MEAN FIELD LIMIT FOR COULOMB-TYPE FLOWS

SYLVIA SERFATY, APPENDIX WITH MITIA DUERINCKX

ABSTRACT. We establish the mean-field convergence for systems of points evolving along
the gradient flow of their interaction energy when the interaction is the Coulomb potential
or a super-coulombic Riesz potential, for the first time in arbitrary dimension. The proof
is based on a modulated energy method using a Coulomb or Riesz distance, assumes that
the solutions of the limiting equation are regular enough and exploits a weak-strong stability
property for them. The method can handle the addition of a regular interaction kernel, and
applies also to conservative and mixed flows. In the appendix, it is also adapted to prove the
mean-field convergence of the solutions to Newton’s law with Coulomb or Riesz interaction
in the monokinetic case to solutions of an Euler-Poisson type system.

1. INTRODUCTION

The derivation of effective equations for classical interacting many body systems is an
important question in mathematical physics. Within it, one of the most important prob-
lems, fundamental for plasma physics, is the derivation of the Vlasov-Poisson equation from
Newton’s law for NV particles i.e. a system of the form

i‘iZ'U'

7
: 1 .
(1.1) 0 = > K(wixg), i=1...,N
i#]
7;(0) = 2¥  v;(0) =0
where the pair interaction K derives from the Coulomb potential, and is still open in its full
generality. The large N or mean-field limit of first order systems of the form

1
.j?i:fZK(ivi,l‘j), iZl,...,N
(1.2) N7
2i(0) = 7

is also a natural and interesting question. Such systems can model interacting particles in
physics (for instance the point vortex system in two-dimensional fluids), from a numerical
point of view they correspond to particle approximations of PDEs, or in the case of gradient
flows can serve to approximate their equilibrium states. Motivations extend to biological
and sociological sciences, including phenomena of flocking, swarming and aggregation (see for
instance [CCH]) and the analysis of large neural networks in biology [BFT] and in machine
learning [MMn, RVE, BaCh].

In the above problems, the cases where K is regular are well understood, while in contrast
those where K is singular are the most difficult and least understood. In this paper we will
be particularly focusing on the case where K corresponds to the Coulomb interaction (and
some generalizations), arguably the most important case for physics. For further details on
the general mathematical aspects of mean-field limits, we refer to the reviews [Go, Jab].
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The rest of the introduction is structured as follows: in Section 1.1 we introduce the exact
equations that we will study as well as their limiting effective evolution equations, and describe
the state of the art on such questions. In Section 1.2 we state the main result, in Section 1.3
we comment on the assumptions, and in Section 1.4 we give an extended proof outline for
the Coulomb case. Finally, Section 1.5 is an added section explaining how to treat the case
of gradient flow evolutions with thermal noise.

1.1. Problem and background. In this paper we consider specifically systems with Coulomb,
logarithmic or Riesz interaction with kernel deriving from

(1.3) g(x) =|z|™° max(d—2,0) <s<d for any d > 1
or
(1.4) g(z) = —log|z| ford =1 or 2,

where d is the dimension. In the case (1.3) withs=d—-2andd >3, 0r (1.4) andd =2, g
is exactly (a multiple of) the Coulomb kernel. In the other cases of (1.3) it is called a Riesz
kernel. In some cases, we may add to the interaction force a regular part denoted F.

We will consider first order dynamics of the form

. 1 .
(1.5) b= (in'HN(xl, ..., TN) + ; Fa; — azj)) , i=1,...,N
j#i
z;(0) = ¥

or conservative evolutions of the form
. 1 )
{ xi:—ﬁﬂvmiHN(:rl,...,xN), ZZl,...,N

z;(0) = af

(1.6)

where J is an antisymmetric matrix, the points z; evolve in the whole space RY and their
energy Hy is given by

(1.7) Hy(zr,. . an) =) gz —xj),

]
with g as above. The map F : RY — RY is the additional interaction force that we can add
in the dissipative case to illustrate the robustness of the method, we will require it to enjoy

some Sobolev and Holder regularity.
Mixed flows of the form

N J#i

can be treated with exactly the same proof, so can the same dynamics (1.5), (1.6) or (1.8)
with an additional forcing % SN, V(x;) with V Lipschitz. These generalizations are left to
the reader, see in particular Remark 2.2.

Studying the same evolutions with added noise

(1,8) :ti:—i (aI+BJ) (inHN(l’l,...,xN)-i-ZF(xi—.Tj)) a>0

1
(1.9) dl‘i = _N (VmiHN(wl, ce ,.%'N) + Z F(IL'Z — x])> dt + \/%dWi,
J#
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or
1
(1.10) dr; = —NJV%HN(I‘l,...,.Z‘N)dt—F@dWi,

with dW; being N independent Brownian motions and 6 > 0 a temperature, is also very
interesting and has motivations from Random Matrix Theory, it is done in particular in
[JW1,JW2,BO, FHM, BCF, LLY] (see also references therein). We will comment further on
this at the end of the introduction in Section 1.5.

In the appendix, we consider the second order system corresponding to Newton’s law for
the energy H

.’i?i :'UZ',
(1.11) v VleN(ZL‘l,...,$N), i1=1,...,N
%(0)— 0, vi(0) =1},

in the so-called monokinetic case. In the Coulomb case it is the true physics model for
plasmas.

Consider the empirical measure

1 XN
(1.12) Py =5 Y G
N i=1
associated to a solution X% := (zf,...,2%) of the flow (1.5) or (1.6). If the points z¥,

which themselves depend on N, are such that uQ; converges to some regular measure u°, then
a formal derivation leads to expecting that for ¢ > 0, ul; converges to the solution of the
Cauchy problem with initial data p° for the limiting evolution equation

(1.13) Op = div (Vg + F) * p)p)
in the dissipative case (1.5) or
(1.14) Opp = div (IV (g * p)p)

in the conservative case (1.6), with * denoting the usual convolution.

These equations should be understood in a weak sense. Equation (1.13) (with F = 0)
is sometimes called the fractional porous medium equation. The two-dimensional Coulomb
version also arises as a model for the dynamics of vortices in superconductors. The construc-
tion of solutions, their regularity and basic properties, are addressed in [L.Z, DZ,MZ, AS,SV]
for the Coulomb case of (1.13), in [CSV,CV, XZ] for the case d —2 < s < d of (1.13),
and [De, Yu, Schol] for the two-dimensional Coulomb case of (1.14).

Establishing the convergence of the empirical measures to solutions of the limiting equa-
tions is nontrivial because of the nonlinear terms in the equation and the singularity of the
interaction g. In fact, because of the strength of the singularity, treating the case of Coulomb
interactions in dimension d > 3 (and even more so that of super-coulombic interactions) had
remained an open question for a long time, see for instance the introduction of [JW2] and the
review [Jab]. It was not even completely clear that the result was true without expressing it
in some statistical sense (with respect to the initial data).

n [JWI1,JW2], Jabin and Wang introduced a new approach for the related problem of
the mean-field convergence of the solutions of Newton’s second order system of ODEs to the
Vlasov equation, which allowed them to treat all interactions kernels with bounded gradients,
but still not Coulomb interaction. The same problem has been addressed in [BP,LP,La] with
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results that still require a cutoff of the Coulomb interaction. Our method already allows to
unlock the case of Coulomb interaction for monokinetic data, this is the topic of Appendix A.
The non-monokinetic case is even much more challenging and remains open.

The previously known results on the problems we are addressing were the following:

e In dimension 2, choosing (1.4) and J the rotation by 7/2 in (1.6) corresponds to
the so-called point vortex system which is well-known in fluid mechanics (cf. for
instance [MP]), and its mean-field convergence to the Euler equation in vorticity form
(1.14) was already established [Scho2]. His proof can be readapted to treat (1.5) as
well in that case. Results of similar nature were also obtained in [GHL)].

e Hauray [Hau] (see also [CCH]) treated the case of all sub-Coulombic interactions
(s < d—2) for (a possibly higher-dimensional generalization of) (1.6), where particles
can have positive and negative charges and thus can attract as well as repel. The
proof, which relies on the stability in co-Wasserstein distance of the limiting solution,
cannot be adapted to s > d — 2.

e In dimension 1 and in the dissipative case (1.5), Carrillo-Ferreira-Precioso and Berman-
Onnheim [CFP,BO] proved the unconditional convergence for all 0 < s < 1 using the
framework of Wasserstein gradient flows but their method, based on the convexity of
the interaction in dimension 1, does not extend to higher dimensions.

e Duerinckx [Du], inspired by the modulated energy method of [Sy] for Ginzburg-Landau
equations (where vortices also interact like Coulomb particles in dimension 2), was
able to prove the result in the dissipative case (1.5) for d =1 and d = 2 with s < 1,
conditional to the regularity of the limiting solution, as we have here.

In this paper, we prove the mean field convergence for (1.5) and (1.6) in all the cases (1.3)
and (1.4) in every dimension. This extends Duerinckx’s result, which involves overcoming
serious difficulties, as described further below, and we add the possible additional interaction
force F in the dissipative case. We are limited to s < d and this is natural since for s > d
the interaction kernel g is no longer integrable and the limiting equation is expected to be a
different one.

