xn))du®™ (X

(1.34) ~s(Xn) NVK(R) exp(—BF(Xn))du™™ (Xn)

where K(RY) is the normalization constant and F is a “next-order energy” of the form
1

(1.35) F(Xy)=-— [ |Vu]?
2Cd Rd

where

is the solution of

N
(1.36) — Au = ¢4 (Z 00 — ué) :

i=1

where cq is such that —Ag = cqd. Here 2 = Noz; and = pily(-) = pg(Na-) represent the
blown-up system, and in (1.35) the integral needs to be understood in a “renormalized”
sense, see Section 2 for more precise definitions. The quantity FP® encountered in Theorem 2
is then the analogue of [, [Vul* here.

Our improvement of the scaling of the error in the free energy expansion is based on the
idea of quantifying the additivity of the energy over subregions of the main domain. In the
Coulomb gas setting, the additivity of the energy—once expressed in terms of the Coulomb
potential—was already observed and used crucially in [SS1, SS2, LS1]. It was proven via a
screening procedure inspired by the work of [ACO] on a related problem and introduced in
the Coulomb context in [SS1], then improved in [RS, PS], which yielded non explicit error
terms. In fact, this is the reason why the results of [Le2] were limited to two dimensions.

In this paper, we combine the screening procedure with the idea of using two different
convergent quantities to quantify the additivity error in the free energy: the first quantity
denoted F(Xy,Og) is the equivalent of (1.35) with (1.36) solved over the cube with zero
Neumann boundary condition, while the second one denoted G(Xy, Og), which is smaller, is
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the equivalent of (1.35) where (1.36) is solved over the cube [ with zero Dirichlet boundary
condition. The true energy is naturally bounded below by G and above by F, and we will
obtain quantitative bounds on it indirectly, by estimating the difference between G and F.
These quantities are the analogues of those used in [ACO] for the study of energy minimizers
of a related problem. This idea of using two quantities which converge monotonically (after
dividing by the volume) to the same limit was already present in [ACO] and is related to
a classical technique for estimating eigenvalues of the Laplacian under various boundary
conditions that goes by the name Dirichlet-Neumann bracketing. A similar idea also arose
in a different context in the works [ASm, AKM]1] on quantitative stochastic homogenization,
and the central idea in these works of quantifying the additivity of the energy by a bootstrap
(or renormalization) argument inspired the strategy of the present paper (see [AKM?2] and
references therein for more on these developments). The main difference here from previous
works is that we must apply such ideas in a probabilistic setting, in the context of a Gibbs
measure, rather than a deterministic variational problem.

This requires us to revisit and significantly revise the previous screening construction
of [SS1, RS, PS]. We simplify it, optimize it and turn it into a probabilistic procedure by
sampling the screening points from a given Gibbs measure instead of constructing them by
hand. This allows to reduce the energy and volume errors to surface terms as explained
in (1.26), which is crucial when treating the regime of small 5. In particular compared to
[LS1] we dispense with the use of several parameters which needed to be sent to 0 with no
explicit rates for the convergences. This is made possible by a new truncation approach
borrowed from [LSZ, LS2] and improved here. The precisely quantified screening error
allows to estimate the additivity error of the free energies associated to (a variant of G)
and F. As in [ACO, ASm]|, in view of their monotonicity one then naturally obtains a rate
of convergence to the limit.

Let us now give a more precise glimpse into the bootstrap argument used to prove
the central estimate, which is (1.17). We denote K(U) or K?(U) the partition function
associated to the energy F in the set U C RY. We start by proving a first bound of the form

(1.37) log K(U)| < CBx(B)|U]

(modulo some additional error terms in dimension d > 5). The upper bound holds thanks
to the general lower bound F(Xy) > —CN where N is the number of points, equal to u(U)
(see Lemma 3.7). The lower bound holds thanks to a Jensen argument inspired by [GaZ2]
(see Proposition 3.8). Combining the lower bound for 8 and the upper bound for 5/2 we
obtain that the local law (1.17) holds at the largest scale N 4. The result for smaller scales
is then proved by a bootstrap: assuming it is true down to scale 2R, we try to prove that
it is true down to scale R, as long as R > pg. Let us consider a hyperrectangle (2 C ¥ of
sidelengths comparable to R, such that () is an integer, and let us denote n = p(£2).
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For any configuration X of points in RY, let us denote by n the number of points it has
in €. To control the left hand side of (1.17), we start by using (1.34) to write that

(1.38) Epy , (eXp (%BFQ(XN))>

/(Rd)N exp <_%6FQ(XN)> exp (—BFY (Xy)) dp(z1) . .. dp(zy)

/(Rd)N exp (—OF(Xn)) du(xy) ... du(zy)

We wish to bound from above the numerator and bound from below the denominator. To
bound the numerator from above we use the comparison between Neumann-based and
Dirichlet-based energies which easily yields

F (Xn) > G*(Xnla) > G(Xnla, ) F*(Xy) > G (Xnlae) > G(Xn

Qe QC)

hence separating the integral according to the value of n, we find

(1.39) /() exp (~56%(XN) ) exp (~66 (X)) ) .. o)

-y (V) ] e (~3060600) ) ducx,

n=0

X / exp (—BG(Xn—_n, 2°9) du®(N_")(XN_n).
(Qc)an

On the other hand for the denominator we may use the subadditivity of F, which translates
into a superadditivity of the associated partition function, to write that

/(Rd)N exp (—BF(Xn)) dp(zy) ... p(zy)

> (V) [ e COROR ) [ e (AR 29 da Y ()
n (Q(;)an

We can expect the sum above to concentrate near n ~ n, because other terms correspond to
a large discrepancy in the number of points in €2, which we can show leads to a large energy
in Q. Reducing to such terms, in order to bound the left-hand side of (1.38) the next step
is to bound from above the Dirichlet energy associated to G in terms of that associated
to F. That is, we show that we may replace G with F in the right-hand side of (1.39), up
to a suitably small error. Then there only remains K#/2(Q)/K?(Q) in the right-hand side
of (1.38), for which we have the desired bound (in C'8x(8)R?) thanks to (1.37). The core
of the work is thus to prove that

/n exp (—BG(X,,,Q)) du®™(X,) g/ exp (—BF(X,, Q) du®*(X,)

n
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and the same in 2, up to a small error. This is accomplished thanks to the configuration-
by-configuration screening procedure, which replaces each configuration X,, of n points by
a configuration X, of the correct number of points n that coincides with X,, except on a
thin boundary layer. The energy and volume errors associated to the procedure it are kept
as the small surface errors mentioned in (1.26) by using the fact that the local laws hold at
the slightly larger scale 2R which provides good energy controls.

The local law (1.17) also allows to show the additivity of the free energy itself, up to the
surface error terms in BRI~ (roughly) for a cube of size R. As in [ACO, AKM1], this is the
best that one can hope with such a method. This implies the existence of the order N term
in the free energy expansion as in [LiLe, LN], except now with an explicit convergence rate.
In that sense, what we prove is a quantitative thermodynamic limit. Note that an expansion
up to order N of the free energy with the variational interpretation (1.30) for the order N
coefficient and an error o(N), was already obtained in all dimensions in [LS1], it came as a
corollary of the LDP. In the two-dimensional case, an error term of N'~¢ for some small
(explicit) € > 0 was obtained in [BBNY2| by a Yukawa approximation argument.

In [PS, LS1], we treated Riesz interactions and one-dimensional logarithmic interactions as
well as Coulomb interactions (with the important motivation of log gases). This introduced
some (not only notational) complications because Riesz kernels are kernels of nonlocal
operators and a dimension extension is needed. This is why we leave the generalization to
Riesz and one-dimensional log gases to future work.

1.4. Outline of the paper. The paper is organized as follows. In Section 2 we introduce
the precise definitions of the sub and superadditive energies, the appropriate renormalizations
(whose specifics are new), and of the corresponding partition functions. In Section 3 we
give some preliminary results, including the sub and superadditivity of the energies, a
priori bounds on the energies and partition functions. Estimates showing how the energies
control the fluctuations of the configurations and adapted from previous work are gathered
in Appendix B. In Section 4 we give the main newly optimized result of the screening
procedure, that allows to bound from above the additivity error. The proof of the screening
itself is postponed to Appendix C. Section 5 is the core of the proof that accomplishes the
bootstrap procedure: starting from the a priori bounds on the largest scale, it shows how
the screening allows to obtain energy controls on smaller and smaller scales. In Section 6
we investigate the consequences of the bootstrap procedure and deduce from the local laws
the proof of the almost additivity of the free energy hence the free energy expansion with a
rate, in the uniform background case. In Section 7 we describe the proof of the LDP result
of Theorem 3. Finally in Section 8 we adapt our results to the case of energy minimizers to
obtain Theorem 4.

Acknowledgements. We thank Thomas Leblé for helpful discussions and comments. The
first author was supported by NSF grant DMS-1700329 and a grant of the NYU-PSL Global
Alliance. The second author was supported by NSF grant DMS-1700278 and by a Simons
Investigator grant.



LOCAL LAWS FOR COULOMB GASES 17

2. ADDITIONAL DEFINITIONS

2.1. Splitting formula and rescaling. We adapt here the splitting formula, introduced
in [SS1, RS]. It is an exact formula that allows to separate the leading order term in the
energy from the next order term, already giving the leading order coefficient in the free
energy expansion. Here we provide a new formula by expanding the energy around the
thermal equilibrium measure N gy, yielding more exact results and allowing to prove the
local laws even when the temperature gets large.

We recall that # = BNd and that the thermal equilibrium measure g minimizing (1.6)
satisfies

1
(2.1) g*pg—f—V—l—élog,ug:C in RY

where C' is a constant. We then define

1
(2.2) Cp:= —élog,ug.

Lemma 2.1 (Splitting formula with the thermal equilibrium measure). For any configura-
tion Xy € (RN, we have

(2.3) Hn(Xn) = N2Ep(pg) + N Z Colzi)

+ % // ) g(q} — y)d (; (5951 — N,ug) (l’)d (z:; 5351 - NMQ) (y)

where & is as in (1.5), (g as in (2.2) and A denotes the diagonal in RY x RY.

Proof. 1t suffices to rewrite Hy(Xy) as

N

H(Xn) = // gz —y)d (Z 5) (2)d (Z 6) W)+ N | Vi) (Z 5) (@),

expand the integral after writing vazl 0z; = Npg + (Zfil Oy, — N,u9> and use (2.1). O

Let us point out that as mentioned in the introduction, from this formula we see —% log 19
appearing as an effective confining potential (in place of ¢ in the previous splitting formula
of [SS3, RS]). We next rescale the coordinates by setting X to be the configuration
(Nazy,...,Nazy). The blown-up thermal equilibrium measure is yi(z) = pg(eN"4), it
is a measure of mass N which slowly varies. We also define the rescaling of (y to be
¢)(x) = Naly(xzN~4a). By definition (2.2) we thus have

(2.4) & () = —% log (2.
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We also have the following scaling relation

(25) // gz —y)d (Z 00 = Nm) (2)d (Z O0; = Nue) (v)

=1
N

— N1-§ //Cg(x - <Z(S ) — ug) (Z 00 — ué) - (glog]\/) Tos.

We may now define for any point configuration X and density u, the next-order energy
to be

(2.6) F(Xn, ) : // (x—y)d (Z O, — M) (z)d (Z O, — u) (v),

and the next-order partition function to be

(2.7) (0 = N7 [ exp (=BF (X, 1) ™ (),

Inserting (2.3), (2.4) and (2.5) into (1.4), and using the change of variables X}, = N Xy
and (1.6), we directly find

(2.8) ZN g = exp (—5]\[”359(#9) + (gNlog N) 1d:2) K(pp)-

Note that a main difference with using the previous splitting formula is that here no
effective confining potential term remains, and the reduced partition functions are defined
with integrations against u®" instead of the Lebesgue measure, which makes handling the
entropy terms much more convenient.

From now on we will thus be interested in expanding the logarithm of partition functions
of the type (2.7) for generic densities p such that [, dp = N.

2.2. Electric formulation and truncations. We now focus on reexpressing F(Xy, 1) in
“electric form”, i.e via the electric (or Coulomb) potential generated by the points. This is
the crucial ingredient that exploits the Coulomb nature of the interaction and makes the
energy additive. We rely here on a rewriting via truncations as in [RS, PS] but using as in
[LSZ, LS2] the nearest neighbor distance as a specific truncation distance so that no error
term is created. This technical improvement is crucial and in particular allows to dispense
with the “regularization procedure” of [LS1].

We consider the potential h created by the configuration Xy and the background p,
defined by

(2.9) h(r) == /Rd gz —y)d (Z Oz, — u) (y)
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Since g is (up to the constant c4), the fundamental solution to Laplace’s equation in
dimension d, we have

(2.10) — Ah = ¢4 <Z 8y — u) .

We note that h tends to 0 at infinity because [y = N and the “system” formed by the
positive charges at x; and the negative background charge Ny is neutral. We would like to
formally rewrite F(Xy, p) defined in (2.6) as [ |Vh[?, however this is not correct due to
the singularities of h at the points x; which make the integral diverge. This is why we use
a truncation procedure which allows to give a renormalized meaning to this integral.

For any number n > 0, we denote

(2.11) f,(r) == (g(x) — &)+,

where (-); denotes the positive part of a number, and point out that f, is supported in

B(0,n). This is a truncation of the Coulomb kernel. We also denote by 5" the uniform
measure of mass 1 supported on 0B(z,n), which is a smearing of the Dirac mass at = on
the sphere of radius 7. We notice that

(2.12) f,=gx (50 - 55’”)
so that
(2.13) ~ Af, = ¢ (50 . 53“) .
For any 7= (n1,...,mn) € RY, and any function h satisfying a relation of the form

(2.14) — Ah = ¢4 (Z Oy — u)

we then define the truncated potential

N
(2.15) hi=h—>Y f,(x— ).
=1

We note that in view of (2.13) the function h; then satisfies

N
(2.16) — Ahy = ¢4 <Z 5 — u) :

i=1
We then define a particular choice of truncation parameters: if Xy = (z1,...,2y) is a
N-tuple of points in R we denote for all i =1,..., N,

1
(2.17) =g min <I§l7gl |z — x4, 1)

which we will think of as the nearest-neighbor distance for x;. The following is proven in
[LS2, Prop. 2.3] and [Se2, Prop 3.3] (here we just need to rescale it).
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Lemma 2.2. Let Xy be in (R)N. If (ni,...,nn) is such that 0 < n; < r; for each
i1=1,...,N, we have

(218)  F(Xyp) = 2(/ Vsl —chgm>—Z [t = wauta),

where h is as in (2.9).

This shows in particular that the expression in the right-hand side is independent of
the truncation parameter, as soon as it is small enough. Choosing 7; = r; thus yields an
exact (electric) representation for F. In Appendix B we provide monotonicity results which
show that taking truncation parameters 7; larger than r; can only decrease the value of the
right-hand side of (2.18).

2.3. Dirichlet and Neumann local problems. We now introduce new local versions of
these problems, that will serve to define the sub and super additive energy approximations.
Let us consider U a subset of R with piecewise C'' boundary, bounded or unbounded. Most
often, U will be RY or a hyperrectangle or the complement of a hyperrectangle. Although N
originally denoted the number of points in R and defined the blown-up scale at which we
are working, when ambiguous we will also use the notation N to denote the total number
of points a system has in a generic set U, which may not be the whole space.

The main quantity we will use is one obtained by solving a relation of the type (2.14)
with a zero Neumann boundary condition. We need to introduce a new modified version of
the minimal distance to make the energy subadditive: we let

I 1
(2.19) = min (m]glr}?¢z |z, — x;], dist(x;, OU), 1) .

In order to have an energy which is always bounded from below, we need to add some
energy to points that approach the boundary. To that effect we define

(2.20) h(w:) = (g (jdist(2:,0U)) —g (7)),

If u(U) = N, an integer, for a configuration Xy of points in U, we now define

N N
(2.21) F(Xn, 1, U) : =% (/ |Vug]? — g Zg r > —Z/ f?i(a:—.ri)du(a:)—l—Zh(mi)

i=1 YU i=1
where u solves

(2.22) { —Au = Cd(Zij\il Oy — u) in U

%:0 on OU.

Note that under the condition p(U) = N the solution of (2.22) exists and is unique up to
addition of a constant. Unless ambiguous, we will denote F(Xy, U) instead of F(Xy, i, U).
We note that from (2.18), F(-,RY) coincides with F defined in (2.6).
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We will use a localized version of this energy: if u solves (2.22) and (2 is a strict (closed)
subset of U, we define

1
(223) Ti= 1] min (Ijgg}; » |2 — x|, dist (x5, OU N 9)1) if dist(z;, 02\0U) > o,
min (17 dlSt(iIf“ aU N Q)) otherwise.
and

(2.24)  F*(Xy,U)

We will also use the following variant of ¥; which only differs near 02\ oU:

~ 1] min ( min |x; — x|, dist(x;, 0U N Q), 1) if dist(z;, 0Q\0U) > 1,
(2.25) 1= ;€0 jF#i
min (1, dist(z;, 0U N Q)) otherwise.
Let us point out that when Q = U thenr; =1, =T;.