As in [Du], our proof is a modulated energy argument inspired from [Sy], which is a way of
exploiting a weak-strong uniqueness principle for the limiting equation. As mentioned above,
looking for a stability principle in some Wasserstein distance fails for the Coulomb singularity.
Instead we use a distance which is built as a Coulomb (or Riesz) metric, associated to the
norm

(1.15) ull? = // g(z — y)du(x)du(y).

We are able to show by a Gronwall argument on this metric that the equations (1.13) and
(1.14) satisfy a weak-strong uniqueness principle, and this can be translated into a proof of
stability and convergence to 0 of the norm of pk, — ut (if it is initially small, it remains small
for all further times).

The proof is self-contained and quantitative. It does not require understanding any quali-
tative property of the trajectories of the particles, such as for instance their minimal distances
along the flow.

After this work was completed, Bresch, Jabin and Wang [BJW1] were able to beautifully
incorporate our modulated energy into the relative entropy method of [JW2], turning it into a
modulated free energy, which is a physically very natural quantity. It allowed them to extend
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the result of [JW2] to more singular interactions, including Coulomb. Seen from our point of
view, it allows to treat the cases with added noise (1.9) (but unfortunately not (1.10)). This
can be explained very succintly, we do it in Section 1.5 for the reader’s convenience.

1.2. Main result. Let Xy denote (z1,...,2y) and let us define for any probability measure
H,

(1.16) (X, //RdXRd\A T — (Zéz - NM) (Zéx - )

where A denotes the diagonal in RY x RY. We choose for “modulated energy”
FN (X}e\/'a /‘Lt)

where X% = (af,...,2Y%) are the solutions to (1.5) or (1.6), and pu’ solves the expected
limiting PDE. The function F is not positive, however it is bounded below (by —C'N 45 in
the case (1.3), respectively — (% log N) — CN in the case (1.4), see Corollary 3.5). It turns
out that also metrizes at least weak convergence, as described in Proposition 3.6. One may
thus think of it as a good notion of distance from p4 to uf, more precisely +Fy (X4, pf) is
a good distance.

Our main result is a Gronwall inequality on the time-derivative of Fy (X%, u!), which
implies a quantitative rate of convergence of uly to u' in that metric.

Throughout the paper, (-)+ denotes the positive part of a number. The parameter s refers
to the exponent in (1.3) while in the logarithmic case (1.4) it is set to be 0. The space

H™(RY) is the homogeneous Sobolev space of functions u whose Fourier transform 4 satisfies
€™ a(€) € L*(RY).

Theorem 1. Assume that g is of the form (1.3) or (1.4). Assume that F € jilen 7 (RY) N
CO(RY) for some o > 0 and VF € LIY(RY) for some 1 < q < oco. Assume (1.13), resp.
(1.14), admits a solution p' such that, for some T > 0,

(1.17)

pt € L=([0,T], L®(RY)), and V?g+p' € L([0,T], L®(RY)) if s<d—1
pt € L=([0,T),C°(RY)) with o >s—d+ 1, and Vg ut € L=([0,T], L>®(RY)) if s>d —1.

Let X& solve (1.5), respectively (1.6). Then there exist positive constants C1,Cs depending
only on the norms of u controlled by (1.17) and those of F, and an exponent B < 2 depending
only on d,s,a, 0, such that for every t € [0,T] we have

(1.18) Fi(Xf, 1) < (Fn (X3, %) + CLN7) e,

In particular, using the notation (1.12), if ,u?v — 1Y and is such that

then the same is true for every t € [0,T] and

(1.19) ly = ul

in the weak sense.



6 SYLVIA SERFATY, APPENDIX WITH MITIA DUERINCKX

Establishing the convergence of the empirical measures is essentially equivalent to proving
propagation of molecular chaos (see [Go,HM, Jab] and references therein) which means showing
that if f(x1,...,2y) is the initial probability density of seeing particles at (x1,...,zy) and
if f]% converges to some factorized state u’®---®@u’, then the k-point marginals f]tv’k converge
for all time to (uf)®*. With Remark 3.7, our result implies a convergence of this type as well.

Let us point out that using a Fourier-based point of view on (1.16) Bresch-Jabin-Wang
were able (see [BJW1,BJW2]) to subsequently relax the assumptions on the interaction g: it
does not need to be Coulomb or Riesz (a bit like with the added regular force in (1.5)) but
may contain a mildly singular attractive part, as long as a sufficiently strong repulsive part
is still present.

1.3. Comments on the assumptions. Let us now comment on the regularity assumption
made in (1.17). First of all, one can check (see Lemma 3.1) that the assumption (1.17) is
implied by

(1.20) pe L2([0,T],C%°(RY))  for some § >s—d+2,

which coincides with the assumption made in [Du] and is a bit stronger. This weakening
of the assumption allows to include for instance the case of measures which are (a regular
function times) the characteristic function of some regular set, such as in the situation of
vortex patches for the Euler equation in vorticity form, corresponding to (1.6) in the two-
dimensional logarithmic case. These vortex patches were first studied in [Ch2, BerCon, Si]
where it was shown that if the patch initially has a C'1® boundary this remains the case
over time, and our second assumption that the velocity Vg * u! be Lipschitz holds as well
(see also [BK]). It is not too difficult to check that in all dimensions this second condition
holds any time p is C? with ¢ > 0 away from a finite number of C hypersurfaces. More
generally, such situations with patches can be expected to naturally arise in all the Coulomb
cases. For instance, in the dissipative Coulomb case (1.5) with F = 0, in any dimension a
self-similar solution in the form of (a constant multiple of) the characteristic function of an
expanding ball was exhibited in [SV] and shown to be an attractor of the dynamics. For
the non-Coulomb dissipative cases, the corresponding self-similar solutions, called Barenblatt
solutions, are of the form

d 9 2 s—d+42
D T 91s 2
t7 2 (a — bt 2,

as shown in [BIK,CV] (and this formula retrieves the solution of [SV] for s =d — 2).

If the initial 10 is sufficiently regular, the stronger assumption (1.20) is known to hold with
T = oo for the Coulomb case (see [LZ] where the proof works as well in higher dimensions),
and it is known up to some 7" > 0 in the case (d —2)y <s <d—1 [XZ]. As for (1.14), to
our knowledge the desired regularity is only known in dimension 2 for the Euler equation in
vorticity form (see [Wo,Ch2]), although the arguments of [XZ] written for the dissipative case
seem to also apply to the conservative one. Our convergence result thus holds in these cases,
under the assumption that the limit p® of u% is sufficiently regular and that Fy (X%, u") =
o(N?). Note that, as shown in [Du], the latter is implied by the convergence of the initial
energy

1
lim — 0 _ 20y = — 0 0
Jim 5 ;#g(mz 5) //R - gz — y)du” (x)dp”(y)
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which can be viewed as a well-preparedness condition. For any regular enough 1°, one may
for instance build initial conditions satisfying this assumption (and something even stronger)
by the construction in [PS].

For d — 1 <'s < d, even the local in time propagation of regularity of solutions of (1.13)
remains an open problem. Note that the uniqueness of regular enough solutions is always
implied by the weak-strong stability argument we use, reproduced in Section 1.4 below.

Requiring some regularity of the solutions to the limiting equation for establishing con-
vergence with relative entropy / modulated entropy / modulated energy methods is fairly
common: the same situation appears for instance in [JW1,JW2] or in the derivation of the
Euler equations from the Boltzmann equation via the modulated entropy method, see [SR]
and references therein.

1.4. The method. As mentioned, our method exploits a weak-strong uniqueness principle
for the solutions of (1.13), resp. (1.14), which is exactly the same as [Du, Lemma 2.1, Lemma
2.2] (and can be easily readapted to the conservative case) and states that if u} and ub are
two L solutions to (1.13) such that V?(g * us) € L1([0, T], L>), we have

) [ el = 9l - )@ - )

t s
< O IV wu3)lds // g(z — 9)d(u — 19) (@)d(S — ud)(y).
Rd xRd

But the Coulomb or Riesz energy (1.15) is nothing else than the fractional Sobolev H~% norm
of p with a = %, hence this is a good metric of convergence and implies the weak-strong
uniqueness property.

A crucial ingredient is the use of the stress-energy (or energy-momentum) tensor which
naturally appears when taking the inner variations of the energy (1.15), i.e. computing
%|t:0|| po (I +t)||? (this is standard in the calculus of variations, see for instance [He, Sec.
1.3.2]). To explain further, let us restrict for now to the Coulomb case, and set h* = g * p,
the Coulomb potential generated by p. In that case, we have

(1.22) — Aht = Cdb

for some constant cy depending only on d. The first key is to reexpress the Coulomb energy
(1.15) as a single integral in h*, more precisely we easily find via an integration by parts that
if p¢ is a measure with [ dp =0,

1 1
(1.23) // gz — y)du(x)du(y) = / Wip=—— | AR =— [ VA
RY xRd Rd Cd JRd Cd JRd

The stress-energy tensor is then defined as the d x d tensor with coefficients

(1.24) (A, W5 = 20;hH 0 h* — |V hH|25,;,
with d;; the Kronecker symbol. We may compute that if ;s is regular enough
(1.25) div [h*, h*] = 2AR'V R = —2cquVh*.

(Here the divergence is a vector with entries equal to the divergence of each row of [h*, h*].)
We thus see how this stress-energy tensor allows to give a weak meaning to the product
uVht* = pVg * pu, with [h*, h*] well-defined in energy space and pointwise controlled by
|Vh#|2, which can by the way serve to give a notion of weak solutions of the equation in the
energy space (as in [De, LZ]). Note that in dimension 2, it is known since [De] that even
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though [h*, h*] is nonlinear, it is stable under weak limits in energy space provided p has a
sign, but this fact does not extend to higher dimension.

Let us now present the short proof of (1.21) as it will be a model for the main proof.
We focus on the dissipative case (the conservative one is an easy adaptation) and still the
Coulomb case for simplicity with no additional interaction F (when present, the additional
terms can be absorbed thanks to the dissipation). Let u1 and us be two solutions to (1.13)
and h; = g * u; the associated potentials, which solve (1.22). Let us compute

(1.26) 8t/ ’V(hl — h2)|2 = 2Cd/ (hl — hg)at(,u,l — ,uz)
Rd Rd
= 2Cd /d(hl — hg)diV (M1Vh1 — ILLQVhQ)
R
= —2¢q /d(Vh1 — th) . (/L1Vh1 — ,LLQVhQ)
R

—<2¢s [ (V00— b~ 2ca | Vha T~ b~ )
R R

In the right-hand side, we recognize from (1.25) the divergence of the stress-energy tensor
[hl — hg, hl — hg], hence

at/ V(b1 — ho)2 < / Vhy - div [ — ho, by — ha)]
Rd Rd

so if V2hs is bounded, we may integrate by parts the right-hand side and bound it pointwise
by

IVl [ s = o = hal] < 20 9%halloe | V(s = o)
R R

and the claimed result follows by Gronwall’s lemma.

In the Riesz case, the Riesz potential h* = gy is no longer the solution to a local equation,
and to find a replacement to (1.22)—(1.25), we use an extension procedure as popularized
by [CaffSi] in order to obtain a local integral in h* in the extended space R4+,

In the discrete case of the original ODE system, all the above integrals are singular and
this constitutes the main difficulty overcome in this paper. In place of the second term in the
right-hand side of (1.26), we then have to control a term which by symmetry can be written
in the form

(1.27) // (VI (z) = VR (y)) - Ve(z — y)d(p — p2)(z)d(p — p2)(y)
RIXRI\A

where A denotes the diagonal, y1 is the limiting measure p! and jo is the discrete empirical
measure ph;. Such terms are well known (see for instance [Scho2]), and create the main
difficulty due to the singularity of g. When removing the diagonal, the positivity manifested
by (1.23) is in effect lost. We are however able to prove the following crucial functional
inequality.

Proposition 1.1. Assume that p is a probability density, with p € C°(RY) with o >s—d+1
if s > d — 1; respectively i € L®°RY) or p € C°(RY) with o > 0 ifs < d —1. For any
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Xy € (RYHYY and any Lipschitz map ¢ : RY — RY, we have

N N

(1.28) ’// (@) = ¥(y) - Vel - Y)d(Y 0u; — Np)(@)d(D 62, — Np)(y)

i=1 =1

__d=s_ N
< OVl (P ) + (0 + )NV 42 (T 10g M) 10
: 141 145 14-5tl-0c
+Cm1ﬂ<||¢||L°°HMHL°°N &+ [V ool plloe N4, ([ |lwree [l oo N7 )

1 .
C{||v¢||Loo(1+||u\|CU)N2—dl ifs>d—1
V9] Lo (1 + || ]| e ) N4 ifs<d—1,
where C' depends only on s, d.

The right-hand side should be read as Cy . sd(Fn(Xn,p) + NP) for some 8 < 2. This
inequality is the main novelty of the paper. Even though the term (¢(x) — ¢ (y)) - Vg(z — y)
has a singularity of same order as g(z — y) near the diagonal, the inequality is not at all
obvious due to the lack of positivity of the integrand and its proof is rendered difficult by the
handling of the removed diagonal terms. Note that in [GP] Golse and Paul were able to treat
the mean field limit for the quantum Coulomb dynamics, relying on this inequality.

To give more insight into the proof of this proposition, we need to discuss the electric
representation of the modulated energy Fl, again restricting to the Coulomb case. For that
we introduce the electric potential

N
HR[XN] =g * (25331 —N,u) :
i=1
Arguing as in (1.22)—(1.23) we would like to rewrite Fx(Xy) as [pa [VHN[Xn]|?. This is not
quite correct due to the divergence of HA; at the points x;. This can however be corrected by
using mollified Dirac masses and setting for any 7 = (11,...,ny5) € RY,

N
=g (00 i
=1

(

where we dropped the [Xy] in the notation and let 557 denote the uniform measure of mass
1 on dB(z,n). This effectively truncates H; at scale n; around each z;, i.e. a scale which
depends on each point. Reinserting the diagonal terms, it is then not too difficult to check
that

N N
Fn(Xn, 1) an_igo//g(w —y)d (Z sym) — Nu) (x)d (Z o4 — Nu) ()
‘ i=1 i=1
N
- x —y)do\) (x)ds(m)
;//g y)do ) ()8 ()

N
1
=— lim VHY > —c ) |-
Cq 7i—0 ( Rd ’ N’”‘ d ;g(m)>
This effectively gives a renormalized meaning to the identity (1.23) in this setting.
The idea of expressing the interaction energy as a local integral in H’ and its renor-
malization procedure were previously used in the study of Coulomb and Riesz energies
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in [RS, PS,LS1,LS2], but it was not clear how to adapt these ideas to control (1.27): in
fact in [Du] this was dealt with by a ball-construction procedure inspired from the analysis
of Ginzburg-Landau vortices, which led to nonoptimal estimates and to the restriction to the
dissipative case only and to s < 1 and d < 2.

In fact, we can say better, and this is where we depart significantly from previous works, by
exploiting the fact that the expression f]Rd |VH ]*\‘,777\2 —C4 Zﬁil g(n;) is essentially decreasing
with respect to 7; and constant for 7; small enough that the B(xz;,7;)’s are disjoint, see
Proposition 3.3. More precisely, we may set r; to be 1/4 of the minimal distance from z; to
all other points, and for 7; < r;, we have the equality (without limits)

1 N
(1.29) Fn(Xn,p) = — (/ |VHY ﬁ]2 —cd Zg(m)) + explicit negligible terms.
R 7 i=1

Cd

In addition, an observation made in this paper for the first time is that when choosing precisely
n; = r;, the potentially large terms [pq |VHJ‘\L,’?|2 and cg Zi]\il g(r;) are separately controlled
by CFy (plus good terms) and conversely, see Corollary 3.4. It now suffices to control the
left-hand side of (1.28) by [ps [VH} (>, Let us emphasize that this choice of truncation r;
that depends on the point is (up to constants) the only one which is at the same time large
enough so that fRd |\VH K/,ﬁP is directly controlled by Fy and small enough that the equality
(1.29) holds. In other words, since we do not have any bound from below on the distance
between the points, a point-dependent truncation radius is crucial. As a side note, the idea
of using truncations for proving mean-field limits is common, however what is usually done
is to truncate the interaction g itself (at lengthscales possibly depending on N), and try to
take limits in the resulting flow. What we do here is very different: we do not modify the
interaction but desingularize the charges themselves as an intermediate step to control the
singular terms.

In order to bound the left-hand side of (1.28), the key is then to interpret it as well as a
single integral in terms of VHY; in a suitable “renormalized” way, more precisely in terms of
the stress tensor associated to VH ]‘\‘,ﬁ, for n; — 0. The quantity then obtained is this time
not monotone in 7;, however, by carefully studying its variations in 7; (this is the hardest
part of the proof), we are able to control it by the (integral of the) stress tensor associated
to VHy 7, which can in turn be bounded by [IVH ]’ff r‘27 and we conclude thanks to the fact
that this is controlled by C'Fly. ’

1.5. The modulated free energy for the case with noise. In this subsection, we explain
the modulated free energy method of [BJW1], which is posterior to the first version of this
work and allows to treat the case of (1.9). In this case, the mean-field limit inherits an added
Laplacian:

(1.30) O = div (Vg + F) s« p)p) + 0Ap.
Consider fy(x1,...,zxN) a symmetric probability density on configurations in (RY)™, and
let us again abbreviate (x1,...,zy5) by Xy. Let us introduce the relative entropy

H ON) .= N log ~1Y_ax
NN = N [ ptog caxy

INote that we take N2 times the usual relative entropy, because all our quantities are N2 times standard
ones.
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It is of course a way of measuring how close the distribution fy is to u®V. Then consider

Kn(fn,p) = /RdN IN(XN)FN (XN, p)dX N

the expectation of our modulated energy Fy with respect to fy. Bresch-Jabin-Wang intro-
duce the modulated free energy

(1.31) Fo(fn, 1) = OHN(fn|n®N) + Kn(fn, 1)

It has exactly the structure of a free energy in statistical physics, i.e. of the form energy
plus temperature times entropy, and when temperature vanishes and fy concentrates on one
configuration, it coincides with the regular modulated energy.