Our second quantity is obtained by minimizing the energy with respect to all possible
functions u compatible with the points in the sense of satisfying (2.14), it naturally leads
to a Dirichlet problem and to a superadditive energy. For a configuration Xy of points in
U, imitating (2.18) we define the energy relative to the set U as

(2.26) G(Xn, p1,U) == i (/U IVurl? — cq Zgﬁ-)) - Z/Ufa(x — z;)dp(z)

where T is as in (2.23) with @ in place of U and U in place of 2, and

_ N _ :
(2.27) —Av=cq ( 2 i=1 O u) in U
v =0 on OU.

We will often omit (unless ambiguous) the dependence in p in the notation and simply
write G(Xy,U). Using standard variational arguments, we may check that we have

(2.28) G(Xn,U) = min{% (/U V|2 —chg(E)> — Z/Uf?i(x—xi)du(x) ;
—Au:cd<25zi —,u) in U}.

We will not use G very much but rather a variant (mixed version of the energy), for Q a
subset of U that may touch 0U. For Xy a configuration of N points in 2 N U, imitating
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the definition of G we set

(229)  Hy(Xy,9Q) = 2—; (/wawz_cdzg@)) Z/W - (2 — ;) dp(2),

where T is as in (2.23) and

—Aw:cd<2£15m—u) inQNU

(2.30) dw — () on OU N Q
wy =0 on (N U)\oU.

We can check that
(2.31) Hy(Xn,Q)

N
=min<{ — Vuwy|* — ¢ g(r;) | — £ ( i)d
{ZCd ( QOU‘ | d; ( >> Z Qnu Jaul)
al ow
— Aw = ¢4 (Z5m_ﬂ> inUNQ, EzoonﬁUﬂQ}.

i=1
We then define a localized version: if w is a subset of €2,

(2.32) HY(Xy,Q):= % (/m Vwr? —ca Y g )

1,T; EW

Y

1,T;EW
where T; is now relative to dw. We note that if U = RY or if ) is a strict subset of U, Hy
coincides with G.

2.4. Partition functions. We next define a partition function relative to U. If u(U) = N,
then we define

(2.33) KU, ) = NN [ exp (= 6F (X 1, U)) e (Xo)
U
We also define the associated Gibbs measure by
1 N
(2.34) QU, p) = WGXP(—BF(XN,M U)) du® (Xn).

We may also consider in the same way (although we will not give details)

NVLy (U, ) exp (—BG(Xp, 1, U)) du®N (Xn).

We will assume without loss of generality that the points in Xy never intersect the
boundary of the considered cubes, which is legitimate since this would correspond to a
zero-measure set in the integrals defining K. As above, we will simply denote (unless
ambiguous) these quantities by K(U) and Q(U). We note that K(RY, 1) coincides with K(u)
defined in (2.7), and that in view of the splitting formula (2.3) and (2.8), Q(R?) coincides
with the original Gibbs measure Py 5 defined in (1.1).

(2.35) Py(U, p) =
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3. PRELIMINARY RESULTS

3.1. Partitioning into hyperrectangles with quantized mass. We will use throughout
the paper the following definition.

Definition 3.1. For any R we let Qg be the set of hyperrectangles ) whose sidelengths
belong to [R,2R] and which are such that ;(Q) is an integer.

Lemma 3.2. Assume p > m > 0 in a set U. There exists a constant Ry > 0 depending only
on d and m such that given any R > Ry there exists a collection Kr of closed hyperrectangles
with disjoint interiors belonging to Qg, and such that

(3.1) {reU:dx,0U)<R}CU\ | ) KC{zeU:d(z,oU)<2R}.
KeKgr

Moreover, iof U is a hyperrectangle, we can require that UKEKR K=U.

Proof. The proof can easily be adapted from [SS2, Lemma 7.5]. O

3.2. Sub and superadditivity. Here, we show that F is subadditive, as desired (one can
also easily check that G is superadditive). We will use various results on the monotonicity
of the energy with respect to the truncation parameter, which are stated and proven in
Appendix B. In the rest of the paper, when talking about “disjoint union of two sets”, we
mean the union of the closures of two sets whose interiors are disjoint.

Lemma 3.3. For any configuration Xy defined in U with N = u(U), if Q is a subset of U
and w a subset of 1, we have

(3.2) FUXN, U) > Ho(Xnla, Q) HE(XN, Q) > HE (X yly, w).

and if w is the disjoint union of wi and wo,

(3.3) Hy (X, Q) > H7 (XN, Q) + H2 (XN, Q).

Proof. Let us first change r; relative to w into r; relative to wy for x; € w; respectively T;
relative to wo for x; € wy. This increases these truncation parameters, hence in view of

Lemma B.1, it may only decrease the computed value of Hy. Splitting the obtained integral
into two pieces we deduce that

w 1 2
HU<XN,Q>2Z(/M|W —c Y &l )

1, EWl

(L E)

1,2 EWa
where w is as in (2.30) and the ¥; are those relative to wy, resp. ws. It follows that (3.3)
holds. The first item of (3.2) is a consequence of the minimality property (2.31). The
second item is proven by using the minimality property (2.31). U

;U /mU v (= 2i)dp ()
Z /QmU " wi)dulz).

1,2 Ewa
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As already observed and used in [SS1, SS2, RS, PS, LS1], solving Neumann problems
allows to get subadditive energy estimates over subcubes by using the following lemma
(whose proof we omit) which exploits that the Neumann electric field is the L? projection
of any compatible electric field onto gradients.

Lemma 3.4 (Projection lemma). Assume that U is a compact subset of RY with piecewise
C! boundary. Assume E is a vector-field satisfying a relation of the form

(3.4) { —div F = ¢4 (Zf\il Oy, — ,u> m U
E-v=0 on OU,
and u solves
—Au = ¢y (Zfil O, — u) in U
9u _ () on OU.
Then

N
/yvuﬂ?g/yE—ZVfE(-_xi)P.
v v i=1

We now check that the energies F is sub-additive, as desired. One can check that G is
superadditive as a consequence of (3.3).

Lemma 3.5 (Sub and superadditivity). Assume U is the union of two sets Uy, Us with
disjoint interiors and piecewise C boundaries. If Xn is a configuration in U, and Yy a
configuration in Uy with w(Uy) = N, p(Uy) = N, then

(3.5) F(Xy UYn, U) < F(Xy, Up) + F(Yar, Us).

Proof. For (3.5), let u and u' be the solutions to the Neumann problems associated with
the definition of F in (2.21) and set £ = Vu, E' = Vu'. We have

N N/
(3.6) _divE = cd<25xi - u) nU, —divE = cd<25yi - u) in Us.

i=1 i=1
We may now define E° = F1y, + E'1y, and note that it satisfies
57) —div B = ¢4 ( S pexyory Hp—p) U

E° v=0 on OU

Indeed, no divergence is created across QU; NOU, thanks to the vanishing normal components
on both sides. The result then follows from Lemma 3.4. U

The subadditivity property has the following counterpart for the partition functions.
Lemma 3.6. Assume U is partitioned into p disjoint sets Q;, i € [1,p] which are such that
w(Q;) = N; with N; integer. We have

NIN-N L
3.8 K(U) > K(Q,).
(38) v) Nll...Np!N;Nl...NpNPH (@)
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Proof. 1t suffices to partition the phase space into sets of the form {z;,,...,z;, € Q;} for
J

each j = 1,...,p, then to use (3.5), noting that the number of ways to distribute N points

in the p sets with V; points in each set is ﬁ ]
LN!

3.3. Preliminary energy and free energy controls. We start with a rough bound on F
which yields an upper bound for K.

Lemma 3.7 (Upper bound for K(U)). Assume u(U) = N, then we have for any Xy,

(3.9) F(Xn,U) > —CN,
and
(3.10) logK(U) < CPN,

where C' > 0 depends only on d and A.
Proof. The relation (3.9) is a consequence of (B.8) and (3.10) follows directly. O

Obtaining a lower bounds is a much more delicate task. For that we use an argument
inspired by [GaZ2|. We have the following a priori lower bound, in which the logarithmic
correction x(f) (in dimension 2, for § small) appears for the first time. At this point we
need to distinguish between the number of points a configuration has in a generic set U,
that we will denote N, and the number of points in the original problem, denoted N, which
corresponds to u(RY) and also dictated the blow-up lengthscale N .

Proposition 3.8. Assume U is either RY or a finite disjoint union of hyperrectangles
with parallel sides belonging to Qg for some R > max(l,ﬂ_%) all included in 33, or the
complement of such a set. Let p be a density such that 0 < m < pu < A in the set ¥ and
satisfying (1.13). Assume u(U) = N is an integer. If d = 2 assume in addition (if U is
unbounded) that

(3.11) w(EeNU) < ClogN
and
(3.12) // 8o~ y)dp(a)du(y) > ~C log N

There ezists C > 0, depending only on m,d and A and the constants in (3.11) and (3.12),
such that

Bx(B)N ind=2,

3.13 log K(U7) > —C { "X 1
(3.13) ogK(U) = {ﬁN+]8U|min(ﬁ“71) ind=>3.

We note that (3.12) is automatically satisfied by scaling with C' = % if 11 is the blown-up
of ug by N q
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Proof. Step 1: the case of the whole space. In the whole space with u(U) = u(RY) = N
we have

(3.14) F(Xy,RY) = // (z—y (Zaﬁ—u> <Z§x )

Starting from (2.33) we have

K(RY) = NV exp (—BF(Xy,RY)) du®N (Xy).

(RN
Using Jensen’s inequality as inspired by [GaZ2], we may then write

b
NN (Rd)N

We next insert the result of (3.14) to obtain

/ F(Xn, R du®Y
(RY)N

=3 [ (Str2 2% [t

i#]j
+ //Rd y gz — y)du(w)du(y)> dp®™ (Xy)

(N(N = )NV 2NNV 4 NN //(de gz — y)dp(x)dp(y)

1 noa _ "
=N //(Rd)Qg(x y)dp(z)du(y).

It follows that

1 log K(RY) > —y)du(z)d

(315) oK) 2 50 I | st~ pydutryinty)

If d > 3, g > 0 hence this yields log K(R?) > 0, which implies the desired result. If d = 2,
this yields log K(R?) > —BN log N, which is unsufficient if 2 is not very small. We will
improve this below.

log K(RY) > — F(Xn, RYdp®N (Xy).

DO | —

Step 2: The case of a more general domain.

Substep 2.1: setting up the Green function.

Let U be a general domain with piecewise C* boundary such that u(U) = N an integer.
We note that the assumption on U implies that OU is a bounded set.

Denote U := {z € U : dist(z,0U) < 1} and let 7z be defined in U by

i) = {M@ exp (~BMh(z)) if 8 <1,

3.16
(3.16) 0 if 5> 1,
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where h is as in (2.20) and M > 0 is a constant to be selected below. Below (in Substep 2.3)
we will extend the definition of & to the rest of U in such a way that it remains bounded,
that g =7 on {z € U : dist(x,0U) > 2}, and that f(U) = u(U) = N.

First we claim that we have

B17) FXw0) =3 [ Gule.pd Zaxz @ [ Y be— 1) W)

N
+3 Z Hu (i) + ) _h(:)
i=1
where Gy is the Neumann Green kernel of U, characterized as the solutlon of

—AGy(z,y) = cq(0y(z) — ﬁﬁ) in U,
Bgf’ =0 on U,

and
(3.18) Hy(z) == ?}IEI}CGU(%Q) —glz—y).

We check that Gy and thus Hy exist and are well-defined up to an additive constants.
First, under our assumptions we claim that v = g * (6, — ﬁﬁ) is well-defined. Indeed,
in dimension d > 3 the convolution of g with & is well-defined (since 7 € N,L”) and is
in L? by the Hardy-Littlewood Sobolev inequality. In dimension d = 2 we need that
Jy8(x — 2)df(z) < oo. If U is bounded then this is immediate from the boundedness of x
and . If U is unbounded, since i and p differ only near 0U which is bounded, it follows
from (1.13). Secondly, we may solve for w = Gy — v which satisfies

—Aw=0 inU

{ ?9_15 = —% on U
which can be done variationally since OU is bounded.
We may now observe that u := [, Gy (z,y)df (y) is solution to

(3.19) { ~du=co(f =iy Jy ) U
%, =0 on OU.

The function u of (2.22) is thus equal to [, Gy(z,y)d (Ef\zl O, — u) (y). To obtain the

claim (3.17) it then suffices to integrate by parts from the formula (2.21) similarly as
n (2.18).

Substep 2.2: lower bound.

Starting from (2.33) we have in both cases § > 1 or ﬁ <1,

KU) =N [ exp | —6F(X.U) - Zlog (2,) | dn®N (X),
U
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with the convention that logn = 0 when 7w = 0. Using Jensen’s inequality, we may then
write

1
log K(U) > ﬁ/{ﬂv —BF(X7,U) — Zlog (z:) | dE®N (Xw).

We next insert the result of (3.17) to find
F(Xx, U) + log = () |dE®™ (X5
/UN<<N 52 s ))u (Xz)
/ (ZGU T, T;) QZ/GU xi,y)dp(y / Gml,udu)af N(Xﬁ)

i#£]
. (g S Hylr) + Z h(z:) + % Z log E(xn) a5 (Xx)
1__—1NN2//U2Gnydu N//UQGnydu )du(y)
58 ||| Gotevdntaranty) + %N / (#0(0) + S 108 0) + 20(0) ) i)

I evenat=m @at=m ) 5 [ Gotedma
+/U(HU+%logg+2h)dﬁ].

It follows that
(3.20)

1\3

log K(U) > 3 //UQGnydw ) (@)d(p — 1) (y) - N~ //UQGU:L"ydu 2)dr(y)

, -
+/ (HU+—1ogﬁ+2h>cm .
U B 2

Substep 2.3: discussion of the three terms and end of the definition of 1z. We now
give an upper bound for the three terms in the right-hand side. We observe that by definition

(3.16) bounding [ (2 log% + 25h> dii involves evaluating [ Sg(r)exp (—CB(g(r) — C)) dr,

while bounding [ | — 71| involves evaluating [ |exp (—CB(g(r) — C)) — 1] dr, where 7 is
the distance to OU.
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With explicit computations using the expression for g and a change of variables we
observe that

1 min(1, 872) ifd >3
321 - dr < C ’ s
(3.21) i Beg(r) exp (—Fg(r)) dr < {min(l,ﬁ) if d =2,
and

1 min(1 ﬁﬁ) ifd>3
322 - —ldr<C 7 |
(3.22) i |exp (—Bg(r)) — 1] dr < {mln 1,5) ifd=2
Thus we find

~—

323 [+ [ (e 4 onie >)cmscw<z7

We next claim that we can distribute 7 — p in {z € U, dist(z, 0U) < 2}\U so that

(3.24) // Gule,y)d( — ()l — F)(y) < Cu(D)
and

T —~ [min(1, B72) ifd >3,
(3:25) /Ulog =) {min(l, 8)  ifd=2

This will allow us to extend @ — p by 0 in {z € U,dist(x,0U) > 2} in such a way that
7(U) = p(U) and @ < C. This is accomplished by partitioning {z € U, dist(x,0U) < 2}
into disjoint cells C; of bounded size, and then design i in C; so that 7z remains bounded
by a constant depending only on d,m and A, and fCi i — 1 = 0. We may then solve
for —Au; = p —  with zero Neumann data on the boundary of each cell C;. Letting
E =3",1¢,Vu; we have that —divE = p—fin U and F-v = 0 on 9U. Then, by L?
projection argument as in Lemma 3.4 we find that

[ cvtaav-mwan-mw < [ 1 <3 [ vur

and this is bounded by a constant times the number of cells, which is proportional to [OU|,
hence equivalently to ,u((A] ) since p is bounded below in ¥ and OU must be included in X
by assumption. This proves (3.24) and (3.25) is bounded by the number of cells times the
bound of (3.21).

We then apply Proposition A.1 of the appendix with the measure up to adding a

’(U )
constant to Gy (hence subtracting it from Hy, which has a null total effect in the above

right-hand side) we have

(3.26) / Gu(z,y)dx =0
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and
(3.27) )< N~ / 2 — 2)dTi(2) + C max (g(dist(z, OU)), 1).
We then deduce that in view of (3.16), we have
Hu+ 5 2 og & Pihs N /Ug(x — 2)di(z) + C max (g(dist(z, 0U)), 1) — 2Mh +h in O
In U\U, since dist(z,0U) > 1, thanks to (3.27), we have instead
Hy+h<-N " /U g(z — z)du(z) + C.