Consider now f% corresponding to the probability density of particles following the flow
(1.9), then by Ito calculus f% solves a Liouville or Kolmogorov equation

N N
(1.32) @ﬁJZEvai( > ViHn (i pﬁAXN0+9§:AJﬁ

i=1 1#£j i=1
Their crucial observation is that when combining the relative entropy and the modulated
energy in exactly the way of (1.31) and differentiating in time Fy(f%, u') for u' a solution
to the mean-field limit (1.30) and f§ a solution to the Liouville equation (1.32), the new
and problematic terms arising in 8;Hy (f%, u*) from the presence of the noise (which were an
obstacle to treat the Coulomb case in [JW2]) exactly cancel with the new terms arising in
KN (f, 1) (this does not happen in the conservative case of (1.10) though). This allows
them to obtain the following crucial identity:

(1.33) *fo(fzva )

/(/ Ve(r ) - (') Z%—NM Z%—Nu ))dﬁv(XN)

with this time
\Y
ot = VhH gt i
ut
Once this identity is observed, Proposition 1.1 directly applies (if u! is assumed regular
enough) and yields

Fo(fa ') < CKN(fy, p') + o(N?) < CFo(fi, 1) + o(N?)

which allows to directly conclude via Gronwall’s lemma the mean-field convergence in the
case with noise.

The rest of the paper is organized as follows: we start by deriving the main result assuming
the result of Proposition 1.1. In Section we present the details of the electric formulation in
the general Riesz case and prove the main properties of the modulated energy (monotonicity,
bound from below, coerciveness). We conclude in Section 4 with the discussion of the stress-
energy tensor and the proof of Proposition 1.1. The paper finishes with Appendix A on the
derivation of the Vlasov-Poisson system in the monokinetic case.

Acknowledgments: 1 would like to thank Mitia Duerinckx for his careful reading and
helpful suggestions and Pierre-Emmanuel Jabin for useful discussions on the work [BJWI,
BJW?2]. This research was supported by the NSF grant DMS-1700278.
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2. MAIN PROOF

In all the paper, we will use the notation 1(; 4) to indicate a term which is only present
in the logarithmic cases (1.4) and 1s.q—1 for a term which is present only if s < d — 1.
Below, the principal value (which may be omitted for s < d — 1) is defined by P.V. fRd\ (o} =

liny—0 Jpon p(a.r)
Differentiating from formula (1.16), we have

Lemma 2.1. If X§ is a solution of (1.5), then

2

(2.1) (X ) = 28" [ duty ()

Rd

PV. / Ve(z — y)d(uly — 1) (y)
RI\{z}
+ 2N2/ Fx (! — ply) - V(RS — 0 dpdy
]R{d

—N? //RdXRd\A ((Vh#t + F % ut)(x) — (tht +Fx Ht)(y))'Vg(x_y)d(,uﬁv—Mt)(x)d(/f]e\/—ut)(y).

If X% is a solution of (1.6), then

(2.2)
O FN (X, p') = —N? // I (VR (@) = VR () )-Ve(a—y) (uh— 1) (@) (uh—1') ().
RIXRI\A

Remark 2.2. In the case of an added term % sz\il V(x;) in the evolutions, one obtains an
additional term

o [ vl - V) - Ve — e~ i@ 1)
RdxRI\A

which can be handled like the others using Proposition 1.1 if V is globally Lipschitz.

Proof. We note that if s > d — 1, Vg is not integrable near 0, so Vg * u should be understood
in a distributional sense and pV (g * p) = ug* Vi as well, assuming that u is regular enough.
We may also check that this distributional definition is equivalent to defining

Vht(x) = P.V. /Rd\{ }Vg(m —y)du(y).
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In the case (1.5), we have

O FN (XY, ph) = N28t// gz — y)du(x)du (y) + 0 Y _gla} — 2f)
RdXRd i£]

N
_2N8tZ/Rd g(zi — y)du'(y)
=1

— —2N? /R d (VR 2 (z)dpt (z) — 2N? » VA () - F  pt (2)dpt (z)

N 2
—22 ZVg(:Eﬁ—xé —QZ(ngl‘—ﬂ? ZFx—x )
=1 |j#1i =1 \j#i j#i
+2N2Vh“ b (Vg(aﬁ — a%) + F(a} — x?))
i#£]

N

—|—2NZ P.V./ (Vh“t + Fx p')(z) - Vg(x — zb)du' (z).
i—1 R\ {z!}

We then recombine the terms to obtain

2

OFy(Xit) = —2N* [ dpty ()

PV. / Ve(z —y)d(py — 1*)(y)
RY\{z}
—2N? / VR [2dpt — 2N? / V" (z) - F s il () dpp! ()
Rd Rd

N (ww?v(x)- / F(scy)dumy)) duiy(a) +2N° [ VR Pty
Rd R\ {z} Rd

+2N2 [ Vi (z) - / (Ve + F)(z — y)duiy (y)dply ()
R RY\{z}

2N /Rd By /Rd\{ }(Vh“t +F ') (@) - Ve(o — y)dp' (z)dply (y)-
Y

We next recognize that all the terms except the first can be recombined and symmetrized
into

-N? // (TR Py (@) — (VR 4 P ) () - V(e —y)d(ly - p) @)y = 1) (9)

2N [Pt = ) DO 1)y
Rd

which gives the desired formula.
In the case (1.6) we have

O FN (X, uh) = N28t// z—y)dp (z)dut (y +8t2g1:—$ ZNOtZ/ (zt—y)du'(y)
i#]

N
= 2N Y VA (al) - IVg(al — 2t) + 2N Y PV. / IVh* (z) - Vg(x — ab)dpt (z)
i#j ’ i=1 RN {z}
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We then rewrite this as

OFy (X)) = 2N [ V(). / IV — y)diy () dpdy ()
Rd Rd\{x}

+2N? / PV. / IVR* () - Vg(x — y)dpt (z)duby (y).
Rd R\ {y}
By antisymmetry of J, we recognize that the right-hand side can be symmetrized into
- ] 3 (R (@) - I8 ) - el — y)d(u — ) )iy — 1))
O

The main point is thus to control the last term in the right-hand side of (2.1) or (2.2)
which is done via Proposition 1.1.
For the dissipative case with the added force, we will also need

Lemma 2.3. Assume F € H%(Rd) NCY%(RY) for some o > 0. Then there exists X > 0 and
C > 0 depending only on «,s,d such that for every t,

2
dply ()

N2/ For (' —pily ) V7 (W5 — " Ydpaly < N2/ P.V./ Ve(z —y)d(uly — 1) (y)
Rd Rd R\ {z}

s N _2X
HOFIR iy (O + (L Tim)N 2 (108 ) 100 )+ ¥ %

Noting that by assumption u' € Npey LP (RY) and taking p to be the conjuguate exponent
to q,

IVF s | o < IVF |zl e,

we then immediately deduce from Lemma 2.1, Lemma 2.3 and Proposition 1.1 that

2

Py (X ) < C (I9%H o + IVl + IFIE, e )

_ ds N
[ (P chon) + (4 I VT 4 0 42 (G108 ) 000 ) + OV

s+1—0o

{<1+||ut||ca>zv2-é+(||Vh“t||Loo+uv2h~t|Loo)||M||CUN1+ | ifs>d—1

s+1

1 s .
(L [l ) NP8 4 [ VRS oo [t e N8 [ V20 oo | e )N 3] i s < d = 1.

Since s < d and 0 > s —d + 1, this implies by Gronwall’s lemma and in view of (1.17) that
for every t < T,

Fy (X%, 1) < (FN(XR,,NO) + ClNﬁ> et for some f < 2.

In view Proposition 3.6 below, this proves the main theorem.

3. FORMULATION VIA THE ELECTRIC POTENTIAL

3.1. The extension representation for the fractional Laplacian. In general, the kernel
g is not the convolution kernel of a local operator, but rather of a fractional Laplacian. Here
we use the extension representation popularized by [CaffSi]: by adding one space variable
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y € R to the space RY, the nonlocal operator can be transformed into a local operator of the
form —div (|z|"V-).

In what follows, k will denote the dimension extension. We will take k = 0 in the Coulomb
cases for which g itself is the kernel of a local operator. In all other cases, we will take k = 1.

For now, points in the space RY will be denoted by z, and points in the extended space
Rtk by X, with X = (z,2), 2 € RY, 2 € Rk, We will often identify RY x {0} and RY and
thus (x;,0) with z;.

If ~ is chosen such that

(3.1) d—2+k+7y=s,

then, given a probability measure p on RY, the g-potential generated by u, defined in RY by
W) = [ (o~ ) du(a)
Rd
can be extended to a function h# on R4t* defined by

W) = [ B = (2.0)) du(a),
and this function satisfies
(3.2) —div (|2]7Vh") = cq sptdpd

where by gs we mean the uniform measure on RY x {0}. The corresponding values of the
constants cqs are given in [PS, Section 1.2]. In particular, the potential g seen as a function
of R4tk satisfies

(3.3) — div (]2]"Vg) = cq,500-

To summarize, we will take

e k=0,7 = 0 in the Coulomb cases. The reader only interested in the Coulomb cases
may thus just ignore the k and the weight |z|7 in all the integrals.

e k=1,7v=s—d+2—k in the Riesz cases and in the one-dimensional logarithmic case
(then we mean s = 0). Note that our assumption (d — 2); < s < d implies that ~ is
always in (—1,1). We refer to [PS, Section 1.2] for more details.