Choosing M so that 2M — 1 = C with C' the same constant as in (3.27), and using (3.25),
we deduce that

(3.28) /U (HU + % logg + h> dfi
N // (z — y)dp(x)dp(y) + N + Cp(D) {

In view of (3.19), we have that [, Gy (z,y)di(y) = cst, while [[,,, Gu(x,y)di(y)dz = 0
from (3.26), hence cst = 0. It follows that

1mm(l [a—2 2) ifd > 3,
ﬁmln(l B) ifd=2.

(3.29) ||, Gudnta)ants) <o
U2
Finally
0 ifd > 3,
N | e - antednty) = { ~CRGog R +1) 4 =20 = Qn,
v —CNlog N otherwise.

Inserting this and (3.29), (3.28) and (3.24) into (3.20) and using (3.12) we conclude that,
for a constant C' > 0 depending only on d, m, and A,

(3.30)
. . 0 it d > 3,
log K(U) > —Cu(D) {m?n(l’ﬁd”) Hd =3 08d N(ogR+1) ifd=2 U=Qn,
min(l, ) ifd =2 Nlog N if d = 2, U unbdd.

In the case d > 3 this completes the proof.

We next treat the case of a cube in d = 2 by a superadditivity argument.
Substep 2.4: the superadditivity argument. Let us now partition U = Qg into p
hyperrectangles in Q, with r = max(1, ﬁ_%). Note that this scale is roughly equal to pg,

the minimal lengthscale at temperature (3, see (1.15). For each hyperrectangle, we have
from (3.30) a log K bounded below by —Cr¢~t min(1, 3) — CBr4(1 + logr).
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Using (3.8) and Stirling’s formula (the log(N!N~V) cancels with 3. log(N;!N; ™) up to
order log N) and since p = O(BN) we thus get

log K(U) > —Cplogr® — Cp+p (—Cmin(1, B)r*" — CBro(1 +logr))

—CNB(1+|logpl) if <1
—CBN if 8> 1.

In view of (1.14), we thus conclude as desired that
(3.31) log K(U) > —CBx(B)N.

This completes the proof in the case d = 2 and U is a cube. We can check that the same
argument works as well for other nondegenerate Lipschitz cells.
Step 3: the case of general U. We split ¥ N U (which is a set which a Lipschitz
boundary) into nondegenerate cells Q; of size min(1, 572) with x(Q;) integer. The same
superadditivity argument as in the last step provides the bound

(3.32) logK(XNU) > —Cx(B)m(EnU) > -CBx(B)N.

On the other hand we may insert (3.11) into (3.30) to get log K(X*NU) > —CBN. Another
application of the superadditivity (3.8) relative to X N U and 3°N U concludes the proof
of (3.13). O

Thanks to the a priori bounds (3.10) and (3.13), we deduce a first control on the
exponential moments of the energy. (In the rest of the paper, we highlight when needed
the dependence in 3 of the partition functions, as a superscript.)

Corollary 3.9. Assume U and pu are as in Proposition 3.8, and u(U) = N. There ezists a

constant C' > 0 depending only on d,m, A and the constants in (3.11) and (3.12) such that
B KA/2(U) — L

333) o (oxp (57N 0)) ) < log 1) < CoxEHN + Clov min(a, )

4. COMPARISON OF NEUMANN AND DIRICHLET PROBLEMS BY SCREENING

The screening procedure first introduced in [SS1] using ideas of [ACO] consists in taking
a configuration X,, in a set whose energy H or G is known and modifying it near the
boundary of the set to produce some configurations Y, with a corrected number of points
for which the energy F is controlled by H(X,,) plus a small, well quantified, error. It has
been improved over the years, and we here provide for the first time a result with optimal
errors. An informal description of the method as well as the proof of the following main
result, are postponed to Appendix C. _ N

In the following result, two lengthscales ¢ and ¢ will appear, ¢ represents the distance over
which one needs to look for a good contour by a mean value argument, then ¢ represents the
distance needed to screen the configuration away from that good contour. The screening
will only be possible if that distance is large enough compared to the boundary energy. In
other words, only configurations with well controlled boundary energy are “screenable”.
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For any given configuration, the set O (like “o0ld”) represents the interior set in which the
configuration and the associated field are left unchanged, while in the complement denoted
N (like “new”), the configuration is discarded and replaced by an arbitrary configuration
with the correct number of points. Because we are dealing with statistical mechanics, we
need not only to construct one screened configuration, but a whole family of them in order
to retrieve a sufficient volume of configurations. A new feature here is to sample the new
points of the screened configuration according to a Coulomb Gibbs measure in the set N
(this done in Proposition 4.2).

By abuse of notation we will also write Qg+ to denote the ¢-neighborhood of Qg if t > 0,
and the set {z € Qg,dist(z,0Qr) > |t|} if t <O.

We have to perform two variants of the screening: an “outer screening” when 2 = Qg
and an “inner screening” when 2 = U\@Qg. Both are entirely parallel. The main result is
the following

Proposition 4.1 (Screening). Assume U is either RY or a finite disjoint union of hyperrect-
angles with parallel sides belonging to Qg for some R > max(1, B_%) all included in X, or the
complement of such a set. Assume p is a density satisfying 0 <m < u < AinQ=QrNU
(outer case), resp. 2 = U\Qg (inner case) where Qg is a hyperrectangle of sidelengths in
(R, 2R] with sides parallel to those of U, and such that u(2) = n, an integer. There ezists
C > 5 depending only on d,m and A such that the following holds. Let ¢ and 0 be such that
R> (> (> C and in the inner case also assume Qp N U C {z € U,dist(z,05NU) > f}
Let X, be a configuration of points in €2 and let u solve

(4.1) —Au=cq (D 0y — ) in
' % =0 on U N Q.

We denote if Q = QrNU

a2 se) = | Vi S =sup [ Vi,
(QR Z\QR 2[) z (QR_Z\QR_QZ)QDZ(x)mU

respectively if Q = U\Qr,

(43)  S(X,) = / Ve §(X.) = sup / Vs,
(Qr428\Qp )NV r ((QR+2Z\QR+Z)QDZ(Z))OU

where ¥ is defined as in (2.25).
Assume the screenability condition

(4.4) ¢t > C'min (S’(Xn), 5 (?’”) :

There exists a T € [Z 2?], a set O such that Qp-7-1NU C O C Qr_r41 NU (resp.
U\Qr-1+1 € O C U\Qr-7-1), a subset Iy C {1,...,n} and a positive measure [i in
N = Q\O (all depending on X,,) such that the following holds:
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e np being the number of points of X,, such that B(x;,7;) intersects O, we have

(4.5) AN =n—no,  |uN) - iN)| < C (R + %i“)
o m ~ 2 S(Xn
(4.6) 10— fil| oo (ary < > /N(u —p)?<c (2; )

e we have #15 < C@

e for any configuration Zy ., of n —neo points in N, the configuration Y, in Q made
by the union of the points x; of X,, such that B(x;,r;) intersects O and the points z;
of Zyn_n, satisfies

(4.7) F(¥n, ) < Hy(X,, Q)

S(X, 1 ~
+C %—FRd YWt F(Znng, 1, N) + [0 — 0| + Z g(z; — zj)

(1,5)eJ
where the index set J = J(X,,) in the sum is given by
(4.8) J={(i,j) € Iy x{1,...,n —ne} : |z; — 2| <T}.

Once this result is established one may tune the parameters /, { to obtain the best results.
For instance, at the beginning we may only know that [ On |Vu,|? is bounded by O(RY), we

then bound S(X,) and S'(X,) by O(RY), optimize the right-hand side of (4.7) and choose
¢ < { satisfying the constraints and obtain

F(Yy, Q) < Hy(X,, Q) + C(R° + |n —nl),

for some o > 0, i.e. we get an error which is smaller than the order of the energy. The
error |[n — n| can be controlled via the energy on a slightly larger domain, and shown to be
negligible as well.

At the end of the bootstrap argument, we will know that the energy and points are
well distributed down to say, scale C'. This means that we then know that (for good

configurations) S’(X,,) is controlled by /¢ and S(X,) by R4"'/. The condition (4.4) is then
automatically satisfied and we can thus take ¢ = C', / = C, and we may also control n —n
by O(R%~1) to obtain a bound

F(Y,, Q) < Hy(X,,Q)+ CR!

i.e. with an error only proportional to the surface, the best one can hope to achieve by this
approach.

The above proposition is sufficient when studying energy minimizers, but when studying
Gibbs measures, we actually need to show that given a set of configurations with well-
controlled energy, we may screen them and sample new points in N to obtain a set with
large enough volume in which (4.7) holds. This is possible and yields comparison of partition
functions (reduced to screenable configurations) as stated in the following.
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Proposition 4.2. With the same assumptions and notation as in the previous proposition.
Assume in addition that { > /B_% if d = 2. Let us define the set D, , to be

(4.9) D,.={X, €Q",S(X,) <s and S'(X,) < z}

where S, S" are as in (4.2), resp. (4.3). For any number s such that

10 > C'min(=, 2z
(4.10) (441> Cmin 2),
and
(4.11) s < cl?R4!
or some ¢ > 0 small enoug epending only on d,m,\), there exists o, & satisfying
f I h (d d [ d A), th ! fi
o 1 S 1~ d—1 T pd—1
(4.12) ——1<C|=+= , —(R" <a<(CIR
a {  (2R4D C
such that letting
/ ~
(4.13) g =0C (% + Rd_lfx(ﬁ) +|n— n|)

and

1 — 1
(4.14) €, := C%—i—a—a’—i—(n—n—a)log%—(a—i—n—n+§)log <1+ na n> —|——logg
we have

415) /D exp (— BHy (Xo, Q) du™ (X)) < CK(Q) exp (Bee + 2,),

and if Q2 = QrNU, denoting (OZ = Qp_o;NU, we have

B
2

(4.16) n_"/ exp (—BHU(Xn,Q) + Hg(Xn,Q) - %”) dp®™(X,)
Ds,

< CK2(Q) exp (Be. +2y) .

Here the quantity e, corresponds to the energy error while ¢, corresponds to the volume
error. We want the volume errors to be bounded by O(f) times the volume, which is more
difficult to obtain when [ is small.

Proof. For each X,, € Dy, with s, z satisfying (4.10), the screening construction of Proposi-
tion 4.1 can be applied, providing a number np(X,,) and a set O(X,,) (we emphasize here
for a moment their dependence on X,,). When screening we delete n — np points in the
configuration, those that fell outside of O, there are (T:;) ways of choosing the indices of the
points that get deleted. In terms of volume of configurations, this loses at most (N )"~"©
volume. In addition we glue each X,,|o with n —ne points of Z,_,,, = (21,. .., Zn_ny), there
are (nI;) ways of choosing the indices for the gluing, resulting in configurations Y, in Q2"



LOCAL LAWS FOR COULOMB GASES 35

satisfying (4.7). We integrate the choices of (z1, ..., 2y_n,) With respect to the measure p
restricted to A. We deduce that

(4.17)

| exp(~BF(Y,, ) ()

> exp [ — BHU (X, Q) — OB (i R4 F(Za g, Ji(X0), N(X0))
.z JN(Xp)P~ "m0 V4

+h—nl+ > g(xi—zj))}

(3,9)€J
() 1
(1) 1)

ne

X

—— dpl "N Do) A ().

Below we will show that, for each X,, € D, ., we have

wis) [ ew (—c@(F<Zn_no,ﬁ,N>+ S g(a:i—zj>))dm%“‘”o><zn_no>
NrTno (ij)ET

> (10— no)" " exp ( /N jilog & - cﬁx<6>Rd—1£)

Before giving the proof of (4.18), we use it to obtain the proposition. Thanks to (4.6), (4.11)
and (4.5) we have |£ — 1] < 1 if ¢ is chosen small enough and thus by Taylor expansion

(4.19) /N;nog%—/Nu—ﬁ+o</N@>—M(N)—ﬁ(/vwo(%).

By Stirling’s formula,

(4.20) log (

nl(n —ne)! (n — no)“_"o)
nl(n—ne)! p(N)r—mo
n—no 1, n(n—npe)

+ —log

pN) 2 ¢

>nlogn —nlogn + (n — np) log ﬁ
n(n — np
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Combining (4.18)—(4.20) and inserting into (4.17), we obtain, for a constant C' depending
only on d,m and A,

[ exp (~6F (o, ) d(12)

> exp (—C’B <S7€ + RN (B) + n — n|> — C’%)

<[ {exp (—BHy (X, Q) + nlogn — nlogn + u(A) — FHN)
Ds,»

n—mn 1. n(n—ne)

X exp ((n — ne) log M(N)O + §logm - (J) }dm"(xn).

We may next use a mean-value argument to obtain, for some configuration X? € Q"

[ exp(=6F (. ) d (1)

> exp {n logn —nlogn + p(N(X2)) — BN(XD) + (n — no(X?)) log %(}(?;L))
1 o nn—no(Xy) st d—17, n—n _Cs
+21gn(n—no(Xg)) C Cﬁ(ZﬂLR Ix(B) + | I) @]

X / exp (—BHy (X, Q) du®™(X,,).
Ds,z

Letting then a = (N(X?)) and o/ = u(N(X?)), we have in view of (4.5) that (4.12) holds
and we may rewrite the second exponential term as
, n—n+a 1. nn—n+a)
exp { nlogn —nlogn +a' —a+ (n —n+a)log——— + s log———= | .
o} 2 no
Rearranging terms we obtain the proposition.

[t remains to prove (4.18). Applying Jensen’s inequality, we find

//\/n_no exp < - Cﬁ (F(Znnoa /7, N) + Z g(xl- — %))) dlu‘%/'(ninO)(anno)

(3,9)€J

:/ exp |:—CB (F(Znn(97 /77 N)_'_
NB—nO

™
<

(0.

anno

> N exp [ﬁwwo-n /

n—no

H ~®(n—n
+ Z log ﬁ(%)) d,u®( O)(Zn—no)
i=1
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where we recall that i(N) = n — np. We then use the same proof as that of Proposition
3.8. The term »_; y;8(z; — z;) adds a contribution

—Cp(n—np)t e Z/ g(x; — 2)dp(z) > —CB(n — np) " "CH#I,

i€ly |z—z:|<F;

and, by #1 < CS/Z and (4.11), we conclude that

[ e (= Co(Fme i)+ S el =) )l )

(i,9)eJ

> (n—np)" " exp (/ ﬁlog% - CﬁRd_1Z(1 + (log R)]_dg)).
N

In the case d = 2, in view of the fact that (> B_%, we see from its construction (in

Appendix C) that A can be partitioned into disjoint nondegenerate cells of size max(1, B*%)
in which z integrates to an integer. Using superadditivity as in the proof of Proposition
3.8, we conclude that (4.18) holds.

As an alternate to (4.17), changing 3 to $/2 and adding %H2\9+ %n which is nonnegative
(see (B.8)) to the energy, we have

/Qn exp <—§F(YH,Q)) dp®™(Y,)
Co

o e —
> / / exp [ _b (HU(XH, Q)+ HOY(X,, Q) + 2n + C= + CRY
5,2 N(Xn)nfn(f) 2 2 g

+ CF(Zyone, (X)), N (X)) + Cln — n| + C Z g(z; — zj))l

(4,9)€J
(np)

1
() Ny

no

X

dp| 5 "N Zn ) A (X,).

We may now conclude as above that (4.16) holds. O

Corollary 4.3. With the same assumptions and notation as in the previous proposition,
there exists C' > 0 depending only on d,m, A such that the following holds. Let

T

B, = {Xn € 0" sup / Ve < X(B)MLd}
{(0%) _,;N0Or ()

where (0Q)_y7 denotes Qp \Qp_o;NU if Q= QrNU and Qp 57\ Q. 7NU if @ = U\ Qrg.
If

(4.21) R>L>CMmax(1,B 14,),
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and dist(Qgr, 05 NU) > L, we have

(422) 7" / exp (—BHy (X, 2)) du®" (X,,)

CMx(B)R*!

< CK(Q) exp <5 (CRTLx(B)M + |n —nl) + I

1 — 1
+a—a'+(n—n—a)logg—(a+n—n+—)log R +—log2>,
o 2 a 2 n

with o, o satisfying

/
Y 1l< (JM, L IR < o < CLRL
« L C
Proof. If X,, in B,, then
d—1
S(X,) < =) Mx(B)LY, S'(X,) < Mx(B)L°.

using the definition (4.2) or (4.3). We check that setting £ = ¢ = L and s = M%X(B)Ld
and z = Mx(B)LY we have that if (4.21) holds, then up to making the constant larger
in (4.21), (4.10) and (4.11) hold and the result follows by applying the result of Proposi-
tion 4.2. U

Remark 4.4. When summing the contributions over Q where n points fall and U\S) where
N — n points fall, the errors of (4.14) compensate and add up to a well bounded error.
More precisely, if a, o/, respectively v,~" satisfy (4.12) then for every n we have

o) 1 n—n 1 n
(4.23) a—a’—i—(n—n—a)loga—(Oz+n—n—|—§)log<1+ > >+§logﬂ

1 — 1 N —
+7’—7+(n—n—7)10g%—(7+n—n+§)10g<1+n7n>+§1OgN_Z

d—1 2
<c <R~ L S )
/ /3 Rd—1

Proof. First we notice that since the expressions arising here originate in Stirling’s formula,
they can be restricted to the case of a+n—n>1,vy+n—-n>1,n>1land N—n>1
(all the quantities involved are integers).

We then study the expression in the left-hand side of (4.23) as a function of the real
variable n (with the above constraints). Differentiating in n, we find that it achieves its
maximum when

~yo! l 1+n—n N 1 . 1+n—n 1
g 8 a 2(a+n —n) & Y 2(y+n—n)
1 1

S S—)
+2n 2(N —n)

log
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Usinga+n—n>1,v+n—n>1,n>1 N—n>1and (4.12) we deduce that

log<1+u>—log<1+g>'§6'
ol «

1+ 28

=

and thus

is bounded above and below

and it follows easily in view of (4.12) that |n — n| < C/R%. To find the maximum
of (4.23) it thus suffices to maximize it for such n’s. But for such n’s we may check that

« N—n
only on d, m, A, hence it suffices to obtain a bound for

%log (1 + u), %log (1 + %), log * and log M-n are all bounded by a constant depending

(4.24) a—a’—i—(n—n—a)logg,—(a+n—n)log (1+n—n)
a a

n—mn
+7’—7+(n—n—7)10g%—(v+n—n)10g(1+ S )

Differentiating in n, we find that this expression is maximal exactly for

il

— g — -
142 nzvoi(l_i_n n)<:>n:n+71 a
g Yo a

,Y/ Oé,

Inserting this into (4.24) we find that the expression is then equal to

_ _ /
a—o/—alogg/—alog (1+u) —vlog <1+u) —{—(n—n)logl
a a v v

d—1 2
_0 <R~ L s )
(' BR

where we used a Taylor expansion and (4.12). O

The next goal is to select s, /¢, ¢ to optimize the errors made in Proposition 4.2. This way
we obtain the main result of this section, which shows that if one has good energy controls
at some scale, one can deduce some control at slightly smaller scales.

In all the rest of the paper, we will denote the event that X7 has n points in 2 by

(4.25) A, = {Xy e UV, #({ X5z N Q) = n}.

Proposition 4.5. Assume U is either RY or a finite disjoint union of disjoint hyperrectan-
gles all included in X with parallel sides belonging to Q, for some p > max(l,ﬁ_%), or the
complement of such a set. Let p be a density such that 0 < m < pu < A in the set ¥ and
w(U) = N is an integer. Let Cy = % for the constant C' of (B.8).

There exists a constant C' > 0 depending only on d,m and A such that the following
holds. Assume that Qg is a hyperrectangle of sidelengths in [R,2R] with sides parallel to
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those of U, that p(QrNU) =n and QrNU C X. Assume that there ezists a cube O, of
size L such that

g Equ (0 (5 (F2(.0) + Cot((xx) ) ) )| < Cononzs

with C > 1, and such that U, contains Qp 7 NU with

(4.26)

L>R> 1L,
2
(4.27) 7 = OC max <X(5)Rd%, (B iRY R3B7S, 5—%1d:2) ,
and
(4.28) R > C'max(1, 372 x(8)7)

for some C" depending only on d, m, A, the constant C' in (4.27) and C. Assume in addition
that

(4.29) dist(Qr N U, 05 NU) > L.

Then there exists a sequence 7, satisfying

N

(4.30) D < exp (—CBX(B)R?).
n=0

such that we have

431) E B E@n (o

(4.31) Equ) ( exp §F r=20( X, U)ly,

8
K2(Qr) C d Co
<Y+ o — R — — :
< Yo+ K5 Qn) exp | 8 4)((5) +|n—n|+ 5 "
Once one has obtained local laws down to the minimal scale pg, Corollary 4.3 will allow
to improve the error term and bound it by R4~!.

Proof. Step 1: the case of excess energy. Recalling the definition of A, in (4.25), and
letting S be as in (4.2) and M > 0 be a constant to be determined below, we define

B, = { Xy € A, S(Xylac) < MCx(B)L?, S(Xyla) < MCx(B)L"}.
We also define

B = {Xy_ € (U\Q)V ", S(Xy_,) < MCX(B)L},

B, = {X, Q" S(X,) < MCx(B)L}.

It is clear that if X5 € B, then Xy|oe € B and Xyl|o € B;,. Also, if X3 € B¢ then, in
view of (B.8) and the definition of S, we have

MCx(B)L°

PO (X, U) + Cott (X} N D) 2 =2
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hence
Eawy (o0 (5 (F(.0) + (X} 1) 1, ) )

d i
> exp (g%) Equ) (exp <§FQ(-, U)) 13%) .

It follows that
Bé
(432) IE:Q(U) exXp §F (7U) 16761 S Tns

with mev:o Y < €xp (—Cﬁx(ﬁ)Rd) in view of (4.26), provided M is chosen large enough,
depending only on d, m, A. We henceforth fix M.
Step 2: the case of good energy bounds.

We now wish to estimate the same quantity in the event B,,. Let (< iR, to be determined
later, and set

(4.33)

4

with C' as in (4.10). This way, choosing s = MCyx(83)L?, the screenability condition (4.10)
is verified. To apply Proposition 4.2 we also need C' max(1, B_%ld:2> <l(<I< iR and
s < cl?R%! thus we need

o (CMCX(B)Ld) s

(4.34) max (5*%1#2, (MCX(B)Ld)d*%) <l <CMCx(B)L' (< iR
and
(4.35) CMCx(B)L® < PR,

Using (3.3) and (3.2), we have

EQ(U) (exp (gF;)(’ U)) 1[;”)

1 o o€ —
== / exp <—§FQ(XN, U) — BF? (X7, U)) du®N
NYK(U) /B 2
1 NI

<

_E & : — Q\So) . ) ®n
NK(U)R!(N—n)!/mﬂBneXp( FHo (5 Q) = BH (-, Q) ) dp

>< / B exp (—BHy (-, U\Q)) dp®N =),
(U\Q)N-mNBE
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Inserting (4.15) applied in U\{2 and (4.16) applied in €2 and using Remark 4.4, we deduce
that

EQ(U) (exp <§F§(7 U)) lgn)

1 N! L ¥onye? , 5
< NNK(U) (N — n)!Cn (N —n)"7"K2(Q)KZ(U\Q) exp <55€ + ey + Zcon)
with
Y om0 ((HODE ¢ )+ o=l
and
(4.37) e, i=C (MCX(B)Ld LR (MCX(ﬁ)Ldg)Q)
| . o v /3 Rd—1 )

where we used the choice s := MCx(8)L. We may also bound from below K(U) using (3.8)
applied with Q and U\, which yields

Nin®(N —n)¥— Kz (Q
NP s gk < )
N K(U)n!(N — n)! KA(Q)
Inserting into the above, we obtain that
Eq) <exp ( ) 15, >
nl(N —n)ln"(N = m)¥ " K5 () ( 8 )

< (C—= — e €e+ €y + =C
— nl(N —n)n*(N — ) n KA (Q) <P\ 7 P

By Stirling’s formula, for every n < N, we have

n!(N — n)n"(N — n)N-n n(N —n)
n!(N —n)n(N —n)N-n n(N

We may therefore absorb the log of this quantity into €,, and conclude that

: 3(0
(438) EQ(U) (eXp (gFQ(, U)> 1Bn) < Ciﬁéﬁ)) exXp (556 + &y + gC()TL) .
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We now search for the smallest ¢ such that the terms of Pee+ e, (except those involving n
and n) are < ﬁ%Rd that is

MCx(B)L _C
0 4
d—17, C
CRTUx(B) < ZR

CMC)((?)Ld < C

C R

L (MCx(B)11)”
\ Z?’Rd_l

C o
< Z
< 4BR

and also (4.34), (4.35) are satisfied. Inserting (4.33), after direct computations we find that
this reduces to the conditions:

_d(d+1)

(7> coMy(B) LR %,
CR

Cx(6)

(= CMx(B)5~" s R7L,

(> CR'p'c,

0

1 2 d 1—-2d

(> M5Csx(B)sL5R 5 373,

wl—=

| CMCx(B)LY < PR

for some constant C' > 0 large enough, and depending only on d,m and A. With our choice
R < L < 2R, this reduces to the following list of conditions (notice the sixth one above
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ends up redudant with the first and seventh and the seventh with the second) :
[ ~

7> CCM(B)R#%,

It suffices to take
Ti= CoM max (x(B)R A(8)5 R RSG5, 641400

R > C(C. M)max(1,52x(5)5),
for some sufficiently large C' > 0, depending only on d, m, A. Combining (4.38) with (4.32),
we obtain the result. O

5. MAIN BOOTSTRAP AND FIRST CONCLUSIONS

This section contains the core of the proof, i.e. the bootstrap procedure that allows to
show that if local laws hold down to a certain scale, they hold at slightly smaller scales.
We note that the local laws are valid up to the boundary as long as one remains in the set
where 4 > m > 0.

Proposition 5.1. Assume ji and U are as in Proposition 3.8. Let p be a density such that
0<m < pu<Ain the set X. Assume that ((U) = N is an integer and that

(5.1) if d>3, |0U|min(1,352) < SN.
There exists C' > 2 depending only on d,m and A such that the following holds. Let
(5.2) pp = C max (17 ﬂ’%x(ﬁ)%, 5‘1_%_11d25) :

Let Og(x) be a cube of size R > pg centered at x included in ¥ satisfying
(5.3) dist(dg(x),05NU)

> dy i= Cmax (X(BNTZ, ()8 45", N3675, 87 F log(AN) Lo )

Then we have, for Cy = % with C' the constant in (B.8),

54)  togEauy (xp (55 (FH OV, 0) + Gk 0 Oalo)) ) ) < AR
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Proof of Proposition 5.1. We first note that it is enough to prove the result in hyperrectan-
gles Qr € Qg, with sides parallel to those of U and even more generally in @, . if (< %R,
with R > pg as in (5.2). Indeed, thanks to the lower bound on p, general cubes of size
satisfying (5.2) can be covered by a finite number of such hyperrectangles. The proof then
proceeds by a bootstrap on the scales: we wish to show that if

55 togBaw (exp (5 (FHO0,0) + Gt (X n0ule) ) ) < Con(B)LY

for any Oy (x) sufficiently far from 0%, then if %L >R > %L, and as long as R is large
enough, we have

56)  logBau (exp (5 (F(,0) + Cot{Xm) N Q) ) ) < oM

By iteration, this will clearly imply the result: indeed in view of Corollary 3.9 and (5.1)
and up to changing C if necessary, we have that (5.5) holds for L > %N 4. Without loss of
generality, we may now assume for the rest of the proof that L < %N 7

To make sure that the constants are independent of 8 and R, we have used the notation C,
and we wish to prove (5.6) with the same constant C as in (5.5). In the sequel, unless
specified, all constants C' > 0 will be independent of C, i.e they may depend only on d, m
and A.

Let us now consider Qg € Qg, denote n = pu(Qr N U) and as previously, denote by A,
the event that X, a configuration of N points in U, has n points in Qz N U. We wish to
control

Equ <exp (g(FQRﬂ“(-, U) + Oon)>)

_ nﬁ;exp (g Con) Fow) (exp (S(FQR_Qz(., U))1An)> .

The terms in the sum for which n is close to n, more precisely |n —n| < K Rz are easily

treated using (4.31). The terms for which |n — n| > K R%"2 will be handled separately and
controlled by energy-excess considerations.
To apply Proposition 4.5 we need @, 7 to be included in a cube [y, in which the local

laws hold and at distance > ¢ as in (4.27) from . At the first iteration L is of order N4
and R > %L so we need

dist(Qn, 0%) = CCmax (X(B)NTZ, x(B)3 7 IN"8, N 874, 3414 ),
which is (5.3). At further iterations, to have Qp 7 be included in O, we need a fur-
ther distance of C'C max (X(B)Rﬁ,x(ﬁ)ﬁ_l_%R_l, R%ﬁ_%,ﬁ_%ld:2> . Since R is multi-

plied by a factor in [%, g] at each step, and since we only consider R > pg, we have at

most O(log(BN)) steps and summing the series over the iterations gives a total distance
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1

> max (X(B)Nd%?,X(B)B_l_épgl,Niﬁ_%,B_% log(ﬁN)ld:2>, hence a condition of the
form (5.3) suffices.

Step 1: the bad event. We claim that in the bad event [n — n| > K R%"2, we have
(5.7) FOrts (X, U) — F9"(Xn,U) > CR'" ¥In — n|> = CNg,,,

where N, , denotes the number of points in Q43 and C' > 0 depends only on A and d.
Assuming this, and changing Cj to the larger constant in (5.7) if necessary, we then write

(5.8) Equ (exp (g(FQR(-,U) + an)) 1An)

< Equy <eXp (g(FQR”(-, U)+ CONQR+3)) 1An) exp (—ﬁCRl’d]n —n*+ ﬁCon) )

Since L < 2R and |n — n| > KR 2, we now see that if we choose K = C'\/Cx(j) where
C > 0 is large enough and depends only on C,Cj and d, the exponent in the second term
in the right-hand side is at most —CS3x(5) L.

Using (3.2), (3.3) and (B.8) we may check that

FORE3 (- U) + CoNopyy < FPE(-U) + CoNoy,

hence in view of (5.8) and the assumption that (5.5) satisfied in a cube [0, containing
®r+3, we may bound

(5.9) i log Equ) <GXP (g(FQR('a U) + Con)) 1An>

n=KRd
= 8
S exXp (—Cﬂx(ﬁ)Ld) ZEQ(U) (exp (§(FDL(', U) + BOONDL)) 1An) S 1.
n=0
To prove the claim, in view of (B.10) we may write
(5.10) 0/ Vs> > CR" (Jn —n| — C(1 + ||u||Loo)Rd‘1)2 > cR'™n — n|?
QR+2\QR+1

if K is chosen large enough (depending on d and A), where ¢ > 0 is a constant depending
only on d,m and A. In view of (3.3) we have

(5.11) FQr+s (X7, U) — FQr (X7, U) > FQr+3\Qr (Xx, U).
By (B.8), we may write that

CFQRJrB\QR(XN’ U) > / |VU,?|2 — CNops
Qr+3\QRr

where uz is computed with respect to Qr13\Qg. But by definition |, On |Vus|? is larger

+3\Qr
than fQRJrZ\QRfl |Vus|? with this time ¥ computed with respect to U, which is bounded

below by (5.10). Inserting into (5.11) we thus conclude (5.7).
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Step 2: the good event. We next consider the terms for which [n —n| < KR 2. For
those, we may apply Proposition 4.5 (at least if R > C' with C' made large enough). We
need to assume (4.28). In view of (4.31) we may thus write

> Equ <exp (g (FOr—2i(-,U) + C’on)) 1 An)

1
|n—n|<KR%"2

n+ KR 2 8
< Z exp (5 <§X(B)Rd +|n —n|+ Con)) iﬁ((gj:)) + Y €Xp (g(]on> .
n:n—KRd_%

Recalling the choice of K as C'/Cx() and using that n = u(Qr) < ARY, we have that
if [n —n| < KRz, then if R > Cx(3), we have KRz < CR? and n < CRY, with C
depending only on d, m, A.

Using (4.30), and the fact that, by (3.10) and (3.13),

82
(5.12) log (ﬁ(Tii};)

we deduce that, for every R > Cx(f),

o
-

n—‘,—KRd*l/Q

Z Equ) <exp (§ (FOr—2i (-, U) + Con)) 1An)

n=n—KRI—1/2
< 2R%exp (6 (%X(ﬂ)Rd + COCRd)> exp (CBX(B)R" + C'min(B72, 1)Rd-1>
+ exp (BC’OC'Rd - Cﬁx(ﬁ)Rd) .

Making C larger if necessary (compared to the constants Cy, C' appearing here) we deduce

n+KRI-1

(5.13) > Equ (exp (g (FOr-2i (-, U) + Con)> 1 An)

n=n—KRd4-1

< exp (ng(ﬁ)Rd + C’min(ﬁﬁ, DR 4+ Clog R) :

The term in min(f3 d—%, 1)R4~1 can be absorbed into Bx(B)RY if we assume in addition that
R > Cﬁd%fl (for dimension d > 3), this condition itself is implied by R > OB~z ifd = 3,4.
The logarithmic term can then also be absorbed using (5.2).

Step 3: Conclusion. Combining (5.9) and (5.13), we conclude that (5.6) holds and this
finishes the proof. O

Corollary 5.2. Assume the hypotheses of Proposition 5.1 for Og(x) with R > pg as in (5.2)
and let B be a ball such that 2B C Og(z). There exists C' > 0 depending only on d,m and
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A such that

N 2
(5.14) logEQw)(exp( R*9p ( / > o —du> )) < CBx(B)p,
Ur =1

and letting
N
D= [ (Z(Sm—dp)
B\ i=1
we have

2
(5.15) log Eq(u <exp (g% min (1, %))) < CBx(B)R?