We now make a remark on the regularity of h*:

Lemma 3.1. Assume p is a probability density in C?(RY) for some 0 > s —d + 2, then we
have

(3-4) IR ey < C (ltlleo-1rey + el 2oy )
and
(3.5) 1923 | e ey < € (Illlco oy + 1l ge)) -

Proof. As is well known, g is (up to a constant) the kernel of A%, hence h* = Cd,sA%M and
the relations follow (cf. also [Du, Lemma 2.5]). O
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3.2. Electring rewriting of the energy. We briefly recall the procedure used in [RS,PS]
for truncating the interaction or, equivalently, spreading out the point charges. It will also
be crucial to use the variant introduced in [LSZ, LS2] where we let the truncation distance
depend on the point.

For any n € (0,1), we define

(3.6) gy :=min(g,g(n)), f,=g—g
and
(n) L.
(3.7) b6y = ———div (|2["Vgy),
Cd,s

which is a positive measure supported on 9B(0,n).

Remark 3.2. This nonsmooth truncation of g, can be replaced with no change by a smooth
one such that

1
gy(z) = g(x) for |v| >n, gy(w)=cst for|z|<n—-c e< Y

and this way 5(()") gets replaced by a probability measure with a regular density supported in
B(0,n)\B(0,n —¢). We make this modification whenever the integrals against the singular

measures may not be well-defined.

We will also let

(3.8) fan :=fa —fy = 8y — 8as
and we observe that f,, has the sign of o — 7, vanishes outside B(0, max(«a, 7)), and satisfies
(3.9) g* (017 = 31%) = fay(- — @)
and
(3.10) — div (2" Viay) = cas(85” — 65).

For any configuration Xy = (x1,...,2x), we define for any ¢ the minimal distance
(3.11) r; = min (irjn;gl ]a:i—xj|,N;> .
For any 77 = (11,...,nn5) € RY and measure p, we define the electric potential

N

(3.12) Hy[Xn] = /Rd+k g(z —y)d <Zl 0u; — NuéRd> (v)

and the truncated potential

N
(3.13) HY [XN] = / gz —y)d (Z o4 — NuaRd) ),
=1

Rd+k

where we will quickly drop the dependence in X. We note that

N
(3.14) Hy S XN] = HY[XN] = Y (e — @)
iz
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These functions are viewed in the extended space R91* as described in the previous subsection,
and solve

N

(3.15) —div (|2["VHRY) = cas (Z Oz, — NuaRd> in RI+K,
=1

and
N

(3.16) — div (|z"VHY ) = cas (Z §¢m) — Nu5Rd> in R4k,
=1

The following proposition shows how to express Fy in terms of the truncated electric fields
VHY 7~ In addition, we show that the quantities

N
2|T|VHY | —c :
JLu VDI A a5 D)

converge almost monotonically (i.e. up to a small error) to Fi, while the discrepancy between
the two can serve to control the energy of close pairs of points.

Proposition 3.3. Let ju be a bounded probability density on RY and Xy be in (RHN. We
may re-write Fn(Xn, 1) as

1 N
— i Y B2 ,
(3.17) Fn(Xy,p) = cas %1_% (/RdJrk [2["IVHY 2" — cas ZE:1 g(nl)> ,

and for any 177 we have the bound

(3.18) > (g(wi —zj) —glm)),
i#]
1 N N
< Fy(Xn,p) — (/ |2V HY 1% — Zg(m)> +CN|pllpe= D nf™,
Cd,s JRA+k i=1 i=1
for some C' depending only on d and s.

The proof, which is an adaptation and improvement of [PS,1.S2], is postponed to Section 5.

What makes our main proof work is the ability to find some choice of truncation 7 such
that [par |z\7|VH]’\‘,7ﬁ|2 (without the renormalizing term —cgs >N | g(n;)) is controlled by
Fn(Xn,p) and the balls B(z;,n;) are disjoint. In view of (3.18) the former could easily be
achieved by taking the 7;’s large enough, say n; = N4, but the balls would not necessarily
be disjoint. Instead the choice of 1; = r; where r; are the minimal distances as in (3.11) allows
to fulfill both requirements, as seen in the following

Corollary 3.4. Under the same assumptions, we have

(3.19)
N

s N N
> glrh)<C (FN(XN,M) + (L+ ||l oo )N 3 + (dlog N) 1(1.4)) +C (d 10%N> 1.4
i—1

and
s N
G20 [ IV P < 0 (Fy Qo + (14 i)V (1o ) 1))
R

for some C' depending only on s, d.



18 SYLVIA SERFATY, APPENDIX WITH MITIA DUERINCKX

Proof. Let us choose 1; = N~/9 for all i in (3.18) and observe that for each i, by definition
(3.11) there exists j # i such that (g(|z; — z;]) — g(N~V9) 4 = (g(4r;) — g(N"/9)),. We
may thus write that

(3.21)

N

_1 1 1 s
> (gan) ~ (N 4))s < Fn(Xo) = = [ [P IV Hagl + Ne(N =)+ OV =) N5,
=1 ,S

from which (3.19) follows.
Let us next choose 7; = r; in (3.18). Using that r; < N~1/9, this yields

N

1 s

0< (o) = o= [ IV H ol + 3 g(0) + OVl =),
S =1

Combining with (3.19), (3.20) follows.

From (3.20) we directly obtain that Fi is bounded below:

Corollary 3.5. Under the same assumptions we have
N s
(3.22) Fn(Xnop) > — (d logN> 1.4 — ON'

for some C > 0 depending only on d,s and ||p||re~.

3.3. Coerciveness of the modulated energy. Here we prove that the modulated energy
does metrize the convergence of u; to p'.

Proposition 3.6. For any 0 < a <1, there exists A > 0 and C > 0 depending only on «, d,
s, such that for any Xn € (RY)N, any probability density p, and any & € C°(RY), we have

N
(3.23) / &d <Z (511 - N;L) < CH&HCO,a(Rd)Nl—%
R i=1
N 3
Il a2 g (Fv o) + (1 )N 42 (G108 N ) 1))
In particular, if ﬁFN(XN,,u) — 0 as N — oo, we have that
| N
(3.24) N Z(S»Ti — u in the weak sense.
i=1

Proof. Let € be a smooth test function on RY. Let ¢ denote an extension of ¢ to R4t satisfying
—div (]2]7V€) = 0 in {z # 0}.

By [FKS], |z|” being a Muckenhoupt Ay weight, the function ¢ is in C%*(R4tk) for some
A > 0 depending on the other parameters, with ||£]|coa < C||€]|co.e. This can also be seen
from the Poisson kernel representation given in [CaffSi]. In addition, we also have (this can
be seen in Fourier, see [CaffSi, Section 3.2]

3.25 NVEP = CEI ams
(3.25) | 1R = Clel e
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Using (3.16) let us write for any probability density p

N N
1 _
(3.26) /Rdgd <§ O, — NM> = /Rd &d <§ O, — 5:(;;)) _ Cd/Rd Ediv (|2["VH [ XN]).
i=1 i=1 S +k

For the first term in the right-hand side we use the Holder continuity of ¢ and the fact that
(53(;?) is supported in B(z;,r;) and write

(3.27) ‘ / §dz )

For the second term, we integrate by parts and use the Cauchy-Schwarz inequality to write

N
12
< Cliéllcoa(re) Zrz)\<CH§HC°“Rd N'Ta.

(3.28)

/ £ div (|z|7VH]‘\L,7?[XN])‘ _ ’ / 2['VE- VHE
Rd+k Rd+k

1 1
_ 2 2
< (/ \zmvg?) (/ rzPWHfG,FP)
Rd+k ]Rd+k

In view of (3.20) and (3.25) we thus find

) |f édivquch?[XN])\
Rd+k ’
N 2
CIEl 852 gy (P o) + (1 )N 42 (G108 N ) 1))
Inserting (3.27) and (3.29) into (3.26) we conclude the result. O

Remark 3.7. In a density formulation aiming at proving propagation of chaos, arguing
exactly as in [RS, Lemma 8.4] for instance, we may deduce from this result and the main
theorem the convergence of the k-marginal densities in the dual of some Sobolev space, with
rate k/N times the right-hand side of (3.23).

3.4. Proof of Lemma 2.3. Using the Cauchy-Schwarz inequality we have the bound

I F et = 1) Vel = sty — ) )iy (2)

< (/Rd |Fx (u' — ﬂ?v)!Qduﬁvf (/ ‘P-V- /Rd\{x} Ve(r —y)d(py — 1) () 2du?v(:v)) 5

thus to prove the lemma, it suffices to show that
A
(3.30)  N[IFs (i = priy) | poe < CllFf[co.aqre) N~

s N
145
4 I gy (B OO )+ (L il N2 42 (T hog N ) 100)

which is a direct consequence of (3.23).
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4. PROOF OF PROPOSITION 1.1
4.1. Stress-energy tensor.

Definition 4.1. For any functions h, f in R¥"* such that [pai |2]7|VA|? and [gas 2|7V f[?
are finite, we define the stress tensor [h, f] as the (d + k) x (d + k) tensor

(4.1) [h, f] = |2|7 (0;h0; f + 0;h0; ) — |2|"Vh - V fo;;
where §;; = 1 if © = j and 0 otherwise.
We note that
Lemma 4.2. If h and [ are reqular enough, we have
(4.2) div [h, f] = div (|z|"VR)Vf + div (|z]"Vf)Vh = V|z|"Vh -V f
where div T here denotes the vector with components ) ; 0;T;;, with j ranging from 1 to d 4 k.

Proof. This is a direct computation. Below, all sums range from 1 to d + k.

= Z [81(|z|781h)8jf + 82(|z|78lf)8]h + |Z‘7al]h81f + |Z’78”f81h] — 8]- (‘ZP Z &hf)lf)

= div (|2]"VR) + div (|| 'V f) — Vh - V£0;]2]".
]

In view of (4.2), we have

Lemma 4.3. Let ¢ : RY — RY be Lipschitz, and if k = 1 let @ZAJ be an extension of it to a map
from RItK to RITK whose last component identically vanishes, which tends to 0 as |z| — oo
and has the same pointwise and Lipschitz bounds as 1. > For any measures p,v on RITK if
—div (|2["Vh*) = cgsp and —div (|2[YVh") = cq v, and assuming that [pe|2|7|Vh#|? and
Jges |27V 2 are finite and the left-hand side in (4.3) is well-defined, we have

as L 0@ =0 Vel —pdu@vt) = [ Vi) s (b0

Cd75 Rd+k

Proof. If u is smooth enough then we may use (4.2) to write

I @) =00 - Vela -~ pduta)dvty) = [ 5 (Vi + IHdp)
Rd+k xRd+k Rd+k
- ! ¥ - div [h*, h"]
Cd,s Rd+k

since the last component of @@ vanishes identically. Integrating by parts, we obtain
N ~ 1 N y
I 0@ =6 Vel — pidut)dvty) = - [ Vi )
Rd+k x Rd+k Cd,s JRd+k
By density, we may extend this relation to all measures u,v such that both sides of (4.3)
make sense. u

2Such an extension exists, for instance by solving the co-Laplacian in a strip, which provides an “absolutely
minimal Lipschitz extension”
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4.2. Proof of Proposition 1.1. We now proceed to the proof. Given the Lipschitz map
1 RY — RY, we choose an extension @ to R9tk which satisfies the same conditions as in
Lemma 4.3.

Step 1: renormalizing the quantity and expressing it with the stress-enerqgy tensor. Clearly,

N

(4.4) // y)) - Ve(z —y Zéxl - d(;% = Np)(y)
N
= liny //R d+kad+k d(a) ) - Valz —y 2507 — Nubgs)(@ ;5@ — Nubgs)(y)
. Z L (360 = 50) - Vo~ a2 a5 )]

Applying Lemma 4.3, in view of (3.13), (3.16) we find that

N
ws) | ($(a) - ¥(v)) - Vel —y) 25“7 — Npubga) (@)d(3 00 — Npudis)(v)
Rd+kXRd+k i—1

L[ v E )

Cd,s JRd+k

Step 2: analysis of the diagonal terms. The main point is to understand how they vary
with 7;. Let & be such that a; > n; for every i.
We may write that

(4.6) //R o ane (D@ = )] - Vel = y)do) (@)doP (y)
- //R . ($(2) = () - Velz — y)dsls? (x)dsls) ()
o @)~ 00 Vil — e — s @) — 5 )

A~

+2 // (P(x) —d(y)) - Ve(z — y)ds©) (z)d(51) — 5524 (y).
Rd+k x Rd+k
We claim that
(4.7) // ((x) = d(y)) - Ve(z — y)ds (z)d(s1) — 5524))(y) = 0.
Rd+k  Rd+k

Assuming this, inserting it to (4.6) and using (3.9) and Lemma 4.3, we conclude that
) // () = () - Velw — y)do? (x)ds (y)
Rd+k><Rd+k

//RdeRM ($(@) — b)) - Ve(@ — y)dole) (z)ds) (y)

1
= vw [ azﬂ?z( - xi)7fai7m‘(' - xz)}

Cd,s JRd+k
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Step 3: proof of (4.7). Let us write the quantity in (4.7) as
(4.9) 2// ((x) = P(y)) - V(o — y)dol*) (z)d(67) — 5L79)(y)
Rd+k x Rd+k
2 b(x) — P(y)) - Vg — y)d (6 — §20) (z)d (601 — 52D (y).
w2 ff @) =) Vele = (5 - 5600) (@)a (52— 527) ()

In view of (3.7), Vg * 5(2%) = Vg, (- — x;) and in view of (3.9), Vg (59(5271') - 53(5?i)) =
Vfa;m (x — x;). We may thus rewrite the first term in (4.9) as
2P.V. b Vi (- — 25)d52) 4 2PV 0+ Voo, (- — mi)d (601 — 604)) .
Rd+k K Rd+k 7 [
But Vfq, 5 (- — x;) is supported in B(z;, ;) while 5;(50”) is supported on 9B(z;,2q;), and
in the same way Vg,, (- — x;) vanishes in B(z;,2q;) where (5;((;?) — 5&?” is supported, so we
conclude that the first term in (4.9) is zero. The second term in (4.9) is equal by (3.9) and
Lemma 4.3 to )
P VIZJ : [fzaivai(‘ - xi)vfomm(' - xl)]
Cd7s Rd+k

and it is zero, since faq, o, and fq, ,, have disjoint supports. This finishes the proof of (4.7).

Step 4: combining (4.5) and (4.8). The following lemma allows to recombine the terms
obtained at different values of 7; while making only a small error.

Lemma 4.4. Assume that i € C°(RY) with o >s—d+1ifs>d— 1. Assume u € L°(RY)
or u € C?(RY) with ¢ > 0 if s <d — 1. If for each i we have n; < oy < r;, then

Vq/} : [ Nn’H'u ] = V¢ Na’ Z Oéz,m('_xi)7fai,m('_xi)]‘i'g

RdJrk Rd+k Rd+k

with

N __d—s_
(@10) g1 < V6= (P (Xvas) + (5 108 N) Loy + (14 =) N> 5655

N N N
FONmin (lleLwHuHLw > o™ 4 [Vl lulls 3 af 5 [ llws lulles Zaf—s+0—1>

i=1 i=1 i=1
+CN{||V¢||L°°(1+HMHCu)ZfLO@ ifs>d-1
IV o (L4 plle) Sy i ifs<d—1
where C' depends only on s, d.
Assuming this, and combining (4.4), (4.5) and (4.8) we find that for any «a; < r;,

//C(w($)— ))-Vg(z—y) 25%—]\7# 25 _ 6 V| Na,H“ 3l

Cd,s JRd+k

- Z // d+kad+k - %(y)) - Vg(z — y)doled) (2)ds) (y) + O(€)
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where £ is as in (4.10). Using the Lipschitz character of 1) and the expression of g, we find
that the second term on the right-hand side can be bounded by *

N
cIvel=3 [, el ndse @i
i=1 Rd+k x Rd+k

N N
= CITUl Y. [ ol = ) de) = V= 3 le)
i=1 =1

where we have used (3.7). Choosing finally a; = r; < N/, bounding pointwise [HY; ., H}; ]
by 2|z|7|VHX -|? and using (3.20), while using (3.19) to bound SN g(r;), we conclude the
proof of Proposition 1.1.

Proof of Lemma 4.4. First, we observe from (3.14) that [Hy 5, Hy ;] and [Hy -, H -] only
differ in the balls B(z;, o;) which are disjoint since a; < r;, and that in each B(z;, o;) we have

Hy 7= Hy &+ faun (- — @0).
We thus deduce that

[ Vs (g ) U )
B /B( ) V1; : ([fai’m’fai’m]<. - xl) + 2[faimi(' - zTi)u HK[,EZD

= / V@E : ([faiﬂiwfaimi](' - JJZ) + Q[faimi<' - xi)v HKI,&]) .
Rd+k

There only remains to control the second part of the right-hand side. By Lemma 4.3, we have

VQZ) : [f@ivm‘(' - xi)vHKf,d’]

Rd+k
; p o 5(03)
= cus // () = b(y)) - Vel —y)d [ 305 = Npdga | (2)d (850 — 519) (y).
Rd+k x Rd+k j:l

In view of (4.7), we just need to bound the sum over i of
(4.12)

oo [[ @) = 5w Vel — o) | 857~ Nudo | () (58 - 52 ()

Rd+k x Rd+k it

= Cd,s 1[’ : Vfai,m(' —x;)d ( Z 59(6?3') — N;MSRd)

d+k . . .
R VBikal

+ Cd,s/ 775 : (Z Vga, (x —xj) — NVh#) d ((5%71') _ 59(36:1-)) 7
R+ jii

where we used (3.9).

3In the case (1.4) we bound instead |z — y||Vg(z — y)| by 1, which yields an even better control.
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Step 1: first term in (4.12). Since fq, ), (- —x;) is supported in B(x;, o), 5&?” in B(z;, aj)
and the balls are disjoint, one type of terms vanishes and there remains

_chﬁ /d - Vfaimi(' - xi)dﬂ'
R
Thanks to the explicit form of f,, we have
_Jelr—xi) —glay)  for m <z -] <oy
faiﬂh‘(' - xl) -
g(mi) — gla) for |z — x| <
and
Vfai,m‘(' —z;) = Vg(r — xi)lni§|$—ﬂ»‘i|§ai'
It follows that

(4.13) [l<cat [ fal <ot [ (V)< Caf
Rd Rd Rd

Indeed, it suffices to observe that

= i r) — g(a))rd! r:—g r’rrdr
(1.14) fo, = C ) @) st ir = = [t

with an integration by parts.
We may always write

rd

[ Fheun =l = )| < Ol plons |

(4.15)

< Clll=llpllcoras™,

and, integrating by parts and using (4.13),

(4.16)

w : Vfaiﬂh‘(' - xl)#(l‘l)
Rd

d—
< lpllzeo [Vl oo /Rd [fouimi| < Mlpall oo [ Ve[| oo .