Proof. We may suppose x = 0. First, we observe that by choice of Cj and (B.8) we have
for any R > pg

(5.16) g Baw) (exv (50 [ 1V ) < oo

where ¥ is computed with respect to 90z. We next may use either first (B.9)—(B.10) or
second (B.11)—(B.12) to deduce from this a control of the discrepancy.

In the first way we cover gy 9\Ogr_o by at most O((R/pg)?t) cubes Q. of size pg.
Applying (5.16) for the cubes Q) and using the generalized Holder inequality

k

(5.17) E(fi... fi) < [[E(H)E

i=1

which can be proved by induction, we find

R
(5.18) log Eq) (exp (C‘lﬁ(—)l‘d/ \Vur|2>> < CBx(B)ps,
Pp ORr+05\OR—pp

for some constants C' depending only on d,m and A. In view of (B.9)—(B.10), we then

bound
/ Z(S —du
0

R =1
Inserting into (5.18), we find (5.14).

In the second way, we simply bound [, |Vuzf* using (5.16). Inserting into (B.11)-(B.12)
directly yields (5.15). O

2

< O3 B4 1 RO / Ve,

r
Or41\Or-1

5.1. Conclusion: proof of Theorem 1. We apply Proposition 5.1 in U = RY, since (5.1)
is then automatically satisfied, it yields that for any Og(z) satisfying (1.16), the esti-
mate (5.4) holds. Then (1.18) and (1.19) follow from Corollary 5.2. The bound (1.20)
follows from the combination of (5.4) and (B.15) applied in RY. Finally, (1.21) is a conse-
quence of (B.7) and (5.4) applied with R = pg.



LOCAL LAWS FOR COULOMB GASES 49

Remark 5.3. We note that similarly, all the results of Theorem 1 hold for the Neumann
Gibbs measure Q(U) of (2.34) for any U and they can also be proven to hold for the Dirichlet
Gibbs measure Pn(U) of (2.35) away from the boundary.

5.2. Proof of Corollary 1.1. Let us recall the setup for point processes, following [LS1].
We denote by X (A) the set of local finite point configurations on A C RY or equivalently
the set of non-negative, purely atomic Radon measures on A giving an integer mass to
singletons. We use C for denoting a point configuration and we will write C for ZpEC Op
and |C|(A) for the number of points of the configuration in A. We endow X (RY) with the
topology induced by the topology of weak convergence of Radon measure (also known as
vague convergence or convergence against compactly supported continuous functions), and

we define the following distance on X’
sup { Jo, f(C =€), IV ey < 1}
ICI(0k) + 1C1(C) '

The subsets X'(A) inherit the induced topology and distance. As seen in [LS1, Lemma 2.1],
the space X(A) is then a Polish space.

NS
(5.19) dx(C.C) =) o
k=1

Now let 3 be fixed and let x be a point as in the statement of the corollary. Let Py
denote the the push-forward of Py s under the map from (R*)" to X'(RY) given be

N
(x1,...,zN) — Z(sfi—‘”'
i=1

We wish to show that Py is tight. Indeed, since X'(A) is Polish, Prokhorov’s theorem
will then imply the existence of a convergent subsequence for the topology on X'(A). Let
now N denote the map C — |C|(0y), i.e. Ni(C) gives the number of points of X in [Jj.
By (1.19), we have that for any k, if M is large enough,

Pyg (No({z1 — 2, .. oy — 2}) > MEY) < exp (—CsM>k*?)
or in other words, by definition of Py,
Py (NVi(C) > MRY) < exp (—CaM?k*?).
It follows that letting Ky, = N, {C, N%(C) < MR},
1
Pn(Ky) > 11— &

hence to conclude that Py is tight, it suffices to justify that K, is compact in X' (RY).
Let (C,)n be a sequence of point configurations in Kj,. By definition |C,|(Cg) is bounded
uniformly by some pj independent of n for each k, hence by compactness of [I}*, we may
find a subsequence such that C, converges in X'([J;), and by diagonal extraction we may
find a subsequence of n such that C, converges in X' () for each k. By definition of the
distance (5.19), this implies that (after extraction) C, converges in X'(RY). This proves that
K is compact and finishes the proof of convergence of Py up to extraction.
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The fact that the points are simple under the limiting process is a consequence of (1.21).
The finiteness of the moments of all order then follows in view of the bound of all moments
of the number of points, provided by (1.19).

6. LEVERAGING ON THE LOCAL LAWS: FREE ENERGY ESTIMATES

6.1. An almost additivity result. We next prove a general subadditivity result that
makes use of the local laws. Comparing it with the a priori superadditivity result of (3.8)
gives additivity up to an error.

Proposition 6.1. Assume that 0 < m < pu < A in X. Assume U is a subset of ¥ at
distance d > dy from 0¥ with dy as in (5.3), and is a disjoint union of p hyperrectangles
Q; belonging to Qr, with R > pg satisfying

1
1 RI—1\ ¢
6.1 R > ps+ log
o re (ﬂx(ﬁ) 5 >
and in addition, if d > 4,
(6.2) R > max(87= ", 1)Nad "

Then there exists C, depending only on d,m and A, such that

(6.3)

log K(RY) — <log K(RND) + Zp: log K(QZ))

=1

<Cp (ﬂRd‘lpﬁx(ﬁ) + B ax(p) e (log p—i) ’ Rd‘l) :

If U is a subset of ¥ equal to a disjoint union of p hyperrectangles QQ; belonging to Qg, with
R > pg satisfying (6.1), N; = p(Q;), then we have, with C' as above,

(6.4) .

log K(U) — Zlog K(Q:)

<Cp (BR“X(ﬁ)pﬁ + Bl ay(p) <log E) ’ R‘“) :

Proof. We will only prove upper bounds for log K(RY) and log K(U), since the matching
lower bounds are direct consequences of (3.8), Stirling’s formula and the control (6.8) below.

We recall that the local laws hold down to scale pg in U = RY. In particular, for any
cube U in U of size r > pg, we have

(65) g Bage ex0 (500 [ 1V} ) < Créx(s)

Let ()1 be the first rectangle in the list, and let us denote by n the number of points a
configuration has in @; and by n = u(Q1). Let us also define

@1 = {x € @, dist(z,00Q;) <r}
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and

B = {XNE(]Rd)N D n—n| <e, sup/A

Q1NO, (33)

e= M (Rdl\/m>

and M > 0 is to be selected below. The first condition |n — n| < ¢ in the definition of B
has large probability in view of (5.14). For the second condition, by a covering argument

we have % conditions to satisfy and each of them has probability of the complement
bounded by exp (—Mﬁx(ﬁ)rd) if M is large enough, in view of (6.5). Using a union bound
we thus have

Virf? < Mx(ﬁ)?“d}

where we let

d—1

fd_l exp (—MBx(8)r?)

QRY)[B] <

and this is < % if
d—1 g 1
Tdil €xXp (—M5X(ﬁ)7" ) S

so we choose

1
1 Rd-1 d
(6.6) r=Mps+ log ——
P BX(B) T
which satisfies the condition if M is large enough. It follows that
1
NN [ exp (=fF()) dp® = QRY)[BIK(RY) < JK(RY).

BC
We thus have

KR < [ exp (-5F0) du

n+e N'
= 2 méexP(_ﬁHwﬂ@ﬂ)@m /B exp (—FHza (- RNQ:)) du® N,

n=n-—e&

where for the second line we subdivided the event over the possible values of n and
applied (3.2).

We now apply the results of Corollary 4.3 with L = r to Q; and R4\ Q1, combined with
Remark 4.4. For that we check that (4.21) is satisfied since r > pg, and obtain

K(RY) < 2K(QK(RNQ1) > %n”(]\f — )N
2 2 pd—1
X exp (Cﬁ (R™'rx(B)M +¢) + w) .
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Next, using Stirling’s formula we have

NIN=Npn(N —n)N-n o N
n!(N —n)! - 2mn(N —n) —

and we deduce
log K(RY)
< logK(Q1) + log K(RN\Q1) + C + loge + B (MR*rx(8) +¢) + w_
Since

(6.7) r > ps > max(1, x(B)

N[
N[

p2) =1

we have @ < Br so we may absorb the last term. Also, since r > pg > 1 and x(8) > 1,
by definition of € we may absorb ¢ into M R~1ry(8). Since R > pg > 1/x(8), we have
R\ /x(B)ps < CRY, so inserting the definition of r, we find

log K(RY)

1

< log K(Q1) +1og K(U\Q1) +C'log R+CBR pax(8)+ OB 4 R (log %) (@),

Finally, since R > pg > Cx(ﬁ)%ﬁ’% we have that, for every R > pg,

(6.8) log R < CBx(B)psR*™,
which allows us to absorb the log R term into the others.

We may now iterate this by bounding log K(RY\ U’_, @;) in the same way thanks to
the local laws up to the boundary of Proposition 5.1. For this we check that for every
J <p, R\ UL, Q; is a set satisfying the assumptions of the proposition, in particular (5.1):
indeed,

, mdN1~d
p(EA\ UL, Q) > TS

where we recall d > dy, while
d d—1 d—1
ORNUL, Qi) < CpRT < Cg R = O

hence the condition (5.1) if (6.2) holds. This yields (6.3).
The proof of (6.4) is analogous, using that the local laws hold up to the boundary for Q(U)

and that for any union of hyperrectangles in Qg with R > pz we have min(1, Bﬁ)\aU | <
CBu(U), for some C' > 0 depending only on d, m, A, hence (5.1) is also satisfied. O
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6.2. Free energy for uniform densities on hyperrectangles: proof of Theorem 2.
We are now ready to compute log K(Qr) when the density is constant in a rectangle Qg,
taking advantage of the superaddivity of log K and the almost additivity provided by (6.4).
We reintroduce the p dependence in the notation K(U, ).

Proposition 6.2. There exists a function fq on (0,4+00] and a constant C' > 0, depending
only on d, such that the following hold:

e for every B > 0,

(6.9) —C < fa(B) < Cx(B).
o fy is locally Lipschitz in (0,400) with

Ox(8)

(6.10) OESS

o if Qr € Qr and R > pg satisfies

1 Rdfl d
R > pg+ log —= ;
’ <6x(5) of 1)

then
log K(Qr,1)
BlQr|

Proof. We first start by treating the case of a cube Oy with RY integer. In view of (3.8),
we have

#5000 (M2 (s b 1og 1)),

=
Q=

(6.11) log

1 log N 2d
Elog K(O2r, 1) 2 O ( gﬁ ) + 3 log K(Ug, 1).
Thus, denoting ¢(R) = bgg%”, this means that

o2m) = () +0 (5

and summing these relations we have

¢(oo>z¢<R>+0(oo “ﬂ)

325 R
that is,
(6.12) S(R) < ¢(00) + O <IOgR>
. < )

On the other hand, in view of (6.4), we have

(6.13) K(Ogg, 1) < 2%1og K(Og, 1) + CBRY (

>
T
N
R
™
+
N
al—
=
=
|
al—
<)
OS.\»—‘
S | =
N————
N———
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that is,
1 1 1 R
o) < o(m) + ¢ (N (pa+ 5minto) S 1ogt 1) )
Ps
Summing these relations, we conclude just as above that
1 1 1 R
(6.14) o(0) < 0(8)+ 0 (X5 (o + 57 Hhogd 1) ).

Denoting by —f4(5) the value ¢(c0) and recalling (6.8), we have the desired bounds for
@ r = Og by combining (6.12) and (6.14). We may then generalize to Qr € Qg by another
application of the sub/superaddivity of (3.8) and (6.4) and the a priori bounds (3.10)
and (3.13).

In view of (3.10) and (3.13) applied with = 1 and U = Op, we also have —C'x(8) <
¢(R) < C with C independent of §. This implies that —C' < f4(8) < Cx(B).

To prove that fy is locally Lipschitz, let us temporarily highlight the $-dependence and
compute
K,B-HS(DR)

Koy~ 0eEacw (0 (=0F(, Or))

log
< -

<5 log Eqog) <eXp (%W(-,DR)))
< C|o|x(B) R,

using Holder’s inequality and (5.4). Dividing by 3R? and sending R — oo yields (6.10). O

The proof of Theorem 2 is now complete.

We may scale the formula (6.11) to obtain the limit for any uniform density: we have if

Q€ Qp and Q' = miQ.

miF(mi Xy, 1,Q) ifd >3,

F(X =
v @ {F<méXN,1,Q’>—%logm d=2

Thus, highlighting the 8 dependence, we have that

KA (Q,m) = m~ "K' (' 1) exp (%@mlogmldzz) .

It follows that

2
d

log K¥(Q,m) _ 5 2log K™ (@', 1)

=m

BlQ)| Bm*3|Q|

+ (—mlogm + gmlog mldzg) .

1
B
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Using the result (6.11), we deduce that
1Og KB(QRv m) _

(6.15) BQnl —mQ_%fd(ﬁml_%) — %logm + im(log m)1ly—s
x(5) 3 (8) - logh B
+0 (? (p5+ﬁ x(B) "¢ log pﬁ)),

where the implicit constant in the O(-) depends only on d and m.

6.3. Case of a varying p. In [Se3] we will obtain precise expansions for the expansion of
log K when g varies, however in preparation for Theorem 3, we give a first rougher estimate
that we deduce from (6.15) combined with (6.3). For this, we will need to assume some
regularity of .

Lemma 6.3. Assume u(Qr) is an integer. Let @i be another measure with f(Qr) = w(Qr)
and assume that both p and 11 have densities bounded below by m and above by A. Then
there exists C' > 0 depending only on d,m and A such that

o8 2| < OB = Bl + Cll — i (BVATIRS + 1)

C
+CMMMVMMW+E-

Proof. Let us denote N = (Qg). Let Q(Qr) denote the Gibbs measure for the density 7.
We have

(6.16)

Eggig; = Eqn) | exp | B(F(Xx. 71) — F(Xg, 1)) + ;(bgu — log ) (z;)

Then from (2.21) we have

F(Xx, T, Qr) — F(Xy, 11, Qn)| < /

Qr

r; |

N
Vul 2 [Vl Vel + =l Y [ 1
R i=1

where u is the solution to (2.22) with fi, and w is the mean-zero solution to

—Aw=p—p in Qg
(6.17) { ‘31;’ =0 on 0Qg.

Using (B.8) and since ¥ =T in this instance, we have
/ Vur|* < C (F(Xy, Qr, ) + CRY)
Qr
while testing (6.17) against w and using Poincaré’s inequality allows to show that

/Q Vul < CR* | — 2o
R
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and the third term can be bounded by R||p — || (g, using that
(6.18) If.| < Ca?
Rd

with C' depending only on d. For the log 1 terms we write

] =

N
(log 1 — log i) (z:) = /Q (og i~ logmdp+ [ (log e~ logmd | Y- d, ~
R j—

1 Qr

.
Il

Let us denote wy for Zzﬁ_l 0z, — [t. By interpolation between Holder spaces we have
lwllcomy < lwnllign. logllizon. < CN' " wxglicon. < CRUO™|wy|toa.,

hence using the local law (1.20) we have

(6.19)

log Equon) (exp 2 wylPoony: )| < CAX(B)RX.
C

Using now that x < f8x? + ﬁ we deduce that for every ¢ < % with C from the above
inequality, we have

2
s (oo (| )| v (o () )

+ Cepx(B) Rl Zo.x

< 4 5
where we have used Holder’s inequality and (6.19). Optimizing over € < 1 and applying to
o = log u — log 1, we deduce that

C
log Eq(n) (exp ( /Q (log 11 - 1ogmwﬁ)) ‘ < Cllen VXGRS + 5.
R

It follows that

log Eqqp) (exp (Z(logu - logﬁ)(%)»

i=1

_ C
< ORlp = 7l + Cllpllcon v/ X (B) R + B

Combining these estimates with the local law (5.4) we deduce that for every A, we have

K(Qr, 1)
‘1 KQn 1)

+ 1D)BR™ | — Aill7 g + CORY|p — Tl 1

C

5

Optimizing over A yields the result. O

C
4 <o+ (§

+ CRYp — Tl o + C|pl| oo v/ x(B) R +
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Proposition 6.4. Assume ||p|cox < ON~4 for some k > 0, and R > ps as N — oo.
Then, as N — oo,

ol

(6:20) logK(Qr i) = —B [ 1% fal(Bu'™ )+(§1d2—1) [ mogiro L+ AR,
QRr Qr

where the term o(-) on the right side is independent of 5.
Proof. For any r € [pg, R], we may partition Qg into cubes @); belonging to Q,. In view
of (6.4) we obtain

d

log K(Qr 1) Zlog K(Qi, 1) <5X(B)R7 (PB +B79x(B) "¢ log? L)) .