Alternatively, we may use the simpler bound derived from (4.13),

(4.17)

[0 Vo= 2| < Cll o e~

A standard interpolation argument yields that [|g||(coy < ||g||‘(’cl)*||g\|%5g)* so interpolating
between (4.15)—(4.16) and (4.17), we obtain

[0 o= )] < CIIE o o lllomod ==,

We conclude that the sum over i of the first terms in (4.12) is bounded by both

(4.18) Ol 115 o lliller D2 af =71 and Cllwllpelpllz D af "
) )
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Step 2: second term in (4.12). We may rewrite the integral as

(4.19) — N D) - Veahtd (607 — o100))

Rd+k
Z o (z — 25)d (60 — §le)
+Jj7éi Rd+k¢(xj) Vg J(x :E]) <$Z v )
s / (6 — $(x)) - Ve, (@ — 2;)d (5{1) — 609)
G R

Rd+k

where we used that the last component of zﬁ vanishes, so that only the derivatives along the
RY directions appear.
Substep 2.1: first term of (4.19). We may write that (59(621')—59(5?1') = —idiv (12" Viqm (-—
x;)) and integrate by parts twice to get
1 ~
o [ DY (9 o) Vo (= ) = [ (0l T

Cd,s Rd+k Rd

Here, we used that —div (|2]7Vh*) = cqeudge and took the 9(z;) - Ve of this relation. In
view of (4.13), this is then bounded by

d—
Cllgll Vil Lo af ™.
Alternatively, we may integrate by parts in RY to bound it by

Clllioe ([l | | Vo] + [V 0limad™*)

Interpolating as above, we conclude with (4.13) that the sum over i of these terms is bounded
by both

(4.20) Cllulles (Hd)\%w IVl o™= + [l 04?”"1)

and ||| Lo (Ilele > ool Ve ZQ?S> :

Substep 2.2: second term of (4.19). Arguing in the same way as for the first term, using
that —div (|2|"Vga, (- — z;)) = cdysdx?j) and the disjointness of the balls, we find that this
term vanishes.

Substep 2.3: third term in (4.19). We separate the sum into two pieces and bound this

term by

(4.21) > E /}Rd+k (¥ — () - Vga, (- — z;)d ((59(0") - ciia))

J#u|wi—w| 2N d

SZI DY /R 7=V, (= p)ld (880 +8407) (),

&
JFb|zi—w | <N~ d
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for some € > 0 to be determined. For the first term of (4.21), we may use that |z; —z;| > N~3d

to write
a(s+1

1V (& = $(2)) - Vea, (@ = 25)) oo (Ber) < ClIVEll=N T

and using that 7; < o; < N ~d we may thus bound the sum of such terms by

e(s+1)
OV pe N5 273

Since |Vga| < |Vgl|, we may bound the second term in (4.21) by
(4.22) IV e > i — ;]
ji || <N T4

To bound this, let us choose 7; = 2N~a in (3.18) to obtain that
_=& _ _75)
> (glwi —2j) —g(2N7%)) < Fy(Xw, 1) + Ng(@N"8) + Cllu] = N>~ "5
i#5
In the cases (1.3), it follows that

(d—

> slei-2) <C (X + N

(d—s)
e N2 ) .
i |ri—a; | <N~ @

In the cases (1.4), it follows that

N
>, log2 < Fn(Xn,p) + — log N + C(1 + ||p]| <) N

c d
i#g,|vi—xj| <N~ d
and this suffices to bound (4.22) as well. Choosing € = ﬁ, we conclude in all cases that the
sum over i of the third terms in (4.19) is bounded by
__d-s N
@2) IVl (o) + (L i)V 4 (g N ) 11 )

Substep 2.4: fourth term in (4.19). We may bound it by O (||V1/1||LoooziHVRd h“HLoo(RdJrk)) .
But since h* = g * p, it is straightforward to check that ||Vgeh*||poomatey < [[VA*| foo(Ra)-
Using (3.4), we conclude the sum of these terms is bounded by

{czi ||V | oo (14 ||l ) ifs<d—1

(4.24) _
CY ai||IVY|lpe(1+ ||pflee) ifs>d—1and o >s—d+1.

Combining the bounds (4.18), (4.20), (4.23), (4.24) concludes the proof of the lemma. O

5. PROOF OF PROPOSITION 3.3

We drop the superscripts . First, [pai [2]7|VH N,ﬁ|2 is a convergent integral and
(5.1)

NVH - 60 — Npus d s _ N6 .
/Rd |2V Hy 7] cds//Rd+kad+k r—y) <Z 7 Rd> (z) (; Y J Rd> (v)
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Indeed, we may choose R large enough so that all the points of X are contained in the ball
Br = B(0, R) in R4*k. By Green’s formula and (3.16), we have

oH N
[Vl = [ et o [ g (3000 - Nuses ).
Br oB on Br i=1

R

Since [ d(32; 05, — Np) = 0, the function Hy 7 decreases like 1/|z|"! and VHy 7 like 1/|z|5™2
as |z| — oo, hence the boundary integral tends to 0 as R — oo, and we may write

N
[Pt = o [ g (z g0 NuaRd>

i=1
and thus by (3.16), (5.1) holds. We may next write that

N

N N
%lg}) [//Rd+kad+k gz —y)d (; 5 — NuéRd> (z)d (Z 5(m) — Nlu,(st> (y) — Zg(m)]

i=1

N N
= //A gz —y)d <Z Oz; — NMRd) (x)d (Z Oy — NMRd) (y)

=1 =1

=1

and we deduce in view of (5.1) that (3.17) holds.

We next turn to the proof of (3.18), adapted from [PS].  From (3.16) applied with 7 = &
and in view of (3.13), we have VHy 7 = VHy 5 + S~ Vfa, (- — ;) thus

MNVHy 7 = M\VHy g / IV s (T = 2) - Vg (T — 75
Lo Vg = [PV #3 [y Vo o= ) o =)
N
—1—22/ |2|"Via, mi(x — ;) - VHy 4.
i—1 Rd+k

Using (3.10), we first write

Z/ |Z|7vfaz‘7m (l‘ - xl) ’ Vfaz‘ﬂh' (x - :Cj)
i Rd+k

23 [ Fono = v (2 Ve, = ) = o > L fone = a2 = 590,

Zj

Next, using (3.16), we write
N N
2 Z/ |Z|’YVf0¢i777i($ — ) VHyg = _22/ fOéivm'(‘T — z;)div (’Z"YVHN@’)
i=1JRITK i=1JRITK

N N
= 2¢4s ; /Rd+k foim: (x — ;) d( Z 59(5(;%) - M(SRC’>'
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These last two equations add up to give a right-hand side equal to

) S [ oo w05+ 60) 2603 [ oo e

i#£]
(ci) (1)
Rd+k

We then note that [ fq, », d(5(()ai) + 587”)) =— ffnidééai) = —(g(a;) — g(n;)) by definition of f,
and the fact that 5(()a) is a measure supported on 0B(0, @) and of mass 1. Secondly, by (4.13)
we may bound [q fo,m, (¢ — i) pdge by Cllpl| oo ™S

Thirdly, we observe that since fq, , < 0, the first term in (5.2) is nonpositive and we may
bound it above by

S cas / Faumd3s” <3 cas / (&, (& — 1) — ga, (& — 1)) 65"

i#] i#]
< Scae [ (60 = oo =]+ )
i#]

where we used the fact that g, is radial decreasing. Combining the previous relations yields

N
— ON||pllz Y 15+ cas D (8o (|70 — 5] + ) — g(m)) ;.
i=1 i#j

N
< (/ |2[Y|VHy & — Cd,szg(az‘)> - (/ |2 [VHy ] — Cdszg (ni )
Re+k i=1 Ri+k i=1

and letting all oy; — 0 finishes the proof in view of (3.17).

APPENDIX A. MEAN-FIELD LIMIT FOR MONOKINETIC VLASOV SYSTEMS,
WITH MITIA DUERINCKX

In this appendix, we turn to examining the mean-field limit of solutions of Newton’s second-
order system of ODEs, that is,

T = v,
(Al) U’L:_%VIZHN(I‘177$N)7 Z:17>N
2:(0) = a2, v;(0) =Y,

where Hp is the interaction energy defined in (1.3). We then consider the phase-space em-
pirical measure

1 d d
fi = ~ ;5%05) € P(RY x RY),
1=
where P denotes probability measures associated to a solution Z& := ((zf,}),..., (2%, v N))
of the flow (A.1). If the points (2?,v?), which themselves depend on N, are such that fN
converges to some regular measure fY; then formal computations indicate that for t > 0, f%
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should converge to the solution of the Cauchy problem with initial data f° for the following
Vlasov equation,

(A.2) Of+v-Vof+(Vgxp) - Vyf =0, ph(z) = dft(a:,v) dv.