Ps

r ))
2
_ 2K _kE N % 1
+0 (53‘* (rM“N @ +CN™a ( Byt 4 L 3 )) +5)

For R > ps we have + 5 < R hence we check that we may choose ps < r < R such that

the right-hand side errors are o((1 + B)RY). Inserting also (6.15) and using the Lipschitz
bound on fy (6.10), we obtain (6.20). O

Using (6.16), letting 7z; denote the average of u in @;, we then obtain

d

IOgK QR7 ZIOgK Q17Mz) + O (BX(B)RT

Q|

(w + B ax(8) 9 log

7. THE LARGE DEVIATIONS PRINCIPLE: THE PROOF OF THEOREM 3

First we note that the assumption dist(z, d supp ) > CO~'/2 and the fact that p,, € CO*
ensure in view of [ASe| that py is also in C%* in Og(z). Translated to the blown up scale,
this gives us a bound by CN—"*/¢ for the C%* norm of yu = p, so that we may apply

Proposition 6.4. Since we assumed that R < N ¢ this also implies that, as N — oo,
(7.1) 11 = 1v (20) | oo (@ (1 /920)) < 0(1)-

We consider P a probability measure on infinite point configurations, stationary, with
intensity py (o), and B(P,¢) a ball for some distance that metrizes the weak topology. By
exponential tightness (see [LS1, Sec. 4]) it suffices to prove a weak LDP, i.e. relative to
balls B(P,¢).

We thus focus on proving upper and lower bounds on log ‘Bf\?f(B (P,¢)). For simplicity,
let us denote Oy for Og(NY4z).

Step 1: reducing to good number of points and good energy. Since R is large
enough, we may include Ui in a hyperrectangle Qr € Qg such that |Qr| — |Dg| =
O(RI™1) = o(RY).

Let us denote by n the number of points a configuration has in Qg and by n = u(Qg)

which is an integer. Since we assume R > pg > C' max (ﬁ_%x(ﬁ)%, 1), for ¢ small enough
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we have R*7%7 > x(8) hence in view of the local law (1.19) and (5.16) we may write that
for some o > 0

(7.2) Py s (|n —n| > Rd’U) < exp (—CﬁRdH)

and

(7.3) Pys (SHP/D [V |* > Cx(ﬁ)R“") < exp (—x(8)BR?)
z Rrlto/d

for some C' large enough independent of R and . Hence we may restrict the study to the
event

B= {In —n| < R, sup/ [Vu]* < X(B)R‘”"} :
z DR1+0/d

since the complement has a probability which is negligible in the speed we are interested in.

Step 2: upper bound. We recall that 5% is defined in (1.31). Using (3.3) and (3.2)
(recall G = Hga), we have

B (B(P,e) Ny (B))
_ 1 /
NNK(RY) J;zo0- H(XN)EB(Pe)NB
1 /
< —vosa exp (—BG(Xn|qgg, @r) — BG
NNK(Rd) 20 R(XN)EB(P,E)HB ( ( N|Q R) (

Splitting up the events as in the proof of Proposition 5.1 with n being the number of points
of the configuration which belong to (), and using that if\?’R (Xx) depends only on the
configuration in (g hence in ()r, we may then write

(T.4) PR (BPe) Niy™(B))

exp (—BG(XN,]Rd)) dp®N (X )

e, Q%)) du® (Xy).

d—o
n+R NI

1 | .,
= NNK(R) 2 nl(N —n)! /zgnm(Q%)Nn exp (—B6(, Q) du™

n=n—Rd—7
x / ) xp (~B6( X, Qn)) A" (X,),
S0(X,)EB(Pe)

where B,, is B intersected with the event that Xy has n points in Q.
On the one hand, noting that Hge = G, (4.22) applied with L such that R > L > pg
and combined with Remark 4.4 yields

/ exp (—BG(-, Q) dp® N
BnN(Q%)N—n
< (N —n){(N —n)N-n
- (N —n)!
with C' independent of 3.

K(Q%) exp (C(Bx(B) + 1)o(R?)),
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On the other hand, Proposition 2.4 in [Le2] (stated there for dimension 2 but extends
with no change to general dimension) itself relying on [GeZ, Theorem 3.1] states that® if
m = limp_,o % then

lim lim — 1og £®"{Z$° R(X,) € B(P,e)} = —(ent[P|IT™] — m + mlogm).
e—0 R— Rd
Therefore, we have

1 1 ®Rn SEOR _ m
ll_r}(l)}%lm ﬁlog —iH {iy"(X,) € B(P,e)} = —(ent[P|II""] —m)

with m = py (70), in view of (7.1), the fact that n = u(Qr) and |n — n| = o(RY). In what
follows we continue to denote m for either py (z) or a generic point density (not to be
confused with the lower bound for x that we had been using so far in the paper).

Moreover, the lower semi-continuity of the energy and the characterization of G by (2.26),
the fact that |Qgr|\|Ur| = o(RY) ensure, see for instance [PS, Prop. 5.2] or proof of
Proposition 4.6 in [Le2], that if i%"(X,,) € B(P,¢) then

h]vnlngG(X"’QR) > 2W (P) —o-(1).

Combining these facts and inserting them into (7.4) leads to
(7.5) PV5 (B(P.e) niy"(B))
< exp (=1 (J(P) + (entlPIT"] = )+ (14 B)oo(1) + CONH)R )

H+Rd70-

1 N!
- (N —)VK(0S).
X VKRS 2{10 (N—n)!( n) (Q%)
On the other hand using (3.8), we have
NIN-N
K(RY) > K(Qr)K(QR),

n!(N —n)ln (N —n)-(N-
and inserting this into (7.5), we find
Ps (B(P.e) Nig"(B))

< R exp (—Rd(gwm(f’) + ent[P|II"] —m) + (1 + 5)057]\[(1)) K(Qr) 'nln™™

B

< exp (—Rd(gwm(P) + ent[P|II"] —m) + (1 + 6)0571\;(1)) K(Qr) 'exp (—n +o(n)),

%in fact the factor 1 was missing in [LS1, Le2]
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where we used Stirling’s formula and R > pg. To estimate K(Qr) we use (6.20) and the
Lipschitz bound on fy to write, using again (7.1)

(7.6) logK(Qr) = —BIQlm® 4 fa(Bm'~4) + (§1M - 1) [Qrlmlogm +o((1+ ) RY).

Since n = m|Qr| + o(R?), we obtain
(7.7) log PRy (B(P,2))
5

< —R° (§Wm<m +ent[P[TI™] — m?~s B fa(Bm'~5) + (Zldz — 1) mlog m)
+ (1 + B)o-n(RY),

with m = py(z9), which concludes the upper bound.

Step 3: lower bound. Retranscribed in our notation, [Le2, Lemma 5.1] shows that given

any P such that W™ (P) -+ ent[P|TI™] is finite, we can construct a family A of configurations

X, of n points in Qg such that 5"%(X,) € B(P,¢) and

W (P)

(78) F(Xn, QR) S RdT -+ O(Rd)
uniformly on A, and
1
(7.9) log (ECX’“(A)) > —RY (ent[P|TT™] — m + mlogm) + o( RY)

Applying this with m = py (), we may thus write with the help of (3.5)
Py (B(Pe))
__ 1 /
NNK(RY) 70 (XN)eB(Pe)
1 N!

X — . c (N—n)
> NNK(RY) n!(N—n)!/(Q%)Nne p( ﬁF(,QR))du®N (Xn)
[ exp (< (X, Qu) dn(X,)
A

1 N! . o
= NVK(R (N — )V — ) (@) /Aexp (—BF(Xan, Qr)) du™™(Xy).

But in view of (6.3) we have

log K(R?) = log K(Qr) +log K(Q%) + o((1 + Ax(8)) R°)

so we find, using also Stirling’s formula, that
log B (B(P¢))

> —n — log K(Qr) —

exp (—BF(XN, Rd)) dp®N (Xy)

s

5RdWM(P) + Bo(RY) — RY (ent[P|TI™] — m) + o(RY).
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Inserting (7.6) to estimate K(Qr), we obtain
(7.10) log PR35 (B(P,¢))
> —R¢ (gwm(}?) +ent[P|II™] — Bm> 4 fy(Bm'~4) + (gld—g — 1) mlog m>
+ (1 + B)o.n(RY).

Applying this to P a minimizer of SW™(P) + ent[P|TI"] we deduce that

P

inf (gwmua) + ent[P]Hm]) > ﬂm%%fd(ﬁml*%) + (1 - gldﬁ) mlogm,
with m = py(zg). We may write this for any m, thus deducing that
(7.11) inf 75 > Bfa(B).

Step 4: conclusion. By exponential tightness (see [L.S1]), we then upgrade the conclusions
of the previous steps to a strong LDP result: for any Borel set F, it holds that, as N — oo,

(7.12)

log B3 (E)
< - i%f R? (gwm(P) + ent[P|II™] — Bm2 4 fy(Bm'~4) + <§1d:2 — 1) mlog m)
+ (1 + B)o(RY)
and
(7.13)
log B3 (E)
> —inf R’ (gwm(P) + ent[P|IT™] — Bm2 4 fy(Bm'~4) + (gldzg - 1) m log m)
B

+ (14 B)o(RY)
Applying this relation to E equal the whole space, we find

— inf (gwm(P) + ent[P|II™] — BmQ_%fd(ﬁml_g) + gmlog mlyg—o — mlog m) > 0.
When m = 1 we find inf 3 < 8f4(8), which with (7.11) allows to prove the claim (which
already follows from the result of [L.S1]) that min F3 = 3 f4(8). With the scaling properties

of W™ and ent[-|II"™] with respect to m (see [LS1]), we deduce that

(7.14) inf Fg* = BmQ_%fd(ﬁml_%) + (1 — gldg) m logm.
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Inserting into (7.12) and (7.13), the stated LDP result follows if 3 is fixed. The generalization
to § — 0 or  — oo is straightforward from (7.7) and (7.10). This concludes the proof of
Theorem 3.

8. THE CASE OF ENERGY MINIMIZERS

To consider energy minimizers, we define an analogous quantity to the partition function
(8.1) K®(U 1) = min F(Xer, U, ),
N

with N = p(U). In view of (3.5) we have that if U is partitioned into regions Q;, with
1(Q;) = Nj integer, then

(8.2) KU, ) <) K=(Qi ).

i=1
We have easy a priori bounds: if N = u(U)
(83) — CN < K*(U,u) < CN,

with C' > 0 depending only on d,m and A. Indeed, the lower bound follows from (B.8),
while for the upper bound, we may deduce from (3.13) applied with 5 = 1 that there exists

at least one X5 € UV such that F(X5, U) < CN for some C large enough.

Theorem 4. (1) (Neumann problems in cubes) Let Og be a cube of size R with R4 = N
an integer. We have

C

(8.4) _ fd<oo>\ ¢

Rd

K> (Og, 1)
R

where fq(oc0) = %min\xﬁ = limg_,oo fa(B) and C > 0 depends only on d. Moreover,

if X5 s a minimizer for K*(Og, 1), for any cube O,(x) C Og, we have

N
(8.5) / (> 6, —1)| < ot
Oe(x) j=1

and the energy is uniformly distributed in the sense that
(8.6) FPeO) (X7, Og, 1) = 9 fa(00) + O(441).

(2) (Minimizers of the Coulomb gas energy). Assume that the equilibrium measure iy
satisfies m < py < A on its support and py € C%% on its support, for some k > 0.
If Xn minimizes Hy, if Or(x) is a cube of size R centered at x satisfying

dist(Op(x), dsupp ') > N2

we have
N

d-—1
Or(z) ;— Or(x)

(8.7)
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and

1
88)  FONG) = faoo) [ (i) lass [ i logu + ofR)
Or(z)

Or(z)

where C' and o depend only on d,m and A.

Remark 8.1. The explicit rate in (8.6) is the improvement compared to [RNS, PRN], in
the same way (8.8) can be improved, see [Se3]. As in [RNS], we can also prove with the
same method the same results on minimizers and the minimum of the renormalized enerqgy
W' of [RS, PS]. For instance the limit as R — oo that defines W' can be shown to be
fa(c0) with rate 1/R: the upper bound is by periodization of a minimizer for K= while the
lower bound is obtained as in (8.13) to be combined with (8.4).

Proof. Step 1: bootstrap. Let u satisfy 0 <m < pu < Ain X, let XON be a minimizer

of F(-,U) among configurations with N points. We claim that if Op(r) satisfies the same
assumptions as in Proposition 5.1, in particular (5.3) with 8 = oo and if R is large enough,
then

(8.9) FIr()(X8, U) + Co#({XS} N Og(z)) < CR

for some C' depending only on d and p. This is proven by a bootstrap: assume this is true
for some L i.e. assume

(8.10) FL(XO U) + Co#({ X%} nOp(x)) < CLY,
we need to show it is true for R > L/2. Let us proceed as in the proof of Proposition 5.1,

reducing to Qr € Qg and denoting by n = #({ X%} NOgr(z)) and n = u(Qr N U). First
by (8.10) and the choice of Cj, we have from (B.8) and (B.9)—(B.10) that

(8.11) In—n| < CR + CVCRY =.
d(d+1)

We then apply Proposition 4.1 with S(X5) < CLY, (=MLiR "2, (= R and Zn—ne
minimizing F(-, i, ne) (recall that that minimum is bounded by the order of the volume,
see (8.3)). We may check that as soon as M is large enough and R is larger than some

constant depending only on d and M, ¢ < ‘ < R and (4.10) is satisfied. The proposition
yields in view of (8.11) and (8.10)

C 1
(8.12) K*(QR) < Ho(Xilas, Q) + C (MR" + R ﬁR“) .

Choosing M large enough, combining (3.2), (8.2), (8.3) and (8.12), it follows that
Q5 Qh) < F(XR,U) = K*(U) < K*(Qr) + K*(QF)
1
< K*(Qn) + Hu(Xgla;, Q) + 5CRY.

FOR (X2, U) + Hy (XY

Hence if R is large enough (depending on C), we have

1
FOR (X2, U) < K¥(Qr) + 5(:Rd.
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In view of (8.11) we have as well n < CR?. With (8.3) this concludes the proof of (8.9).

Step 2: local laws. Now that we know (8.9) down to scale C', we can use it to control
In — n| by CRY™! with (B.9)—(B.10) and then return to (8.12) and upgrade it to have an
error R4~ i.e. we find

FO (X%, U) < K*(Qr) + CR*

and |n —n| < CRY1. By Proposition 4.1 we also have

(8.13) K>®(Qr) < FOn(XY,U) + CRY,
SO
(8.14) FOR(XS, U 1) = K*(Qr, 1) + OB,

with the O depending only on d,m and A.

Step 3: Energy expansion. We may use the well-known characterization

loo KB 1
_—Og ﬁ(QR) = PEI;l(ng)/F(XN, QR)dP(Xﬁ> + B/P(XN> 10g P(Xﬁ)dXﬁ

to write that for each fixed N

B
tim B i F(x, Q) — K (@)

We may thus compute K*(Qg, 1) via (6.11) and find
K¥(Qr,1) = |Qr 511—>Holo fa(B) + O(R*™)

where the limit exists in view of the form (1.30), and is equal to %min%;\\ﬁ. In the case of
general u we find from (6.20) that if |||l cos < CN~4 then

(8.15) K*(Qr, 1) = fd(OO)/ prE — }lldzz/ pulog ju + o( RY)
R R

as N — oo.
Step 4: conclusion. The relation (8.4) has been proved. (8.6) follows from (8.14) applied
with U = Qg and = 1, and (8.5) follows from (B.9) and (B.10) combined with (B.8).

We now turn to the proof of (2). (8.8) is a consequence of (8.15) and (8.4) applied with
U =R p =, and then a blow-down, and (8.7) follows from (B.9)—(B.10) combined
with (B.8). O

APPENDIX A. ESTIMATES ON GREEN FUNCTIONS

In this appendix we prove the following estimate on the Neumann Green functions of a
domain. (It may be known but we were not able to locate it in the literature.)
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Proposition A.1. Let U be a Lipschitz domain (bounded or unbounded). Let Gy be the
Neumann Green function relative to U with background p (fU,u =1) i.e. solving

—AGy(z,y) =cq (6, —p) U
%y — () on OU

ov

Then if [ g(x—y)du(y) < oo, up to addition of a constant to Gy we have [, Gy(x,y)dx =0
and

(A.1)
sup |Gy (z,y) —glz —y) + /Ug(w — z)du(2)

zelU

< C'min (max (g(dist(y, 0U)), 1) ,g(z — y))

where C' depends only on d and the Lipschitz type of U.

Proof. First the upper bound by Cg(xz — y) is standard (one can also deduce it from
integrating in time (A.9) below), so there remains to prove the other one. Let ®; denote
the heat kernel in dimension d

)

First we claim that
(A.2) Gu(z,y) = / w(t,z)dt
0

where w solves

ow—Aw=20 inU
w(0,2) =cy(dy —p) inU
g—?j =0 on OU.

To prove this, it suffices to write that

Ax/ w:/ dwdt = —w(0,z) = —cq(dy — p).
0 0

Thus the Laplacian of both quantities in (A.2) is the same and so is their normal derivative
on the boundary. The two functions must then coincide up to a constant, which we choose
to be 0. Let us then set

(A.3) u(r,y) = c (g(x —y) - /Ug(x - Z)du(Z)) :
Similarly as the previous claim, we may write

W) =g+ (6= ) = [t
where

(A.4) w(t, z) 1= cq /U Py (x — 2) (0 — ) (2).
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We thus turn to bounding

(A.5) Gu(z,y) —u(z,y) = /Ooo(w(t, x) —w(t,x))dt.

For that we note that w — w := f solves

(A.6) f(0,z)=0  inU
% =90 on OU

We are going to break the integral in (A.5) into two pieces, from 0 to ¢, := min(1, dist?(y, OU))
and from %, to 4o00.

Step 1: the bound on [0,¢,). Let " > 0. We consider the solution of the adjoint equation
o (A.6), that is,

(A7) h(0,2) = F(T,a)n(x) in U
% =0 on OU

where 7 is a smooth cutoff function to be specified later satisfying [ 7 = 1. We may write
that

(A.8) h(t, x) = pe* (f (T, x)n)

where p; is the Neumann heat kernel relative to U. As can be found in [GSC], in Lipschitz
domains, we have estimates of the form

2
(A.9) pe(z) < Ct e exp (—CM)
so that
x—z|?
(A.10) (T —t, )| < || f(T, )|l Lo (suppm) SUP exp (—C| | ) (T —1)7%.
ZESuppn T -t

We then compute using (A.6) and (A.7)

/f /Af T —1) /f H)AR(T — t) :/ a-i(t)h(T—t)
:—/a 0T yh(r — 1),

v
U
Integrating between ¢ = 0 and ¢ = T" and then using (A.10), it follows that

Tx

dU

r—z 2 _d
/ / ’ ||f )HLOO (suppn) GSUP exp <_C| T —t| ) (T — t) 2 dx dt.
zE€suppn

— 1) dt'
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The quantity 8—13(25) can be computed explicitly from (A.4) which yields
4 dlSt(z’ ov) exp <_dist2(y, 8U)> < Ot 4 Fexp (_distZ(y, 8U)) '

m\»—t

< Ct” 2
4t 8t

H ov Lo (8U)
We thus obtain

/fZTx

< CHf( )HL"O(Sprn)

ot2 L2
exp (_W) (T — t)_g/ sup exp (_O|$T Zt| ) dx dt.
QU z€suppn -

Using the change of variables 2/ = #(T — ¢)~2 and then s = w

T dist?(y, OU
/f (T, z)n < C||f(T, )||L°°(Supp77)/ ¢ CXp (_$) o
0

X
o\;
7
Nla
|
ol

we obtain

wlo
Wl

2
z
X sup / exp | —C dx’
zZEsupp n ( \/ - )
d—3
< O\ F(T, )|l oo supp m dist( (y,0U)*~ /m% oo © %s) sz ds.
For some constants Cy > Cy > 0
d—3
dist*(y, OU dist?(y, 0U)\ *
(A.11) Cyexp (— éyT )) ( (13{’ )>
2dist2(7§/,8U) dist2( ) ‘1773
y,0U)\ (dist*(y,0U)
< < —
< Jasgan, exp (—3 )3 2 ds < Cyexp ( ST )( T

and, by an integration by parts,

o0
d-3
exp (—%s) s 2 ds
2dist2(y,8U)
T

dist?(y, 0U) dist*(y, 0U)\ * > Ly d=s
= 8exp (— AT ) (2 T +4(d —3) /2dist2(jy,aw exp (—gs) s 2 ds.

If we consider only T < dist*(y, OU), then the last term in the right-hand side can be
absorbed into the quantity of (A.11) and we conclude that

d—3

> a3 dist*(y, 0U)\ [ dist*(y,0U)\ *
/dis@(zg,aU) exp (—és) sz ds < Cexp (— Y - :

Inserting into the above, this implies that for T' < t,,

/U FAT, 2)n(a)

dist?(y, 0U) 34
PP ALYV piEt
8T )

S C||f(T7 ')HL"O(suppn)diSt(y, 8U)_2 exp (—
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Choosing 1 to converge to d,, we deduce that

)
|£(T.20)| < Cdist(y, ) exp (_% ) -y

Since this is true for every t < t, and every xy € U it follows that

tx min(l,distQ(y,aU)) d t2 .
/ Il f(t, ')HLoo(U) dt < Cdist(y78U)_2/ exp (_%) t% 0t
0 0

With the change of variables s = t/dist*(y, 9U), we are led to

Ty
/ £ (8, | dt < Cist(y, DU,
0

This is < g(dist(y,0U)) if dist(y,0U) < 1. If dist(y,0U) > 1 we do not perform the
change of variables but instead bound the integral by fol exp (—é) +%5° dt < C and find
dist(y, 0U)~2 < C. We conclude that

/0 Nl < C (max(g(dist(y, 00), 1))

Step 2: Bound on [t,,+00). We use that w = cq®; * (0, — pt) and w = cgp; * (6, — p)
with p; the Neumann heat kernel as above that satisfies (A.9). It follows that

1% .
/||w w|| poo dt'<0/ t_idt<C’ by if d>3

On the other hand we may write, with u as in (A.3),

/ wdt—cd/ /(IDtx—z ) (0, — / /CIDtm—zAuzy)d
Rd

= /1 y ADy(x — 2)u(z,y) dt = /1 y 0y ®i(x — 2)u(z, y)dt dz

In the same way, we find

/ wdt = / /pt T — DAGY (2, y) dt /Upl(x—z)GU(z,y)dz

2
SC'/eXp <—|$ 42| )GU(Z,y)dZSC,
U

by using the bound Gy (z,y) < Cg(z — y).
Combining all these results and using the definition of ¢,, it follows that

sup |Gy (@, y) — ulz, y)| < Cmax(g(dist(y, 0U)), 1))

from which we deduce the result. O
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APPENDIX B. AUXILIARY RESULTS ON THE ENERGIES
We gather in this appendix some results that are similar to [PS, LS2]. The notation is as

in Section 2.

B.1. Monotonicity results. We need the following result adapted from [PS, LS2] which
expresses a monotonicity with respect to the truncation parameter.

Lemma B.1. Let u solve

N
(B.1) — Au = ¢4 (Z O, — ,u) in U,
i=1

and let ug,uy be as in (2.15). Assume o; < m; for each i. Letting In denote {i,c; # n;},
assume that for each i € Iy we have B(x;,n;) CU (or % =0 on OU N B(x;,n;) and U 1is
convex). Then

N N
B2) [ (Vo -y gn) ~ 260> [ tolo - )
U i=1 i=1 YU

N N
— (/ |Vug|* — cq Zg(ai) — 2cq Z/ £, (z — xﬁdu) <0,
v i=1 i=1 U

with equality if the B(x;,m;)’s are disjoint from all the other B(x;,n;)’s for each i € Iy.

Moreover, if n; >; for each i, and n; =t; = }1 if dist(x;, 0Q\ OU) < %, we have

(B.3) Z (g(zi —x5) — g(m))+
1,24,% €Q,1#7,
dist(x;,00\0U)>1,dist(x;,00\0U)>1

1
1,2, € 1,2, €

Proof. For any a < 1, let us denote f,, for f, — £, and note that f,, vanishes outside
B(0,n) and

g(n) —gla) <f,, <0

while, in view of (2.13)
(B.4) — Afo, = ca(8)” = 5\).

Using the fact that from (2.15) we have

uﬁ(x) - uo?(x) = Z famm(x - 31‘2-),

i€ln
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we may compute

= /|VU77|2—/ |VU@|2:2/(VU77—VU5;)'VU5;+/ |Vun—Vuo7|2
U

_QZ/Vfalm r—a;) Vug+ /Vfalm — ;) - Vg (7 — 1)

i€ln i,j€IN

If B(x;,n;) C U the function f,, ,, (x — x;) vanishes on OU, and we can integrate by parts
without getting any boundary contribution. If not but we instead assume —‘VL =0and U
convex, then in view of (2.15) and the definition of f, ,, the boundary term contributions

T E g (e )

iely JEIN

Since f, is always radial nonincreasing and since we consider U which is convex, the outer
normal derivatives involved are always nonpositive, and since f,, < 0, these boundary
contributions are < 0.

With the help of (B.1) and (B.4) we thus obtain in all cases

(B.5)
N
T<2cd2/ i ( 25] d,u + ¢4 Z/ i (T — ;) (657}1)_5;&?1))
i€lN j=1 1,7€IN
N
_CdZ/ A (Zéﬂ +5m)_2cd2/am ;) dp
i€lN 7j=1 i€l
N
:Z Z cd/ i (T — X d((SO‘J —1—(5’“ —i—CdZ/ o (T — ) d (67 4 511
j=1i€ln i#j i€ly
- 2Cd Z/ o 77Z i ,LL
ieln

Since f,,,, < 0, the first term in the right-hand side is nonpositive, and is zero if the
B(x;,m;)’s with i € Iy are disjoint from the other balls. For the diagonal terms, we note
that

/U £ — 1) (599 + 6 = —(g(as) — g(n0)

by definition of f,, and the fact that (5 ) is a measure of mass 1 on 0B(0,a). Since
fo;m = fa, — £, this finishes the proof of (B 2).

We may next apply this in © to u solution of (2.22) with n; =r; and o; <'r; with a; =T;
when dist(z;,0Q \ OU) < 1. With this choice, by definition of r; in (2.23) we are sure that
B(x;,m;) does not intersect any B(xz;,n;) if i € Iy and j # i. We are thus in the equality
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case and in view of the definition (2.24) we find that
(B.6)

1
d \/Q ) e’ U )

We now define g, = min(g, g(n)) and note that f,, = g, — g.. To prove (B.3) we apply
again the previous result in €2 to the same u with a; as above, and this time 7; >; with
equality if dist(xz;, 90\ OU) < 5. We return to the nonpositive first term in the right-hand
side of (B.5) and bound it above and below by

ca > (gn |z — o] + @) — gllzi — 25 — @) - <D ca /Rd s (T — 2:)dS)

i#£] 1]
<) /d (&, (2 — 23) — ga, (2 — 1;)) d5\7) < g /d (8(1:) = 8au (| — 5] + ) _,
iz 7R iz R

where we used the fact that g, is radial decreasing. Combining the previous relations, we
find

ca D (Ballw =+ ay) —g(m)),

24,25 €€Q,i#£]
< </ |Vug|* — cq Z g(a;) — 2cq Z /fai(x — xﬁdu)
Q 1,2, €0 1,2, €8 U
_ (/ |Vug]* — cq Z g(n;) — 2cq Z /fm(:r —xi)du) :
@ i €Q izieQ? U

Letting all a; — 0 if dist(z;, 02\ OU) > 1 we find F*(Xy, U) in the right-hand side in view
of (B.6) (up to > h(x;)) and cq > (g(|x; — z;]) — g(m:))+ in the left-hand side. This finishes
the proof. O

B.2. Local energy controls. We now show how the quantities based on F control the
energy and the number of points locally. We will state all the results for F* and ¥, of course
it implies them also for F and T.

The following result shows that despite the cancellation between the two possibly very
large terms [gq |Vu;|* and cq Zf\il g(n;), when choosing 7; = r; we may control each of
these two terms by the energy. It is adapted from [LS2, Lemma 2.7].

Lemma B.2. There exist C' > 0 depending only on d and ||p||L~ such that for any
configuration Xy in U and u corresponding via (2.22), and for any Q C U,

(B.7) > gf) < 2F(Xy,U) + C#({Xn} N Q)

1,2, €0
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and
(B.8) / Vs [ < 4csF*(Xn, U) + CH# ({Xn} Q)
Q

with ¥ as in (2.25) and computed with respect to .
Remark B.3. With the same proof, we can prove analogous results for Hy and G.

Proof. Let us proceed as in Lemma B.1 with 7; =  min(1, dist(z;, 0U N Q)) and o; =T;.
We note that the assumptions of the lemma are verified in €2 since the size of the balls
intersecting 02 is not changed and a; < n; for each i. We obtain as in (B.5) that

T = / |Vug|* — cq Z g(n;) — 2cq / £, (r —x;)dp
Q Q

1,2, €2

N
_ (/ IVua|? — cq Zg(ai) — 2¢q / £, (r — xi)du)
@ i=1 Q
< G Z / foim (€ — ;) <Z 6&‘;]') + 53@)) '
Q .
J

i i
Assume first that z; is such that dist(z;, 0UNQ) > 1 and ¥; < 1/20. Then dist(z;, 9Q\OU) >
land T; =7, = r; = 1 minj |z; — 2], in view of the definitions of ¥; and ;. Using that
fo, i < 0 we may bound

/ o, (1 — 25) (0409 + 60)) < / fo (2 — ;) >, o).

jF#i J,z; nearest neighbor to x;

We then note that f,, . (z — 2;) = g, (z — ;) — 8o, (x — ;) < g(Mi) — &, (v — x;) (with the
notation as in the previous proof) using the definition of ;. For x; nearest neighbor to z;
we have |z; — x;| = 4r; < 1/5, hence also dist(x;,0Q\ OU) > 3 by the triangle inequality,
which implies by definition of ¥; that ¥; < I miny; |z — x;] < r; < 1/20. The support of
53(3?) = 5g7) is thus contained in B(x;, 5r;), where g, (x — x;) > g(br;) by monotonicity of g.
We thus find that the right-hand side is bounded above in this case by

g(m:) — g(5r;) = g(m) — g(5r;).

On the other hand, if ¥; > 1/20 then 5f; > n; and the same bound is true as well since
the left-hand side is nonpositive. If dist(x;,0U N Q) < 1 and ¥; = r; < 1/20 then the
same reasoning as above applies. If on the contrary dist(z;, 0U N Q) < 1 and ¥; < r;, then
t; = dist(x;, U N Q) = n; and g(n;) — g(5r;) > 0, so the result holds as well.

Summing over ¢, we have thus obtained that
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On the other hand, by definition of 7" and choice of a; and n;, we may also write

T>— /|Vu~| —|—chg(~ —|—2cd2/rl — ;)

i,x;EQ i,2;,€0
— 24 Y / (o —xi)dp—ca Y g(m)
3,2, €S2 1,2, €
Z—2Cd <FQ XN, Z h > — Cd Z g(??)
i,x,E0 i,x;EQ

Combining the two relations we deduce

1 ~
YXn,U) = Y h(a) == ) gln) T3 > gl5n)
1,2, €0 1,2, E€Q 1,2, €Q

By definition of h (2.20) and choice of 7; we have >, o h(z;) —g(n;) > —C#{ Xy} N Q)
and we deduce B

D efi) < 2F(Xy,U) + CH{ XN} N Q)

3,2, €0
which proves (B.7). In addition, applying (B.3) (with simply zero left-hand side) with
n; = t; we have

FY Xy, U) > (/\Vw[ — 4 Z (F;) — 2cq Z/ (x — x; du)

1,2, EQ 1,2;EQ

hence (B.8) follows after rearranging terms and using (6.18). O

We turn to showing how the energy controls the fluctuations. The next lemma is adapted
from previous results, such as [RS]. The first result (B.10) allows to treat the case of an
excess of points and control it using only the energy outside the set, while (B.9) allows to
treat the case of a deficit of points and control it using only the energy inside the set. The
last two results provide improvements when considering balls and using the energy in a
larger set.

Lemma B.4 (Control of charge discrepancies). Let Xy be a configuration in U, let u be
associated via (2.22), and let Q2 be a set of finite perimeter included in U. We have

N
min O, —/d,u,O

with v computed with respect to any set containing ), and if in addition Q is at distance
> 1 from 0U,

1
(B.9) < Cllpll=109[ + C|0Q2 | V| 12 ((zeq aist(z.00) <1},

N
(B.10) max (/Z5x _/d:ua 0) < Ol 1109 + C|OQ2 || Vassl| 2 (agaraistoom<1))-

where C' depends only on d.
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Let B C U be a ball of sidelength R > 2 and let

/BR;%—/ dp.

D
min (1—d)‘ < C/ |V,
|2l oo (BR) R Br

If D <0 then

D2
Rd—2
and if D >0 and Bogr C U

D? D
(B.12) — 5 min (1—d) < C/ |Vus|?
R |14l oo (Bo) R B

where C' depends only on d.

(B.11)

Proof. Let x be a smooth nonnegative function equal to 1 at distance < = from Q) and
vanishing at distance > 1 from () outside that set. Let & be a smooth nonnegatlve function
equal to 1 for points in ) at distance > 1 from 0f2, and vanishing outside 2. Their gradient
can be bounded by C' and ||Vx||zz and || V€| 2 can be bounded by C|0Q|3. Since ¥; < 1
for each i, we have

(B.13) /5250 /Za </Xi5§;>.