R
In the case of a smooth interaction kernel g, such a mean-field result was first established
in the 1970s by a weak compactness argument [NW, BH|, while Dobrushin [Do] gave the
first quantitative proof in 1-Wasserstein distance. In recent years much attention has been
given to the physically more relevant case of singular Coulomb-like kernels, but only very
partial results have been obtained. In [HJ2, HJ1], exploiting a Gronwall argument on the
oo-Wasserstein distance between fy and f, Hauray and Jabin treated all interaction kernels
g satisfying |Vg(z)| < Clz|=* and |V2g(z)| < Clz|=*~! for some s < 1. In [JW1], Jabin
and Wang introduced a new approach, allowing them to treat all interaction kernels with
bounded gradient. The same problem has been addressed in [BP, La, LP], leading to results
that require a small N-dependent cutoff of the interaction kernel.

In this appendix, we show that the method presented in the article allows to unlock the
mean-field problem with Coulomb-like interaction in the simpler case of monokinetic data,
that is, if there exists a regular velocity field u® : RY — RY such that v{ ~ u%(2?) for
1 =1,...,N, which implies that the solutions remain monokinetic, at least for short times.
Justifying a complete mean-field result for non-monokinetic solutions in the Coulomb case
in dimensions d > 2 remains one of the main open problems in the field. It is expected to
be rendered difficult by the possibility of concentration and filamentation in both space and
velocity variables.

In the monokinetic setting, we focus on the (spatial) empirical measure

1 N
= — E 1) RY

associated to a solution Z%; of the flow (A.1). If the points ¥ are such that uQ; converges to
some regular measure u°, then formal computations (see for instance [LZ]) lead to expecting
that for ¢ > 0, uk; converges to the solution uf of the Cauchy problem with initial data (u°, u")
of the following monokinetic version of (A.2)%,

(A.3) O + div (pu) = 0, Ou +u - Vu = —=Vg* L.

In the Coulomb case, these equations are known as the pressureless (repulsive) Euler-Poisson
system. Since for the second-order system (A.1) the total energy splits into a potential and a
kinetic part, we naturally introduce a modulated total energy taking both parts into account:
for Zn := ((x1,v1),...,(xN,vn)) and for a couple (u,u) € P(RY) x C(RY), we set

N

Hy(Zn, (1,w) := N Y u(zs) — il
i=1

N N
I //Rded\A gz — y)d(z% - Nu)(x)d(z%i - Nu)(y),

i=1

4Formally, the pair (i, u) indeed satisfies the system (A.3) if and only if the monokinetic ansatz f(z,v) :=
' ()8, —yt (1) satisfies the Vlasov equation (A.2).



30 SYLVIA SERFATY, APPENDIX WITH MITIA DUERINCKX

and we view Hy(ZY%, (', u")) as a good notion of distance between uly; and p' that is adapted
to the monokinetic setting. The condition Hy(ZY;, (1!, u?)) = o(N?) indeed entails the weak
convergence ph, — p! as in Proposition 3.6, while due to the kinetic part it also implies that
the flow Z%; remains monokinetic, that is, v} &~ u’(z!). In parallel with Theorem 1, our main
result is a Gronwall inequality on the time-derivative of Hx(Z%;, (uf,u!)), which implies a

quantitative rate of convergence of lﬁv to pu! in that metric.

Theorem 2. Assume that g is of the form (1.3) or (1.4). Assume that (A.3) admits a
solution (p,u) in [0,T] x RY for some T > 0, with p € L=([0,T];P N L=®(RY)) and u €
L2([0, T]; W (RN, In the case s > d — 1, also assume p € L>¥([0,T]; C7(RY)) for some
o >s—d+1. Let Z solve (A.1). Then there exist constants C1,Cs depending only on
controlled norms of (pu,u) and on d,s,o, and there exists an exponent < 2 depending only
on d,s, o, such that for every t € [0,T] we have

Hy (Zly, (4, u)) < (Hy (28, (1°,u0)) + CLNP )21,

In particular, if u% — p° and is such that

: 1 0 0
]\}E)noo WHN(ZNML ) =0,

then the same is true for every t € [0,T], hence ply — p' in the weak sense.

Remark A.1. We briefly comment on the regularity assumptions on the solution (p,u) of
the mean-field system (A.3) in the Coulomb case, that is, the pressureless (repulsive) Euler-
Poisson system. The local-in-time existence of a smooth solution is easily established by
standard Besov techniques, e.g. [BCD, Section 3.2]: for non-integer o > 0, given initial data
p’ € PNC7(RY) and u® € CoHL(RY), there exists some T > 0 such that (A.3) admits a unique
solution (p,u) in [0,T] x RY with u € L*°([0,T]; P N C°(RY)) and u € L>([0, T]; C°TH(RY)).
While global existence of a weak solution was proved in [NT], together with a partial uniqueness
result, the solution can in general remain smooth only locally in time due to possible wave
breakdown [Pe, Enj. Global smoothness was however established in some cases [CW, Gu].
The precise configuration of initial data happens to play a decisive role: a critical threshold
phenomenon was discovered by Engelberg, Liu, and Tadmor [ELT], showing in dimension 1
that global smoothness holds whenever the initial data do mot cross some intrinsic critical
threshold, while finite-time breakdown occurs otherwise. In particular, global smoothness is
expected to hold for a large set of initial configurations, but only partial results in this vein
are still available in dimension d > 1, ¢f. [En, LT1, LT2, LL].

Before turning to the proof of Theorem 2, we start with a weak-strong stability principle
for the mean-field system (A.3), analogous to (1.21) for the mean-field equation (1.13) in the
first-order case.

Lemma A.2. Let (p},u}) and (uh,ub) denote two smooth solutions of (A.3) in [0,T] x RY.
Then there is a constant C depending only on d such that, in terms of

(i) got)) = [ 1h =Pt + [ [ el =) ded = ib)a) o = i) ),

we have
t u
H((p,ub), (b, ub)) < e o IVuslieoedu pr((19 09), (49, ud)).
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Proof. Let h; := g * ;. We compute

O H ((p1,u1), (p2,u2)) = /d lut — u2| 2O + 2/d(U1 — ug) - (Opuy — Opug) 11
R R
42 [ (= ha)@ups ~ D)
R
= / Vi|up — u2|2 S iUl — 2/ (up — ug) - (ug - Vug — ug - Vug) g
Rd Rd

—2/d V(hl — hg) . (u1 — UQ) M1 + 2/d V(hl - hg) . (ulul — ,LLQUQ).
R R

Decomposing 2(uy —uz) - (u1 - Vug —ug - Vug) = uq - V|ug —ug|? +2Vug @ (ug —u2) ® (ug — uz),
we find after straightforward simplifications,
OcH ((p1,u1), (2, uz2))

= Q/d pu1Vug : (u1 — UQ) (%9 (u1 — UQ) + 2/d ug - V(hl — hg)(,ul — MQ).
R R

In the Coulomb case, we recognize from (1.25) in the second right-hand side term the diver-
gence of the stress-energy tensor [hy — ho, hy — hg], hence

8tH((:U'17 u1)7 (N27 UZ))
1

= —2/ wiVug : (U1 — ’LLQ) X (U1 — UQ) — / Uy - div [hl — ho,hy — hg]
Rd Cd JRd

C
< CVulie [ o= uaPon+ Vsl [ V00~ b
Rd Cd Rd
= C|Vual|lpeH((p1,u1), (12, u2)),

and the result follows by Gronwall’s lemma. In the Riesz case, replacing (1.25) by (3.2) and
by (4.1)—(4.2), the same conclusion follows. O

Taking inspiration from the above calculations for the weak-strong stability principle, we
now turn to the proof of Theorem 2.

Proof of Theorem 2. Let h := g * u. We decompose

OHN(Zn, (1yu)) = QNZ —v;) - ((Ou) (i) + @i - Vu(x;) — ;)
—i-QZ:z:Z Vg(xi—z;) +2N / hatu—2NZ/ ;-Vg(zi—y) du(y)—2NZ/ —) Ot
1#] i=1 YR =
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Inserting equations (A.1) and (A.3), we obtain
atHN(ZNa (:uv u))

N
— 2N (ules) — ) - ( — (- Vu)(es) - Vh(es) + v - Vulw) + % 3 Ve(ei - )
i=1 gt

+2Zvi-Vg(:ci—a:j)+2N2 Vh-up
i#j Re

N N
— 2N2vi - Vh(x;) — QNZ/Rd Vg(-—z;) - udp,
i=1 i=1

and hence, after straightforward simplifications,
N
OHN(ZN, (1, u)) = —QNZVU(:Q) s (u(z) —vi) @ (u(zi) — ;)

i=1
eN? [ fule) — () - Vel — g) dluy - () dluy — 0)(o)
RIXRI\A
Applying Proposition 1.1 to estimate the second right-hand side term, we are led to

OHN(ZN, (psw))

s _stl N
< C|[Vulle (Hy(Znv, () + (1 + [l )N 4 N27% 4 (5 log N) 11

_1 stloo
A+ llpllea)IVull e N*73 + Juflwroe [l oo N o, ifszd-1,
_1 st1
+C (U [lpllzoo) [Vl Lo N278 + [ful| oo [ o] oo NT74
|Vl poo | pel| oo N, ifs<d-—1,
and the conclusion follows by Gronwall’s lemma. 0
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