Using (2.22), integrating by parts, using the fact that 0,uz = 0 on OU and the Cauchy-
Schwarz inequality, we find

N
/Xd (Z(Sf) —u)
Q i=1

and the same for £. Meanwhile

[ = | < croslul-
Rd

1 1
< aI\VXHm!\le\L2(supva) < ClO2 (| V|| L2 (suppv)

and the same for £. Let us now first assume that [, Zf\il 0z, — Jo dpp > 0. Then in view
of (B.13) and the above, we have

N N
0< [ Y- [dus x<26§?>—du) +0(109 ] <)
i=1 =1

1
< C1OQL Vet g + C1O2] ] .

In all cases, the result (B.10) follows. The proof of (B.9) is similar.
Let us now turn to (B.11) and (B.12), following [RS, Lemma 4.6]. We first consider the
case that D > 0 and note that if

D q
(B.14) R+n§t§T::min(2R, (R+m)? + e )
( C\!u\\Lw(32R>>
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with C' well-chosen, we have

8% N A
_/3& o = _/BtAu%:Cd/Bt<Z(5’gZ)_du>

=1

> (P [ w)zap-clils (- ) = $D,
B:\Br

if we choose the same C'in (B.14) depending only on d. By the Cauchy-Schwarz inequality,
the previous estimate, and explicit integration, there holds

| O\ 2
Vus? > / (/ r) dt
/BQR| 4 Rin 0Bt \Jop, OV

T
> CD? / t~4=Vat = OD* (g(R+n) —g(T)),
R+n

with C' depending only on d. Inserting the definition of 7" and rearranging terms, one easily
checks that we obtain (B.12). There remains to treat the case where D < 0. This time, we
let

D i
T<t<R—u, T:= ((R—n)d——)
Cllpllzo(Br)
and if C is well-chosen we have

N

Ou 5
_/aBt 5 = —/BtAug:cd/Bt<Z(Sg_)_d,u>

i=1

< (D+/ dM)SC—dDa
BR\B’I‘ 2

and the rest of the proof is analogous, integrating from 7" to R — . O

The next lemma is similar to [LS2, Prop. 2.5].

Lemma B.5. Let ¢ be a Lipschitz function in U with bounded support. Let €2 be an open
set with finite perimeter containing a 1-neighborhood of the support of ¢ in U. For any
configuration Xy in U, letting u be defined as in (2.22) (resp. v as in (2.27)), we have
(B.15)

o ()

(and resp. the same with vs in place of uz), where C' depends only on d and T is computed
with respect to any set containing 2.

1 1
< CIVeleie) (091 + 1009 Vgl 2@ + 19l )

Proof. We may find y a smooth cutoff function equal to 1 in a 1/2-neighborhood of the
support of ¢ and equal to 0 outside €2, such that [|Vx|? < C|99]|. Integrating (2.22)
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against y we thus get

N ~
(o - )
=1

where C' depends only on d. It follows that letting #1 denote the number of balls B(x;, %)
intersecting €2, we also have

1 1
< aHVXHLQHVU?HH(Q) < C1oQ2 || Vgl 2o,

(B.16) #1< [ du-+ ClORR Vil 2

Secondly, integrating (2.22) against ¢, we have

[ (- an)e

On the other hand, since by definition ; < 411 for each i, we have

[ (6. o)e

(B.17)

1 1
B a /UVU,? vQD’ S C|Q|2||v90||L°°||VU’?HL2(Q).

(B.18) < #IVeoll e

Combining this with (B.17) and (B.16), we get the result. O

APPENDIX C. PROOF OF THE SCREENING RESULT

The goal of this appendix is to prove the screening result of Propositions 4.1. This
follows from adapting and optimizing the procedure from [SS2, RS, PS], in particular [PS]
simplified to the Coulomb case.

Let us first informally describe thing for the outer screening. We will work with “electric
fields” E which are meant to be gradients of the potentials u of (2.22) or w of (2.30), or
more generally to satisfy relations of the form

(Cl) —divE = Cd (zn: 621 — ,U,) .

i=1

A truncated version of F can be defined just as in (2.14): for any E satisfying a relation of
the form (C.1) we let

(C.2) Er=F - Z Vi (v — ;)
1=1

where T; is as in (2.23).

Assume we are given a configuration X (with unspecified number of points) in a hyper-
rectangle, together with its electric field E, and assume roughly that we control well its
energy near the boundary of a hyperrectangle Q7 of sidelengths close to T'. The goal of the
screening is to modify the configuration X and the electric field F only outside of Q7r_4
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and to extend them to a “screened” configuration X° and a “screened” electric field E° in
Qre € Qg in such a way that

—div EO = Cd(ZpeXO (Sp — ,u) in QT+€ NnU
E'v=0 on A(QryeNU)

This implies in particular that the screened system is neutral, i.e the number of points
of X° must be equal to u(Qry¢e NU). We note that in the Neumann case where € can
intersect OU, the desired boundary condition is already satisfied for the original field on
0U, so there is no need to modify it near OU.

The screened electric field £° may not be a gradient, however thanks to Lemma 3.4
its energy provides an upper bound for computing F(X° Q7. N U). The goal of the
construction is to show that we can build E° and X without adding too much energy
to that of the original configuration, which will allow to bound F(X°, Qr,, NU) in terms
of Hy (X, ). In order to accomplish this, we will split the region to be filled into cells
where we solve appropriate elliptic problems and estimate the energies by elliptic regularity
estimates. In order to “absorb” and screen the effect of the possibly rough data on 0Qr,
we need a certain distance ¢, which has to be large enough in terms of the energy of F, this
leads to the “screenability condition” bound on /¢, as previously mentioned.

C.1. Finding a good boundary. We focus on the outer screening proof, the proof of the
inner case is analogous (for details of what to do near the corners, one may refer to [RNS]).

Assume then that Q = Qr N U. Since U is assumed to be a disjoint union of parallel
hyperrectangles, €2 is itself a hyperrectangle. N

We are given a configuration X, in Qg N U with ¢ > ¢ > (', and w is as in (4.1)

We set £ = Vu with the notation Er defined in (C.2). We also let

(C.3) M = V.
(Qr+4\QT—2)NU

By a pigeonhole principle, there exists a T € [R — QZ R— fl”v] such that

S(X,
(C.4) M = [Vu|* < (Xn)
(Qr+4\Qr—4)NU 14
(C.5) M, = max/ Vue|* < S'(X,,),
(Qr+4\Qr—4)NDe(z)NU

resp. with Qr44\Qr_4.

We recall that on OU we have a zero Neumann boundary condition for u so the desired
final condition is already satisfied there.

By a mean value argument we can find I' a piecewise affine boundary (with slopes in
a given set, alternating only at distances bounded above and below) of a set containing
Q7 NU and contained in Qry1 NU such that

(C.6) | oiEp<o s B < OM,.
U I'NQ(x,0)NU

xT
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We note that as soon as £ is large enough, we only consider regions at distance > 1 from
09, so there is no difference between ¥ and ¥ there.

We take it to be the boundary relative to U of a set containing ()7 N U and contained in
Q141 NU, and we then complete it by a subset IV of QU in such a way that I' UT” then
encloses a closed domain of U N Q;. We also recall that by assumption U is a union of
hyperrectangles and that 0Q g is parallel to the sides of U. In all cases we denote by O
(like “old”) the part of Q7,1 NU delimited by ' UT” and by N (like “new”) the set Q\O.
We keep X,, and E unchanged in O and discard the points of X,, in A to replace them by
new ones. We note that the good boundary I' may intersect some B(z;, ;) balls centered at

points of X,,. These balls will need to be “completed”, i.e. the contributions of 5§f")1QT\@
to be retained.

C.2. Preliminary lemmas. We start with a series of preliminary results which will be
the building blocks for the construction of E°.

Lemma C.1 (Correcting fluxes on rectangles). Let H be a hyperrectangle of RY with
sidelengths in [(, Cl] with C depending only on d. Let g € L*(OH). Then there exists a
constant C' depending only d such that the mean zero solution of

—Ah:fa g in H
(C.7) { oh=g " on OH

satisfies the estimate

(©3) [vnz<ce [
H oH
Proof. This is [RS, Lemma 5.8]. O

The next lemma serves to complete the smeared charges which were “cut” into two pieces
by the choice of the good boundary. The proof can be deduced from an inspection of that
of [PS, Lemma 6.6].

Lemma C.2 (Completing charges near the boundary). Let R be a hyperrectangle in RY of
center 0 and sidelengths in [a, Ca] with C' depending only on d. Let F be a face of R. Let
X, be a configuration of points contained in an 1/4-neighborhood of F. Let ¢ be a constant
such that

(C.9) c|F| = cq / PRI
Riexg
The mean-zero solution to
~Ah=c4Y ek 0”  inR,
O,h=0 on OR\ F,
d,h =c on I’
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satisfies

(C.10) / VK> < C (n2a2_d + Z g, —xj) + Z g(ﬁ))
R i#j =1

where C' depends only on d,a, b.

Proof. We split h = u + v where

{ —Au=cq), 5 ¢ iR

d,u=0 on OR,
and
—Av = c% in R
ov =0 on OR\ F
ov=c on F.

The v part is explicitly computable and has energy bounded by Cc?a® < C#X?a?>¢. For
the u part, we observe that

e / G (2, 1) (1)

where Gr(x,y) is the Neumann Green function of the hyperrectangle with background 1,
as in Proposition A.1. Using the estimate (A.1), we have

Gr(z,y) < Cglz —y)
hence we deduce the result. O

C.3. Main proof.
We let 15 be the indices corresponding to the points of X,, whose smeared charges touch
[ ie.
(C.11) Is={ie[l,n]: Bx;r)NI # o}
and define
no = #lp + # ({i,z; € OY\Ip).

The goal of the construction is to place an additional n — ne points in (Qr N U)\O, where
n=u(@rNU).

Next, we partition (QgNU)\O into hyperrectangles Hy (or intersections of hyperrectangles
with (Qr N U)\O) with sidelengths € [¢/C, C/] for some positive constant C' > 0 (we note
that we may always make sure in the construction of I' that the shapes formed by H;\O
are nondegenerate) in such a way that letting m;, be the constant such that

(012) cdmk|Hk] :/ E?'I/—le,
T'NOHy
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with v denoting the outer unit normal to O and
ng = Cd/ Z 56
kiely

we have [, (u+my) € N. This is possible if [my| < im (recall 4 > m) and can be done by
constructing successive strips as in Lemma 3.2, as soon as ¢ > C' for some C' > 0 depending
only on d and m.

We will give below a condition for [my| < $m. Now define

p= M+21Hkmk-
K

Since
o J k o

and n = (), in view of (C.12) we may check that
(C.13) / f=n-—ne.
N

Step 1: Defining E°.
We define E? as a sum E; + Es + Ej3, some of these terms being zero except for Hj, that
has some boundary in common with I', then denoted F}.

The first vector field contains the contribution of the completion of the smeared charges
belonging to Iy. We let

El = Z ]_HthLk
k

where hy j, is the solution of
—Ahl,k = Cy4 ZieI@ 53(:;) in Hk,
(614) &,hl,k =0 on 8Hk \ I s

Oyhyy = on Fy,

\FI

We note that the definition of n; makes this equation solvable.
The second vector field is defined to be Ey =), 15, Vhy with

{ —Ahg,k = CqMy in Hk s

8uh2,k: = Gk on 0Hy,
where we let g, = 0 if Hy has no face in common with I and otherwise
C.15 —FEr-v+ —

with Fr - v taken with respect to the outer normal to O. We note that this is solvable in
view of (C.12) and the definitions of n;.



LOCAL LAWS FOR COULOMB GASES 81

The third vector field consists in the potential generated by a sampled configuration
Zn—ne In Qr N U\O: we let E5 = Vhs where hj solves

—Ahs = ¢ (Z;‘;;w 5. — ,7) in A
O, hs =0 on ON.

We note that this equation is solvable since (C.13) holds. We then define in N, E? =
(Ey + Ey + E3)1y + Fflp and Y, = {X,,, B(z;,1;)) N O # @} U{Z,_,, } Finally, we let

(C.16)

n
E’ = E7 + ZVfFi(x —Yi)

i=1
where the F; are the minimal distances as in (2.23) of Y;,. Note that for the points near T',
these may not correspond to the previous minimal distances for the configuration X, or
Zn—ne, Which is why we use a different notation.

We note that the normal components are always constructed to be continuous across

interfaces, so that no divergence is created there, and so E° thus defined satisfies

—divE? =c4(3 ey 0y — ) In Q
(C.17) { E° v=0 © on 0f2.

Step 2: Controlling m;. First we control the n,. The results of Lemma B.4 allow to
show that

(C.18) np <C | |EB><CM,, > ni<CM.
k

Hy,

We note that it follows in the same way that #1y < CM < C’@ with (C.4).
To control my, we write that in view of (C.12) and (C.6)

(C.19) |my| < ce-d/ | B + |ng €79
I'NoHy,

Using the Cauchy-Schwarz inequality we bound
/ B < 05 MZ.
T'NoH
We conclude that

(C.20) | < G373 M2 + Cr9M;

The condition |my| < $m thus is implied by

N

(SIS
IN
S
][N

|
NI
‘\%\H

14— 1

This is the screenability condition (4.4). As an alternate, we can also bound

/ p—p| < CZ Imy |0 < Cl: 2 Mz +CM < CO~ + C_S(?”)
N k
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in view of (C.6) and (C.4), thus completing the proof of (4.5). In the same way, using
Cauchy-Schwarz, we may also write that

mi < Ce / | E-200 + Cnje™
TNOHy
and thus
_ X,
/ (n—p?<C) myt<ce? / | B + M9 < o 3Xn)
N . r 14

in view of (C.4) and (C.6), thus proving (4.6).

Step 3: Estimating the energy of E°. To estimate the energy of E° we need to evaluate
Jo, |ER|2. First, for By we use Lemma C.2 and combine it with (B.3) applied with n; = 1 to
bound Zp 248 ( — q) by the energy in a slightly larger set, thus we are led to

/ (B :2<C (Z n} + CM) < CM,
N k

where we have used (C.3), (C.18), and the geometric properties of Hy.

For E5 we use Lemma C.1 to get

/ B|? < Ct (/ \E?]2+Cni).
Hy, OH,NI

Summing over k and using (C.6), we obtain

Z/ |E,|* < CeM.
kY He

For E3 we use that, by definition of F,

n—no n—ne
(C.21) /Q\O [Vhs#|? < 2cq (F(Zn_no,ﬁ,/\/) - ) h<zj)> + g Z g(;) + Cn —np)

since [ || < C for each n (see (6.18)). Since E = Er = Vuz in O, we deduce that

n—ne n—no
/Q|E?|2 < /@ |Vuz|? + CIM + C <2cd (F(Znno,ﬁ,/\/) Z ) + ¢4 Z >

7j=1
+ C(n —np).

To estimate F(Yy, i, 2) we use Lemma 3.4, the definition of F and (B.3), which tells us
that to go from 7 (with possibly intersecting balls) to ¥, we just need to add the “new
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interactions” » 7, - ; g(xi — z;). This yields

F(Yn,Q
_QC/WuF——Zgn 2/ (- w)duly) +C S glai—2)
d (=
n—-ne n—ne n—no
+ 3 h5) 4 OO+ C(F(Zinos W) = 3 0(2)) +C' Y 67) + Cla o).
j=1 j=1 j=1

Since on the other hand

Hy(X,,Q) = (/ |Vuz|? — cq Zg ri ) — Zn:/gf?i(:c — xz;)dp(z)

i=1

it follows that

(C.22) F(Ya, 1, Q) — Hy (X5, Q)

n—-no
1

1
S L D DR - () *CZ B5) + Gt
d JO\O {ie{1,...,n} :2,¢0}

+ CF(Zy—np, 1, N) + C Z g(z; — z;) + C(n —np) + C(n — ne).

(3,9)€J

On the other hand, since O contains Q7_4 N €2, we have

(C.23)
1
2%, (Cd > g(ﬂ)—/ IVU?I2>
I\ fie(l ) 2,20} 2\0
1 ) 1 N )
< S U L
0 Qra\Qr-)nU “\ fieq, ) mgo) N\Qr—4

M
< _
~ 2Cd —I—C’(n n@)

Where we bounded the second term in the right-hand side by using Lemma B.1 to change 1
into 1 and then bounded Y g(3) for x; gé O by the number of points not in O. We may
also erte using (B.7) and using that ¥ =¥ in this case,

n—-noe

(C.24) > &) < C(F(Zuno, i, N) + (0= n0)) -

j=1
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Inserting (C.23) and (C.24) into (C.22) and using (C.4), we find
F(Ya, 1, 2) — Hy(X,, Q)

S(X,
<Y (g )+C'F( Znnoy 1, N) + C Z z; — z;) + C(|n —n| + |n — ne|).

(i,9)eJ

Using (4.5) and u(N) < ClR! allows to bound the last term on the right side, and then
we get (4.7).
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